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e Introduction to the clinical classification



Clinical classification of breast cancer (BC)

Biomarker
ER

PR

HER2

Ki67

Method and threshold
IHC; positive if 21%

IHC; positive if 21%

* [HC; positive if >10% complete
membrane staining (3+)

* Single-probe ISH; positive if HER2
=6 copies

* Dual-probe ISH; positive if HER2
and CEP17 >2 and HER2 >4 copies,
or HER2 and CEP17 <2 and HER2
=6 copies

IHC; no final consensus on cut-off
value but values <10% are considered
low and >30% are considered high®

Use

» Essential for the characterization of the IHC luminal group
* Poor prognostic marker if negative

* Predictive marker for endocrine treatment

* Mandatory for endocrine treatment prescription

* If negative, tumour classified as IHC luminal B
* Strong poor prognostic marker if negative
* Predictive marker for endocrine treatment

* Essential to characterize HER2-enriched (ER-negative) disease and
luminal B, HER2-positive

* Prognostic marker

e Predictive marker for anti-HER2 treatment

* Mandatory for anti-HER2 therapy

Absence of international consensus for scoring and threshold

Prognostic value in ER-positive, HER2-negative tumours (primary
tumours and post-neoadjuvant tumour residues)

Absence of prognostic value in HER2-positive disease or TNBC
Predictive of response to neoadjuvant endocrine therapy?

Predictive of response to neoadjuvant chemotherapy

If elevated, chemotherapy is often prescribed in ER-positive,
HER2-negative tumours

Part of the IHC definition of luminal tumours whereby when Ki67 is low,

luminal A tumour likely and when Ki67 high, luminal B tumour likely

ER = estrogen receptor; PR = progesteron receptor; HER2 = human epidermal growth factor receptor 2;

IHC = immunohistochemistry; ISH

= jn situ hybridization; LOE = level of evidence.

LOE

[ (IHC)
and | (ISH)

Expert
opinion
Expert
opinion

Expert
opinion

markers

Expression of (A) ER and
(B) HER2 assessed by IHC

Rivenbark AG, et al. Am J Pathol 2013
Harbeck N, et al. Nat Rev Dis Primers 2019



Clinical classification — subtypes based on
immunohistochemistry

Triple-negative
ER-, PR—, HER2—; high

grade; high Ki67 index;

NST histology; special
type histology
(metaplastic, adenoid
cystic, medullary-like
and secretory); poor
prognosis except for
some special types

10-15%
Proliferation
High grade

Basal-like genes

4 ™\ g I
HER2-enriched /Luminal B-like HER2+ ) Luminal B-like HER2-
(non-luminal) ER+ but lower ER ER+ but ER and PR
ER—, PR—, HER2+; and PR expression expression lower than
high grade; high Ki67 | than luminal A-like; in luminal A-like; HER2—;
index; NST histology; | HER2+; higher grade; higher grade; high Ki67
aggressive disease high Ki67 index; NST index; high-risk GES;
but responds to and pleiomorphic; NST, micropapillary and
targeted therapies; responds to targeted lobular pleiomorphic
intermediate therapies; intermediate histology; intermediate

_Prognosis )_Prognosis ) prognosis )

13-15% 10-20%
HER2 expression

/Luminal A-like h

Strongly ER+ and PR+;
HER2-; low proliferation
rates; typically low
grade; low Ki67 index;
low-risk GES; NST,
tubular cribriform

and classic lobular
histology; good

\prognosis

60-70%

ER expression

Low grade

Harbeck N, et al. Nat Rev Dis Primers 2019



Outline

* Molecular characterization and intertumor heterogeneity



Gene expression-based “intrinsic” subtypes — PAM50

HER2-E LumB eBasal-ike eLumA eNormal-like

* 2000: Gene expression studies initially identified 4

L

e Subsequent studies refined the classification and
demonstrated prognostic significance

Hili %
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* Prediction Analysis of Microarray (PAM) 50 subtypes
(based on 50 genes):

- Luminal A

- Luminal B

- HER2-enriched

v all

mil

o AT T T

heEmim il T

- Basal-like
- Normal-like (may represent non-cancer cells {
“contaminating” bulk tissue samples)

- Differences in biological processes

|

e Proliferation e HER2 e Luminal e Basal Perou C, et al. Nature 2000
Parker JS, et al. J Clin Oncol 2009
Prat A, et al. Breast 2015



Relapse-Free Survival (probability)

Relapse-Free Survival (probability)

PAMS50 subtypes and prognosis

No adjuvant systemic therapy
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Luminal B Log-rank P= 1.89e-10
0 2 4 6 8 10
Time (years)
, HER2+

1.0 i

0.8 4

0.6

0.4
== Basal-like
0.2 == HER2-enriched
== Luminal A
Luminal B Log-rank P=.118
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Time (years)

Parker JS, et al. J Clin Oncol 2009



PAMS5O0 vs “clinical” classification

Distribution of the PAM50 intrinsic subtypes within the pathology-based groups.®

[HC-based group References N PAMSO0 intrinsic subtype distribution
Luminal A Luminal B HER2-enriched Basal-like

HR+/HER2— [10,14,16—22] 4295 60.3% 31.9% 6.6% 1.2%
Luminal A [10,14,17,21] 637 62.2% 27.0% 10.2% 0.6%
Luminal B [10,14,17,21] 317 34.1% 51.1% 11.0% 3.8%
HER2+ [6,23—26] 831 17.6% 26.8% 44.6% 11.0%
HER2+/HR+ [25,26] 182 33.0% 46.2% 18.7% 2.2%
HER2+/HR— [25,26] 168 19.0% 4.2% 66.1% 10.7%
TNBC [12—15] 868 1.6% 3.2% 9.1% 86.1%

4 The data has been obtained from the different publications. Several studies have performed a standardized version of the PAM50 assay (RT-qPCR-based or nCounter-
based) from formalin-fixed paraffin-embedded tumour tissues [10,14,17,19—22], while others have performed the microarray-based version of the PAM50 assay
[6,16,18,23—-26].

