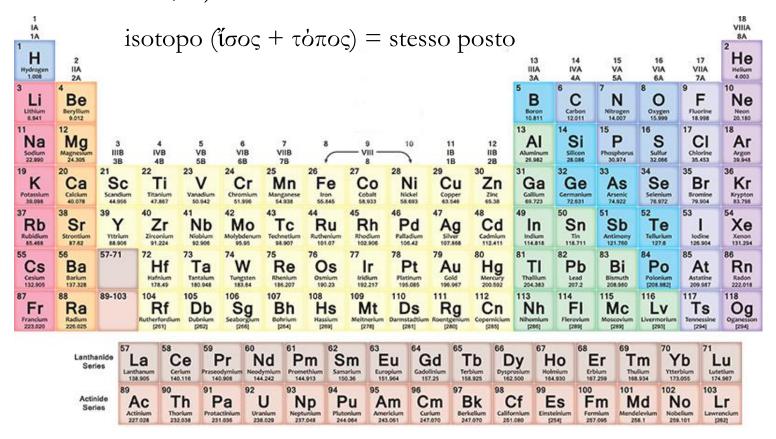
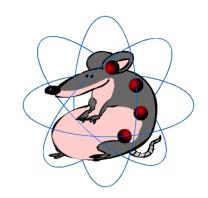
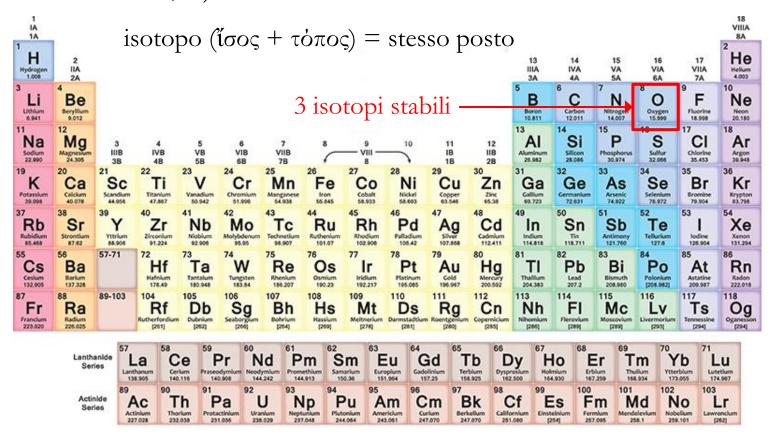

ISOTOPI STABILI

Fondamenti e Metodi analitici

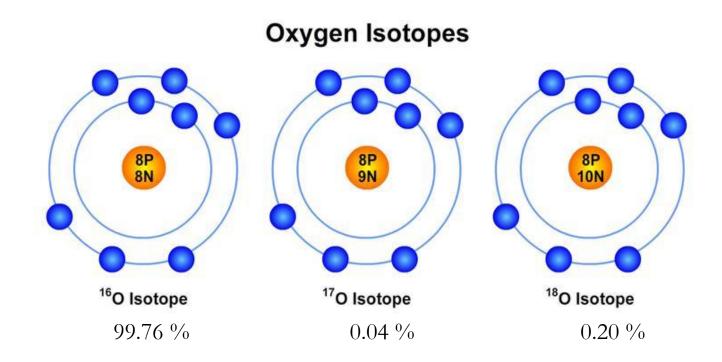


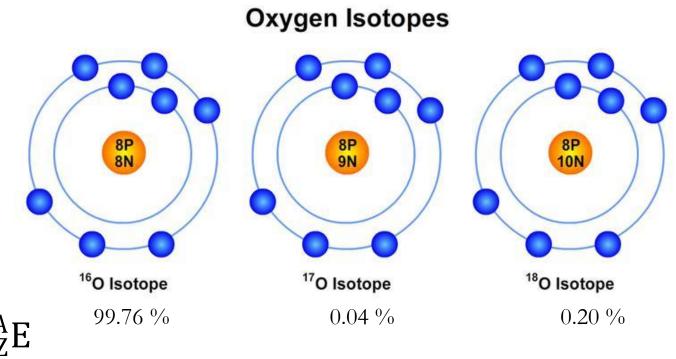

Indice

- Definizione e terminologia
- Principi generali di spettrometria di massa (MS)
- IRMS
- •Spettroscopia laser CRDS



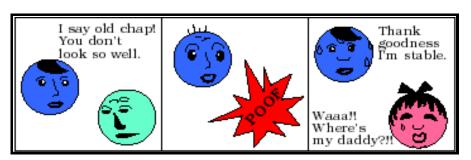
ISOTOPI = atomi che, a parità di numero atomico (Z), presentano un diverso numero di massa (i.e. un diverso numero di neutroni, N).



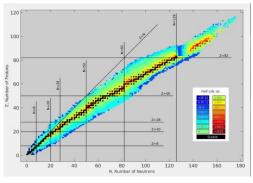

ISOTOPI = atomi che, a parità di numero atomico (Z), presentano un diverso numero di massa (i.e. un diverso numero di neutroni, N).

ISOTOPI = atomi che, a parità di numero atomico (Z), presentano un diverso numero di massa (i.e. un diverso numero di neutroni, N).

ISOTOPI = atomi che, a parità di numero atomico (Z), presentano un diverso numero di massa (i.e. un diverso numero di neutroni, N).



A = numero di massa (neutroni+protoni)


Z= numero atomico

ISOTOPI = atomi che, a parità di numero atomico (Z), presentano un diverso numero di massa (i.e. un diverso numero di neutroni, N).

- •**ISOTOPI STABILI**: Qualsiasi isotopo che non produce un prodotto di decadimento, e.g. ³⁹K.
- •ISOTOPI RADIOGENICI o INSTABILI: Qualsiasi isotopo che produce con il tempo un prodotto di decadimento misurabile, e.g. 40 K con tempo di dimezzamento* di 1.28×10^9 y.

(*) Il **tempo di dimezzamento** (o emivita) di un isotopo radioattivo si definisce come il tempo necessario affinché la metà di tali isotopi decadano nell'isotopo di un altro elemento o in un altro isotopo dello stesso elemento. L'emivita è una misura della stabilità di un isotopo: più breve è l'emivita, meno stabile è l'atomo.

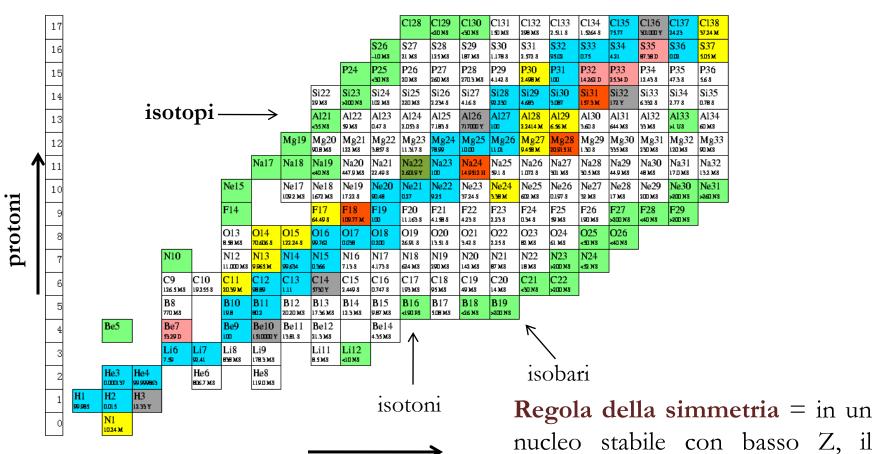
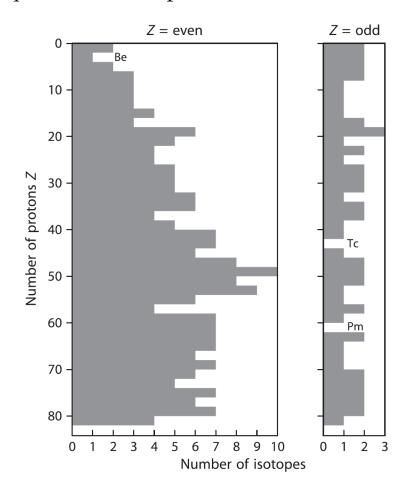


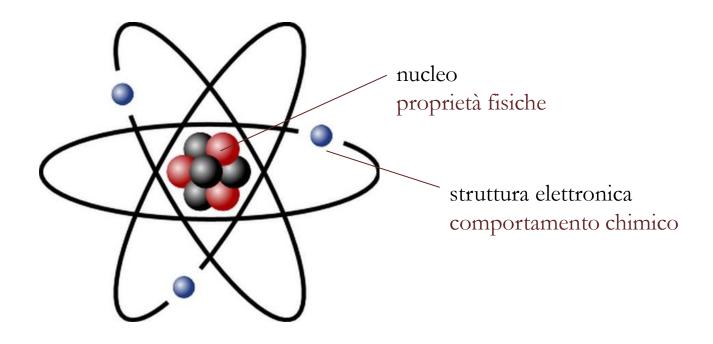
Tavola dei nuclidi

Z/N≈1


numero di protoni è uguale al

numero di neutroni

neutroni


Regola di Oddo-Harkins= nuclidi con Z pari sono più abbondanti di quelli con Z dispari.

Z–N combination	Number of stable nuclides
Even–even Even–odd Odd–even 50 Odd–odd	160 56 50 5

Effetti isotopici

= differenze nelle proprietà chimiche e fisiche derivanti da variazioni nella massa atomica di un elemento.

