4. – Esercizi su: permutazioni su un insieme finito.

Esercizio 4.1

Siano α , β le permutazioni sull'insieme $\{1, 2, 3, 4, 5, 6, 7, 8, 9\}$ così definite:

$$\alpha := \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 5 & 8 & 1 & 9 & 6 & 3 & 2 & 4 & 7 \end{pmatrix}, \qquad \beta := \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 7 & 4 & 3 & 8 & 2 & 6 & 9 & 1 & 5 \end{pmatrix}$$

e sia σ la permutazione ottenuta applicando prima α e poi β .

Si scriva σ come prodotto di cicli disgiunti e si dica, motivando la risposta, se σ è una permutazione pari oppure una permutazione dispari.

Esercizio 4.2

Siano α , β le permutazioni sull'insieme $\{1, 2, 3, 4, 5, 6, 7, 8, 9\}$ così definite:

$$\alpha := \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 3 & 6 & 7 & 2 & 5 & 9 & 1 & 8 & 4 \end{pmatrix}, \qquad \beta := \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 8 & 1 & 2 & 9 & 5 & 3 & 4 & 6 & 7 \end{pmatrix}$$

e sia σ la permutazione ottenuta applicando prima α e poi β .

Si scriva σ come prodotto di cicli disgiunti e si dica, motivando la risposta, se σ è una permutazione pari oppure una permutazione dispari.

Esercizio 4.3

Siano α , β le permutazioni sull'insieme $\{1, 2, 3, 4, 5, 6, 7, 8, 9\}$ così definite:

$$\alpha \coloneqq \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 4 & 7 & 3 & 2 & 1 & 9 & 6 & 5 & 8 \end{pmatrix}, \qquad \beta \coloneqq \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 8 & 1 & 2 & 9 & 5 & 3 & 4 & 6 & 7 \end{pmatrix}$$

e sia σ la permutazione ottenuta applicando prima α e poi β .

Siano α , β le permutazioni sull'insieme $\mathbf{X} := \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$ così definite:

$$\alpha \coloneqq \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 5 & 8 & 1 & 9 & 6 & 3 & 2 & 4 & 7 \end{pmatrix}, \qquad \beta \coloneqq \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 3 & 2 & 5 & 7 & 6 & 1 & 8 & 4 & 9 \end{pmatrix}$$

e sia σ la permutazione ottenuta applicando prima α e poi β .

Si scriva σ come prodotto di cicli disgiunti e si dica, motivando la risposta, se σ è una permutazione pari oppure una permutazione dispari.

Se esiste una permutazione τ tale che $\sigma\tau = \tau\sigma = i\mathbf{d}_{\mathbf{x}}$, si scriva τ come prodotto di cicli disgiunti.

Esercizio 4.5

Siano α , β le permutazioni sull'insieme $\{1, 2, 3, 4, 5, 6, 7, 8, 9\}$ così definite:

$$\alpha \coloneqq \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 5 & 2 & 9 & 1 & 4 & 7 & 8 & 6 & 3 \end{pmatrix}, \qquad \beta \coloneqq \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 3 & 6 & 7 & 2 & 8 & 4 & 1 & 9 & 5 \end{pmatrix}$$

e sia σ la permutazione ottenuta applicando prima α e poi β .

Si scriva σ come prodotto di cicli disgiunti e si dica, motivando la risposta, se σ è una permutazione pari oppure una permutazione dispari.

Esercizio 4.6

Siano α , β le permutazioni sull'insieme $\{1, 2, 3, 4, 5, 6, 7, 8, 9\}$ così definite:

$$\alpha \coloneqq \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 7 & 4 & 3 & 8 & 5 & 1 & 9 & 2 & 6 \end{pmatrix}, \qquad \beta \coloneqq \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 2 & 9 & 8 & 1 & 5 & 7 & 6 & 4 & 3 \end{pmatrix}$$

e sia σ la permutazione ottenuta applicando prima α e poi β .

Si scriva σ come prodotto di cicli disgiunti e si dica, motivando la risposta, se σ è una permutazione pari oppure una permutazione dispari.

Esercizio 4.7

Siano α , β le permutazioni sull'insieme $\{1, 2, 3, 4, 5, 6, 7, 8, 9\}$ così definite:

$$\alpha := \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 4 & 7 & 3 & 2 & 1 & 9 & 6 & 5 & 8 \end{pmatrix}, \qquad \beta := \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 8 & 9 & 1 & 3 & 2 & 5 & 4 & 6 & 7 \end{pmatrix}$$

e sia σ la permutazione ottenuta applicando prima α e poi β .

Siano α , β le permutazioni sull'insieme $\mathbf{X} := \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$ così definite:

$$\alpha := \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 5 & 8 & 1 & 9 & 6 & 3 & 2 & 4 & 7 \end{pmatrix}, \qquad \beta := \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 2 & 7 & 8 & 4 & 9 & 1 & 5 & 6 & 3 \end{pmatrix}$$

e sia σ la permutazione ottenuta applicando prima α e poi β .

Si scriva σ come prodotto di cicli disgiunti e si dica, motivando la risposta, se σ è una permutazione pari oppure una permutazione dispari.

Se esiste una permutazione τ tale che $\sigma\tau = \tau\sigma = i\mathbf{d}_{\mathbf{x}}$, si scriva τ come prodotto di cicli disgiunti.