 Combined the data from studies for a total of 5994 independent samples

* Qverall discordance of ~¥30%

* The two methods to identify intrinsic biology should not be considered the same
3 or4biomarkers do not fully recapitulate the intrinsic subtypes of breast cancer

Prat A, et al. Breast 2015



Luminal A [Luminal B] Luminal C

7 N

Sorlie et al
2001
PAMSO0
Parker et al

good prognosis after 48 months

Primary correspondence

------------ Secondary or suspected correspondence

Myo = myoepithelial genes

good prognosis

R R R E T T T

Mathews JC, et al. NPJ Breast Cancer 2019



The METABRIC* study

Somatically acquired copy number aberrations
(CNAs) are the dominant feature of BC

* Collection of ~2000 primary BC samples

* None of the HER2-positive patients received
trastuzumab (!)

* Integrated analysis of copy number and gene
expression

- CNAs influencing gene expression in cis likely to
be enriched in driver genes

* Molecular Taxonomy of Breast Cancer International Consortium

Cis = Variant at a locus has an impact on its own expression # trans when it is associated with genes in other sites in the genome

Gl
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B NPI 6 & OintClust 2
@ TP53 WT O BIntClust 3
i { — 0OIntClust 4
aresona 3 ginous s
; { O [ IntClust 6
o §IntClust 7
& O IntClust 8
O IntClust 9
# S mintClust 10
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Low High

Unsupervised analysis of paired DNA—RNA profiles revealed
10 novel subgroups (Integrative Clusters - IntClusts)

Gl = genomic instability; NPl = Nottingham prognostic index

Curtis C, et al. Nature 2012



Discovery set (997 cases)

200 Discovery set
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The Cancer Genome Atlas (TCGA)

NATIONAL CANCER INSTITUTE BSFhe @anc
THE CANCER GENOME ATLAS B e Atlas

TCGA BY THE NUMBERS
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The Cancer Genome Atlas

* Primary breast cancers from 825 patients

Omics characterizations

= = Mutation

Copy number

Gene expression

Platforms

DNA methylation
MicroRNA

RPPA

Clinical data

Adapted from: Cancer Genome Atlas
Research Network. Nat Genet 2013

» Unsupervised clustering on data from five molecular
platforms (N=348, not including WES) and integration of

results

- 4 main BC consensus clusters
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- Consensus clusters

1
2
3
4

PAMS50

Basal
HER2-enriched
Luminal A
Luminal B
Normal-like

Clinical/mutation data

Positive/mut
Negative/WT
NA

miRNA 2
E:/Iethy 2

N2
PAM50 LumA
RPPA LumA
Methy 1

miBRNA 6

RPPA reactive |
CN )
RPPA reactive Il
miRNA 3

CN

Methy 5
PAM50 basal
RPPA basal

miRNA 5
PAM50 normal
CN3

Methy 4
miRNA 4
PAMS50 HER2
RPPA HER2
CN5

Methy 3

PAMS50 LumB
RPPA LumA/B

PAMS50 P<0.001

ER P<0.001
PR P<0.001
HER2 P<0.001
. T P=0.002
I |
I

N P=0.01
TP53 P<0.001
PIK3CA P<0.001
GATA3 P<0.001
MAP3K1 P<0.001
| MAP2K4 P=0.02

W} " |I

Cancer Genome Atlas Research Network. Nature 2012



Mutations

Predicted somatic non-silent mutations M Truncation mutation Missense mutation Clinical data Copy number status per Mb
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- Examples of clinical applications



HER2-positive breast cancer

1980s: discovery of the oncogene Human
Epidermal growth factor Receptor 2 (HER2)

Ligand (EGFR)

Trastuzumab —|

HER2

HER3

Pertuzumab

1987: amplification of HER2 in BC is associated with
poor prognosis

Development of the anti-HER2 monoclonal /
antibody trastuzumab i

| @,
RAS

Y

RAB

1998: FDA approved trastuzumab for metastatic 4

(=0 @
PTEN | _» MEK
HER2+ BC S S
&

\ +
\ Cell differentiation

Migration and cycle control
» | Apoptosis
Angiogenesis

2005: Results of adjuvant trastuzumab trials ‘

2013: FDA approved trastuzumab + pertuzumab +
docetaxel as neoadjuvant treatment

Slamon DJ, et al. Science, 1987
Loibl S & Gianni L. Lancet 2017



Prognosis before and after trastuzumab

0.25 1 == ER positive/HER2 negative 0.25 1 == ER positive/HER2 negative
@ ER positive/HER2 positive @® ER positive/HER2 positive
w i == ER negative/HER2 positive w _ == ER negative/HER2 positive
% 0.20 == ER negative/HER2 negative % 0.20 == ER negative/HER2 negative
o O
oc o
S 0.15 S 0.15
D D
+— +—
(3 S
cc 0.10 7 o 0.10 + l
= =]
e L=
4 C
S 0.05- S 0.05
I xI