.... gli isotopi di un elemento hanno proprietà fisico-chimiche simili ma non esattamente uguali

Differenza di massa

		_
ISOTOPI	DIFFERENZA DI MASSA	
H, D	99.8 %	
¹² C, ¹³ C	8.36 %	
¹⁴ N, ¹⁵ N	7.12 %	Frazionamento
¹⁶ O, ¹⁸ O	12.5 %	
³² S, ³⁴ S	6.24 %	
²³⁵ U, ²³⁸ U	1.3 %	No frazionamento
²⁰⁶ Pb, ²⁰⁷ Pb	0.49 %	

Property	$\mathrm{H_2^{16}O}$	$\mathrm{D_2}^{16}\mathrm{O}$	$\mathrm{H_2^{18}O}$
Density (20°C, in g cm ⁻³)	0.997	1.1051	1.1106
Temperature of greatest density (°C)	3.98	11.24	4.30
Melting point (760 Torr, in °C)	0.00	3.81	0.28
Boiling point (760 Torr, in °C)	100.00	101.42	100.14
Vapour pressure (at 100°C, in Torr)	760.00	721.60	
Viscosity (at 20°C, in centipoise)	1.002	1.247	1.056

Rapporto isotopico

• La composizione isotopica di un elemento può essere espressa come **rapporto isotopico R**:

R = isotopo pesante/isotopo leggero

Vienna Standard Mean Ocean Water (VSMOW)	$D/H=155.76 \times 10^{-6}$
Hagemann et al., 1970	
Vienna Standard Mean Ocean Water (VSMOW)	$^{18}\text{O}/^{16}\text{O} = 12005.2 \times 10^{-6}$
Baertschi, 1976	
Pee Dee Belemnite (PDB) (original supply exhausted)	$^{18}O/^{16}O = 2067.2 \times 10^{-6}$
calculated using $d^{18}O_{VSMOW} = 30.91$	
Pee Dee Belemnite (PDB) (original supply exhausted)	13 C/ 12 C=1123.75 × 10 ⁻⁵
Craig, 1957	
Air, NBS-14	$^{15}N/^{14}N = 367.6 \times 10^{-5}$
Junk and Svec, 1958	
Canon Diablo Troilite	$34S/32S = 449.94 \times 10^{-4}$
Thode et al., 1961	

Notazione 8

• La composizione isotopica di un elemento può essere espressa come **rapporto isotopico R**:

R = isotopo pesante/isotopo leggero

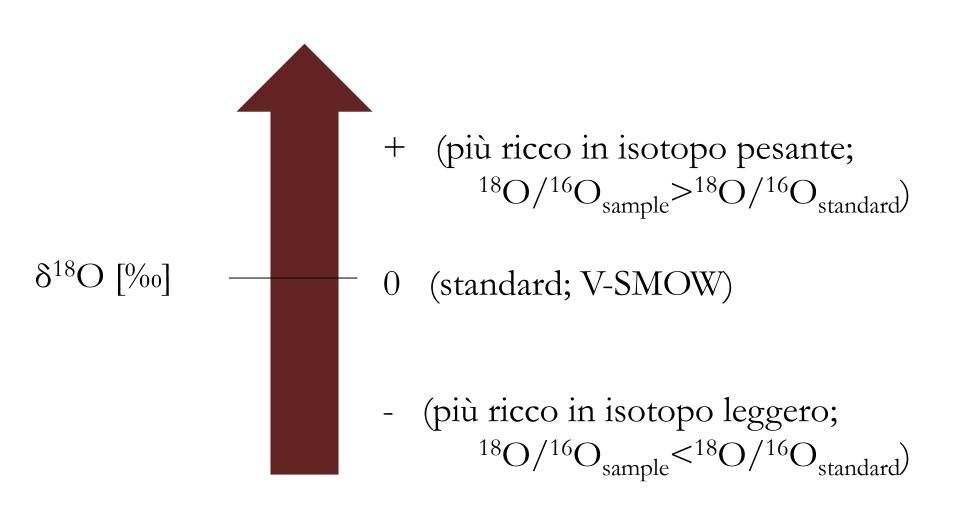
• Il rapporto isotopico puro (R) non è molto utile perché i valori sono bassi e le variazioni indotte da processi di frazionamento isotopico sono piccole. Si utilizza quindi la **notazione** δ (delta):

$$\delta_{x} = \left(\frac{R_{sample} - R_{reference}}{R_{reference}}\right) \cdot 1000 \text{ [\%]}$$

Standard di riferimento

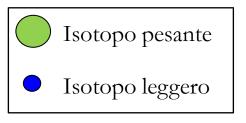
ISOTOPE RATIO	REFERENCE (Abundance Ratio)	COMMON SAMPLE TYPES
D/H	V-SMOW (1.5575×10 ⁻⁴) Vienna Standard Mean Ocean Water	H ₂ O, CH ₄ , clays
¹³ C/ ¹² C	V-PDB (1.1237×10 ⁻²) Vienna Pee Dee Belemnite, fossil carbonate	DIC, CO ₂ , CaCO ₃ , CH ₄ , organic C
$^{15}N/^{14}N$	AIR (3.677×10^{-3})	NO_3 , NH_4 , N_2 , N_2O
¹⁸ O/ ¹⁶ O	V-SMOW (2.0052×10 ⁻³) Vienna Standard Mean Ocean Water	H ₂ O, NO ₃ , SO ₄ , O ₂ , minerals
³⁴ S/ ³² S	CDT (4.5005×10 ⁻²) Canyon Diablo Troilite, FeS from meteorite	SO ₄ , H ₂ S, gypsum, sulfide minerals

...

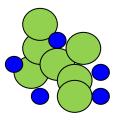

Notazione di

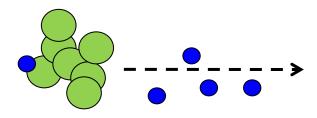
$$\delta^{18}O = \left(\begin{array}{c} \frac{^{18}O/^{16}O_{sample} - ^{18}O/^{16}O_{V-SMOW}}{^{18}O/^{16}O_{V-SMOW}} \end{array} \right) \times 1000 \, [\%]$$

$$\frac{180}{160} = \frac{1}{505.3} = 0.001979$$
Measured ratio of the rare to abundant isotope
$$\times 10^6 = 1979 \text{ ppm}$$
Concentration as parts per million of abundant isotope


$$\left(\frac{(0.001979)_{\text{sample}}}{(0.0020052)_{\text{VSMOW}}} - 1\right) \times 1000 = -13\% \text{ VSMOW} \quad \begin{array}{|l|l|l|} & \text{Isotope abundance as permil} \\ & \text{difference from VSMOW} \end{array}$$

Notazione 8




Gli isotopi stabili sono caratterizzati da processi di FRAZIONAMENTO

ISOTOPICO, i.e. sviluppo di differenze nella composizione isotopica come risultato di processi chimico-fisici.

- ✓ Reazioni di scambio isotopico
- ✓ Processi cinetici
- ✓ Processi chimico-fisici

Processi chimico-fisici e biologici differenziano gli isotopi leggeri da quelli pesanti.

Reazioni di scambio isotopico (equilibrio)

$$1/2C^{16}O_2 + H_2^{18}O \longleftrightarrow 1/2C^{18}O_2 + H_2^{16}O$$

Regola di Bigeleisen: l'isotopo più pesante si distribuisce preferenzialmente nel composto che forma il legame più forte.

► Processi chimico-fisici

La differenza di massa fa sì che gli isotopi si comportino in maniera diversa durante i processi chimico-fisici. Ad esempio, la molecola ${}^2H_2^{18}O$ è più pesante di $D_2^{16}O$ e si arricchisce preferenzialmente nella fase liquida rispetto a quella vapore durante l'evaporazione. I frazionamenti isotopici associati sono maggiori a basse temperature.

➤ Processi cinetici (non-equilibrio)

Rimozione dei prodotti (es. evaporazione da oceani, laghi, fiumi, processi metabolici)

Il frazionamento isotopico all'equilibrio tra due fasi A e B può essere descritto con il **fattore di frazionamento**:

$$\propto_{A-B} = \frac{R_A}{R_B}$$

$$H_2^{16}O_w + H_2^{18}O_v \leftrightarrow H_2^{18}O_w + H_2^{16}O_v$$

$$K_{w-v} = \frac{[H_2^{18}O]_w [H_2^{16}O]_v}{[H_2^{16}O]_w [H_2^{18}O]_v}$$
$$= \frac{[^{18}O]_w}{[^{16}O]_w} \times \frac{[^{16}O]_v}{[^{18}O]_w}$$

$$= \frac{\left(\frac{^{18}O}{^{16}O}\right)_{w}}{\left(\frac{^{18}O}{^{16}O}\right)_{v}} = \frac{R_{w}}{R_{v}}$$
$$= \alpha^{18}O_{w-v}$$

