LAUREA MAGISTRALE BIOLOGIA MOLECOLARE E APPLICATACurriculum Biosanitario e della Nutrizione

Corso di ONCOLOGIA

9 dicembre 2019
\checkmark Cancer is a genetic disease since it is due to alterations in patients' DNA.
\checkmark Deciphering the genetic changes is necessary to understand the disease.
\checkmark Unraveling the genetic bases of cancer allows us to design the best treatment protocols for each single patient.

Questions that can be answered by cancer biomarkers

Potential uses for biomarkers in

 oncology

Monitor disease status before and after therapy

DIAGNOSTIC TESTS

> Identification of the presence/amount of a specific protein. It can be performed on blood samples (es. CEA, CA-125) and on tumour tissue (es. ER, HER2/Neu).
$>$ Evaluation of the expression of a set of genes (microarray technology): diagnostic tests development, better classification, identification of new therapeutic targets, setting up of personalised treatments).

DIAGNOSTIC TESTS

$>$ Evaluation of mutations and epigenetic changes: gene sequencing (Sanger sequencing, Pyrosequencing, Next Generation Sequencing), Beaming.

DIAGNOSTIC TESTS

PYROSEQUENCING

Evaluation of 100-200bp
amplicons
Result = percentage
Variants determined by the operator

E S GTCTGTC AG TC GCT GATTCTGTTCGTATGTCAGTC

DIAGNOSTIC TESTS

NGS

Evaluation of the whole genome or exome

Selection of tumour-specific genes

Result $=$ percentage
Variants automatically determined in databases

DIAGNOSTIC TESTS

BEAMing (performed on cell-free tumour DNA)

- Early detection of cancer (diagnosis)
- Determine risk for metastatic relapse (prognosis)
- Identification of therapeutic targets
- Stratification for treatment decision
- Real-time monitoring of treatment
- Detection of resistance mechanisms
- Early detection of metastatic relapse

Liquid biopsy

DIAGNOSTIC TESTS

BEAMing (performed on cell-free tumour DNA)

DIAGNOSTIC TESTS

BEAMing (performed on cell-free tumour DNA)

DIAGNOSTIC TESTS

BEAMing (performed on cell-free tumour DNA)

Gene amplification within a droplet emulsion containing one DNA molecule and magnetic bead by PCR.

Detection

Forming of a complementary conjugate with fluorescent probe of a gene and a magnetic bead.

Detecting mutations of the cancer gene by FCM.

Primer coat

Magnetic bead

DIAGNOSTIC TESTS

BEAMing (performed on cell-free tumour DNA)

DISEASE CLASSIFICATION is central to understand the bases of the diseases, make diagnosis and assign treatment.

Cancer nomenclature is based on:

1. $\frac{\text { Localization }}{\text { cancer.....) }}$ (breast cancer, lung
2. Within each organ-specific major type several subgroups are defined, taking into account cell type, histological grades and MOLECULAR MARKERS

cTNM (CLINICAL)

Essential to select and evaluate therapeutic options
Defined before treatment
Based on evidences aquired by clinical examination, imaging, endoscopy, biopsy....

pTNM (PATHOLOGICAL)

Assessed after surgery
Essential to guide adjuvant therapy
Provides data useful for prognosis estimation

G (HISTOPATHOLOGICAL GRADING)

Tumor grade: description of a tumor based on how abnormal the tumor cells and the tumor tissue look under a microscope.
It is an indicator of how quickly a tumor is likely to grow and spread.

If a grading system for a tumor type is not specified, the following system is generally used:

GX: Grade cannot be assessed (undetermined grade)
G1: Well differentiated (low grade)
G2: Moderately differentiated (intermediate grade)
G3: Poorly differentiated (high grade)
G4: Undifferentiated (high grade)

BIOMOLECULAR STAGING

$>$ Identification of tumour markers involved in different processes that lead to tumour progression.
$>$ Better patients' stratification into TNM stagingdefined risk groups.
> Potentially applicable to: primary tumour, lymphnodes, bone marrow, serum.
> Useful for: early diagnosis, prognosis estimation, occulte metastases identification, predictive markers for chemotherapy resistence or response.
$>$ Panels of biomarkers depending on the tumour type.