0 1 2 3 4 5 6 7 8 0
Time Since Diagnosis (years) Time Since Diagnosis (years)

Hazard rate of relapse according to tumor subtype in (A) cohort 1 (1986-1992) and (B) cohort 2 (2004-2008)

Cossetti RID, et al. J Clin Oncol 2015



HER2+ BC heterogeneity

Histopathology (ductal vs lobular)

HER2 positivity (3+ vs 2+ with FISH amplified) and HER2 IHC expression levels

Response to anti-HER2 treatments is
heterogeneous

Hormone receptor s
PAMS0 intrinsic subtypes !
Mutational/copy number/epigenetic profiles 23 ¢

Hormone receptor negative

Tumor-Infiltrating Lymphocytes (TIL) levels * 28% h

4

b

Hormone receptor positive

PAMS50 subtypes:

®m HER2-E m Basal-like
®LuminalB ®WLuminal A
®m Normal-like

1 Gavila J, et al. BMC Med 2019

2 Cancer Genome atlas network, Nature 2012
3 Pereira B, et al. Nat Commun 2016

4Solinas C, et al. Breast 2017



Neoadjuvant therapy — association between pCR and
long-term outcome

Hormone-receptor-positive, Hormone-receptor-positive, Hormone-receptor-positive,
HER2-negative HER2-negative, grade 1/2 HER2-negative, grade 3
100 === 2o =
- & ‘
£ 804
=
>
‘s 604
2 . .
Neoadjuvant setting can be used for -
g —— No pCR
o 20+ M o [ ald [
e biomarker identification

Number at risk
pCR 270 244 224 184 113 69 21 6 2 2 148 134 123 102 55 33 10 5 2 2
No pCR 2491 2226 1978 1616 1017 658 247 84 20 1 1838 1653 1493 1236 790 517 198 68 15 1

83 71 49 30 9 1 0
B76 290 173 111 38 14 5

Event-free

HR 0-24 (95% Cl 0-18-0-33)

HER2-positive HER2-positive, hormone-receptor-positive tive, hormone-receptor-negative 0 , . 0 0 T | . | T
100 o 1 2 3 4 5 6 7 8 9
F 804 N . - Number at risk Time since randomisation (years)
3 — R 250 166 88 29 11 1
Z 60 . - c. o o 317 198 125 50 13 1
=2
Information regarding treatment sensitivity
Z 204
and clinical outcome
0 T T I R E—
0 1 2 3 4 5 6 / o S ) Y 2 0 o
Number at risk Time since randomisation (years) Time since randomisation (years)
pCR 586 527 454 371 212 120 37 4 2 1 247 224 194 157 91 50 17 2 2 1 325 293 250 205 115 65 19 2
NopCR 1403 1157 918 713 436 269 106 33 3 1 839 723 617 484 306 198 79 24 3 1 510 392 269 200 111 59 22 6

pCR = pathological complete response

Cortazar P, et al. Lancet 2014



Before Surgery

N=455
| lapatinib
A ‘ paclitaxel
f : \\\
(1 (1A paclitaxel
;" / | \\\
| \; |
O ]
o lapatinib
trastuzumab
Invasive breast cancer paclitaxel
T>2cm
HER2 positive
6 weeks 12 weeks

(-<:Urnm:DCm)

The NeoALTTO trial

After Surgery
lapatinib
FEC
3
lapatinib
trastuzumab
9 weeks 34 weeks

Response rate (%)

100 7 [ Lapatinib
[ Trastuzumab
1 Combination
80
p=0-0001 p=0-0007
60 T
p=0-34 J. p=0-13 J-
40 51-3%
-|- I (n=78) T 46-8%
(n=68)
204 [0 LT
Saza| | 22°% 1 27-6%
47% | | (n=44) 20-0% _40
(=59 (n=30) |
0
| n=154  n-149 n-152 ' n=150* n=145* n=145*
pCR tpCR

Figure 2: Rates of pCR and of locoregional total pCR in the three
treatment groups

Baselga J, et al. Lancet 2012
De Azambuja E, et al. Lancet Oncol 2014



RNA-sequencing to predict pCR in the NeoALTTO trial

 RNA-sequencing to determine gene expression
levels, PAMS50 subtypes, gene signatures (GSs)*

I B ‘ Adjusted for clinicopathological parameters and treatment arm

Parameter OR (95% ClI) FDR
* |n all treatment arms: ESR1 0.53 (0.33-0.86)  0.016
) ) ERBB2/HER?2 3.1 (1.9-51)  2.1x1077
- ngh expression levels of ERBBZ/HERZ /]\ pCR HER2 enriched (PAM50) 32 (17-60)  9.9x107
Immunel 1.3 (0.95-1.8)  0.085
- Low |€V€|S Of ESR1: /[\ pCR Immune2 1.2 (0.89-1.6)  0.16
: . Immune3 13 (0.99-1.8)  0.065
- HERz-eanChed PAMSO SUbtype' /]\ pCR Genomic Grade Index 1.5 (1.1-2.1) 0.021
Aurka 13 (0.95-1.8)  0.085
AKT/mTOR 12 (0.89-1.6)  0.16
* In the Comb|nat|0n arm: Stromal 0.92 (0.68-1.2)  0.36
) ] . Stroma2 1.1 (0.79-1.5)  0.36
- High expression of immune GSs: I* pCR AR 0.9 (0.70-1.3)  0.39

High expression of stroma GSs: |, pCR

Favors : Favors
Less pCR More pCR

——
—

R

0.2 0.5 1 2 5
OR (95% CI)

Effect of single genes and gene expression signatures on pCR adjusting for

clinicopathological parameters and treatment arms.

