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Aim of this lecture
■ Define the Galactic coordinates and the cylindrical coordinate 

systems

■ Study the motions inside the MW

■ Define the rotation curve and its implications
o Spiral pattern
o Resonant radii
o Implication for stellar migration

■ Define some methods to measure distances: 
o Trigonometric Parallax
o Main sequence fitting
o Spectroscopic parallaxes
o Period-luminosity relationship for Cepheids



The Galactic coordinate system

The intersection of the mid-plane of the Galaxy with the celestial sphere
forms the Galactic equator (angle between celestial equator and the
Galactic Plane à 62.60)

North celestial pole (NCP), the north ecliptic pole (NEP), and north Galactic pole (NGP) are all on 
the front of the celestial sphere.



The Galactic coordinate system: to describe the 
position within the Galaxy

■ Galactic latitude (b) and Galactic longitude (l) are defined from the location of the 
Sun

■ b is measured in degree along a great circle that passes through the north Galactic 
pole

■ l is measured in degree, along the Galactic equator, counterclockwise, from the 
Galactic North Pole

■ l=0o and b=0o corresponds ~ to the location of Sgr A, the Galactic Centre

à Good to represent objects as seen from the Earth



The cylindrical coordinate system: to describe 
the motions in the Galaxy
■ To complement the Galactic coordinate system, a cylindrical coordinate 

system is used. It places the center of the Galaxy at the origin for studying 

kinematics and dynamics
Why the cylindrical system 

for kinematics: 

• the Sun is moving about 

the Galactic Centre

• A system centred on the 

Sun is a non-inertial 

reference frame

R increases outward

Θ increases in the direction of the 

Galactic rotation

Z increases toward the North



The cylindrical coordinate system
■ The corresponding velocity components are labelled: 

𝜋 radial velocity

Θ angular velocity

Z vertical velocity



The dynamical local standard rest
■ We consider the Sun as the site of all observations of the Galaxy

■ Definition of the Local standard rest (LSR): 

A point that is instantaneously centered on the Sun and moving in a perfectly circular 
orbit along the solar circle about the Galactic center.

■ The Sun does not follow a simple planer orbit: it moves slowly inward and farther 

North

■ Its orbital period of the Sun is 230 Myr à very long compared to observation time-

scales à the drift of the Sun with respect to the definition of the dynamical local 

standard rest is negligible



The peculiar velocity
■ The velocity of a star relative to the LSR is known as the peculiar velocity

The Sun has its own peculiar velocity (the LRS is defined with perfectly circular 
orbit along the Solar circle): 

à Towards the Galactic centre

à More rapidly than the LRS, in the direction 
of Galactic rotation

à Toward the North, out of the Plane

à U radial

à V rotation

à W vertical



The peculiar velocity of the Sun
Measuring average proper motions and 

radial velocities of stars distributed 

around the Sun allows us to derive the 

peculiar velocity of the Sun 

For the vertical component: 



The peculiar velocities in the LSR
■ Now that the Solar motion is known, the velocities of stars relative to the Sun can be transformed 

into peculiar motions relative to the LSR.

■ Plotting one component of peculiar motion against another for a specific sample of stars in the 

Solar neighborhood à we obtain the velocity ellipsoids

Velocity–metallicity relation: 

• The oldest stars have larger peculiar velocities (in u and v)

• Young stars have orbits close to the LSR (they belong to the thin disc)

à U radial

à V rotation



The peculiar velocities in the LSR
■ Asymmetric drift Velocity–metallicity relation: 

• Few stars with v > +65 km/s

• There are stars with very 

negative velocities v ~ -200 

km/s (metal poor RR Lyrae)

à We can draw an envelope 

with radius ~ -300 km/s, 

centered at -220 km/s 

• Halo stars without 

rotational velocity should 

exhibit peculiar v velocities 

that simply reflect the 

motion of the LSR (i.e., v ≃

−Θ0 )