Il frazionamento isotopico all'equilibrio tra due fasi A e B può essere descritto con il **fattore di frazionamento**:

$$\propto_{A-B} = \frac{R_A}{R_B}$$

$$H_2^{16}O_w + H_2^{18}O_v \leftrightarrow H_2^{18}O_w + H_2^{16}O_v$$

$$K_{w-v} = \frac{[H_2^{18}O]_w [H_2^{16}O]_v}{[H_2^{16}O]_w [H_2^{18}O]_v}$$

$$= \frac{[^{18}O]_{w}}{[^{16}O]_{w}} \times \frac{[^{16}O]_{v}}{[^{18}O]_{v}}$$

$$= \frac{\left(\frac{^{18}O}{^{16}O}\right)_{w}}{\left(\frac{^{18}O}{^{16}O}\right)_{v}} = \frac{R_{w}}{R_{v}}$$
$$= \alpha^{18}O_{w} = \frac{18}{^{18}O}$$

$$\alpha_{\text{reactant-product}} = 1/\alpha_{\text{product-reactant}}$$

Il frazionamento isotopico all'equilibrio tra due fasi A e B può essere descritto con il **fattore di frazionamento**:

$$\propto_{A-B} = \frac{R_A}{R_B}$$

$$H_2^{16}O_w + H_2^{18}O_v \leftrightarrow H_2^{18}O_w + H_2^{16}O_v$$

$$K_{w-v} = \frac{[H_2^{18}O]_w [H_2^{16}O]_v}{[H_2^{16}O]_w [H_2^{18}O]_v}$$
$$= \frac{[^{18}O]_w}{[^{16}O]_w} \times \frac{[^{16}O]_v}{[^{18}O]_v}$$

$$= \frac{\left(\frac{^{18}O}{^{16}O}\right)_{w}}{\left(\frac{^{18}O}{^{16}O}\right)_{v}} = \frac{R_{w}}{R_{v}}$$
$$= \alpha^{18}O_{w-v}$$

$$\alpha_{B-A} = \frac{R_B}{R_A} = \frac{\left(\frac{\partial_B}{1000} + 1\right)}{\left(\frac{\partial_A}{1000} + 1\right)}$$

$$= \frac{\delta^{18} O_{water} + 1000}{\delta^{18} O_{vapor} + 1000}$$

Il frazionamento isotopico all'equilibrio tra due fasi A e B può essere descritto con il **fattore di frazionamento**:

$$\propto_{A-B} = \frac{R_A}{R_B} \approx 1$$

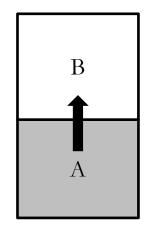
$$H_2^{16}O_w + H_2^{18}O_v \leftrightarrow H_2^{18}O_w + H_2^{16}O_v$$

 $= \alpha^{18}O_{w-v}$ = 1.0093 a 25°C

$$K_{w-v} = \frac{[H_{2}^{18}O]_{w}[H_{2}^{16}O]_{v}}{[H_{2}^{16}O]_{w}[H_{2}^{18}O]_{v}}$$

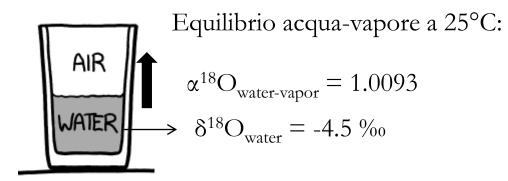
$$= \frac{[I_{2}^{18}O]_{w}}{[I_{2}^{16}O]_{w}} \times \frac{[I_{2}^{16}O]_{v}}{[I_{2}^{18}O]_{v}}$$

$$= \frac{\left(\frac{18}{1000} + 1\right)}{\left(\frac{18}{1000} + 1\right)}$$

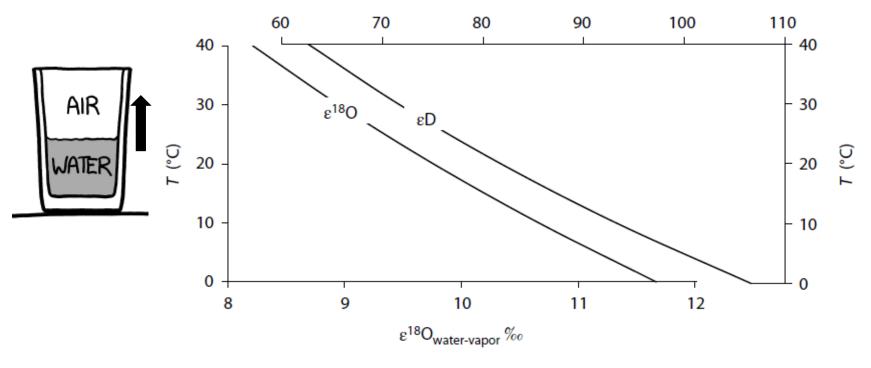

$$= \frac{\left(\frac{18}{1000} - 1\right)}{\left(\frac{18}{1000} - 1\right)} = \frac{R_{w}}{R_{v}}$$

$$= \frac{\left(\frac{18}{1000} - 1\right)}{\left(\frac{18}{1000} - 1\right)} = \frac{R_{w}}{R_{v}}$$

$$= \frac{\left(\frac{18}{1000} - 1\right)}{\left(\frac{18}{1000} - 1\right)} = \frac{R_{w}}{R_{v}}$$


Per confrontare il frazionamento isotopico con i valori δ , possiamo esprimere il fattore di frazionamento in % attraverso il **fattore di arricchimento**:

$$\varepsilon = (\alpha - 1) \times 1000 \% e^{-\alpha} \cong 1000 \ln \alpha$$



$$\begin{split} \epsilon = & \left(\frac{R_{\text{water}}}{R_{\text{vapor}}} - 1 \right) \times 1000 & \delta = \left(\frac{R_{\text{sample}}}{R_{\text{standard}}} - 1 \right) \times 1000 \\ \epsilon_{\text{reactant-product}} &= \delta_{\text{reactant}} - \delta_{\text{product}} \\ \epsilon_{\text{water-vapor}} &= \delta_{\text{water}} - \delta_{\text{vapor}} \end{split}$$

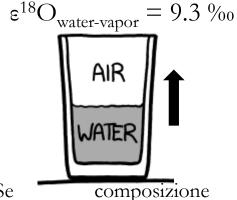
$$\alpha_{\text{reactant-product}} = 1/\alpha_{\text{product-reactant}} \longrightarrow \epsilon_{\text{reactant-product}} = -\epsilon_{\text{product-reactant}}$$

$$\begin{split} \epsilon^{18} O_{water-vapor} &= (\alpha^{18} O_{water-vapor} - 1) \times 1000 = (1.0093 - 1) \times 1000 = 9.3 \ \% 0 \\ \epsilon^{18} O_{water-vapor} &= \delta^{18} O_{water} - \delta^{18} O_{vapor} \\ \delta^{18} O_{vapor} &= \delta^{18} O_{water} - \epsilon^{18} O_{water-vapor} = -4.5 - 9.3 = -13.8 \ \% 0 \end{split}$$

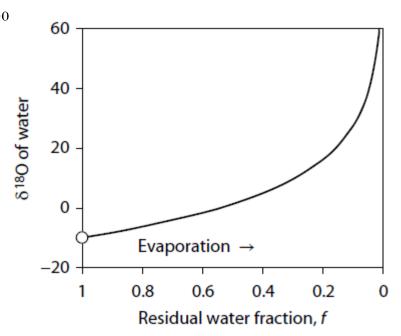
T(°C)	ε ¹⁸ O _{w-v} (‰)	εD _{w-v} (‰)
Water-vapor	(Majoube 197	1)
0	11.6	106
25	9.3	76
50	7.5	55
75	6.1	39
100	5.0	27

Temperature and Fractionation for Some Common Isotope-Exchange Reactions (T in $^{\circ}$ C)

Isotope	Exchange Reaction	Temperature Equation	ε–‰ at 25°C
D	H ₂ O—H ₂ O _{vapor}	$\varepsilon D_{\text{water-vapor}} = 0.0066 T^2 - 1.36 T + 106$	79
	H ₂ O _{vapor} —H ₂	$\varepsilon D_{\text{vapor-H}_2} = 0.02 \ T^2 - 6.39 \ T + 1395$	2485
	H ₂ O _{water} —H ₂	$\varepsilon D_{\text{water-H}_3} = 0.026 T^2 - 7.75 T + 1502$	2762
	H ₂ O _{water} —CH ₄	$\varepsilon D_{\text{water-CH}_s} = -0.0018 T^2 + 0.64 T + 12$	27
	H ₂ O _{water} —H ₂ S	$\varepsilon D_{\text{water-H,S}} = 0.011 T^2 - 3.93 T + 949$	1358
	Gypsum—H ₂ O	$\varepsilon D_{\text{water-gypsum}} = 0.00008 T^2 - 0.028 T - 14$	-15
	Illite—H ₂ O	$\varepsilon D_{\text{water-illite}} = -0.0008 \ T^2 + 0.4804 \ T - 66.904$	-55
	Kaolinite—H ₂ O	$\varepsilon D_{\text{water-kaolinite}} = -0.0003 \ T^2 + 0.152 \ T - 35.368$	-32
¹⁸ O	H ₂ O _{water} —H ₂ O _{vapor}	$\epsilon^{18}O_{\text{water-vapor}} = 0.0004 T^2 - 0.103 T + 11.64$	9.3
	CO ₂ —H ₂ O	$\epsilon^{18}O_{CO_2\text{-water}} = 0.0007 T^2 - 0.240 T + 45.6$	41.0
	Calcite—H ₂ O	$\epsilon^{18}O_{CuCO_3-water} = 0.0011 T^2 - 0.265 T + 34.3$	28.8
	Gypsum—H ₂ O	$\epsilon^{18}O_{gypsum-water} = 0.00009 T^2 - 0.0304 T + 4.72$	4.0
	SO ₄ H ₂ O	$\epsilon^{18}O_{SO_4\text{-water}} = 0.0011 \ T^2 - 0.275 \ T + 34.5$	28.7
	Illite—H ₂ O	$\epsilon^{18}O_{\text{illite-water}} = 0.0004 T^2 + 0.19 T + 27.86$	33.1
	Kaolinite—H ₂ O	$\epsilon^{18}O_{\text{kaolinite-water}} = 0.0004 T^2 + 0.201 T + 29.12$	34.4
	SiO _{2(amorph)} —H ₂ O	$\varepsilon^{18}O_{SiO_2\text{-water}} = 0.0014 T^2 - 0.336 T + 42.8$	35.9
13C	H ₂ CO ₃ —CO _{2(g)}	$\varepsilon^{13}C_{H_2CO_3-CO_2(g)} = -0.000014 T^2 + 0.0049 T - 1.18$	-1.1
	HCO_3 — $CO_{2(g)}$	$\varepsilon^{13}C_{HCO_3-CO_{2(0)}} = 0.00032 T^2 - 0.124 T + 10.87$	8.0
	CO_3^2 — $CO_{2(g)}$	$\varepsilon^{13}C_{CO_3-CO_{200}} = 0.00033 T^2 - 0.083 T + 8.25$	6.4
	CaCO ₃ —HCO ₃	$\varepsilon^{13}C_{CaCO_3-HCO_{300}} = -0.0002 T^2 + 0.056 T - 0.39$	0.9
	CaCO ₃ —CO ₂	$\varepsilon^{13}C_{CaCO_3-CO_2} = 0.0009 T^2 - 0.184 T + 14.4$	10.3
	CO ₂ —CH ₄	$\varepsilon^{13}C_{CO_2-CH_4} = 0.0015 T^2 - 0.418 T + 77.7$	70.5
³⁴ S	SO_4^{2-} — $H_2S_{(aq)}$	$\varepsilon^{34}S_{SO_4-H_2S} = 0.0019 T^2 - 0.484 T + 74.2$	65.4
	SO ₄ ²⁻ —HS-(aq)	ε^{34} S _{SO₄-HS} = 0.0017 T^2 – 0.493 T + 83.9	75.4


Source: From data and references in Clark and Fritz 1997.