* Gene expression signature: group of genes with expression pattern characterizing biological processes

—> pathway activation, prognostic/predictive biomarkers, gene sets associated to specific function, disease subgroups

Fumagalli D, et al. JAMA Oncol 2017

P Value
.008

<.001

<.001
.10
.24
.05
.01
.10
21
.60
.66
g7



75+

50 4

25+

oCR rates according to HER2-E PAM50 subtype

All
HER2-E
NonHER2-E

n=236 n=156 n=68 n=117 n=24 n=75

n=116

n=35

n=67

n=352

n=205

n=138

L+H (COMBINED) T+H

T+H+L

AIT+H+P

Rates of pCR according to the type of chemotherapy and anti-HER2 therapy using data from 8 neoadjuvant clinical trials in HER2+ breast cancer

H = trastuzumab; L = lapatinib; P = pertuzumab; T = taxane; A = anthracycline

Cejalvo JM, et al. Cancer Treat Rev 2018



MNCOR1 2.0%
MAPIK1 30%
LAP{ 30%
PIK3R1 3.0%
PPPIR12B 30%
PTEN 30%
PRKCSH 2.0%

RALA 3.0%

EP300 3.0%

COL1A2 30%

APC 3.0%

NR2CZ 3.0%

MAP1B 30%
£

PIK3CA mutations to predict pCR

NeoALTTO trial > mutations in PIK3CA network genes

RD

Truncated

Missense

Pooled analysis from 5 prospective trials

B PIK3CAwt W PIK3CA mutant
P

interaction 1

=0.036 P

interaction 2

PCR 50% - =0.189

45%
40%
35%
30% -
25%
20%
15%
10%

5%

0%

P <0.001
P=0.125

P <0.001
P<0.001

30.1% 16.7%

n=315

n=251 n=401

Shi W, et al. Ann Oncol 2017
Loibl S, et al. Ann Oncol 2016



Triple-negative breast cancer

— — GO Terms/
Training Set Validation Set Canonical Pathways

BL2 MSL LAR BL2 Basal-like 1
- _ Cell Cycle
DNA Replication Reactome
G, Pathway
RNA Polymerase

ATR/ BRCA Pathway
G, oS Cell Cycle

Basal-like 2
EGF Pathway
NGF Pathway
MET Pathway
WNT p-catenin Pathway
IGF1R Pathway
Glycolysis/ Gluconeogenesis

CTLA4 Pathway

IL12 Pathway

NK Cell Pathway

Th1/Th2 Pathway

IL7 Pathway

Antigen Processing/ Presentation
NFKB Pathway

TNF Pathway

T Cell Signal Transduction
DC Pathway

BCR Signaling Pathway

NK Cell Mediated Cytotoxicity
JAK/ STAT Signaling Pathway
ATR/ BRCA Pathway

BL2: Basal-like 2

Mesenchymal-like
IGF/ mTOR Pathway

ECM Pathway

Regulation of Actin by RHO
WNT Pathway

ALK Pathway

TGFf Pathway

M: Mesenchymal

Mesenchymal Stem-like

ECM Receptor Interaction
TCR Pathway

WNT f-catenin

Focal Adhesion

Inositol Phophate Metabolism
NFKB Pathway

EGF Pathway

ALK Pathway

GH Pathway

NK Cell Mediated Toxicity
RAC1 Pathway

GPCR Pathway

ERK1/2 Pathway

Integrin Mediated Adhesion
ABC Transporters General
RHO Pathway

Smooth Muscle Contraction
Calcium Signaling Pathway
Adipocytokine Signaling Pathway
PDGF Pathway

TGF} Pathway

Luminal AR

MSL: Mesenchymal Stem-like

LAR: Luminal Androgen receptor

Glutathione Metabolism

Tyrosine Metabolism

Steroid Biosynthesis

Porphyrin Metabolism

Androgen and Estrogen Metabolism
Glycosphingolipid Metabolism
Flagellar Assembly

Citrate Cycle TCA

Phenylalanine Metabolism

ATP Synthesis

Starch and Surcrose Metabolism
Arginine and Proline Metabolism
Metabolism by Cytochrome P450
Fructose and Mannose Metabolism
Fatty Acid Metabolism