à U radial

à V rotation

à Velocities of halo stars allow to estimate 

the zero point of the LSR à Θ0=220 km s-1



The mass within the Solar circle: 
using the 3rd Kepler low and the Solar period
à Period corresponding to R0=8 kpc and Θ0=220 km/s

considering : 

o pc=3.08 x 1013 km 

o yr=3.15 x 107 s

o G=6.67 x 10-11 m3/kg s2

o M⦿=2 x 1033 kg

• P=2𝜋R⦿/Θ⦿=230 Myr

à Mass within the Solar circle, from the third Kepler law

M=4 𝜋 2 R⦿ 3 / G P⦿ 2 =8.8 x 1010 M⦿

• It agrees with other estimates of luminous matter, but it is less than the total mass (the 

dark matter halo is not included)



Differential Galactic Rotation & Oort’s Constants
For external disc galaxies, the rotation velocity can be measured by observing the 

Doppler-shift of spectral lines at different distances from the centres of galaxies

à For the Milky Way, our position within the Galactic midplane prevent to measure 

the rotation curve in an easy way

à To confirm the rotation of our Galaxy prior to the discovery of the HI line, in 1927 

Oort derived a way to measure the Galactic rotation from just a small fraction of 

stars in the local neighborhood

à Proving that the Galaxy is rotating in a 

differential way



Differential Galactic Rotation & Oort’s Constants

• C position of the Galactic Centre

• O position of the Sun

• S position of a star, with longitude 

ℓ and distance d from the Sun

• The arrow in S indicates the 

relative velocity between the Sun 

and the star 

The observed radial and transversal 

velocities of the star S are:

𝜋-ℓ

To determine the differential rotation curve of the Galactic disc, we follow the 
formalism of Oort

vr

vt

Θ⦿ orbital velocity at solar radius
Θ orbital velocity at R



Angular velocity curve Definition of angular-velocity curve: 

The radial and transversal velocities 

of the star S are:

Considering that:

We can express as: 

𝜋-ℓ

• Valid for circular orbits

• Measurements of Vr, Vt, and d allow to 

estimate Ω



Solar neighborhood approximation
In the make the assumption that Ω(R) is a smoothly varying function of R, we can 

expand it with the Taylor formula (for small distances): 



The Oort constants
For d << R0 (Solar Neighborhood)à cos β~1

And defining the Oort’s constants as (they are computed for 

the Solar distance, so they are constants): 



The Oort constants
For d << R0 (Solar Neighborhood)

The differential rotation is revealed by the dependence of radial and transverse 

velocities from longitude 

Same Ω as the Sun 



The Oort constants
For d << R0 (Solar Neighborhood)

For the radial velocities: 

• For l=270o and l=90o stars are moving at the same Ω as the Sun à vr=0 km s -1

• For l=0o and l=180o stars have no radial velocity components à vr=0 km s -1

• For intermediate angles l=45o assuming an increasing Ω(R ), stars are closer to the GC 

and thus they are outrunning the Sun

• For l=225o they are overtaking the Sun

Same Ω as the Sun 
Galactic centre45

135

225
315



The Oort constants
Meaning of the Oort’s constants (A=14 km s-1 kpc-1 and B=-12 km s-1 kpc-1 ):

We can compare the measured values of A and B, with those derived for three simple 

models of rotation curves: solid body, Keplerian, and flat

• In the solid body 

rotation A=0 and B=-

Ω

• In the Keplerian

rotation A=20 km s-1

kpc-1 and B=-7 km s-1

kpc-1 

• In the flat rotation 

curve A=13.6 km s-1

kpc-1 and B=-13.6 km 

s-1 kpc-1 



The Oort constants and different kinds of rotation
Θ=cost à Ω=1/R Θ=1/R à Ω=cost

Θ=1/√R à Ω=1/√R3



Galactic rotation and the HI 21-cm line
The 21-cm emission from H I is able to penetrate virtually the entire Galaxy, making it 

an indispensable tool in probing the structure of the Milky Way.