FRAZIONAMENTO (o DISTILLAZIONE) DI RAYLEIGH


Relazioni che descrivono la partizione di isotopi tra due fasi durante un processo. $R_A = R_{A_0} f^{(\alpha_{B-A}-1)}$

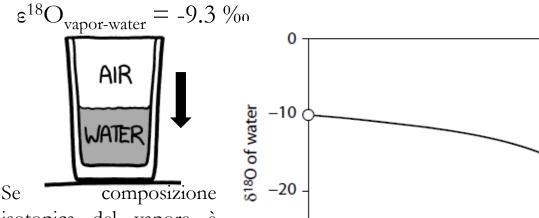
$$\partial_{A} = [(\partial_{A_0} + 1000) \times f^{(\alpha_{B-A^{-1}})}] - 1000$$
 $\delta_{\text{react}} = \delta_{\text{initial react}} + \epsilon_{\text{prod-react}} \times \ln f$

Evaporazione: $\delta^{18}O_{\text{water}} = \delta^{18}O_{\text{initial water}} + \epsilon^{18}O_{\text{vapor-water}} \times \ln f$

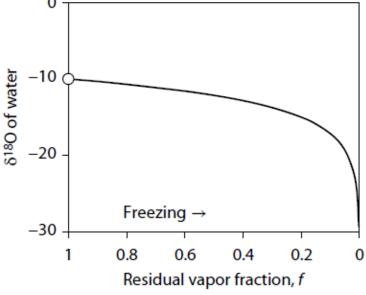
Se composizione isotopica dell'acqua è inizialmente -10‰, il vapore che si separerà inizialmente avrà un valore di -19.3‰

Col procedere dell'evaporazione, l'acqua residuale si arricchisce progressivamente in isotopi pesanti.

f	$\delta^{18} \mathrm{O}_{\mathrm{water\ evaporating}}$
1	-10
0.6	-1.7
0.4	4.9
0.2	16.2
0.1	27.5
0.05	38.9

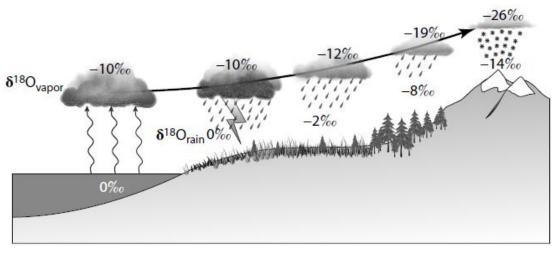

FRAZIONAMENTO (o DISTILLAZIONE) DI RAYLEIGH

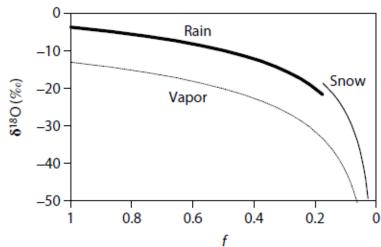
Relazioni che descrivono la partizione di isotopi tra due fasi durante un processo.


$$R_f = R_o f^{(\alpha-1)}$$

$$\delta_{\text{react}} = \delta_{\text{initial react}} + \varepsilon_{\text{prod-react}} \times \ln f$$

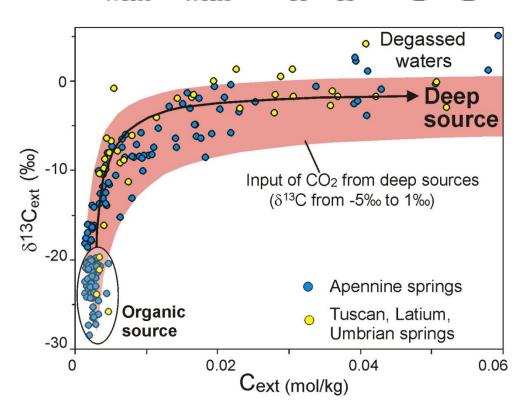
Condensazione: $\varepsilon^{18}O_{\text{vapor-water}} = (\delta^{18}O_{\text{water-}f} - \delta^{18}O_{\text{water-initial}}) / \ln f_{\text{water-}f}$


isotopica del vapore è inizialmente -19.3%l'acqua che si separerà inizialmente avrà un valore di -10‰



Col procedere della condensazione, il vapore residuale sarà sempre più arricchito in ¹⁶O, quindi anche l'acqua che condensa tenderà vero valori di δ^{16} O via via più negativi.

f	$\delta^{18}\mathrm{O}_{\mathrm{water\ freezing}}$
1	-10
0.6	-11.6
0.4	-12.8
0.2	-15.0
0.1	-17.1
0.05	-19.3

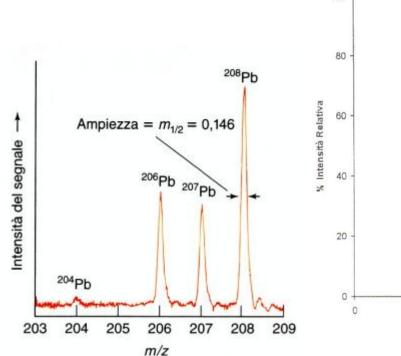

FRAZIONAMENTO (o DISTILLAZIONE) DI RAYLEIGH

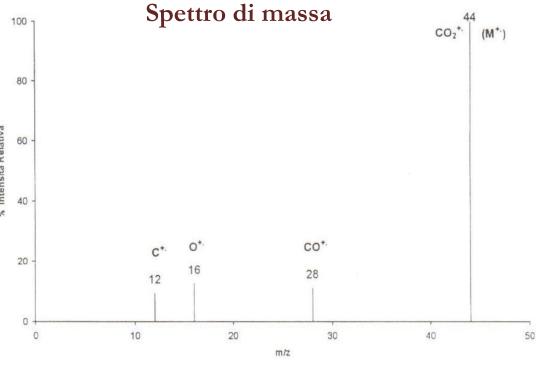
MIXING ISOTOPICO

$$\partial_{mix} M_{mix} = \partial_A M_A + \partial_B M_B$$

SPETTROMETRIA DI MASSA

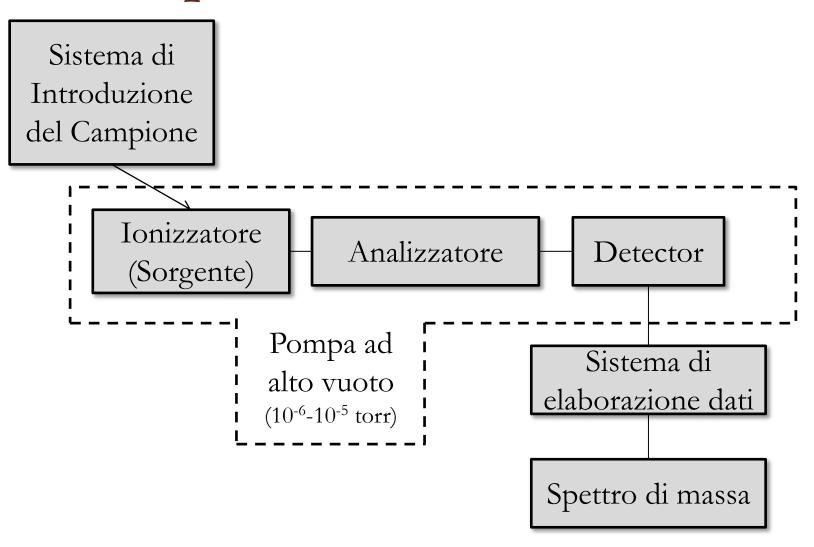
Spettrometria di massa


La spettrometria di massa si riferisce ad un insieme di tecniche analitiche aventi come scopo la misura di masse molecolari e quindi la determinazione della struttura di composti chimici, anche in presenza di piccole quantità di campione. È quindi una tecnica analitica di **delucidazione strutturale** basata sulla ionizzazione di una molecola e sulla sua successiva frammentazione in ioni di diverso rapporto **massa/carica** (m/z).


A differenza delle tecniche spettroscopiche, la spettrometria di massa è un metodo d'analisi distruttivo (la molecola non rimane intatta dopo l'analisi) e, soprattutto, non si basa sull'interazione tra radiazioni e materia.

Spettrometria di massa

- ionizzazione e frammentazione delle molecole dell'analita
- accelerazione degli ioni per mezzo di un campo elettrico
- separazione dei diversi ioni prodotti in base al loro rapporto m/z


• rivelazione degli ioni

Spettro di massa dell'anidride carbonica, CO₂ Si noti lo ione molecolare a m/z 44

Spettrometro di massa

Spettrometro di massa

IONIZZATORE (SORGENTE)

È la parte dello strumento in cui avviene la ionizzazione e frammentazione del campione in esame.

