

Annarosa Arcangeli Department of Experimental and Clinical Medicine University of Florence

◀ ▶

n

"Basic and translational oncology" Italian-French Erasmus Intensive Course in Oncology organized in collaboration with European Master of Genetics - University Paris7-Paris5

	MONDAY 20/01/2020	TUESDAY 21/01/2020	WEDNESDAY 22/01/2020	THURSDAY 23/01/2020	FRIDAY 24/01/2020	
	Auditorium B (Morgagni)	Auditorium B (Morgagni)	Auditorium B (Morgagni)	Auditorium B (Morgagni)	Auditorium B (Morgagni)	
9.30-10.30	Annarosa Arcangeli Introduction to Oncology	Paola Defilippi The p140Cap adaptor protein as a molecular hub for limiting breast cancer and neuroblastoma aggressiveness	Annarosa Arcangeli The bases of Clinical Oncology	Giovanni Navalesi Clinical Trials in oncology in the era of the Precision Medicine		
10.30-11.30	Christine Delprat Cancer Immunotherapy innovation	Silvestro Conticello Mutations: from evolution to cancer	Luigi Messori Metal based drugs for cancer treatment: the case of gold compounds	Giulia Meoni Clinical cancer advance: Immunotherapy		
11.30-12.30	Laura Gragnani Pathogenesis of HCV- related lymphoproliferative disorders	Laura Maggi Principles of immunology and immunotherapy	Giulia Bon Drug resistance in solid tumors	Lapo Bencini Overview of pancreatic cancer multimodal management	EXAM	
12.30-13.30	Mattia Rediti Translational research in Breast Cancer	Martina Chiu Cancer-associated alteration of Glutamine metabolism: the cases of hematological neoplasia	Silvia Sordi Breast Cancer from Biology to Surgery	Luca Saragoni Preneoplastic and neoplastic lesions of the stomach		
13.30-15.00	30-15.00 LUNCH BREAK					
15.00-16.00	Claudia Duranti Monoclonal and engineered antibodies in cancer therapy	Mjriam Capula New experimental models & pharmacological studies in pancreatic cancer	Elena Lastraioli Molecular Aspects of Cancer Diagnostics	STUDENTS' PRESENTATIONS		
16.00-17.00	Hugo de Jonge The HGF/SF-cMet signalling complex - a complex interaction	Tiziano Lottini Mouse models and Ultrasound and Photoacoustic imaging in preclinical research	Giuseppe Perrone Morphological and Molecular classification of Breast Cancer			

1

Cancer Biology: The Basics

- The vocabulary
- Impact of cancer on human population
- Hallmarks of cancer
- Molecular bases of cancer

Definitions

 Willis (1952):" A neoplasm is an abundant mass of tissue, the growth of which exceeds and is uncoordinated with that of the normal tissues and persists in the same excessive manner after cessation of the stimuli which evoked the change"

Definitions

• When I published the results of my experiments on the development of double-fertilized sea-urchin eggs in 1902, I added the suggestion that malignant tumors might be the result of a certain abnormal conditions of the chromosomes, which may arise from multipolar mitosis.So I have carried on for a long time the kind of experiments I suggested, which are so farwithout success, but my convinction remains unshaken.

Theodor Boveri, pathologist, 1914

The Vocabulary

ñ

- Hyperplasia increased number of cells
- Hypertrophy increased size of cells
- Dysplasia disorderly proliferation
- Neoplasia abnormal new growth
- Anaplasia lack of differentiation
- Tumor originally meant any swelling, but now equated with neoplasia
- Cancer- malignant tumor
- Metastasis –growth at a distant site

What is cancer?

What Is Cancer?

- Cancer is a group of diseases caused by the uncontrolled multiplication of abnormal cells in the body, a process called neoplasia.
- Abnormal new tissues called **neoplasms** are formed.
- Neoplasms usually form masses called tumors that may be benign (non cancerous) or malignant (cancerous).
- Malignant or cancerous tumors grow rapidly, are invasive (to surrounding tissue) and metastatic (traveling via blood/lymph to invade distant tissues).
- Cancers destroy healthy tissues causing loss of function and death.

- Cancers are genetic disorders caused by accumulation of somatic mutations (gene & chromosome) in a person's cells.
- Inherited mutations give a predisposition for certain cancers.

