Lesson 1 The Solar Radiation

Mara Bruzzi

Università degli Studi di Firenze

OUTLINE

- Introduction
- The Electromagnetic radiation
- Photoelectric Effect the Photon
- The Black Body Approximation
- The Solar Spectrum
- Artificial Light Spectra
- Measuring Irradiance and Illuminance

Introduction

Demand for primary energy on Earth is ever increasing. More than a quarter of the world's population, about 1.6 billion people, still have no access to commercial energy sources.

Current energy systems present inherent risks related to potential damage to the environment, availability and possible international conflicts related to their geographical distribution.

Public opinion as well as several international organizations are therefore heading for a transformation into more sustainable mix.

A significant contribution to this transformation will undoubtedly come from solar radiation.

https://youtu.be/M3DLJur7HjQ Laboratorio Celle Solari I : Mara Bruzzi - 20 Dicembre 2018

The energy trilemma

The World Energy Council is the principal impartial network of leaders and practitioners promoting an affordable, stable and environmentally sensitive energy system for the greatest benefit of all.

https://youtu.be/a4sp3L8kYI0

https://youtu.be/yWwQGyjX2_c

Laboratorio Celle Solari I : Mara Bruzzi - 20 Dicembre 2018

https://www.worldenergy.org

SOLAR INSTALLED CAPACITY BY REGION

- photovoltaic : convert solar radiation directly into electricity, without the use of any heat engine, and a increasingly popular in building integration purposes (such as using photovoltaic tiles as roof shingles) well as for small- and large-scale devices, from watches to satellites.

- thermal collectors: used for domestic heating and hot water, but large solar collection plants can also be used for industrial heat purposes or for electricity generation based on the same mechanisms as fossil fuels.

*Global installed capacity for solar-powered electricity has seen an exponential growth, reaching around 227 GWe at the end of 2015. It produced 1% of all electricity used globally. Germany has led PV capacity installations over last decade and continues as a leader followed by China, Japan, Italy and the United States. Concentrated Solar Power (CSR), remains with very limited capacity at 4 GW today.

The Solar Constant
Total Solar Power Density outside atmosphere

$$P_{sun}^{total} = \sigma_{S} \cdot T_{S}^{4} \cdot 4\pi \cdot R_{sun}^{2}$$

$$T_{s} \approx 5778 \text{ K}$$

$$R_{sun} \approx 6.96 \times 10^{5} \text{ km}$$

$$P^{total}_{Sun} = 3.85 \times 10^{26} \text{ W}$$

$$\sigma_{s} = \text{Stefan Boltzmann constant}$$
Fraction of Power impinging Earth: $\approx 1.8 \times 10^{14} \text{ kW}$ ($R_{e} \approx 6.4 \times 10^{3} \text{ km}$)
1 AU = 1 astronomic unit = Earth – Sun distance = 1.47 - 1.52 10^{8} km
SOLAR CONSTANT:

$$J_{s} = \frac{P_{sun}^{total}}{4\pi \cdot (AU)^{2}} \approx 1360 \text{ W/m}^{2}$$

Atmospheric attenuation

Atmospheric attenuation is measured by the numerical factor AIR MASS

Both solar radiation intensity and shape of the solar spectrum depend strongly on the AM value, which in turn varies during the day, the season and depends on the geographical position

Air Mass Calculation

The AM is calculated from the elevation angle which in turn is determined from the GPS coordinates, time and altitude

Dedicated software open source:

http://www.sunearthtools.com/

Direct, Diffuse and Global Solar Spectra

Direct = radiation coming directly from the Sun, impinging normally on the device (\mathbf{D})

Diffuse = scattering and diffused components (depending on the environment)

SMARTS: Software open source used to calculate the

40 Years of Advanc	ed Energy Innovation	ABOUT ~	RESEARCH ~	Working with US \sim	CAREERS ~
enewable Resource Data	Center				
SMARTS Sim	ple Model of the Atmospheric R	adiative Transfer of Suns	hine		
Register > Download > Contacts > SMARTS supports the U.S. Department of Energy's <u>Solar</u> Energy Technologies Program.	 The Simple Model of the Ampedicts clear-sky spectral in filter that modifies the sunlig in the atmosphere affect the wavelength of light. SMARTS is a versatile mode example, solar energy resears spectroradiometers, develop materials research, optimize models. Researchers also us photobiology, and health ph SMARTS is a complex model physics and meteorology, cl primarily by researchers and Learn more about the SMARTS 	I that is used by researche archers use SMARTS to tes o reference <u>spectra</u> , estable daylighting techniques, a se SMARTS in the fields of ysics. I that requires significant e imatology, or atmospheric d engineers. TS model or <u>register</u> to do	er of Sunsmine, of S here is a continuous SMARTS computes er or photon energy ers in a number of fi t the performance of ish uniform testing in d verify broadband architecture, atmos experience and know sciences. It is there wonload it.	elds. For of conditions for 1 radiation pheric science, vledge of basic efore used	nd what you needed
	SMARTS 2.9.5 User ale February 25, 2010 A bug has been identified and Gravel Albedo file is p	rt in SMARTS 2.9.5 PC packa resently "SndGravI.dat" bu by renaming the file in the	ge, the file name fo It SHOULD BE "Sndd "Albedo" folder Th	or the Sand Grvl.dat".	