- impatto elettronico
- ionizzazione termica
- sorgenti al plasma
- bombardamento con ioni accelerati

Spettrometro di massa

IONIZZATORE (SORGENTE)

È la parte dello strumento in cui avviene la ionizzazione e frammentazione del campione in esame.

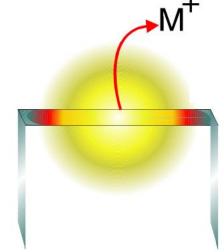
- impatto elettronico
- ionizzazione termica
- sorgenti al plasma
- bombardamento con ioni accelerati

Gas-IRMS o SIRMS

(Gas-Isotope Ratio Mass Spectrometry o Stable Isotope Ratio Mass Spectrometry) Repulsore +1010 V

Molecole neutre

Ingresso del campione


Filamento

CAMPIONE GASSOSO

IONIZZATORE (SORGENTE)

È la parte dello strumento in cui avviene la ionizzazione e frammentazione del campione in esame.

- impatto elettronico
- ionizzazione termica
- sorgenti al plasma
- bombardamento con ioni accelerati

TIMS
(Thermal Ionization Mass Spectrometry)

CAMPIONE SOLIDO

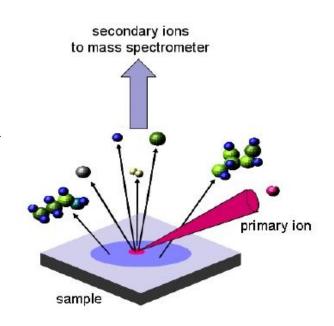
IONIZZATORE (SORGENTE)

È la parte dello strumento in cui avviene la ionizzazione e frammentazione del campione in esame.

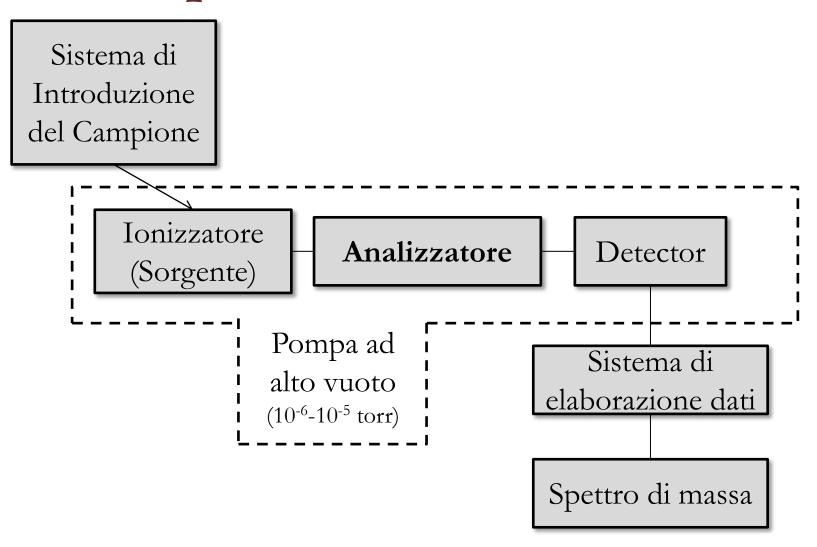
- impatto elettronico
- ionizzazione termica
- sorgenti al plasma

Ablazione laser

• bombardamento con ioni accelerati


CAMPIONE LIQUIDO O SOLIDO

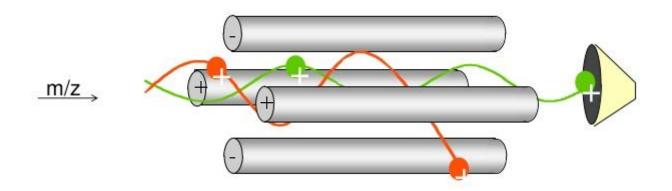
IONIZZATORE (SORGENTE)


È la parte dello strumento in cui avviene la ionizzazione e frammentazione del campione in esame.

- impatto elettronico
- ionizzazione termica
- sorgenti al plasma
- bombardamento con ioni accelerati

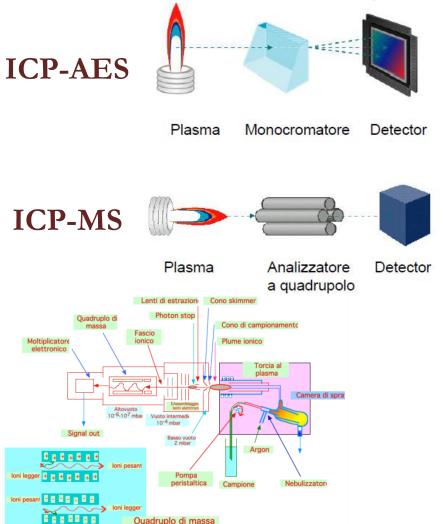
SIMS (Secondary Ion Mass Spectrometry)

CAMPIONE SOLIDO

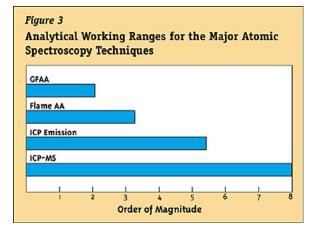


ANALIZZATORE

L'analizzatore consente di differenziare gli ioni molecolari generati, nonché i loro frammenti, in base al loro rapporto massa/carica (m/z).

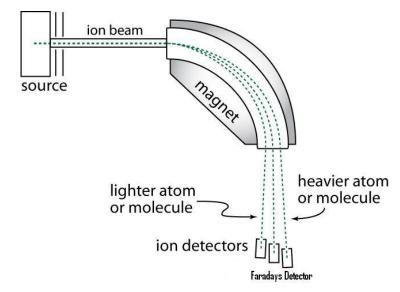

- analizzatore a quadrupolo
- analizzatore a settore magnetico
- analizzatore a trappola ionica
- analizzatore a doppia focalizzazione
- analizzatore a tempo di volo

ANALIZZATORE A QUADRUPOLO



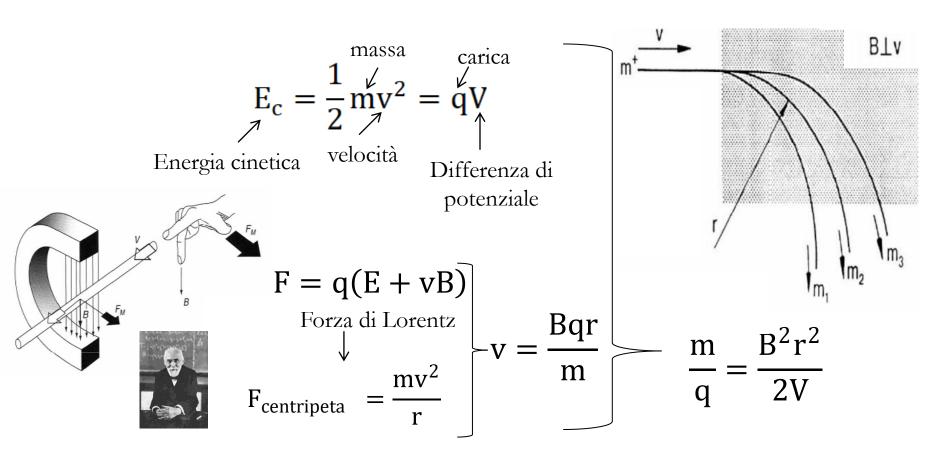
ANALIZZATORE A QUADRUPOLO

ANALIZZATORE A QUADRUPOLO

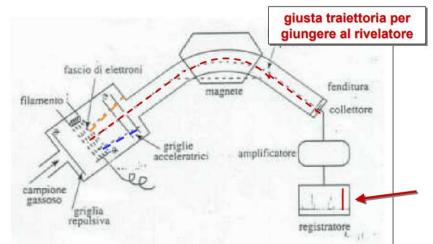


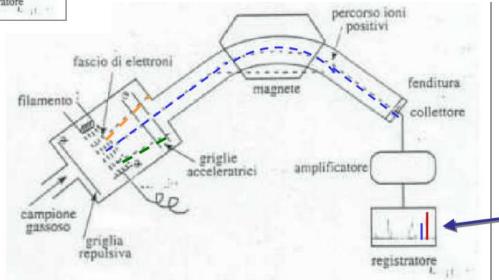
MC-ICP-MS

ICP-MS

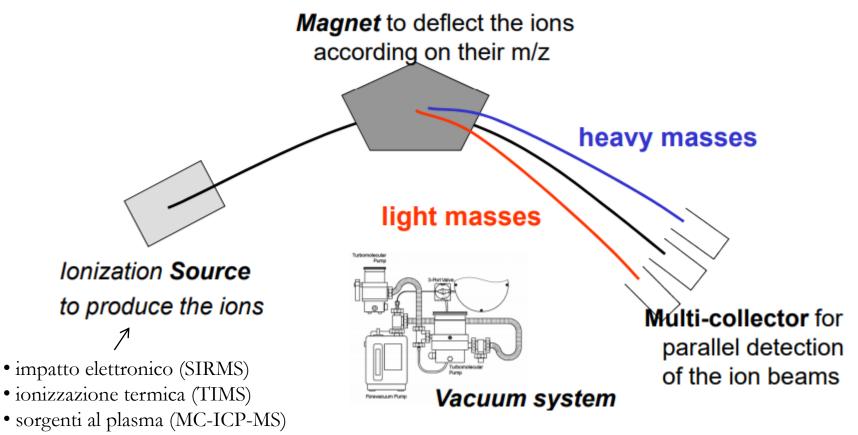

ANALIZZATORE A SETTORE MAGNETICO

Porta gli ioni a percorrere traiettorie circolari, il cui raggio dipende dal rapporto massa/carica dello ione. Cambiando le traiettorie degli ioni mediante variazioni del campo magnetico applicato, ioni con diverso rapporto m/z possono essere focalizzati sul rivelatore.