TABLE 7–2 Comparisons Between Benign and Malignant Tumors					
Characteristics	Benign	Malignant			
Differentiation/anaplasia	Well differentiated; structure may be typical of tissue of origin	Some lack of differentiation with anaplasia; structure is often atypical			
Rate of growth	Usually progressive and slow; may come to a standstill or regress; mitotic figures are rare and normal	Erratic and may be slow to rapid; mitotic figures may be numerous and abnormal			
Local invasion	Usually cohesive and expansile well-demarcated masses that do not invade or infiltrate surrounding normal tissues	Locally invasive, infiltrating the surrounding normal tissues; sometimes may be seemingly cohesive and expansile			
Metastasis	Absent	Frequently present; the larger and more undifferentiated the primary, the more likely are metastases			

TABLE 7–1 Nomenclature of Tumors

ñ

Tissue of Origin	Benign	Malignant	
Composed of One Parenchymal Cell Type			
Tumors of mesenchymal origin		Filesesses	
Connective tissue and derivatives	Fibroma	Fibrosarcoma	
	Lipoma	Liposarcoma	
	Chondroma	Chondrosarcoma	
	Osteoma	Osteogenic sarcoma	
ndothelial and related tissues			
Blood vessels	Hemangioma	Angiosarcoma	
Lymph yessels	Lymphangioma	Lymphangiosarcoma	
Lymph vessels	Lymphangionna	Synovial sarcoma	
Magathalium		Mesothelioma	
Nesothelium Decis securit	Maningiama	Invasive meningioma	
Brain coverings	ivieningioma		
Blood cells and related cells			
Hematopoietic cells		Leukemias	
Lymphoid tissue		Lymphomas	
Augele			
Viuscie	Loiomyomo	Leiomyosarcoma	
Smooth	Debdomuomo	Bhahdamuasaraama	
Striated	Rhabdomyoma	nnabuonnyosarconna	
umors of epithelial origin		,	
Stratified squamous	Squamous cell papilloma	Squamous cell or epidermoid carcinoma	
Basal cells of skin or adnexa		Basal cell carcinoma	
Enithelial lining of glands or ducts	Adenoma	Adenocarcinoma	
Epitheliai linning of glarida of duota	Panilloma	Papillary carcinomas	
	Cystadenoma	Cystadenocarcinoma	
Pospiraton / passages	Bronchial adenoma	Bronchogenic carcinoma	
Respiratory passages	Bonal tubular adapama	Bonal cell carcinoma	
Renal epitnelium		Hendi cell carcinoma	
Liver cells			
Urinary tract epithelium (transitional)	Iransitional cell papilloma		
Placental epithelium	Hydatidiform mole	Choriocarcinoma	
Testicular epithelium (germ cells)		Seminoma	
	The shares and and a share the first state	Embryonal carcinoma	
umors of melanocytes	Nevus	Malignant melanoma	
More Than One Neoplastic Cell Type—Mixed Tumors, Usually Derived from One Germ Cell Laver	-		
Derived nom One Germ Ger Layer			
Salivary glands	Pleomorphic adenoma (mixed tumor	Malignant mixed tumor of salivary	
	of salivary origin)	gland origin	
Renal anlage		Wilms tumor	
More Than One Neoplastic Cell Type Derived from More Than One Germ Cell Laver—Teratogenous			

Mature teratoma, dermoid cyst

Totipotential cells in gonads or in embryonic rests

Immature teratoma, teratocarcinoma

Definitions

- Neoplasms results from heritable genetic alterations that are passed down to the progeny of the tumor cells.
- These genetic changes allow excessive and unregulated proliferation that becomes autonomous (independent of physiologic growth stimuli), although tumors generally remain dependent on the host for their nutrition and blood supply

Cancer: From the View of Cancer Cell Biology

"Tumor formation arises as a consequence of alterations in the control of cell proliferation and disorders in the interactions between cells and their surroundings that result in nyasion and metastasis."

