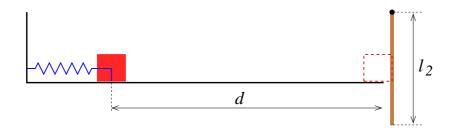
pag. 1 v. 1

Prova scritta di fisica per tecnologie alimentari del 14/01/2020

Nome	Cognome	Anno di immatr.

- Scrivere nome e cognome su questo foglio (da riconsegnare) e sui fogli protocollo.
- Leggere con attenzione il testo, ciò che è dato e ciò che è richiesto;
- Prestare attenzione alle unità di misura e a distinguere gli scalari dai vettori;
- Spiegare a parole i calcoli e le scelte effettuate, commentando criticamente i risultati ottenuti;

Esercizio 1 (9)


Un uomo spara 3 colpi di pistola dal tetto di una casa: uno verso l'alto (A), uno verso il basso (B) ed uno in direzione orizzontale (C). Tutti e 3 i proiettili hanno la stessa massa, sono soggetti alla forza di gravità e cadono al suolo (il piano orizzontale sul quale è posta la casa). Assumendo che ogni proiettile esca dalla pistola con la stessa velocità scalare, e trascurando l'attrito con l'aria, rispondere alle sequenti domande riguardanti i tempi, le velocità e le energie dei proiettili quando raggiungono il suolo.

a)	In quale ordine di tempo i 3 proiettili raggiungono il suolo?					
	\square A,B,C	\square A,C,B	\square B,C,A	\Box C,B,A	\square nello stesso istante	
b)	Quale proiettile l	Quale proiettile ha modulo della velocità maggiore?				
	\Box A	\square B	\Box C		□ hanno la stessa velocità	
c)	Quale proiettile ha la maggior componente orizzontale della velocità ?					
	\Box A	\square B	\square C	\Box hanno la	stessa velocità orizzontale	
d)	Quale proiettile ha la minore componente verticale della velocità ?					
	\Box A	\square B	\square C	\square hanno	la stessa velocità verticale	
e) Quale proiettile ha la maggiore energia cinetica?						
	□ A	□В	\Box C	□ hanno	o la stessa energia cinetica	
f)	Quale proiettile ha la maggiore energia potenziale?					
	\Box A	□В	\square C	□ hanno la	a stessa energia potenziale	
g)	Disegnare il grafico della velocità verticale del proiettile A in funzione del tempo, sapendo che					

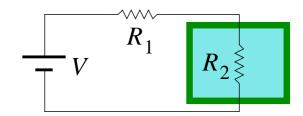
la velocità iniziale del proiettile è $v_0 = 98.0 \text{ m/s}$ ed il tempo di volo è t = 23.5 s.

Esercizio 2 (9)

Un piccolo cubo di metallo di massa $m_1 = 220$ g è appoggiato su un piano orizzontale. Tra di essi c'è un coefficiente di attrito statico pari a $\mu_s = 0,42$ ed un coefficiente di attrito dinamico pari a $\mu_d = 0,20$. Inizialmente il cubo è fermo, e su di esso agisce una molla compressa di s = 0,081 m rispetto alla posizione di riposo. A distanza d = 1,50 m dal cubo è posta un'asta di massa $m_2 = 65,2$ g e lunghezza $l_2 = 60,0$ cm ferma ma libera di ruotare attorno ad uno dei suoi estremi, come in figura. Quando il cubo è lasciato libero, la molla accelera il cubo fino a quando essa raggiunge la posizione di riposo, dopo di che i due corpi si staccano, ed il cubo prosegue il suo movimento verso l'asta.

- a) Sapendo che il cubo raggiunge l'asta con una velocità $v_1 = 6,00$ m/s, determinare la costante elastica k della molla. (Suggerimento: usare il bilancio dell'energia, calcolando i lavori delle forze conservative e non conservative.)
- b) Verificare se la forza iniziale della molla era sufficiente a mettere in movimento il cubo da fermo.
- c) Il cubo raggiunge l'asta nel suo punto centrale, e dopo l'urto i due oggetti restano attaccati (urto completamente anelastico). Determinare il momento di inerzia del sistema cubo-asta rispetto al centro di rotazione.
- d) Usando la conservazione del momento angolare, determinare la velocità angolare del sistema dopo l'urto.