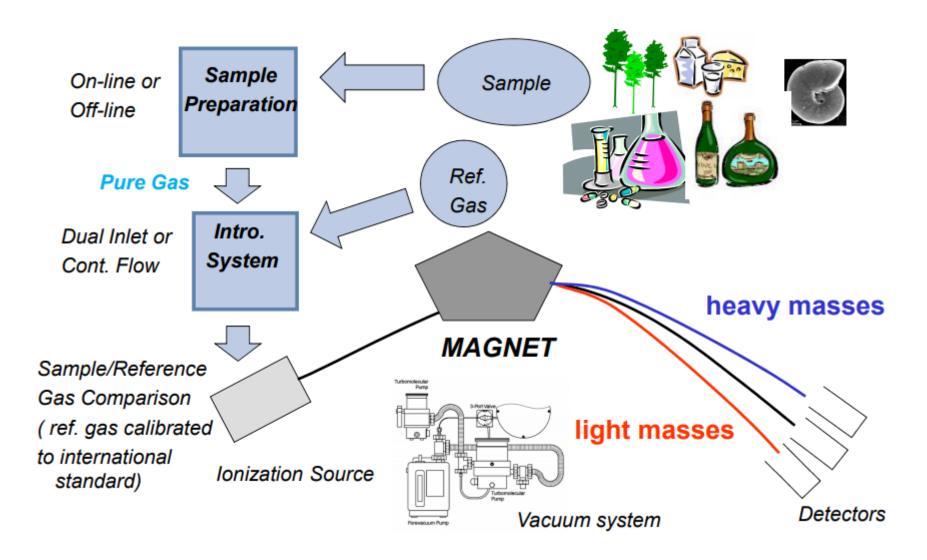


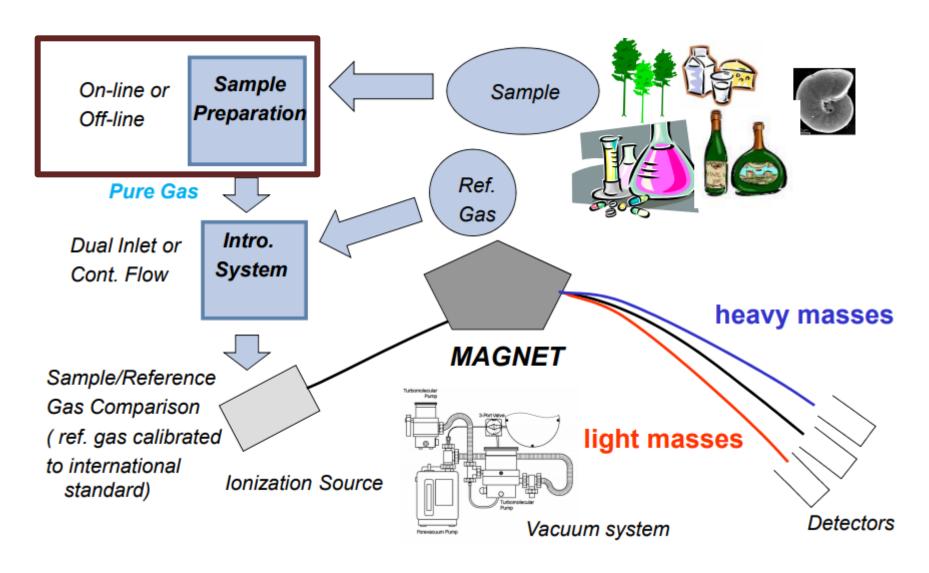

ANALIZZATORE A SETTORE MAGNETICO

Principio teorico:


ANALIZZATORE A SETTORE MAGNETICO

IRMS


ISOTOPE RATIO MASS SPECTROMETRY



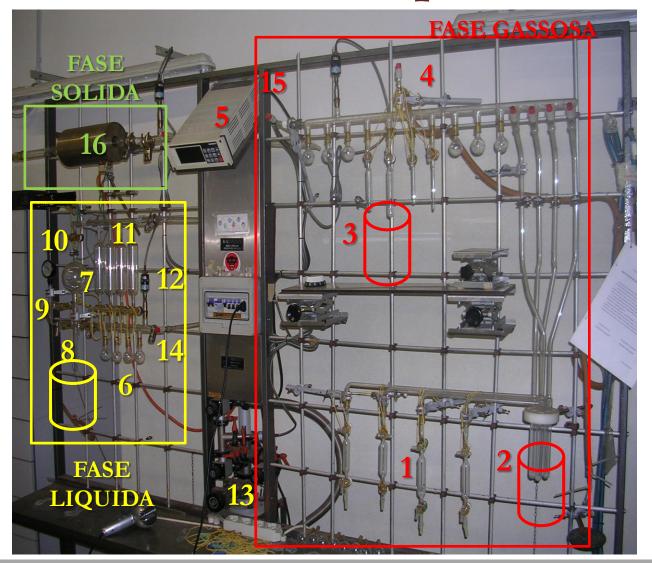
• bombardamento con ioni accelerati (SIMS)

STABLE ISOTOPE RATIO MASS SPECTROMETRY

(SIRMS or Gas-IRMS)

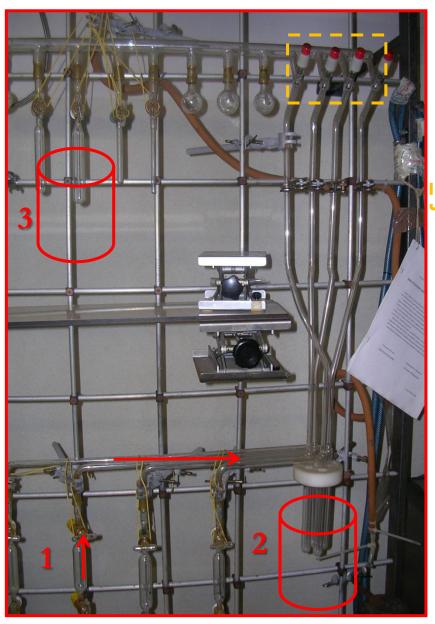
On-line or Off-line Sample Preparation

Pure Gas


Dual Inlet or Cont. Flow Intro. System

Sample/Reference
Gas Comparison (
ref. gas calibrated
to international
standard)

Ionization S



Linea di estrazione e purificazione

1) Attacchi per campioni; 2) Trappola ad N₂ liquido; 3) Raccordi portacampione con 2° trappola; 4) Valvole di controllo pressione; 5) Display pressioni; 6) Attacchi campioni; 7) Ampolla di espansione CO₂; 8) Trappola ad N₂ liquido; 9) Attacco bombola CO₂; 10) Barometro; 11) Polmoni di espansione CO₂; 12) Valvole di controllo pressione; 13) Raccordo pompe; 14) e 15) Valvole di collegamento alla pompa; 16) Muffola

Fase gassosa

Il campione gassoso viene convogliato al punto (2) ove una trappola di N_2 liquido (T = -196 °C) permette l'intrappolamento di CO_2 , H_2O e, se presente, H_2S come solidi (tempo di reazione: 5 min).

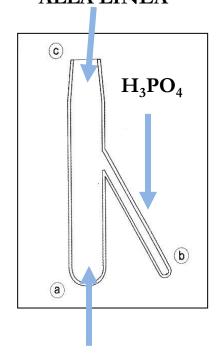
Successivamente, i gas incondensabili (H_2 , O_2 , ...) vengono allontanati tramite l'apertura dei rubinetti posti in testa al punto (2).

Si applica una **trappola di C_2HCl_3+N_2 liquido** (T=-58 °C), la CO_2 precedentemente intrappolata viene liberata e convogliata ai portacampioni (3) (tempo di reazione: 10 min).

Questi ultimi, immersi nuovamente in una trappola di N_2 liquido, permettono di solidificare la CO_2 da sola. Questo processo permette un arricchimento ed una purezza di CO_2 sino al 99.99 %. La CO_2 così prodotta viene analizzata con lo spettrometro di massa per la determinazione dei rapporti isotopici dell'Ossigeno e del Carbonio.

Fase solida

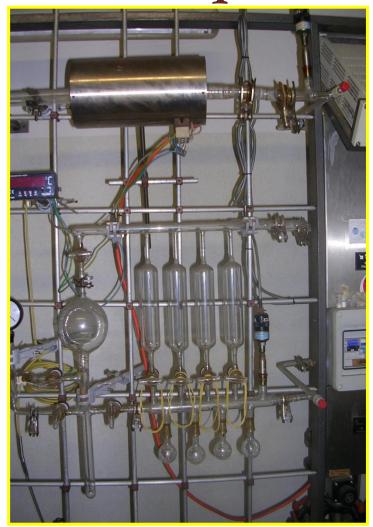
Campioni di rocce e sedimento contenenti CaCO₃


Si effettua la **calcinazione** dei campioni nella muffola a 550 °C, sotto vuoto, per allontanare o grafitizzare la sostanza organica. **CONNESSIONE**

Il campione calcinato viene fatto reagire con acido ortofosforico (H_3PO_4) anidro (circa 5 mL), opportunamente degassato (500 g di $P_2O_5 + 600$ mL di H_3PO_4 8 ore a 250 °C).

La reazione porta allo sviluppo di CO₂ e avviene all'interno di opportuni contenitori in vetro immersi in un bagno termostatico a 25 °C per 8 ore, in modo da consentire alla CO₂ di equilibrarsi con la soluzione.

L'analisi isotopica di δ^{13} C e δ^{18} O a questo punto viene eseguita su CO_2 come previsto per la fase gassosa.