> Christopher Marshall Cell 64:313-326

Cancer Biology: The Basics

- The vocabulary
- Impact of cancer on human population
- Hallmarks of cancer
- Molecular bases of cancer

Leading Causes of Death

from CDC

n

Change in Causes of Death

Rate Per 100,000

Invasive Cancer versus Age

Estimated New Cases*

				_			
			Males	Fem	ales		
Prostate	217,730	28%			Breast	207,090	28%
Lung & bronchus	116,750	15%			Lung & bronchus	105,770	14%
Colon & rectum	72,090	9%			Colon & rectum	70,480	10%
Urinary bladder	52,760	7%			Uterine corpus	43,470	6%
Melanoma of the skin	38,870	5%			Thyroid	33,930	5%
Non-Hodgkin lymphoma	35,380	4%			Non-Hodgkin lymphoma	30,160	4%
Kidney & renal pelvis	35,370	4%			Melanoma of the skin	29,260	4%
Oral cavity & pharynx	25,420	3%			Kidney & renal pelvis	22,870	3%
Leukemia	24,690	3%			Ovary	21,880	3%
Pancreas	21,370	3%			Pancreas	21,770	3%
All Sites	789,620	100%			All Sites	739,940	100%

Estimated Deaths

			Males	Female	s
Lung & bronchus	86,220	29%			Lung & bronchus
Prostate	32,050	11%			Breast
Colon & rectum	26,580	9%			Colon & rectum
Pancreas	18,770	6%			Pancreas
Liver & intrahepatic bile duct	12,720	4%			Ovary
Leukemia	12,660	4%			Non-Hodgkin lymphoma
Esophagus	11,650	4%			Leukemia
Non-Hodgkin lymphoma	10,710	4%			Uterine Corpus
Urinary bladder	10,410	3%			Liver & intrahepatic bile d
Kidney & renal pelvis	8,210	3%			Brain & other nervous sys
All Sites	299,200	100%			All Sites

All Sites	270,290	100%
Brain & other nervous system	5,720	2%
Liver & intrahepatic bile duct	6,190	2%
Uterine Corpus	7,950	3%
Leukemia	9,180	3%
Non-Hodgkin lymphoma	9,500	4%
Ovary	13,850	5%
Pancreas	18,030	7%
Colon & rectum	24,790	9%
Breast	39,840	15%
Lung & bronchus	71,080	26%

Cancer Statistics 2010 -

ñ

4 b

FIGURE 3. Annual Age-Adjusted Cancer Incidence Rates* for Selected Cancers by Sex, United States, 1975 to 2006.

*Rates are age adjusted to the 2000 US standard population and adjusted for delays in reporting. Source: Surveillance, Epidemiology, and End Results (SEER) program (available at: www.seer.cancer.gov). Delay-adjusted incidence database: SEER Incidence Delay-Adjusted Rates, 9 Registries, 1975-2006. Bethesda, MD: National Cancer Institute, Division of Cancer Control and Population Sciences, Surveillance Research Program, Statistical Research and Applications Branch; 2009. Released April 2009, based on the November 2008 SEER data submission.

Cancer Death Rates

ñ

from American Cancer Society

ñ

FIGURE 4. Annual Age-Adjusted Cancer Death Rates*Among Males for Selected Cancers, United States, 1930 to 2006.

*Rates are age adjusted to the 2000 US standard population. Due to changes in International Classification of Diseases (ICD) coding, numerator information has changed over time. Rates for cancers of the lung and bronchus, colon and rectum, and liver are affected by these changes. Source: US Mortality Data, 1960 to 2006, US Mortality Vol. 1930 to 1959. National Center for Health Statistics, Centers for Disease Control and Prevention.

FIGURE 5. Annual Age-Adjusted Cancer Death Rates* Among Females for Selected Cancers, United States, 1930 to 2006.

*Rates are age adjusted to the 2000 US standard population.

†Uterus includes uterine cervix and uterine corpus. Due to changes in International Classification of Diseases (ICD) coding, numerator information has changed over time. Rates for cancers of the uterus, ovary, lung and bronchus, and colon and rectum are affected by these changes. Source: US Mortality Data, 1960 to 2006, US Mortality Volumes 1930 to 1959. National Center for Health Statistics, Centers for Disease Control and Prevention.