Alanine and Aspartate Metabolism
Eicosanoid Synthesis

CHREB Pathway

Tryptophan Metabolism

TS s Lehmann BD, et al. JCI 2011




TNBC subtypes — multi-omic analysis

Hallmark signature score

® Frameshift indel ~ ® Missense SNV ® Splicing | e
* Inframe indel = Nonsense SNV = Stoploss Mutation Frequency (%) Low High
M - 3... . Activating Invasion and Metastasis (AIM)
TP53 TP53 80
MUC16 | | MUC16 21 17 21 17 33 19
PIK3CA | h PIK3CA 20 5 16 55 12 23 Avoiding Immune Destruction (AID) * *
AHNAK2 | | |l AHNAK2 19 15 26 13 14 26
SYNE1 |l| I [ [ | SYNE1 17 18 25 15 10 6 i )
AHNAK ' | | | | || | AHNAK 13 18 8 11 12 13 Deregulating Cellular Energetics (DCE)
DNAH11 ’ I| | ~| 1] 11 I I| DNAH11 12 8 14 15 18 3
USH2A | | | || | USH2A 11 12 10 13 14 3 ) o )
DNAH2 | || I I DNAH2 11 6 11 13 12 13 Enabling Replicative Immortality (ERI)
MLL2 | ]|l| H | || '| | MLL2 10 14 7 9 6 10
KMT2C KMT2C 8 6 8 19 2 6 .
HERC2 I ’l ||| "] I | I|| Illl , I III HIN | | HERC2 8 9 7 11 12 0 Evading Growth Suppressors (EGS) *
DNAH5 ||| | | | | | [l | | | Il III’ | DNAH5 8 12 5 8 6 10 —
RYR2 RYR2 8 10 11 4 2 10 - ; ‘,
AKAP9 | || IllI I I 111 I II I I I || | I' | | I I aenOY T B B HR | B Genome Instability and Mutation (GIM) * : *
UTAN AR [ I R Iy UTRN 7 4 15 8 2 0
NOTCH1 || | | | | I | Il LI NOTCH1 7 6 7 2 14 3 Inducing Angiogenesis (IA)
BIRC6 | | | || | | || V [ | ‘ | kol BRC6 7 8 5 11 6 0
PTEN | | I I Il . 11 | | PIEN 6 5 5 11 6 3
RB1 (| | | ] I I I | !l [ RB1 6 11 3 4 8 0 Resisting Cell Death (RCD)
COL12A1 [l | 1 - | ] | | COL12A1 6 6 11 4 2 0
ATR I I il ) l [l I I - AR 5 3 4 6 10 6
NCOR2 o I I 1 I [ | 11 I | I | NCOR2 &5 4 11 4 4 0 Sustaining Proliferative Signaling (SPS)
STAB2 | I] | | | | | | | | I STAB2 5 4 3 2 12 3
BRCA1 ! | | | | | | R BRCA1 5 4 5 2 10 0
THSD7A N e I I THSD7A 4 10 0 6 2 O Tumour-Promoting Inflammation (TPI) *
NF1 | | i | | I | [l NFI 4 3 0 13 0 3
AKT1 AKT1 3 0 3 13 0 O N
CDH1 | | |1 II | 1] | COH1 3 1 0 13 2 0 Q¥ i \?Q\ = \@’

Significant up-regulation displayed in black, down-
regulation in white

Bareche Y, et al. Ann Oncol 2018



Heterogeneity of TNBC — opportunities for personalized
treatment

*Metabolism « Immune Hot

« CIN high - 5g/15q region loss « Adaptative & Innate Immunity
+B7-H4 » Most Inmunomodulatory target
-IDO1 (including PD1, PDL1 & CTLA4)

—————— — —

Oncolytic virotherapy
HDAC / DNMT inhibitors
NK therapy

\ B7H4 & IDO inhibitors
. Anti-metabolite _-

o ————— — — —— ——

Immune checkpoint
\ blockers (ICB) ’,

——— ———

« Pro-Tumoral Immune Infiltration
«Stroma

* Metabolism . Lymphangiogenesis
- Stroma - Retained RB1
* Retained RB1 .CD39/CD73
*GARP /TGFB
i *CSFIR -~————--=-——------- ~
! / AY
O 0D
|  CDKA4/6 inhibitors . i CDK4/6 inhibitors !
\_  Anti-metabolite i VEGF inhibitors |
Semmmm s . | adenosine pathway inhibitors )
o ’ . RN GARP / TGFB inhibitors  /
CSF1R inhibitors 4
{' p \‘I +«Immune Cold PSS e -
i VEGF inhibitors b gt‘:};z;a TIME Classification :
Oncolytic virotherapy 1 °
| HDAC/DNMT inhibitors | CAF " M Fully Inflammed
1 NK therapy I «CIN high - 5g/15q region loss Stroma Restricted
\  B7H4inhibitors | .B7-H4 M strom ,
\ Anti-metabolite J Margin Restricted
Syt - Immune Cold

Bareche Y, et al. J Natl Cancer Inst 2019



Luminal breast cancer

Oncotype DX assay: 21 genes selected after

) o L . Range of recurrence scores from O to 100
three independent preliminary studies involving ‘ based on gene expression levels
447 patients and 250 candidate genes g P

Proliferation HER2 Estrogen 100 LTy T ke
Ki67 GRB7 ER S o Y e ows
STK15 HER2 PGR £ 80 R Sl Sy Interr;ediate
S ris
. (v ..
Survivin BCL2 S — 4 ™Saoooooooooo e High risk
CCNBI (cyclin B1) SCUBE2 b ‘qe; 60
MYBL2 GSTM1 BE 50
[a o
[
o 40-
Reference e o
. CDe68 ACTB (B-actin) &
Invasion ° 20
MMPI1 (st lysin 3 GAPDH 2
CTSL2 : ’EEmO'YSIC?_ ! RPLPO N ]
(cathepsin L2) BAG1 GUS 0 T I T T T T T 1
TERC 0 2 4 6 8 10 12 14 16
Years

Likelihood of distant recurrence, according to Recurrence-Score
Categories

Paik S, et al. NEJM 2004



The TAILORXx trial — adjuvant setting

Oncotype DX testing

Registration and
specimen banking

RS<11 RS 11-25 —— RS>25
|
N=9,719 pts*
I
Arm A Randomize Arm D
Hormonal Stratification factors: Chemotherapy
therapy tumor size, menopausal plus
alone status, planned chemotherapy, hormonal
planned radiation therapy
N=1619* N=6711* N=1389*
(17%) (69%) (14%)
Arm B Arm C
Hormonal therapy alone Chemotherapy plus

hormonal therapy

* Included in the main analysis (eligible patients with FU
information)

