5. – Esercizi su: *relazioni di ordine*.

Esercizio 5.1

Nell'insieme A di tutti i sottoinsiemi di $\{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$ sia \subseteq la relazione di "inclusione", e sia

$$B := \{\{2,3,10\}, \{1,2,3,4\}, \{1,2,3,5\}, \{2,3,4,5\}, \{2,3,4,5,6\}, \{2,3,4,5,6,10\}\}.$$

Si dica, motivando la risposta, con riferimento alla relazione \subseteq ,:

- − se B ha minimo, ed in tal caso qual è il minimo;
- − se B ha estremo inferiore in A, ed in tal caso qual è tale estremo inferiore;
- se B ha massimo, ed in tal caso qual è il massimo;
- − se B ha estremo superiore in A, ed in tal caso qual è tale estremo superiore.

Si indichi infine una qualsiasi limitazione superiore per B in A.

Esercizio 5.2

Nell'insieme $\mathbb{N} \times \mathbb{N}$ delle coppie ordinate di numeri naturali, sia \preceq la relazione di ordine così definita:

$$(x_1, y_1) \leq (x_2, y_2)$$
 se e soltanto se $((x_1 \leq x_2) \land (y_1 \leq y_2))$.

Non è richiesta la verifica che \leq è effettivamente una relazione di ordine in $\mathbb{N} \times \mathbb{N}$.

Si dica, motivando la risposta, se \preceq è una relazione di ordine totale in $\mathbb{N} \times \mathbb{N}$. Posto inoltre

$$\mathbf{A} := \{(12, 36), (10, 12), (18, 20), (23, 24)\}$$

si dica, motivando la risposta:

- se A ha minimo, ed in tal caso qual è il minimo;
- se **A** ha estremo inferiore in $\mathbb{N} \times \mathbb{N}$, ed in tal caso qual è tale estremo inferiore;
- se **A** ha massimo, ed in tal caso qual è il massimo;
- se **A** ha estremo superiore in $\mathbb{N} \times \mathbb{N}$, ed in tal caso qual è tale estremo superiore.

Si indichi infine una qualsiasi limitazione superiore per **A** in $\mathbb{N} \times \mathbb{N}$.

Nell'insieme \mathcal{P} di tutti i poligoni del piano, sia ρ la relazione così definita:

 $P_1 \rho P_2$ se e soltanto se il perimetro di P_1 è minore o uguale a quello di P_2 .

Si dica, motivando la risposta, se ρ è una relazione di ordine in \mathcal{P} . Nel caso che lo sia, si precisi se di ordine parziale o totale.

Esercizio 5.4

Nell'insieme A di tutti i sottoinsiemi di $\{1, 2, 3, 4, 5, 6, 7\}$ sia \subseteq la relazione di "inclusione", e sia

$$\mathbf{B} := \{\{2,4\}, \{2,3,4\}, \{1,2,4\}, \{2,3,4,5\}, \{2,3,4,6\}, \{2,3,4,7\}\}.$$

Si dica, motivando la risposta, con riferimento alla relazione \subseteq ,:

- − se B ha minimo, ed in tal caso qual è il minimo;
- se B ha estremo inferiore, ed in tal caso qual è l'estremo inferiore;
- se B ha massimo, ed in tal caso qual è il massimo;
- se B ha estremo superiore, ed in tal caso qual è l'estremo superiore.

Esercizio 5.5

Nell'insieme A di tutti i sottoinsiemi di $\{2, 3, 4, 5, 6, 7, 8, 9, 10\}$ sia \subseteq la relazione di "inclusione", e sia

$$B := \{\{2, 3, 7, 10\}, \{2, 3, 6, 7, 10\}, \{3, 6, 7\}, \{3, 6\}, \{2, 3, 6, 9\}\}.$$

Si dica, motivando la risposta, con riferimento alla relazione \subseteq ,:

- se B ha minimo, ed in tal caso qual è il minimo;
- se B ha estremo inferiore in A, ed in tal caso qual è tale estremo inferiore;
- se B ha massimo, ed in tal caso qual è il massimo;
- se B ha estremo superiore in A, ed in tal caso qual è tale estremo superiore.

Si indichi infine una qualsiasi limitazione superiore per B in A.

Nell'insieme $\mathbb{N} \times \mathbb{N}$ sia \preceq la relazione di ordine così definita:

$$(a,b) \leq (c,d)$$
 se e soltanto se $a \leq c$ e $b \leq d$

(dove \leq è l'usuale relazione di ordine totale definita in \mathbb{N}). Non è richiesto di verificare che \leq è effettivamente una relazione di ordine in $\mathbb{N} \times \mathbb{N}$. Sia

$$A := \{(3,7), (2,5), (4,9), (8,8), (7,10)\}.$$

Si dica, motivando la risposta, con riferimento alla relazione \leq :

- − se A ha minimo, ed in tal caso qual è il minimo;
- − se A ha estremo inferiore, ed in tal caso qual è l'estremo inferiore;
- − se A ha massimo, ed in tal caso qual è il massimo;
- se A ha estremo superiore, ed in tal caso qual è l'estremo superiore.