Cancer Biology: The Basics

- The vocabulary
- Impact of cancer on human population
- Hallmarks of cancer
- Molecular bases of cancer

Invasion and Metastasis

1 Cancer cells invade surrounding tissues and blood vessels

2

Cancer cells are transported by the circulatory system to distant sites

3 Cancer cells reinvade and grow at new location

1

ñ

PRIMARY TUMORIGENESIS (.....PROLIFERATION)

• SECONDARY TUMORIGENESIS (.....INVASIVE GROWTH......METASASIS)

inactivates suppressor gene

ñ

DNA repair genes

mutate to oncogenes more genetic instability, metastatic disease

Biology of tumor growth: benign and malignant neoplasms

TABLE 7–2 Comparisons Between Benign and Malignant Tumors					
Characteristics	Benign	Malignant			
Differentiation/anaplasia	Well differentiated; structure may be typical of tissue of origin	Some lack of differentiation with anaplasia; structure is often atypical			
Rate of growth	Usually progressive and slow; may come to a standstill or regress; mitotic figures are rare and normal	Erratic and may be slow to rapid; mitotic figures may be numerous and abnormal			
Local invasion	Usually cohesive and expansile well-demarcated masses that do not invade or infiltrate surrounding normal tissues	Locally invasive, infiltrating the surrounding normal tissues; sometimes may be seemingly cohesive and expansile			
Metastasis	Absent	Frequently present; the larger and more undifferentiated the primary, the more likely are metastases			

Cancer: From the View of Cancer Cell Biology

"Tumor formation arises as a consequence of alterations in the control of cell proliferation and disorders in the interactions between cells and their surroundings that result in nyasion and metastasis."

> Christopher Marshall Cell 64:313-326

Cancer Biology: The Basics

- The vocabulary
- Impact of cancer on human population
- Hallmarks of cancer
- Molecular bases of cancer

Characteristics of Cancer Cells

- Cancer cells are genetically altered via gene or chromosome mutations so:
 - lack normal controls over cell division or apoptosis.
 - may express inappropriate genes (e.g. for telomerase, enzyme that maintains length of DNA for continued division)
 - are genetically unstable due to loss of DNA repair mechanisms (so are more susceptible to radiation damage than normal cells).
- Divide excessively (proliferate) & indefinitely producing neoplasms.
- Live indefinitely (do not show apoptosis).
- Lose the normal attachment to other cells so become metastatic (travelling via blood/lymph to invade distant sites).
- Secrete signals for angiogenesis (growth of blood vessels into tumor).

Cancer Cells are Undifferentiated & Malignant

 Cancer cells are undifferentiated to varying degrees (even anaplastic, like stem cells) so divide & do not perform the normal function of mature cells.

 The less differentiated the cancer cell the more malignant the cancer (the more rapidly growing is the tumor).

Cell, Vol. 100, 57-70, January 7, 2000, Copyright @2000 by Cell Press

The Hallmarks of Cancer

n

Review

Douglas Hanahan* and Robert A. Weinberg[†]

*Department of Biochemistry and Biophysics and Hormone Research Institute University of California at San Francisco San Francisco, California 94143 †Whitehead Institute for Biomedical Research and Department of Biology Massachusetts Institute of Technology Cambridge, Massachusetts 02142 evolve progressively from normalcy via a series of premalignant states into invasive cancers (Foulds, 1954).

These observations have been rendered more concrete by a large body of work indicating that the genomes of tumor cells are invariably altered at multiple sites, having suffered disruption through lesions as subtle as point mutations and as obvious as changes in chromosome complement (e.g., Kinzler and Vogelstein, 1996). Transformation of cultured cells is itself a

Hallmarks of Cancer

Hanahan and Weimberg, Cell, 2000

Hanahan and Weimberg, Cell, 2011

Hallmarks of cancer

Sustaining proliferative signalling
Evading growth suppressors

Uncontrolled growth (primary tumourigenesis)!