Considering the relation without the Taylor approximation, we can investigate the 

Galactic rotation curve, by measuring vr as a function of ℓ, together with the distance of 

the emitting region from the Sun.



Galactic rotation curve

• The rotation curve of the Galaxy does not decrease significantly with distance

• According to Newtonian mechanics, if most of the mass is located within the solar 

circle, the rotation curve should decrease as ∝ R−1/2 (Keplerian motion)



Galactic rotation curve

• Rigid-body rotation in the inner disc à mass spherically distributed with constant 

density

• Flat rotation curves suggest that the bulk of the mass in the outer portions of the 

Galaxy are spherically distributed with a density law that is proportional to r −2



Rotation curves in other galaxies

• The mass distribution needed to 

produce a flat rotation curve is very 

different from that derived from the star 

count beyond the Solar circle



Dark matter density profile

where ρ0 and a are chosen as parametric fits to the overall rotation curve. Note that for 

r ≫ a , the r−2 dependence is obtained, and ρ ∼ constant when r ≪ a. 

A similar profile is often used for modeling other galaxies as well, with different

choices for ρ0 and a .



The link between rotation and spiral arms



The spiral arms as quasi-stationary 
density waves

The general appearance of spiral galaxies suggests that in most cases their arms are

trailing, meaning that the tips of the arms point in the opposite direction from the

direction of rotation

Tip of the arm



Rotation curve and spiral arms

Winding problems à rotation cannot explain alone the spiral arms           

à spiral arms cannot be material (arms composed of a fixed set of stars)

The effect of differential rotation (v (R)= constantà Ω (R) =R-1) will lead to a natural generation of 

trailing spiral arms

à After only a few orbits, the spiral arms will become too tightly wound to be observed



Winding problem

Since we are not observing galaxies like that, the origin of the spiral arms 

should be different



The spiral arms as quasi-stationary 
density waves

Following the theory of Shu and Lin, spiral arms are regions of the disc with greater density
(produced by self-gravity of the disc à due to asymmetry in the halo, perturbation by neighbor
galaxies. …..).

à Stars, but also gas and dust, move across the spiral arms

à When gas and dust reach the spiral arm, they are compressed and star formation is activated

A visual way to understand spiral arms à spiral arms can be thought as peak a the traffic jam,
due to an accident or to a slow truck



The spiral arms as quasi-stationary 
density waves



The spiral arms as quasi-stationary 
density waves

Ωgp is the global pattern speed od the spiral system: in the reference frame rotating at Ωgp the 

spiral arms are quasi-stationary



What about stars? 
■ Stars near the center of the Galaxy can have orbital periods that are shorter than the density wave pattern

(Ω> Ωgp ) à they will overtake a spiral arm, move through it, and continue on until they encounter the
next arm.

■ Stars sufficiently far from the center will be moving more slowly à the density wave pattern and will be

overtaken by it (Ω < Ωgp)

■ At a specific distance from the center, called the corotation radius (Rc ), the stars and density waves will
move together.

inertial reference frame Non-inertial reference frame, rotating at Ωgp



How spiral arms are maintained? 
■ Spiral arms are not composed by fixed group of stars

■ Stars are allowed to pass through a quasi-static density wave

■ How the wave of enhanced density has been established and maintained? 

Small-Amplitude Orbital Perturbations:

à Motion in an axially symmetric gravitational field that is also 

symmetric about the Galactic midplane

à harmonic oscillation around the equilibrium position

Position of a star above the  Galactic Plane



Epicyclic motions
For the Sun, 

The period of the 

epicycle is 170 Myr

The rotational period 

is 230 Myr



Epicyclic motions: 
nearly circular orbits

Spherical potential



Epicyclic motions
à a visual way to represent stellar orbits

à The orbits are closed if the ratios of the 

two periods is an integer

Stellar orbits can be characterized by two 

different periods: 

Period for orbit around galaxy = 2π/Ω

Period for epicyclic orbit = 2π/κ



Orbits in the Ωgp system:
Bar Two spiral arms

Seen from the non-inertial frame (rotating at Ωgp), the resulting orbital patterns (due 

to epicyclic orbits) could be nested with their major axes aligned (a –appearance of a 

bar). 