1.0
0.9
0.8
0.7-
064 | 9-year rate (ITT): 94.5% (ET) vs 95.0% (C+ET)
0.5
0.4

0.37 Hazard ratio for recurrence at a distant site, 1.10 (95% Cl, 0.85-1.41)
0.24 P=0.48

0.1+

0.0 [ I I | I | | ! 1
0 12 24 36 48 60 72 8 96 108

Months

Probability of Freedom from
Recurrence at a Distant Site

Some benefit of chemotherapy found in women 50 years
of age or younger with a recurrence score of 16 to 25

Sparano JA, et al. NEJM 2018



Table 1| Summary of studies used in testing of different gene signatures

Gene-signature test

Oncotype DX?

Prosigna®"!

MammaPrint*#

Breast cancer index>%%

EndoPredict®

Genomic Grade Index’

Training set

447 ER+/-tumour samples
from patients with LN+/-
disease enrolled in three
separate clinical trials,
including from the tamoxifen
only arm of NSABP B-20

189 ER+/- tumour samples
from patients with LN+/-
disease and 29 nonmalignant
breast tissue biopsy samples

78 ER+/-tumour samples
with a diameter <5 cm from
patients <55 years of age with
LN-negative disease

60 ER+ tumour samples from
patients previously treated
with tamoxifen

964 ER+ tumour samples from
patients with LN+/- disease
treated with tamoxifen

64 ER+ tumour samples of
histological grades 1-3

ER: oestrogen receptor; LN: lymph node

Initial validation set

668 ER+ and tumour samples
from patients with LN- disease
in the tamoxifen only arm of
NSABP B-14 (including samples
from the training set)

786 ER+/- tumour samples from
patients with and LN+/- disease

295 ER+/-tumour samples
<5cmin diameter from patients
<53 years of age with and LN+/-
disease (including samples from
the training set)

588 ER+ tumour samples from
patients with LN- disease
enrolled in the Stockholm trial

378 ER+ tumour samples from
patients with LN+/- disease
from the ABCSG-6 trial
(tamoxifen-only arm) and 1,324
patients from the ABCSG-8 trial

*125ER+/-

* Tumour samples of histological
grades 1-3 from patients with
and LN- disease

Proportion (%) of
patients assigned to
the ‘low-risk’ category

51.0

28.2

40.0

53.0

62.6

59.7

Clinical application

Prediction of 10-year
recurrence risk in
patients with ER+ and
LN-disease

Determining

the prognosis of
postmenopausal women
with ER+and LN+/-
disease of stages 1 or 2

Determining the
prognosis of women with
ER+/- and LN- disease of
stages 1 or 2

Determining the
prognosis of women with
ER+and LN- disease,
prediction of benefit
from extended endocrine
therapy

Determining the
prognosis of women with
ER+and LN+/- disease

Prognosis and risk
stratification based on
histological grade

Kwa M, et al. Nat Rev Clin Oncol 2017



Outline

* The challenge of intratumor heterogeneity



Tumor evolution and heterogeneity

Branching Evolution

A

Experimental data in breast cancer = Mixed model |

- CNAs and chromosomal structural variants

follow a PE model (D)

éi

aoua|eAald |euold

Punctuated Evolution

time

Point mutations follow a BE model (B)

- They occur in early punctuated bursts of
evolution, and stably expand

66606046060

olp]

olution

— Gradual evolution over the lifetime of the
tumor Ieadmg to clonal expan5|ons

heterogeneitv (ITH)

'.AV aY) g

. 8g amp (MYC)
/, Whole-genome duplication
4
/:.’/ P (primary
at surgery)
o : @
o Metastatic p
o
o
° !
-
e 3.8 4 g
H o' e,
(4]
3 ® O
8 M3 (lung)
Common ancestor
Normal breast Primary BC
ER-/PgR-'HER2-

ve [Nntratur

enom|c aberrations
ylo enetic analysis performed

usﬁ@ atic utaEUlr\Q 4
a depy rleeindbetrationes

Brown D, et al. Nat Comm 2017

Neutral Evolution

$386683 TT335350s

Punctuated Evolution
Davis A et al. BBA 2017



Tumor heterogeneity increases over time and is
correlated to treatment resistance

Full circulating volume

Liquid biopsy:
(CTCs or ctDNA)

Sequencing
reads:

;

v

i) Early stage disease

Metastasis

k —>
|

o

ii) Late stage disease

Treatment

iii) Objective response /
Stable disease

Disease progression
on treatment

!-a|_>
i
I

=5

iv) End stage

disease progression

w

wJ1
o
i A I

i

Patient 1

Patient 2

Patient 1:
high allelic ratio
of target mutation

TKI

Duration of response
to targeted therapy

Patient 2:
low allelic ratio of

Resistance

@ O

Target- Target-
mutation mutation
positive  negative

target mutation
Target-mutation

Target-mutation
negative and

positive and
new on-target new off-target

resistance mutation

resistance mutation

©

Target-mutation
positive and

new off-target
resistance mutation

Burrel RA & Swanton C. Mol oncol 2014
Dagogo-Jack | & Shaw AT. Nat Rev Clin Oncol 2018