Esercizio 3 (7)

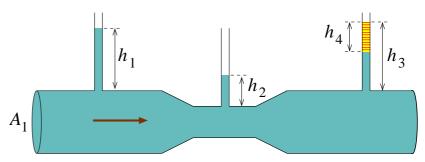

Un proiettore ha una lente convergente di distanza focale f=5.65 cm. Si vuole proiettare una diapositiva (oggetto) in modo che la sua immagine virtuale sia ingrandita di m=25.0 volte.

- a) A quale distanza dalla lente va posta la diapositiva?
- b) A quale distanza dalla lente va posto lo schermo affinché l'immagine che si forma sia nitida (a fuoco)?
- c) Se si allontana la diapositiva dalla lente di d=4,3 mm, di quanto ed in quale verso bisogna spostare lo schermo affinché l'immagine resti nitida?
- d) Quanto vale l'ingrandimento in questa seconda disposizione?

pag. 3 v. 1

Esercizio 4 (10)

Un circuito elettrico è formato da un generatore di tensione, che produce una differenza di potenziale V=55 V, e da due resistenze collegate come in figura, con $R_1=6.6$ Ω . La resistenza R_2 dissipa per effetto Joule una potenza $P_2=94$ W.



- a) Quali valori può assumere la resistenza R_2 ?
- b) Considerando il valore maggiore della resistenza R_2 , quanta corrente scorre nel circuito?
- c) Quanta potenza eroga il generatore in tale caso?
- d) Con il calore sviluppato da R_2 si riscalda un recipiente di capacità termica $c_R = 120$ J/°C contenente $m_g = 56,0$ g di ghiaccio, entrambi alla temperatura iniziale $T_1 = -12,0$ °C. Quanto calore è necessario fornire al sistema affinchè esso si porti alla temperatura $T_2 = 42,0$ °C? (Non è necessario avere risposto alle precedenti domande per svolgere queste ultime due.)
- e) Quanto tempo è necessario per il riscaldamento al punto d)?

[Il calore specifico del ghiaccio è $c_g=2100~{\rm J/kg\cdot ^\circ C}$, quello dell'acqua è $c_a=4186~{\rm J/kg\cdot ^\circ C}$, il calore latente di fusione del ghiaccio vale $c_l=333~{\rm kJ/kg.}$]

Esercizio 5 (9)

In un tubo orizzontale scorre un liquido di viscosità trascurabile e densità $\rho = 1200 \text{ kg/m}^3$ in regime laminare con una portata Q = 25,0 litri/s.

Il tubo ha generalmente una sezione $A_1 = 9.50 \cdot 10^{-3}$ m², ma nella sua parte centrale presenta un restringimento, che riduce al 55% la sua sezione. Per misurare la pressione del liquido, sono stati inseriti dei piccoli cilindri verticali aperti alle basi, all'interno dei quali va a stabilirsi del liquido in una posizione di equilibrio idrostatico. Sapendo che l'altezza del liquido nel cilindro posto all'inizio del tubo vale $h_1 = 2.58$ m, e che la pressione atmosferica vale $P_{\rm atm} = 103$ kPa,

- a) Determinare la pressione P_1 del liquido all'inizio del tubo.
- b) Determinare le velocità v_1 e v_2 del liquido all'inizio ed al centro del tubo.
- c) Determinare la pressione P_2 del liquido al centro del tubo.
- d) Determinare l'altezza h_2 del liquido nel cilindro inserito al centro del tubo.
- e) Determinare la pressione P_3 alla fine del tubo e quindi l'altezza h_3 del liquido nel cilindro inserito alla fine del tubo, supponendo che nella parte superiore ci sia una colonna alta $h_4 = 1,10$ m di liquido di densità $\rho_2 = 920 \text{ kg/m}^3$.