Esercizio 4.9

Siano α , β le permutazioni sull'insieme $\{1, 2, 3, 4, 5, 6, 7, 8, 9\}$ così definite:

$$\alpha := \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 6 & 9 & 2 & 1 & 7 & 4 & 3 & 5 & 8 \end{pmatrix}, \qquad \beta := \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 8 & 5 & 4 & 9 & 3 & 7 & 1 & 2 & 6 \end{pmatrix}$$

e sia σ la permutazione ottenuta applicando prima α e poi β .

Si scriva σ come prodotto di cicli disgiunti e si dica, motivando la risposta, se σ è una permutazione pari oppure una permutazione dispari.

Esercizio 4.10

Siano α , β le permutazioni sull'insieme $\{1, 2, 3, 4, 5, 6, 7, 8, 9\}$ così definite:

$$\alpha := \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 4 & 3 & 8 & 5 & 1 & 9 & 2 & 6 & 7 \end{pmatrix}, \qquad \beta := \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 5 & 9 & 1 & 6 & 4 & 3 & 8 & 7 & 2 \end{pmatrix}$$

e sia σ la permutazione ottenuta applicando prima α e poi β .

Si scriva σ come prodotto di cicli disgiunti e si dica, motivando la risposta, se σ è una permutazione pari oppure una permutazione dispari.

Esercizio 4.11

Siano α , β le permutazioni sull'insieme $\{1, 2, 3, 4, 5, 6, 7, 8, 9\}$ così definite:

$$\alpha := \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 4 & 7 & 3 & 2 & 1 & 9 & 6 & 5 & 8 \end{pmatrix}, \qquad \beta := \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 8 & 5 & 2 & 7 & 1 & 3 & 4 & 6 & 9 \end{pmatrix}$$

e sia σ la permutazione ottenuta applicando prima α e poi β .

Siano α , β le permutazioni sull'insieme $\mathbf{X} := \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$ così definite:

$$\alpha := \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 5 & 8 & 1 & 9 & 6 & 3 & 2 & 4 & 7 \end{pmatrix}, \qquad \beta := \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 7 & 9 & 2 & 8 & 6 & 4 & 5 & 1 & 3 \end{pmatrix}$$

e sia σ la permutazione ottenuta applicando prima α e poi β .

Si scriva σ come prodotto di cicli disgiunti e si dica, motivando la risposta, se σ è una permutazione pari oppure una permutazione dispari.

Se esiste una permutazione τ tale che $\sigma\tau = \tau\sigma = i\mathbf{d}_{\mathbf{X}}$, si scriva τ come prodotto di cicli disgiunti.

Esercizio 4.13

Siano α , β le permutazioni sull'insieme $\{1, 2, 3, 4, 5, 6, 7, 8, 9\}$ così definite:

$$\alpha \coloneqq \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 7 & 9 & 8 & 5 & 2 & 1 & 3 & 6 & 4 \end{pmatrix}, \qquad \beta \coloneqq \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 3 & 2 & 7 & 1 & 5 & 8 & 9 & 4 & 6 \end{pmatrix}$$

e sia σ la permutazione ottenuta applicando prima α e poi β .

Si scriva σ come prodotto di cicli disgiunti e si dica, motivando la risposta, se σ è una permutazione pari oppure una permutazione dispari.

Esercizio 4.14

Siano α , β le permutazioni sull'insieme $\{1, 2, 3, 4, 5, 6, 7, 8, 9\}$ così definite:

$$\alpha := \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 6 & 7 & 2 & 5 & 9 & 1 & 8 & 4 & 3 \end{pmatrix}, \qquad \beta := \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 8 & 1 & 9 & 7 & 3 & 2 & 4 & 6 & 5 \end{pmatrix}$$

e sia σ la permutazione ottenuta applicando prima α e poi β .

Siano α , β le permutazioni sull'insieme $\{1, 2, 3, 4, 5, 6, 7, 8, 9\}$ così definite:

$$\alpha := \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 4 & 7 & 3 & 2 & 1 & 9 & 6 & 5 & 8 \end{pmatrix}, \qquad \beta := \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 8 & 1 & 5 & 4 & 2 & 3 & 9 & 6 & 7 \end{pmatrix}$$

e sia σ la permutazione ottenuta applicando prima α e poi β .

Si scriva σ come prodotto di cicli disgiunti e si dica, motivando la risposta, se σ è una permutazione pari oppure una permutazione dispari.

Esercizio 4.16

Siano α , β le permutazioni sull'insieme $\mathbf{X} := \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$ così definite:

$$\alpha := \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 5 & 8 & 1 & 9 & 6 & 3 & 2 & 4 & 7 \end{pmatrix}, \qquad \beta := \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 2 & 7 & 1 & 3 & 9 & 4 & 6 & 5 & 8 \end{pmatrix}$$

e sia σ la permutazione ottenuta applicando prima α e poi β .

Si scriva σ come prodotto di cicli disgiunti e si dica, motivando la risposta, se σ è una permutazione pari oppure una permutazione dispari.

Se esiste una permutazione τ tale che $\sigma\tau=\tau\sigma=\mathbf{id}_{\mathbf{x}}$, si scriva τ come prodotto di cicli disgiunti.