Esercizio 5.7

Nell'insieme A di tutti i sottoinsiemi di $\{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$ sia \subseteq la relazione di "inclusione", e sia

$$B := \{\{3,4,10\}, \{1,2,3,4\}, \{1,3,4,6\}, \{2,3,4,6\}, \{2,3,4,5,6\}, \{2,3,4,5,6,10\}\}.$$

Si dica, motivando la risposta, con riferimento alla relazione \subseteq ,:

- se B ha minimo, ed in tal caso qual è il minimo;
- se B ha estremo inferiore in A, ed in tal caso qual è tale estremo inferiore;
- − se B ha massimo, ed in tal caso qual è il massimo;
- se B ha estremo superiore in A, ed in tal caso qual è tale estremo superiore.

Si indichi infine una qualsiasi limitazione superiore per B in A.

Esercizio 5.8

Nell'insieme A di tutti i sottoinsiemi di $\{1, 2, 3, 4, 5, 6, 7\}$ sia \subseteq la relazione di "inclusione", e sia

$$B := \{\{3,5\}, \{3,4,5\}, \{1,3,5\}, \{2,3,4,5\}, \{3,4,5,6\}, \{3,4,5,7\}\}.$$

Si dica, motivando la risposta, con riferimento alla relazione \subseteq ,:

- se B ha minimo, ed in tal caso qual è il minimo;
- se B ha estremo inferiore, ed in tal caso qual è l'estremo inferiore;
- se B ha massimo, ed in tal caso qual è il massimo;
- se B ha estremo superiore, ed in tal caso qual è l'estremo superiore.

Nell'insieme $\mathbb{N} \times \mathbb{N}$ delle coppie ordinate di numeri naturali, sia \preceq la relazione di ordine così definita:

$$(x_1, y_1) \leq (x_2, y_2)$$
 se e soltanto se $((x_1 \leq x_2) \land (y_1 \leq y_2))$.

Non è richiesta la verifica che \preceq è effettivamente una relazione di ordine in $\mathbb{N} \times \mathbb{N}$.

Si dica, motivando la risposta, se \leq è una relazione di ordine totale in $\mathbb{N} \times \mathbb{N}$. Posto inoltre

$$\mathbf{A} := \{(24, 25), (23, 26), (34, 31), (27, 30)\}$$

si dica, motivando la risposta:

- − se A ha minimo, ed in tal caso qual è il minimo;
- se **A** ha estremo inferiore in $\mathbb{N} \times \mathbb{N}$, ed in tal caso qual è tale estremo inferiore;
- se **A** ha massimo, ed in tal caso qual è il massimo;
- se **A** ha estremo superiore in $\mathbb{N} \times \mathbb{N}$, ed in tal caso qual è tale estremo superiore.

Si indichi infine una qualsiasi limitazione inferiore per **A** in $\mathbb{N} \times \mathbb{N}$.

Esercizio 5.10

Nell'insieme \mathcal{P} di tutti i pentagoni del piano, sia ρ la relazione così definita:

 $P_1\rho P_2$ se e soltanto se l'area di P_1 è minore o uguale a quella di P_2 .

Si dica, motivando la risposta, se ρ è una relazione di ordine in \mathcal{P} . Nel caso che lo sia, si precisi se di ordine parziale o totale.

Esercizio 5.11

Nell'insieme $\mathbb{N} \times \mathbb{N}$ sia \leq la relazione di ordine così definita:

$$(a,b) \leq (c,d)$$
 se e soltanto se $a \leq c$ e $b \leq d$

(dove \leq è l'usuale relazione di ordine totale definita in \mathbb{N}). Non è richiesto di verificare che \leq è effettivamente una relazione di ordine in $\mathbb{N} \times \mathbb{N}$. Sia

$$A := \{(2,7), (3,4), (5,6), (5,7), (4,6)\}.$$

Si dica, motivando la risposta, con riferimento alla relazione \leq :

- se A ha minimo, ed in tal caso qual è il minimo;
- se A ha estremo inferiore, ed in tal caso qual è l'estremo inferiore;
- se A ha massimo, ed in tal caso qual è il massimo;
- se A ha estremo superiore, ed in tal caso qual è l'estremo superiore.

Nell'insieme A di tutti i sottoinsiemi di $\{1, 2, 3, 4, 5, 6, 7\}$ sia \subseteq la relazione di "inclusione", e sia

$$B := \{\{3,4\}, \{2,3,4\}, \{1,3,4\}, \{2,3,4,5\}, \{2,3,4,6\}, \{2,3,4,7\}\}.$$

Si dica, motivando la risposta, con riferimento alla relazione \subseteq ,:

- se B ha minimo, ed in tal caso qual è il minimo;
- se B ha estremo inferiore, ed in tal caso qual è l'estremo inferiore;
- se B ha massimo, ed in tal caso qual è il massimo;
- se B ha estremo superiore, ed in tal caso qual è l'estremo superiore.