CONNESSIONE ALLA LINEA

CAMPIONE

AMPOLLA PER
PREPARAZIONE
CARBONATI

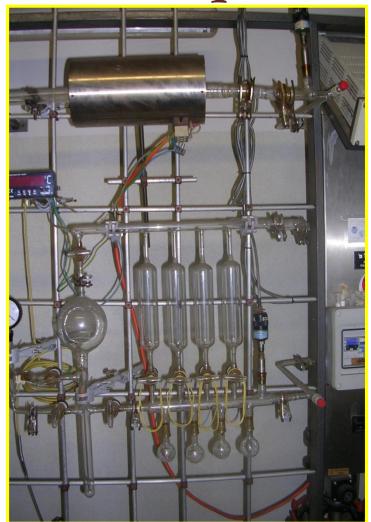
Fase liquida

Bottiglia di vetro ambrato 25 mL (no air inside)

$^{18}O/^{16}O$

A 5 mL di acqua si insuffla CO_2 purificata. Lo scambio isotopico conferisce alla CO_2 equilibrata il rapporto $^{18}O/^{16}O$ dell'acqua:

$$H_2^{18}O + C^{16}O_2 \rightarrow H_2^{16}O + C^{16}O^{18}O$$

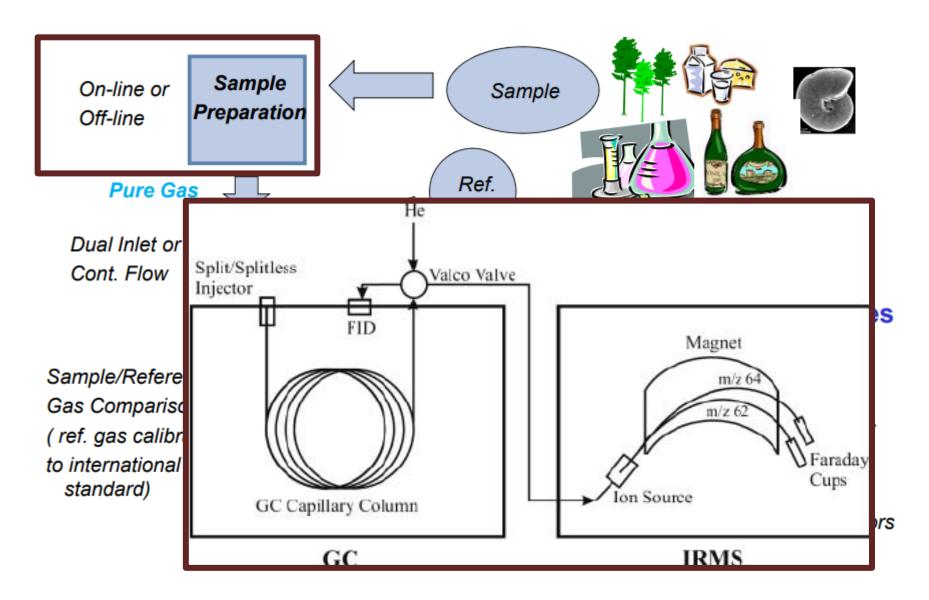

$^2H/^1H$

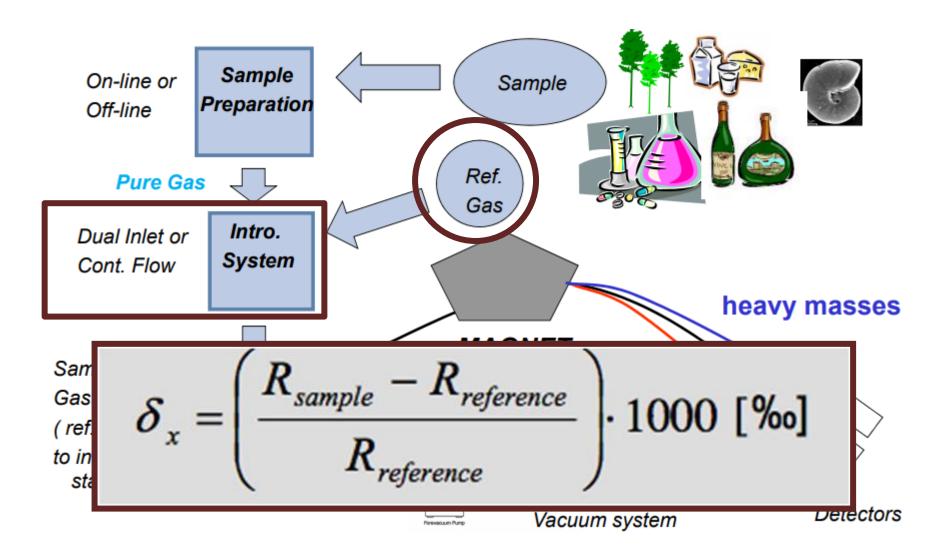
10 μL di acqua sono lasciati a reagire con 0.3 g di Zn purificato a 550 °C, secondo la reazione:

$$Zn+H_2O \rightarrow ZnO + H_2$$

Viene insufflato Ar nella linea per allontanare l'umidità. Si utilizza N₂ liquido per evitare problemi di frazionamento. Si mette in un reattore 30 min a 550 °C.

Fase liquida


Fiala in vetro 10 mL (no air inside)


¹³C/¹²C in DIC

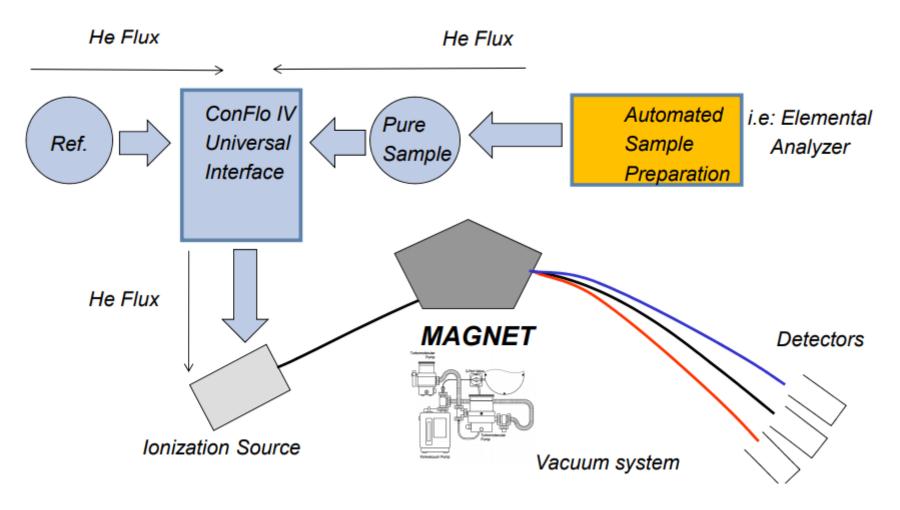
Pochi mg di HgCl₂ sono aggiunti per evitare qualsiasi variazione dovuta ad attività organica.

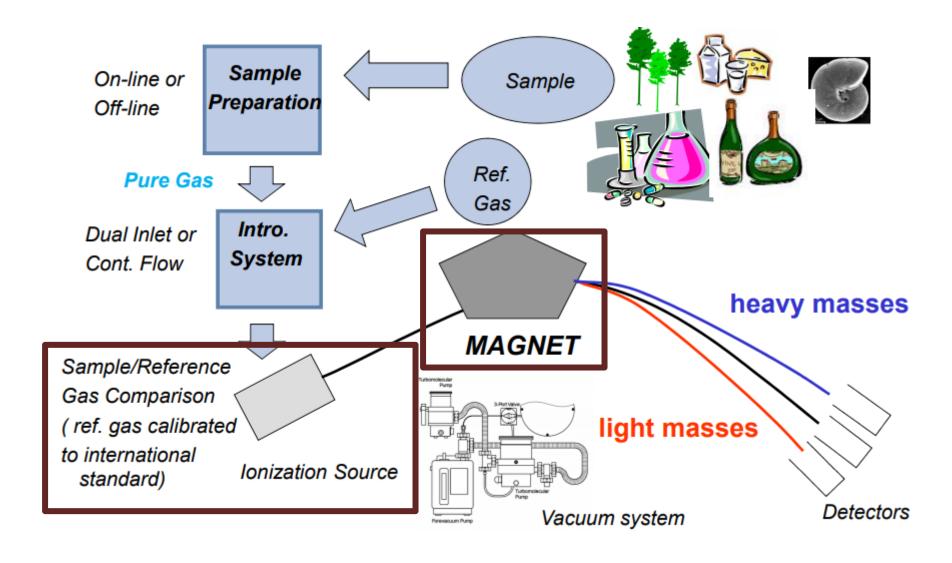
La preparazione avviene nella linea di vetro sotto vuoto.

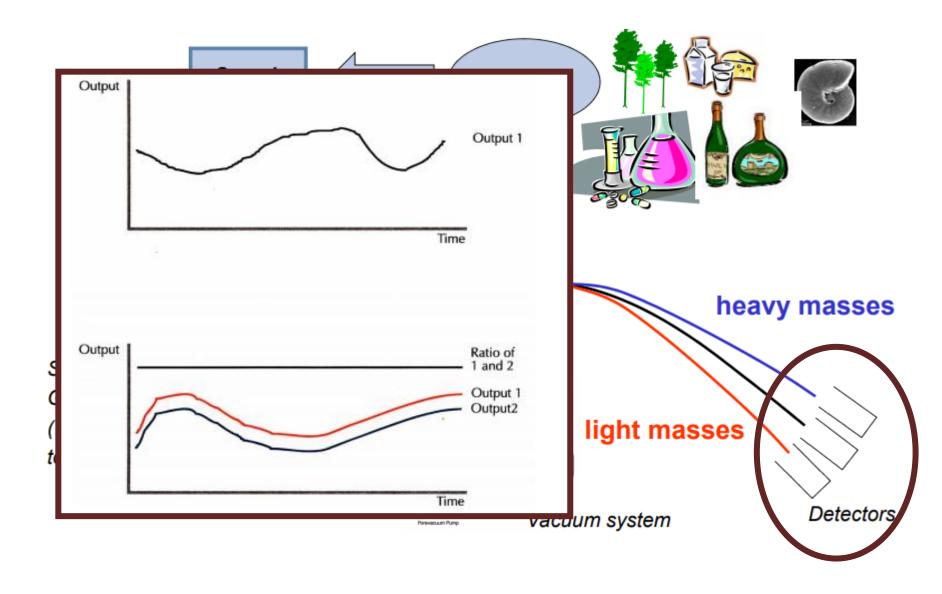
2-5 mL reagiscono con H_3PO_4 per produrre CO_2 in cui si misura poi $^{13}C/^{12}C$.