SMARTS: The Simple Model of the Atmospheric Radiative Transfer of Sunshine

	smarts295 [modalità compatibilità] - Excel				?	<u> </u>	1 ×
FILE HOME INSERISCI LAYOUT DI PAGINA FORMULE	DATI REVISIONE VISUALIZZA						Acced
	Testo a capo			$\sum_{i=1}^{n} A_{i}$			
	SMARTS Configuration		* *	filtra *	seleziona -		
Appunti 🖙 Carattere 🐨 Alline	a		Celle	Mod	lifica		~
B23 \checkmark : \checkmark f_x	SMARTS Configuration						^
A B C D E F	Comments (Card 1) Albedo (Card 10)	N	0 P	Q	R	S	*
1 Card 1 USSA_A(
2 Card 2 1	Site Pressure (Card 2) Tilt Albedo (Card 10b)						
3 Card 2a 1013.25 0		x					
4 Card 3 1	Atmosphere (Card 3) Spectral Range (Card 11))					
5 Card 3a 'USSA'	Water Vapor (Card 4)						
6 Card 4 1							
7 Card 4a	Ozone (Card 5)						
8 Card 5 1							
9 Card 5a	Gaseous Absorption (Card 6) Smoothing Filter (Card 14	4)					
10 Card 6 1							
11 Card 6a	Carbon Dioxide (Card 7) Illuminance (Card 15)						
12 Card 6b							
13 Card 7 370	Extraterrestrial Spectrum (Card 7a)						
14 Card 7a 0	Access Model (Cord 0)	7)					
15 Card 8 'S&F_RUF							
16 Card 8a	Turbidity (Card 9)						
17 Card 9 0							
18 Card 9a 0.084							
19 Card 10 41		1					
20 Card 10a	Get Config Check Config Save Config Run Model Quit						
21 Card 10b 1							
22 Card 10c 51 37. 180.							
23 Card 10d							
24 Card 11 280 4000							

		Output			X				
FILE HOM	E INSERISCI LAYOUT DI		and a state of the						Accedi
Appunti rs	- → A Ă C <u>S</u> → . →	Create .OUT file only, no spec	ctral results ectral results			∑ - A ↓ Z ✓ Ordina filtra - Mod	Trova e seleziona •		^
B28 -	X fr 8	Create .OUT and .EXT files, i	nclude spectral results in .E	EXT file only					
620	· · · · · · · · · · · · · · · · · · ·	C Create .OUT and .EXT files, i	nclude spectral results in b	oth files					
A 3 Card 7 3	B C E	Spectral range t be printed (nm	Minimum Maximum 280 4000 Spectral Result	Interval (step)		Q	R	S	
14 Card 8 "		Note: Output	o <mark>rder is as shown below an</mark>	d cannot be spe	cified.				
16 Card 8a									
17 Card 9 ()								
18 Card 9a 0	0.084	Direct normal irradiance	Transmittance from all	trace gases	Atmospheric reflectance				
19 Card 10 4	41	Diffuse horizontal irradiance	Water vapor transmitta	ince	Global foreground on tilted surface				
20 Card 10a		📔 🗔 Global horizontal irradiance	Uniformly mixed gas tr	ansmittance	Upward hemispheric ground-reflected				
21 Card 10b 1		Direct horizontal iradiance	Aerosol transmittance		Global horiz photosynthetic photon flux				
22 Card 10c 5	51 37. 180.	Direct tilted irradiance	Beam radiation transm	nittance	Direct normal photosynthetic photon flux				
23 Card 10d		Diffuse tilted irradiance	Rayleigh optical thickn	ess					
24 Card 11 2	280 4000	Global tilted irradiance	Core optical thicknes	s					3
25 Card 12 2	2	Experimental direct w/circumsolar	Optical thickness from	all trace gases	Global tilted photosynthetic photon flux				
26 Card 12a 2	280 4000	Experimental diffuse irradiance	Water vapor optical thi	ckness	Spectral photonic energy				
27 Card 12b 3	3	Circumsolar within radiometer	Uniformly mixed das o	ptical thickness	Global horiz photon flux per eV				
28 Card 120 8	3910		Aerosol ontical thickne		Direct normal photon flux per eV				
29 Card 13 1	200			ng albada	Diffuse horiz photon flux per eV				
) 2.90			ng albedo					
32 Card 1/2			Aerosol asymmetry fac	clor	Global lilled photon flux per ev				
33 Card 15 ()	Rayleigh transmittance	2 Zonal surface reflectan	ice					
34 Card 16 0)	Units: Irradiance in W m^-2 nm^-1:	Spectral Photon Flux in cn	n^-2 s^-1 nm^-1:	Photon Flux per eV in cm^2 s^-1 eV^-1				
35 Card 17)		1	1					
36 Card 17a 1	5	Select All	Deselect All	Enter	Cancel				
- Jula I.a	tart Cards Output							1	
	care cares output								F

Laboratorio Celle Solari I : Mara Bruzzi - 20 Dicembre 2018

Exercises

1. Determine the AM value using the GPS coordinates of our building, at present day/time using the dedicated open source software.

