STAR CLUSTERS

Lezione V- Fisica delle Galassie
Germano Sacco

Summary

■ What is a stars cluster?

- Types of clusters
- Observational properties

■ Formation star clusters

- Properties of star clusters in equilibrium
- Dispersion mechanims

What is a star cluster?

Historical definition based on observations: Concentration of stars with a surface density above the stellar background that are located at the same distance

Modern definition: Group of stars located approximately at the same distance and gravitationally bound

Why clusters are important for studying the Galaxy

1. Stellar birthplaces
2. Best laboratories to study stellar evolution
3. Tracers of the chemical properties of the Galactic disc (Open clusters)
4. Relics of the early phases of the Galaxy formation (Globular clusters)

Different type of clusters

Open Clusters

Properties

Density: 0.1-10 ${ }^{2}$ stars pc^{-3}
Mass: $10^{2}-10^{3} \mathrm{M}_{\odot}$
Age: 0.01-10 Gyr
Median Age: 0.3 Gyr
Gravitationally bound Location: Galactic disc
Almost coeval
Chemically homogeneous

Different type of clusters

Globular Clusters

Properties

Different type of clusters

Embedded clusters/star forming regions

Different type of clusters

Stellar associations

Properties
Density: 0.1-10 ${ }^{2}$ stars pc^{-3} Mass: $10-10^{3} \mathrm{M}_{\odot}$ Age: 10-12 Gyr
Gravitationally bound Not chemically homogener Location: Galactic Halo Almost coeval(???)
They are not clusters

Open Clusters in the Galactic disc

Cantat-Gaudin et al. (2018)

Open Clusters in the Galactic disc

Cantat-Gaudin et al. (2018)

HR diagram of star clusters

HR diagram of GCs cannot be fitted with a single isochrone. Very complex and debated problem (see Bastian and Lardo 2018)

(Initial) Mass Function

$\phi(\log m)=m^{-\alpha}=m^{-1.35}$
(Salpeter 1955)
$\left(\mathrm{m}>1 M_{\odot}\right)$

Initial Mass Function

- Salpeter (1955) Power law
- Kroupa (2001) Multiple Power Law
- Chabrier (2005) Power law+log-Normal
- De Marchi \& Paresce(2001) Tapered power law

(Offner 2014)

Universality of the IMF

(Bastian et al. 2010)

MF in star clusters

IMF
 $+$

Dynamical evolution $+$

Stellar evolution
】
MF of star clusters

Chemical abundances in star clusters

Open clusters are chemically homogeneous (e.g. Magrini et al. 2017)

Globular clusters are not chemically homogeneous (e.g. Bastian \& Lardo 2018)

Very complex issue non yet solved

Formation and evolution of star clusters

Filaments

< 1 Myr

Stars and Gas

Open clusters

0.1-10 Gyr

Galactic field

Collisional vs. Collisionless systems

Collisional systems: The dynamical evolution of the system is influenced by the interactions among its particles

Collisionless systems: Interaction among particles are negligible

Star clusters
are collisional systems

Galaxies are collisionless systems

Crossing Time

Time necessary to cross the system

$$
t_{\text {cross }}=\frac{R}{v}
$$

$$
t_{c r o s s} \approx t_{d y n} \approx \sqrt{G \rho}
$$

Open Clusters

$$
\begin{array}{r}
\mathrm{R} \sim 3 \text { pc } v \sim 0.5 \mathrm{~km} \mathrm{~s}^{-1} \\
t_{\text {cross }} \sim 5 \mathrm{Myr}
\end{array}
$$

Globular Clusters

$$
\begin{array}{r}
\mathrm{R} \sim 10 \text { pc } v \sim 5 \mathrm{~km} \mathrm{~s}^{-1} \\
t_{\text {cross }} \sim 2 \mathrm{Myr}
\end{array}
$$

Relaxation Timescale

Time necessary for a stars in a system to lose memory of its initial condition

COLLISIONAL SYSTEMS
$t_{r l x}<$ lifetime
Open Clusters

$$
\begin{gathered}
\mathrm{N} \sim 10^{3} \mathrm{R} \sim 3 \text { pc } v \sim 0.5 \mathrm{~km} \mathrm{~s}^{-1} \\
t_{r l x} \sim 100 \mathrm{Myr}
\end{gathered}
$$