Standard internazionali

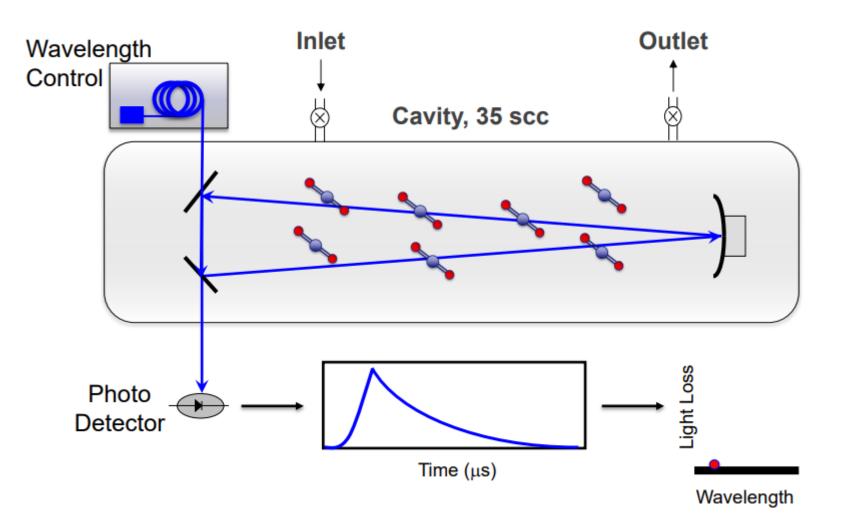
Gli standard internazionali sono forniti dalla International Atomic Energy Agency (IAEA) di Vienna.

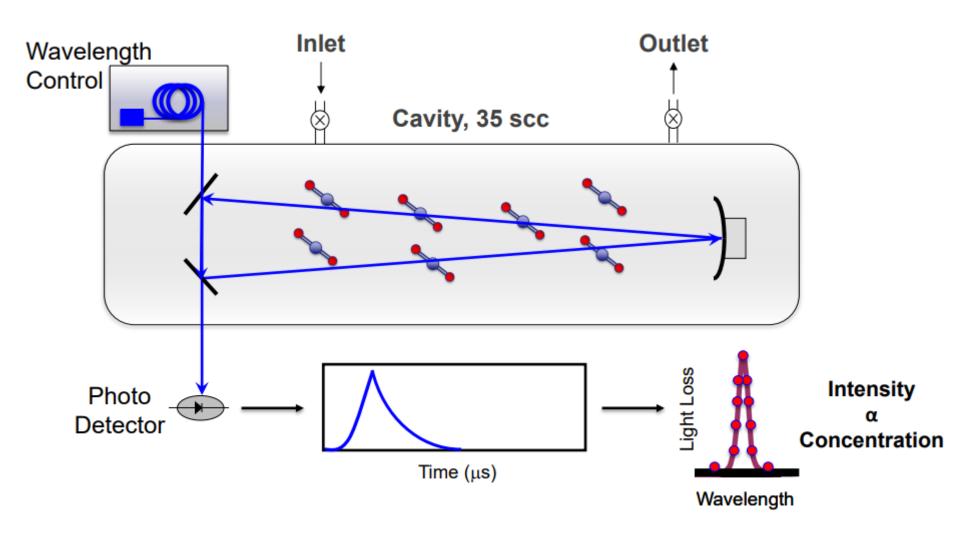

Element Ratio	Primary Reference Standard	Isotope Ratio, R Hayes, 1983 Accepted value x 10 ⁶
Hydrogen ² H/ ¹ H	SMOW (<i>S</i> tandard <i>M</i> ean <i>O</i> cean <i>Water</i>)	155.76 ± 0.10
Carbon 13C/12C	PDB (Pee Dee Belemnite)	11237.2 ± 2.9
Nitrogen ¹⁵ N/ ¹⁴ N	Air Nitrogen	3676.5 ± 8.1
Oxygen ¹⁸ O/ ¹⁶ O	SMOW	2005.2 ± 0.43
Sulfur ³⁴ S/ ³² S	CDT (Canyon-Diabolo-Triolit)	45004.5 ± 9.3

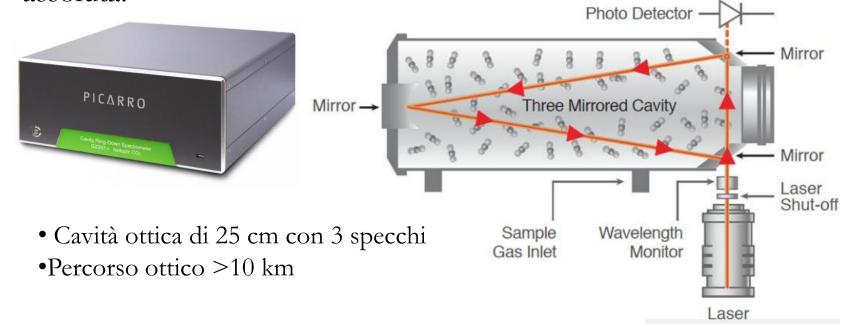


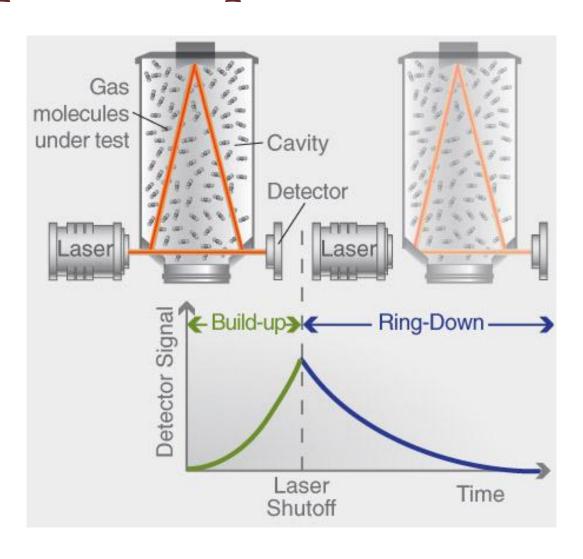

Dual-inlet Automated i.e: Kiel IV Sample carbonate **Dual Inlet** Preparation system Pure Ref. Gas Gas Off-line i.e: fluorination Sample Preparation Alternate Sample/Ref. Introduction **MAGNET Detectors** Ionization Source Vacuum system

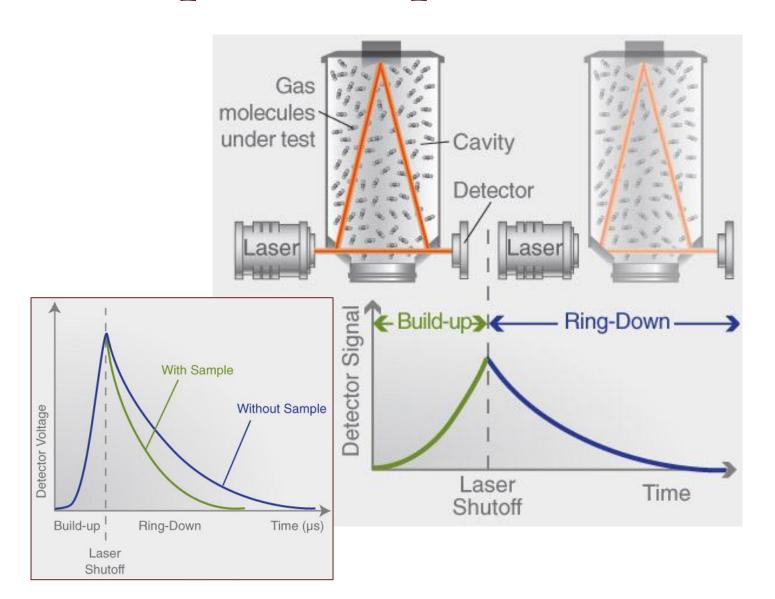
Confronto diretto di un campione di gas puro con lo standard interno

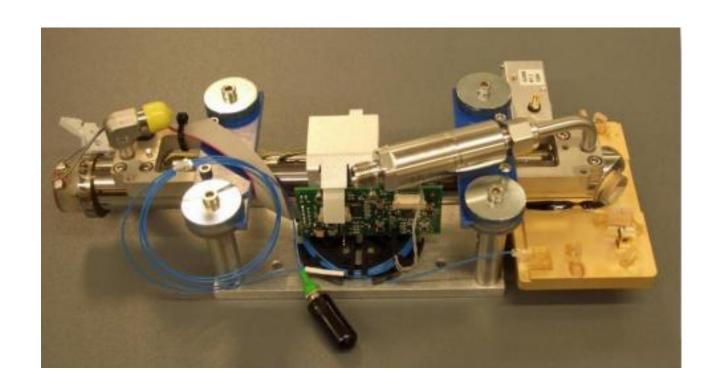

Continuous Flow




SPETTROSCOPIA LASER CRDS






CRDS: tempo, non assorbanza

- Utilizza lo spettro di assorbimento unico della radiazione IR delle molecole in fase gassosa per quantificare le concentrazioni di H₂O, CO₂, CH₄, N₂O, NH₃, etc.
- Misura il tasso di decadimento, piuttosto che l'assorbanza assoluta.