A small rotation in the orbits can produce the spiral arm pattern (b). 



Which resonances drive spiral density wave 
growth?
à The epicyclic frequencies have resonances with the rotational velocity of the spiral patter 

à Within  the radii corresponding to resonances the spiral density waves are supported and 

incremented  



Which resonances drive spiral density wave 
growth?



The corotation radius

Stars within the arms are not necessarily stationary, though at a certain distance from the 

center, Rc, the corotation radius, the stars and the density waves move together. 

Inside that radius, stars move more quickly ( Ω > Ωgp) than the spiral arms, and outside, 

stars move more slowly ( Ω < Ωgp)



Corotational radius

Videos produced by J. Bovy
http://cosmo.nyu.edu/~jb2777/resonance.html

m=4 

Four spiral arms 



Outer Lindblad radius

m=2 

Two spiral arms à same 

dynamics of a 

Barred galaxy

Ω=Ωgp+k/2

Videos produced by J. Bovy
http://cosmo.nyu.edu/~jb2777/resonance.html



Inner Lindblad radius

Videos produced by J. Bovy
http://cosmo.nyu.edu/~jb2777/resonance.html

m=4 

Four spiral arms

Ω=Ωgp-k/2





Different rotation curves: 

à mass distribution in galactic component

à resonances 

à spiral pattern



Spiral density waves can only 

survive and grow between the 

inner Lindblad resonance and outer 

Lindblad resonance.

These waves cannot pass through 

the inner Lindblad resonance (they 

are damped inside this radius)

Properties of resonances



Properties of spiral density wave
When the gas in the spiral density wave is compressed, it 
results in the formation of stars (due to the high gas densities 
induced by these compression waves) à O-B stars, young star 
forming regions are located in the spiral arms

After the stars form, they will approximately move at the 
circular velocity of the spiral galaxy -- which is often faster 
than the pattern speed of the spiral arm

The high mass stars formed in the spiral density compression
waves die (SNe explosions or otherwise) shortly after leaving
the spiral arm compression wave, but the lower mass (redder)
stars continue to rotate around the disk.



The effect of resonances on 
stellar migration

■ Resonance locations can actually lead to damping of spiral waves

■ Collisions of gas clouds should also increase significantly at resonance 

positions à energy will be dissipate

■ Change in angular moments à in stellar orbits

Churring: 

change in angular momentumà change 
in radius

Blurring: 

Increase in the epicycle amplitude of 
stars



The effect of resonances on 
stellar migration
Halle et al. 2008

Change in the orbital radius of 

stars in different epochs of 

Galaxy evolution 

à The orange band indicates 

the location of the corotation

radius where there is the 

maximum variation 



The effect of resonances on 
stellar migration

Roskar et al. (2008)

Age-metallicity relationship in the Solar neighbourhood



The effect of resonances on 
stellar migration

Minchev et al. (2013)

Metallicity distribution function  in the Solar neighbourhood: only 20% of the 
stars in the solar neighbourhood were born there!



The effect of resonances on 
stellar migration

Minchev et al. (2013)

Radial metallicity gradients: the effect of radial migration



DISTANCE MEASUREMENTS

Stellar parallax:
Apparent motion of distant stars caused by orbital motion of Earth

As the Earth orbits the Sun, our viewing position changes, and closer stars appear to
move relative to more distant objects. In the course of a year, a nearby star traces out
an elliptical path against the background of distant stars. The angle ϖ on the sky is the
parallax.