Taxonomy of the mechanisms of resistance to
endocrine therapy

Highlights
e We performed prospective sequencing of 1,501 HR* breast ’ I )
. linical . R ormonal _ _
cancers in the clinical setting S Therapy % $§0$1 MAPK Pathway
@ 0 RTK (EGFR, Erbb2, Erbb3)

e MAPK and TF alterations were present in 22% of 692 HR*
post-endocrine therapy tumors

.0 1.7% 58% 0.7%
7 @ @ L
N . oS0 MaPK

-

~<_ - STOOG o RAS 1.0% NF1 4.6%
R
o e .@% Qg%@ (Sl

- . L ]
mutations MYC/TF 3 ‘; - i ¥ @&?@@@ MYC/TF
©.. N @Q@QQ 9%

ESR1
e MAPK and TF alterations were mutually exclusive with ESR1

RAF 0.6%

e MAPK and TF alterations were associated with shorter MEK 0.3%
response to endocrine therapies o2
MAPK  Other/ .‘:g-.‘:gt. ERK
TF = transcription factor HniEn ‘:. O | 60%
@e

Genomics alterations associated to treatment resistance may

Role of transcriptional
- pre-exist in the pre-treatment tumors and expand reprogramming, epigenetics,

tumor microenvironment...?
- be acquired under the selective pressure of endocrine therapy - Go beyond “single gene” vision

Razavi P, et al. Cancer Cell 2018



Progression of breast cancer —when?

Molecular time

Radical treatment

of primlary breast cancer

cell

Cancer burden

Driver
mutations

Normal

o mpip— * *

Genome-
doubling

MRCA

\ 4

Synchronous
lymph node
metastasis

Loco-
regional
relapse

* Canonical cancer genes -
TP53, GATA3, PIK3CA, AKT1, ERBB2

« Rarer cancer genes -
SWI/SNF, JAK-STAT

Drug resistance mutations -
ESR1

Metastases mostly disseminate late from primary
breast tumors, keeping most drivers, but continue to

acquire mutations

Mutations/patient
2 46 8

0

Recurrence sample

Recurrence sample type  Driver context

Distant metastasis
Local relapse
Mixed sample types

]Il|||||IIIII|||||||||||nm.|||l|||||||m...|..%

[l Private to recurrence
[l Primary & recurrence

[l Private mutations in both
primary & recurrence

*

.
]
| |
[ ]
2 1
s I
}_‘:g m =~ *Mutations in cancer
2 I- genes mutated in >5%
= > i of primary tumors (n=62)
5 L
S NCOR1 oo o 1 "
& SETD? I 5%
= KDM5C o 1 0,
s . fB1 - I o5
£ GATA3 oo o m*
2 ESR1 H | ]
8 FoXA1 " O ¥
S FAI\}—ggg O O = I. Mutations in rarer
3 RCA2 | | 1 cancer genes (n=55)
2 BRCAT || 1 45%
8 8TAG2 O [
MLH1 = i
MSHE o i
STAT3 | ]| 1
JAK2 | m i
NF1 Ol = ]
MAP3K1 o i+
MAP2K4 o i
STK11 | | 1 55%
casP - |
1
Pisioaso e T PP T e 8 o 102 30
> S i b e A e A ST - bt b -y S e b oy < 0 10 20 30
Chromatin Hlll CGo~ 00RO CCOROmPEOPNOOOHOOT~OOT-00ROOHTOOODROOMO =}
Transcriptionll S22 000 00808F 820 af8a8e88a08a00T88PR8888288508 a Mutations
atitrgaltaaantatatataaatacacaccaatacttacaataatan a utations/gene

DNA repair I
JAK-STAT

Yates LR, et al. Cancer Cell 2017



Progression of breast cancer —when?

Molecular time

Radical treatment
of primlary breast cancer

\ 4

.
>

cell

Cancer burden

Y

Driver
mutations

Synchronous

Normal

Genome-
doubling

MRCA

lymph node
metastasis

Loco-
regional
relapse

* Canonical cancer genes -
TP53, GATA3, PIK3CA, AKT1, ERBB2

« Rarer cancer genes -
SWI/SNF, JAK-STAT

Drug resistance mutations -

ESR1

Metastases mostly disseminate late from primary
breast tumors, keeping most drivers, but continue to
acquire mutations

The genome of the primary tumor represents
a good proxy for that of the cells that
ultimately seeded the relapse

- Important for adjuvant treatments

The genome of a metastatic clone undergoes
extended changes by the time it has
expanded to be clinically detectable

MAP2K4 ] i
STK11 0 i 55%
BRAF ] I
Pathway ~ CASPS — -
Pl3-kinase B3NS AsRN Y BR8RRRTIERCEBRToBILERIQTIBERER B2 8EE o 10 20 30
Chromatin T S5 5T 385383 nnh 885 ss T8 3335 0833538583 528888

Transcription I §Eeé§§
DNA repair I
JAK-STAT I

Mutations/gene

Yates LR, et al. Cancer Cell 2017



Advanced-stage BCs are more complex than
early-stage BCs

Increase in the clonal diversity in mBC Increase of mutational load in mBC

. mBG oBC P<22x107 NS P=79x1072
23 207 . -
%.é 1:0: ! Clone no. g 3507
g % 0-8— _r B 1 (founder) g 100:
S & 100+ =1 2 50;

T 80- o4 £ 407
g8 | = ]
iy o £ 2
S S 404 o7 g 1
oS m 8 =S

K 20- ' m 9

m 10+

eBC = early-stage breast cancer
mBC = metastatic breast cancer
TMB = tumor mutational burder