Globular Clusters

$$
\begin{gathered}
\mathrm{N} \sim 10^{5} \mathrm{R} \sim 10 \text { pc } v \sim 5 \mathrm{~km} \mathrm{~s}^{-1} \\
t_{r l x} \sim 2 \text { Gyr }
\end{gathered}
$$

COLLISIONLESS SYSTEMS

$$
t_{r l x}>\text { lifetime }
$$

Galaxy

$\mathrm{N} \sim 10^{11} \mathrm{R} \sim 20 \mathrm{kpc} v \sim 100-300 \mathrm{~km} \mathrm{~s}^{-1}$ $t_{r l x} \gg$ Hubble time
(Binney and Tremaine 2008)

Evaporation Timescale

$\left\langle v_{e}^{2}\right\rangle^{1 / 2}=2\left\langle v^{2}\right\rangle^{1 / 2}$

Escape Velocity

Open Clusters

$$
\begin{gathered}
t_{r l x} \sim 100 \mathrm{Myr} \\
t_{e v p} \sim 14 \mathrm{Gyr}
\end{gathered}
$$

Globular Clusters

$$
\begin{gathered}
t_{r l x} \sim 2 \text { Gyr } \\
t_{\text {evp }}^{\gg H u b b l e ~ t i m e ~}
\end{gathered}
$$

$$
\gamma=8 \times 10^{-3}
$$

fraction of of particles exceeding escape velocity in a Maxellian distribution

$$
\begin{gathered}
\frac{d N}{d t}=-\frac{\gamma N}{t_{r l x}}=-\frac{N}{t_{e v p}} \\
\quad t_{e v p} \approx 140 t_{r l x}
\end{gathered}
$$

The Formation of star clusters

The Formation of star clusters

Stars form from the fragmentation and collapse of Giant ($10^{4}-10^{5}$
M_{\odot}) and cold ($\mathrm{T}=10-20 \mathrm{~K}$) molecular clouds

Denser part of the cloud collapse and fragment

1. New born stellar systems
 are highly structured
2. New born stars inherit the chemical content of the parental cloud

The Formation of Star Clusters

- Self Gravity
- Turbolence
- ISM Chemistry
- Radiative Transfer

Very complex and high demanding

The Formation of star clusters

Magnetic fields play a role in the star formation process both at large and low scale

(Chapman et al. 2011)
Very often neglected in simulation

The Formation of star clusters

Feedback from new born stars

- Supernova explosion
- Stellar wind
- Radiation pressure
- Protostellar jets
- Ionization

These processes may trigger or quench star formation but are not considered in simulations

Infant mortality of star clusters

Filaments

< 1 Myr

$$
t_{\text {cross }}<t \leq t_{\text {rlx }}
$$

Infant Mortality

Predicted
number of OC

Observed number of OC

(Lada \& Lada 2002)

Most of the clusters disperse within 10-100 Myr

Residual Gas Expulsion Scenario

Embedded clusters in Virial
Equilibrium

Feedback from
massive stars
swept out the gas

Supervirial unbound clusters disperse

(e.g., Hills 1980. Kroupa et al. 2001, Goodwin
\& Bastian 2006, Baumgardt \& Kroupa 2009)

Residual Gas Expulsion Scenario: Hills model

Star Formation
Efficiency
$\varepsilon=\frac{M_{\text {stars }}}{M_{\text {stars }}+M_{\text {gas }}}$
$U=-\frac{G M^{2}}{R}$
$T=\frac{1}{2} M V^{2}$
$E=T+U$
Total Energy
Virial Equilibrium

$$
U=-2 T
$$

$$
M^{\prime}=\varepsilon M
$$

$$
\begin{gathered}
T \propto M \\
U \propto M^{2}
\end{gathered} \quad \begin{gathered}
T^{\prime}=\varepsilon T \\
U^{\prime}=\varepsilon^{2} \cup
\end{gathered}
$$

$$
\varepsilon>0.5, E^{\prime}<0 \quad \text { BOUND }
$$

$$
E^{\prime}=\varepsilon\left(\varepsilon-\frac{1}{2}\right) \cup \quad \varepsilon<0.5, E^{\prime}>0 \text { UNBOUND }
$$