Esercizio 5.13

Nell'insieme A di tutti i sottoinsiemi di $\{2, 3, 4, 5, 6, 7, 8, 9, 10\}$ sia \subseteq la relazione di "inclusione", e sia

$$B := \{\{3, 5, 8, 10\}, \{3, 5, 6, 9, 10\}, \{6, 9, 10\}, \{6, 9\}, \{2, 5, 6, 9\}\}.$$

Si dica, motivando la risposta, con riferimento alla relazione \subseteq ,:

- − se B ha minimo, ed in tal caso qual è il minimo;
- se B ha estremo inferiore in A, ed in tal caso qual è tale estremo inferiore;
- se B ha massimo, ed in tal caso qual è il massimo;
- − se B ha estremo superiore in A, ed in tal caso qual è tale estremo superiore.

Si indichi infine una qualsiasi limitazione superiore per B in A.

Esercizio 5.14

Nell'insieme $\mathbb{N} \times \mathbb{N}$ sia \preceq la relazione di ordine così definita:

$$(a,b) \leq (c,d)$$
 se e soltanto se $a \leq c$ e $b \leq d$

(dove \leq è l'usuale relazione di ordine totale definita in \mathbb{N}). Non è richiesto di verificare che \leq è effettivamente una relazione di ordine in $\mathbb{N} \times \mathbb{N}$. Sia

$$A := \{(3,8), (4,5), (6,7), (6,8), (5,7)\}.$$

Si dica, motivando la risposta, con riferimento alla relazione \prec :

- se A ha minimo, ed in tal caso qual è il minimo;
- se A ha estremo inferiore, ed in tal caso qual è l'estremo inferiore;
- se A ha massimo, ed in tal caso qual è il massimo;
- se A ha estremo superiore, ed in tal caso qual è l'estremo superiore.

Nell'insieme A di tutti i sottoinsiemi di $\{1, 2, 3, 4, 5, 6, 7, 8, 9\}$ sia \subseteq la relazione di "inclusione", e sia

$$B := \{\{1, 3, 6, 8\}, \{2, 3, 6, 8, 9\}, \{2, 3, 9\}, \{2, 9\}, \{2, 5, 8, 9\}\}.$$

Si dica, motivando la risposta, con riferimento alla relazione \subseteq ,:

- se B ha minimo, ed in tal caso qual è il minimo;
- se B ha estremo inferiore in A, ed in tal caso qual è tale estremo inferiore;
- se B ha massimo, ed in tal caso qual è il massimo;
- se B ha estremo superiore in A, ed in tal caso qual è tale estremo superiore.

Si indichi infine una qualsiasi limitazione superiore per B in A.

Esercizio 5.16

Nell'insieme A di tutti i sottoinsiemi di $\{1, 2, 3, 4, 5, 6, 7\}$ sia \subseteq la relazione di "inclusione", e sia

$$B := \{\{4,5\}, \{3,4,5\}, \{1,4,5\}, \{2,3,4,5\}, \{3,4,5,6\}, \{3,4,5,7\}\}.$$

Si dica, motivando la risposta, con riferimento alla relazione \subseteq ,:

- se B ha minimo, ed in tal caso qual è il minimo;
- se B ha estremo inferiore, ed in tal caso qual è l'estremo inferiore;
- se B ha massimo, ed in tal caso qual è il massimo;
- se B ha estremo superiore, ed in tal caso qual è l'estremo superiore.

Esercizio 5.17

Nell'insieme A di tutti i sottoinsiemi di $\{1, 2, 3, 4, 5, 6, 7, 8, 9\}$ sia \subseteq la relazione di "inclusione", e sia

$$B := \{\{1,4,6,9\}, \{1,2,5,8,9\}, \{2,5,6\}, \{2,5\}, \{1,2,5,8\}\}.$$

Si dica, motivando la risposta, con riferimento alla relazione \subseteq ,:

- se B ha minimo, ed in tal caso qual è il minimo;
- se B ha estremo inferiore in A, ed in tal caso qual è tale estremo inferiore;
- se B ha massimo, ed in tal caso qual è il massimo;
- se B ha estremo superiore in A, ed in tal caso qual è tale estremo superiore.

Si indichi infine una qualsiasi limitazione superiore per B in A.

Nell'insieme $\mathbb{N} \times \mathbb{N}$ sia \leq la relazione di ordine così definita:

$$(a,b) \leq (c,d)$$
 se e soltanto se $a \leq c$ e $b \leq d$

(dove \leq è l'usuale relazione di ordine totale definita in \mathbb{N}). Non è richiesto di verificare che \leq è effettivamente una relazione di ordine in $\mathbb{N} \times \mathbb{N}$. Sia

$$A := \{(2,6), (1,4), (3,8), (7,7), (6,9)\}.$$

Si dica, motivando la risposta, con riferimento alla relazione \leq :

- − se A ha minimo, ed in tal caso qual è il minimo;
- se A ha estremo inferiore, ed in tal caso qual è l'estremo inferiore;
- − se A ha massimo, ed in tal caso qual è il massimo;
- − se A ha estremo superiore, ed in tal caso qual è l'estremo superiore.