Tumour growth -> Hypoxia

Hallmarks of cancer

3. Resisting cell death ('apoptosis')4. Enabling replicative immortality

n

ñ

5. Deregulating cellular energetics

→ Aerobic glycolysis (Warburg effect)

Warburg effect

fi

Hallmarks of cancer

n

6. Inducing angiogenesis

Angiogenesis

Turnor that can grow and spread

Hallmarks of cancer

n

7. Activating invasion & metastasis

n

8. Avoiding immune destruction

(nb. tumour-promoting inflammation)

TUMOUR – IMMUNE CELL INTERACTION

ñ

L1/PD-1-mediated tion of tumor cell killing Priming and activation of

Tumor Cell

fi

The "cancer tissue"

Tumour progression

inactivates suppressor gene

ñ

DNA repair genes

mutate to oncogenes more genetic instability, metastatic disease

Cancer Biology: The Basics

- The vocabulary
- Impact of cancer on human population
- Hallmarks of cancer
- Molecular bases of cancer

Genetic Theory of Cancer

Theodor Boveri, 1914

а b 2 99 b C CC d d aa bb b C d d 3

dispermic fertilization in sea urchin

normal

cancer

IF by Bill Brinkley

• When I published the results of my experiments on the development of double-fertilized sea-urchin eggs in 1902, I added the suggestion that malignant tumors might be the result of a certain abnormal conditions of the chromosomes, which may arise from multipolar mitosis.So I have carried on for a long time the kind of experiments I suggested, which are so far without success, but my convinction remains unshaken. *Theodor Boveri, pathologist, 1914*

Cancer is a Genetic Disease

- Somatic mutations occur in most cancers.
- Inherited germline mutations occur in rare familial cancer syndromes.
- Increases in mutation rate or genomic instability increase frequency of cancer.
- Aneuploidy is a hallmark of cancer cells.
- Genetic selection at the level of single cells.

11.

Mutations and Cancer

Genes Implicated in Cancer

The prime suspects	But
Mutations in:	Other mutations also occur in:
Oncogenes	Cell death genes
Tumor suppressor genes	Cell signaling genes
DNA repair genes	Cell cycle checkpoint genes
	Cellular senescence genes
	Cellular differentiation genes
	Metastasis/invasion genes
	Carcinogen –activating genes –deactivating genes

Cancer and genes:

ñ

Three classes of genes are frequently mutated in cancer:

- Proto-oncogenes (\Rightarrow oncogenes)
- Tumor suppressor genes
- Mutator genes

<u>Proto-oncogenes</u> \Rightarrow oncogenes:

Proto-oncogenes

Proto-oncgenes are genes that possess normal gene products and stimulate normal cell development.

Oncogenes

- Oncogenes arise from mutant proto-oncogenes.
- Oncogenes are more active than normal or active at inappropriate times and stimulate <u>unregulated cell proliferation</u>.

Some <u>tumor viruses</u> that infect cells possess oncogenes:

- <u>RNA tumor viruses</u> = possess <u>viral oncogenes</u> (derived form cellular protooncogenes) capable of transforming cells to a cancerous state.
- <u>DNA tumor viruses</u> = another class of tumor viruses; do not carry oncogenes, but induce cancer by <u>activity</u> of viral gene products on the cell (no transformation per se).

Types & effects of different types of mutations:

- **1. <u>Point mutations</u>**: occur in protein coding or controlling sequences.
- 2. <u>Deletion</u>: frameshifts may lead to defective proteins.
- **3.** <u>**Gene amplification**</u>: random over-replication of small segments of DNA results in extra copies (up-regulates cell growth).

Mutator genes:

- <u>Mutator gene</u> increases spontaneous mutation rate of other genes.
- Mutator gene products are involved in DNA replication and repair; mutations make the cell error prone.

EPIGENETICS:

ñ

A revolution in understanding and managing cancer in the post-genomic era:

- The *HER2/neu* gene encodes one of a family of human epidermal growth-factor receptors.
- This gene is frequently amplified in breast cancer cells, resulting in increased amounts of HER2 cell surface protein.
- HER2-expressing tumors are sensitive to herceptin, a monoclonal antibody therapy.
- HER2 protein is detected by immunohistochemistry (IHC).
- HER2/neu gene amplification is detected by fluorescence in situ hybridization (FISH).

The EGFR Gene Family

Copyright © 2007 F.A. Davis Company www.fadavis.com

A.

- The EGFR oncogene encodes another of the same family of epidermal growth factor receptors.
- This gene is mutated or amplified in several types of cancer cells.
- Tumors with activating mutations in EGFR are sensitive to tyrosine kinase inhibitors (TKI).
- EGFR protein is detected by IHC.
- EGFR gene and chromosome abnormalities are detected by FISH.
- EGFR gene mutations are detected by SSCP, SSP-PCR, or direct sequencing.