HISTOLOGICAL CLASSIFICATION

TNM CLASSIFICATION

ANATOMIC STAGE/PROGNOSTIC GROUPS			
Stage 0	Tis	NO	M0
Stage IA	T1*	N0	M0
Stage IB	T0	N1mi	M0
	T1*	N1mi	M0
Stage IIA	T0	N1**	M0
	T1*	N1**	M0
	T2	NO	M0
Stage IIB	T2	N1	M0
	T3	NO	M0
Stage IIIA	T0	N2	M0
	T1*	N2	M0
	T2	N2	M0
	T3	N1	M0
	T3	N2	M0
Stage IIIB	T4	NO	M0
	T4	N1	M0
	T4	N2	M0
Stage IIIC	Any T	N3	M0
Stage IV	Any T	Any N	M1

The One-Step Nucleic acid Amplification (OSNA) assay is a molecular procedure that can identify deposits of breast cancer cells in the sentinel lymph node.

Conventional method of pathological diagnosis

Diagnosis of lymph node metastasis: Qualitative analysis by pathologists

Only analyze a part of tissue
However, from now on. . .
Molecular pathological diagnosis by the OSNA method

Gene amplification analyzer

OSNA method

MOLECULAR CLASSIFICATION

MOLECULAR CLASSIFICATION

Molecular subtypes
\% of breast cancers

Receptor expression

Histologic grade
Level of cell differentiation

Prognosis
Correlates to histologic grade

Response to medical therapy

15-20\%
$10-15 \% \quad 20 \%$ 40\%
HER2

$$
E R+/ P R+
$$

Poor
Good

Chemotherapy
Trastuzumab
Endocrine

Luminal A tumours respond best to endocrine therapy, e.g. antiestrogen or aromatase inhibitor.

MOLECULAR DIAGNOSTICS TESTS

MAMMAPRINT®

Stage 1 and 2 Breast Cancer, node negative
10% chance of recurrence within 10 years with no treatment

29% chance of recurrence within 10 years with no treatment

MOLECULAR DIAGNOSTICS TESTS

ONCOTYPE DX®

Stage 1 and 2 Breast Cancer, node negative, ER+; expression of 21 genes (16 genes known to be related with breast cancer and 5 reference genes)

- Reported as a Recurrence Score (RS)
- RS < 18 = low risk
- $18 \leq \mathrm{RS}<31=$ intermediate risk
- $\mathrm{RS} \geq 31=$ high risk
- Quantifies the standard pathologic characterization
- Complex algorithm that adds the HER2, proliferation, and invasion scores, and subtracts the estrogen score in a weighted fashion

MOLECULAR DIAGNOSTICS TESTS

PROSIGNA®

The end result is the Risk of Recurrence (ROR, 0100) estimating the risk of relapse within 10 years.

ROR is calculated taking into account the PAM50 gene signature, intrinsic subtype, tumour size, nodal status, and proliferation score.

Development of Prosigna ${ }^{T M}$ is Based on PAM50 Gene Signature

HISTOLOGICAL CLASSIFICATION

- Adenocarcinoma (85\%)
- Mucinous adenocarcinoma (10\%)
- Signet-ring cell carcinoma
- Medullary carcinoma
- Undifferentiated carcinoma
- Small cell carcinoma
- Adenosquamous carcinoma
- Squamous carcinoma