2. Calculate the relative global emission spectrum and plot it as a function of wavelength using the dedicated open source software.

ARTIFICIAL LIGHTS

Simulating solar radiation

The Sun Simulator

Simulating Sun in laboratory with a lamp producing a similar emission spectrum is important to get a fixed standard when certified measurements of the efficiency of the photovoltaic cells are needed.

Sun Simulator at Department of Physics and Astronomy, University of Florence

Spectra Xe source and Sun Simulator con filtri AM0/AM1.5G

Artificial lights spectra

Figure 2. The spectral irradiance of some typical artificial light sources and the solar spectrum AM 1.5 as reference. All light sources, including the solar spectrum AM 1.5, are scaled to 500 lux. The region of the visible light in the spectrum is indicated.

4000K white LED spectral distribution (Philips InstantFit T8 LED)

Fluorescent lamp T12 fluorescent lamp: 2900K

Luminous Power: the perception of the human eye

Luminous power is the measure of the **perceived** power of light. It differs from irradiance in that it is adjusted to take into consideration the sensitivity of the human eye to different wavelengths of light.

The CIE photopic luminosity function is a standard function established by the Commission Internationale de l'Eclairage (CIE) and may be used to convert irradiance into luminous power.

The peak of the luminosity function is at 555 nm (green);

For monochromatic light *of this wavelength*, the amount of illuminance for a given amount of irradiance is maximum: 683.002 lux per 1 W/m²;

the irradiance needed to make 1 lux at this wavelength is about 1.464 mW/m².

Measuring radiation power density

A black body placed inside a transparent screen absorbs the radiation of the solar spectrum, the temperature of the black body is then measured with respect to a reference value by means of a thermopile, a set of thermocouples placed in series, which provides a difference in output voltage, the appropriately calibrated response provides the power density.

> Physics lab pyranometer CMP3 Kipp-Zonen Spectral range 300-2800 nm. Coefficient 15.66µV/W/m²

It is important to include a cosine correcting head to eliminate measurement errors which may arise when the light source is not directed normally to the sensor, but at any angle within the hemisphere of measurement.

Measuring visible light intensity

Candela (cd) = unit of **luminous intensity** : luminous power per unit solid angle emitted by a point light source in a particular direction. A common wax candle emits light with a luminous intensity of roughly 1cd.

Lumen (Im) = unit of luminous flux, measure the total quantity of visible light emitted by a source.

1 Im = 1 cd \cdot sr. A full sphere has a solid angle of 4π steradians, so a light source that uniformly radiates one candela in all directions has a total luminous flux of 1 cd × 4π sr = 4π cd \cdot sr ≈ 12.57 Im.

Lux (lx) = unit of **illuminance** and luminous emittance, measuring luminous flux per unit area. $1 \text{ lx} = 1 \text{ lm/m}^2$.

Luminous intensity, flux, illuminance take into account of the contribution of each wavelength is weighted by the standard luminosity function.

Illuminometers - Luxmeters

Illuminometers quantify the brightness of a lit surface by measuring luminous flux per unit of area. The illuminometer's light sensor consists of :

- a photodiode that converts light into an electrical signal,
- an optical filter that ensures the same sensitivity as the human eye,
- and a diffusing globe that facilitates cosine correction.

Block diagram

The JIS C 1609-1 standard defines performance requirements for illuminometers. Laboratorio Celle Solari I : Mara Bruzzi - 20 Dicembre 2018

How to convert $Lx = [lm/m^2]$ to irradiance $[W/m^2]$?

There is no single conversion factor between lx and W/m^2 ; there is a different conversion factor for every wavelength. To make a conversion we need the spectral composition of the light. In case $\lambda = 555$ nm we have the following conversion:

 $1 \ln [\ln] = 1.46 \times 10^{-07} \text{ W/cm}^2 (\text{at 555 nm})$

 1 W/cm^2 at 555 nm (W·cm⁻²) = 6.83x10⁶ lux. The wavelength of 555 nm, is chosen as reference.

Example	Lx	W/m2	
LAmple	2200	9	4000K LED panel in lab
			Solar exposition clear sky July
	8.20E+04	· 960	h 2pm
			Out-door
	9.70E+03	153	cloudy sky July h 2pm
	9.10E+03	108	Out-door shadow July h 2pm