Molecular Abnormalities in Solid Tumors, *K-ras*

- The Kirsten rat sarcoma viral oncogene (K-ras) encodes a key component of cell signaling.
- Mutations in *K-ras* are the most common oncogene mutations in cancer.
- *K-ras* mutations are associated with tumor malignancy and may affect response to some therapies.
- *K-ras* gene mutations are detected by SSCP or direct sequencing.

- The 53-kilodalton tumor suppressor gene (TP53) encodes a transcription factor.
- *TP53* is mutated in half of all types of cancer.
- Loss of *TP53* function is an indicator of poor prognosis in colon, lung, breast, and other cancers.
- Mutant p53 protein is detected by IHC.
- *TP53* gene mutations are detected by a variety of methods, including SSCP and direct sequencing.

Other Genes Associated with Solid Tumors

- Ewing sarcoma, *EWS*
- Synovial sarcoma translocation, chromsome 18; synovial sarcoma breakpoint 1 and 2, SYT-SSX1, SYT-SSX2
- Paired box–Forkhead in rhabdomyosarcoma, PAX3-FKHR, PAX7-FKHR
- Ataxia telangiectasia mutated gene, ATM
- Von Hippel-Lindau gene, VHL
- V-myc avian myelocytomatosis viral-related oncogene, neuroblastoma-derived, MYCN or n-myc
- Rearranged during transfection (*RET*) protooncogene

- Inherited tumor suppressor gene mutations are recessive for the malignant phenotype.
- Tumor suppressor gene mutations are dominant with respect to <u>increased risk</u> of malignancy.
- Loss of heterozygosity exposes the recessive mutant allele in a hemizygous state.
- This is explained by the two-hit hypothesis.

- BRCA1 and BRCA2 are tumor suppressor genes encoding proteins that participate in DNA repair.
- Inherited mutations in BRCA1 or BRCA2 significantly increase risk of breast cancer at an early age.
- Frequently occurring mutations, including 187delAG and 5382insC in BRCA1 and 6174delT in BRCA2, are detected by SSP-PCR and other methods.
- Most mutations are detected by direct sequencing of both genes.

Cancers develop through an accumulation of somatic (not a single) mutations in proto-oncogenes and tumor suppressor genes.

n

Multiple Mutations in Cancer

 Most malignant tumors cannot be attributed to <u>mutation</u> of a single gene.

 Tumor formation, growth, and metastasis depend on the accumulation of mutations in several different genes.

• The genetic pathways to cancer are diverse and complex.

inactivates suppressor gene

ñ

DNA repair genes

mutate to oncogenes more genetic instability, metastatic disease

From Kinzler, K. W., and Vogelstein, B. 1996. Cell 87:159-170. Copyright Cell Press.

Carcinoma-epithelial cells. Adenoma-glandular cells.

ñ

Somatic Mutation and Cancer

 <u>Somatic mutation</u> is the basis for the development and progression of all types of cancer.

 As mutations accumulate and cells become <u>unregulated, genetic</u> <u>instability</u> increases the likelihood that the cells will develop the hallmarks of cancer.

Target therapy

Herceptin

Badache and Hynes, Cancer Cell 2004

n

Trastuzumab is a humanized monoclonal antibody anti-ErbB-2

Efficacy on primary tumors with ErbB-2

amplification:

- Inhibits angiogenesis
- induces cytotoxicity
- increase response to chemioterapy
- Inhibits the activation of ErbB-2

Metastatic tumors develop resistance to Herceptin within 12 months

Not All Patients are the Same

Favorable prognosis Favorable response

Unfavorable prognosis Unfavorable response Increased toxicity

XXX

CONCLUSION

n

- Cancer is a complex, multi stage, disease
- Cancer can be defined by several hallmarks
- Different genetic alterations (mutations, translocations, epigenetic alterations) underlie cancer hallmarks
- Two main concepts have biological and clinical relevance: the "cancer tissue" and "tumour progression"
- Clinical management of cancer patients has improved thanks to the increasing knowledge of cancer biological and molecular bases