Residual Gas Expulsion Scenario: N-body simulations

$\varepsilon>0.3 \quad$ Cluster survive
(Goodwin \& Bastian 2006)
$\varepsilon<0.3 \quad$ Cluster disperse

Issues with the Residual Gas Expulsion Scenario

Observational evidence against the model

- Observed star formation efficiency $\varepsilon<0.1$
- Kinematic properties of stellar associations disagree with the model

Issues with the N -body simulations

- Irrealistic intial conditions (embedded clusters not
(Wright wt al. 2016) spherically symmetric)
- Gas expulsion not instantaneous

Cluster evolution : Alternative Scenarios

Evolution driven by twobody interaction and feedback is not relevant

Survival of the cluster may depend on intial conditions and outer gravitational field

(e.g., Bressert et al. 2010, Kruijessen et al. 2012, Parker \& Dale 2013, Dale et. al 2015)

Stationary equilibrium

Filaments

< 1 Myr

Stars and Gas

1-10 Myr

Open clusters

Galactic field

King surface density profile

Surface density (stars/arcsec${ }^{2}$)

> At the core radius r_{c} $$
\Sigma(r) \sim 0.5 \Sigma(0)
$$

At the tidal radius r_{t} $\Sigma(r) \sim 0$

Concentration
$c=\log _{10}\left(r_{t} / r_{c}\right)$

(King 1962)

Stationary equilibrium

1. Gravitational potential slowly varying

Distribution

Function
$f(\boldsymbol{x}, \boldsymbol{v}, t)$
2. Gravitational potential and distribution function slowly varying
3. Spherical symmetry

Boltzmann Equation

$$
\frac{d f}{d t}=\frac{\partial f}{\partial t}+\sum_{i} \frac{\partial f}{x_{i}}+\sum_{i} \frac{\partial f}{v_{i}}
$$

$$
\begin{gathered}
\text { Poisson Law } \\
\nabla^{2} \phi(\boldsymbol{x})=4 \pi G \rho \\
\frac{1}{r^{2}} \frac{d}{d r}\left(r^{2} \frac{d \phi(r, t)}{d r}\right)=4 \pi G \rho
\end{gathered}
$$

Isothermal sphere equilibrium

$$
\begin{aligned}
& E=\frac{1}{2} m v^{2}+\phi(\mathrm{r}) \\
& f=K e^{-B E} \\
& B=\frac{3}{v_{m}^{2}}
\end{aligned} \begin{aligned}
& \rho(r)=C r^{-2} \\
& M(r)=A r
\end{aligned}
$$

King Models

Core radius

$$
\begin{aligned}
\rho(0) & =\rho_{0} \\
\rho\left(r_{0}\right) & \cong 0.5 \rho_{0}
\end{aligned}
$$

Lowered Isothermal

$\mathrm{f}= \begin{cases}K\left(e^{-B E}-e^{-B E_{0}}\right) & \text { if } E<E_{0} \\ 0 & \text { if } E<E_{0}\end{cases}$
(King 1966)

Cluster truncated due to the effect of the gravitational field of the Galaxy

Virial equilibrium

Virial equilibrium

Elson, Fall \& Freeman (1987)
$\Sigma(r)=\Sigma(0)\left(1+\frac{r^{2}}{a^{2}}\right)^{-\gamma / 2}$

Mass Segregation

Massive stars tend to be more concentrated toward the center with respect to low mass stars

1. Primordial Origin

2. Dynamical evolution

Energy equipartition and mass segregation

Energy equipartition $m_{i} v_{i}^{2}=m_{j} v_{j}^{2}$ $v \propto m^{-1 / 2}$

Massive stars slower, therefore tend to

Origin of the mass segregation?

Althought Spitzer (1969) showed that:

Population 1
$m=m_{1}$ total mass $=M_{1}$
Population 2
$m=m_{2}$ total mass $=M_{2}$
$m_{2} \gg m_{1}, \quad M_{2} \gg M_{2}$

Equipartition is possible only if:

$$
M_{2}<0.16 M_{1}\left(\frac{m_{2}}{m_{1}}\right)^{-3 / 2}
$$

Energy equipartition and mass segregation

Simulations show that neither OC or GC reach equipartition

(Spera et al. 2017)