Where r is (=1 AU) the mean 
radius of the Earth’s orbit and 
𝜔 is expressed in radians

1 parsec is the distance at which a 
star would have a parallax of 1”



DISTANCE MEASUREMENTS
Stellar parallax:
Available parallaxes of nearby bright stars (pre-Hipparcos and pre-Gaia satellites)



DISTANCE MEASUREMENTS
Errors on distances from parallax:
symmetric errors in angle lead to asymmetric errors in distance

𝜋 = 10 +/- 7 mas (milli arcsec)

d=1/𝜋

From the positive error we obtain: 𝜋p = 17 mas à dp=1/17x10-3=59 pc

From the negative error we obtain: 𝜋n = 3 mas à dp=1/17x10-3=333 pc



DISTANCE MEASUREMENTS

Gaia is greatly increasing our knowledge of the stellar neighborhood. It is producing a catalog

of roughly 100 million stars with distances good to about 10 percent.

The Hipparcos catalog contains only 120000 entries, of which only about 40000 accurate

distances.



DISTANCE MEASUREMENTS

Trigonometric parallaxes of a large database of stars is allowing to calibrate other methods,

which, in turn, can be applied to stars at larger distances:

à Features of the CMD diagram

à Main sequence

à Absolute magnitude of the Turn-Off and/or Red clump and/or horizontal branch

à Spectroscopic distances

à Pulsating stars



DISTANCE MEASUREMENTS
Main sequence fitting:

By comparing the apparent magnitudes of other cluster H–R diagram main sequences to the 

Hyades, it is possible to find the distance moduli of those clusters

Assuming that the reddening is known, the distances to those clusters can be determined. This 

distance technique is known as main-sequence fitting and it  is a more precise procedure than 

spectroscopic parallax (based on single stars) because it relies on a large number of stars 

significantly reducing statistical errors



DISTANCE MEASUREMENTS

Spectroscopic distances: 

à Measure the apparent magnitude of a star

à Classify its spectral type, through spectroscopy 

à For main sequence, from the spectrum we can derive the luminosity class à related to the 
absolute magnitude

à From the apparent magnitude (m) and absolute magnitude (M) of the star, we can calculate 
the distance



DISTANCE MEASUREMENTS
The Cepheid Distance Scale

• The majority of pulsating stars 
occupy a narrow strip on the right 
side of the HR diagram

• As stars evolve, they enter the 
instability strip and start 
pulsating



DISTANCE MEASUREMENTS
The Cepheid Distance Scale

• All of the types of stars falling in the instability strip share a common mechanism 

that drives the oscillations

• The radial oscillations of a pulsating star are the results of sound waves resonating 

in the stellar interior. Estimating the time-scale for the sound wave to cross the 

diameter of a star of radius R and computing the pressure from hydrostatic 

equilibrium: 

Adiabatic sound speed, 
as function of P, pressure 
and density ρ



DISTANCE MEASUREMENTS
The Cepheid Distance Scale

Pressure, in the 
assumption of hydrostatic 
equilibrium and constant 
density

Longer periods for less 
dense -more massive à
more luminous stars



DISTANCE MEASUREMENTS
The Cepheid Distance Scale

Period-luminosity-color relation that provide the absolute magnitute of 
the star: 

Pd is the period in day, (B-V) is the color index, usually ranging from 0.4 to 1.1, and Mv is the

absolute magnitude.

à Shapley measured the distances to Pop II Cepheids in Globular clusters, determining the

diameter of the Galaxy

à Hubble discovered Cepheids in M31, establishing that it was located outside the Milky Way. 

à The relation was finally calibrated around ~1990 with trigonometric parallaxes from Hipparcos



DISTANCE MEASUREMENTS

Direct measurement of distances

between the Sun and a large sample of

stars to help construct a 3D map of the

galaxy using Cepheids

(Skowron et al. 2019)



Summary

• In our Galaxy, we can measured proper motions and radial velocities of individual stars

o Define a proper system to study motion within the Galaxy

o Estimate the rotation curve with the Oort method

o Compare it with the rotation curve from HI lines

o Mass distribution in the Milky Way

• Spiral arms: a quasi-stationary density wave

o The connection between stellar orbits and spiral arms

o The effect of resonances

o Stellar migration

• Stellar distances:

o Trigonometric distances

o Calibrating other methods (CMD features, pulsating stars, etc)