CLASSIFICATION

ANATOMIC STAGE/PROGNOSTIC GROUPS					
Stage	T	N	M	Dukes*	MAC*
0	Tis	N0	M0	-	-
I	T1	No	M0	A	A
	T2	No	M0	A	B1
IIA	T3	NO	M0	B	B2
IIB	T4a	No	M0	B	B2
IIC	T4b	NO	M0	B	B3
IIIA	T1-T2	N1/N1c	M0	C	C1
	T1	N2a	M0	C	C1
IIIB	T3-T4a	N1/N1c	M0	C	C2
	T2-T3	N2a	M0	C	C1/C2
	T1-T2	N2b	M0	C	C1
IIIC	T4a	N2a	M0	C	C2
	T3-T4a	N2b	M0	C	C2
	T4b	N1-N2	M0	C	C3
IVA	Any T	Any N	M1a	-	-
IVB	Any ${ }^{\text {T }}$	Any N	M1b	-	-
NOTE: cTNM is the dinical dassification, PTNM is the pathologic classification. The y prefix is used for those cancers that are classified after neoodjuvant pretreatment (for example, ypTNM). Patients who have a complete pathologic response are ypTONOCMO that may be similar to Stage Group 0 or 1 . The r prefix is to be used for those cancers that have recurred after a disease-free interval (rNMM). * Dukes B is composite of better (T 3 NO MO) and worse (T4 No MO) prognostic groups, as is Dukes C (any TN1 M0 and Any T N2 MO). MAC is the modified Astler-Coller classification.					

Up to 30% of all patients classified in stage II suffer from local recurrence or distant metastases within 5 years of undergoing surgery, leading to significantly poorer survival rates.
These patients are classified in a lower lymph node status (false-negative rates up to 24%), which impacts on the decisions made concerning their further therapy options.

OSNA ${ }^{\circledR}$ allows the investigation of the entire lymph node and its results are comparable with ultra-staging (IHC). Studies have shown that a lymph node analysis of pNO patients with OSNA ${ }^{\circledR}$ yielded an upstaging rate of approximately 26%, compared with the standard histological test method. These patients' therapies could thus be adjusted accordingly.

Parts of lymph nodes are
surgically sampled.

Testing with the OSNA method

Measurement by a proprietary instrument and reagent are used to amplify the cancer cell genes for measurernent.

OSNA stands for One-step Nucleic Acid Amplification. With the OSNA method, sample lymph nodes are dissolved, and cancer genes contained in the samples are amplified and detected to determine cancer lymph node metastasis. This is a one-step testing method.

[Features]

- Results are rapidly obtained.
- Automated diagnosis eliminates accuracy disparities among medical institutions.

Confirmation of the presence of cancer cells by a pathologist using a microscope
Conventional pathological diagnosis

- k-ras mutations
- P53 mutations
-LOH 17p (p53)
- LOH 18q (dcc)
- Microsatellite instability (MMR)
- DNA methylation
- Altered expression of TGFb
- Apc mutation/loss

MOLECULAR DIAGNOSTICS TESTS

ONCOTYPE DX COLON®

Stage 2 Colon Cancer; expression of 12 genes
(7 genes known to be related with colon cancer and 5 reference genes)

The Oncotype DX Colon Cancer Assay 12-gene panel

ATP5E PGK1 GPX1

UBB VDAC2

5 reference genes

Normalize the expression of cancer-related genes

The end result of the testing is a Recurrence Score (0-100) indicating the risk of recurrence in the three years after surgery.

The test has been validated but it's not currently included in standard clinical practice.

MOLECULAR DIAGNOSTICS TESTS

ONCOBEAM ${ }^{\text {TM }}$ RAS CRC ASSAY

Stage 4 Colon Cancer; evaluation of K - and N - $R A S$ mutations in specific codons

The end result of the testing is the mutational status of K - and N $R A S$ in plasma (ctDNA).

The test has been validated but it's not included in standard clinical practice yet.

MOLECULAR DIAGNOSTICS TESTS

ONCOBEAM ${ }^{\text {Th }}$ RAS CRC ASSAY

Tissue

Example: Blood-based RAS testing for colorectal cancer

HISTOLOGICAL CLASSIFICATION

Clinico-Pathological Staging (TNM, Dukes....)

BIOMOLECULAR CLASSIFICATION