Bertucci F, et al. Nature 2019



Outline

* The role of the tumor immune microenvironment



The immune microenvironment

Characterization of the tumor immune
microenvironment can be performed at
different levels

* Quantification of tumor-infiltrating
lymphocytes (TILs, e.g. H&E staining)

* Characterization of TIL subpopulations
(e.g. IHC, IF, flow cytometry)

* Description of the TIL geographic
distribution

Peritumoural

tissue

Follicular dendritic cell

o T cell (different subtypes)

© Bcel
Granulocyte

Central
fibrous

scarring

Savas P, et al. Nat Rev Clin Oncol 2016



TIL levels as a biomarker

Current clinical data establish the clinical
validity of higher TIL levels as a predictive
and prognostic biomarker

Pooled analysis of 3771 BC patients
treated with neoadjuvant therapy

0-10% stromal TILs

% stromal TILs

50-90% stromal TILs

Higher TIL levels = better Event-Free
Survival independently of pCR in NeoALTTO

<12.5% vs 212.5% TILs (Median Cut Point) Stratified @ <40% vs 240% TILs Stratified by PCR vs No PCR

60 [ Low (0-10%)
@ Intermediate (11-59%)
I High (=60%)
50
40
g
o= 30
uJ
(=N
20
10
0 T T
All patients Luminal-HER2-negative HER2-positive TNBC

Breast cancer subtype

by PCR vs No PCR
10 =mm e 1.0 o —————————— ———
h -""1____'____ ‘—I_l_
© 08 9 0.8
= &
£ £
g 06 2 0.6
i wl
c =
£ 044 | = NoPCR, 212.5%TILs £ 044 | = NoPCR, 240% TiLs
g ———PCR, 212.5% TILs s ——— PCR, 240% TILs
2 No PCR, <12.5%TILs L No PCR, <40% TILs
0.2 PCR, <12.5% TILs 0.2 PCR, <40% TiLs
0 T T T T 1 D T T T T 1
0 1 2 3 4 5 1 2 3 4 5

Time After Randomization, y

Time After Randomization, y

Solinas C, et al. Breast 2017
Denkert C, et al. Lancet Oncol 2018
Salgado R, et al. JAMA Oncol 2015



TIL levels in breast cancer subtypes

Luminal TNBC HER2

Median levels of stromal TiLs (scored following international
guidelines 1, usually higher than intratumoral TILs):

* Luminal BC 2 7-10%

* HER2-positive BC 2 15-20% | ~
« TNBC - 15-20% Lo || — ||

LAl L ' 1 A ) |
0 25 50 75 0 25 50 75 0 25 50 75
Pre-NAC TIL levels (%)

Distribution of pre-neoadjuvant chemotherapy (NAC)
TIL levels, by BC subtype (kernel density plot)

HER2-positive and triple-negative BCs are considered more

immunogenic than luminal BC o TCGA breast cancers
- Mutational load

- Neoantigen load

- Antigen presentation

- Immunosuppressive environment

p <0.001*

80

@
=

% stromal TILs
B
o

{ 1Salgado R, et al. Ann Oncol 2015

> éﬂ(«" & Luen S, et al. Breast 2016
< Solinas C, et al. Breast 2017

Hamy AS, et al. Clin Cancer Res 2019




TIL levels in primary vs metastatic breast cancer

. . A B
Levels of TILs (and PD-L1) are lower in metastatic — —
lesions compared to the primary tumor
—> immune escape - -
3
8
o
g
gso- 'g 0.4
Al HER2 5 -
%) 8 a)
= 100 - = g
3] = 5
g P=0.0002| P=0.02 P=0.005 n.s. - g =
= 759 s 0 0 £
H(:_) o o
(7]
= 504 °
= i o
...6 04 0.04
Q v T — v
48'3 25 - . primary met primary met
§ TIL and PD-L1 protein expression in paired primary and metastatic
& 04 - m cancers assessed on full sections (FSs)
o - T T (A) TIL count (%)
P P M P M

(B) PD-L1 positivity rates, defined as >1% of stromal or tumor cells
showing IHC staining

Szekely B, et al. Ann Oncol 2018
Savas P, et al. Nat Med 2018



Characterization of TIL subpopulations

The cellular constituents of the host
immune response to tumors can: N @

i
- control tumor growth ’
- contribute to an immunosuppressive

environment that promotes tumor 0

progression \.> ‘>

>< . ©

D).
2)

TIL levels alone may not be enough
when searching for robust biomarkers

Tumor Suppression Tumor Progression

Hendry S, et al. Adv Anat Pathol 2017



Characterization of TIL subpopulations — Methods
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Tumor CD8+ (a) and FOXP3+ (b)
expression as assessed with
immunohistochemistry

] >

100-microns
TSR]

. ‘:?S‘ti‘o‘mal «
= L 2%

100 microns .

E— 7
Multiplexed immunofluorescence of tumor
infiltrates

CD8+ - cytotoxic T cells

CD4+ - helper T cells

CD20+ = B cells

CD68+ = Macrophages

FoxP3+ - regulatory T cells

CK = Cytokeratin (epithelial cells)

Cluster characterized by high
CD4, CD8, CD20 stromal-TILs and
CD20 intratumoral-TILs associated
with higher pCR rates after
lapatinib + trastuzumab

Lee KH, et al. BMC Cancer 2018
De Angelis C, et al. Clin Cancer Res 2019



Characterization of TIL subpopulations — Bioinformatics tools

Computational methods can be used to
estimate TIL levels and/or subpopulations

from bulk tissue gene expression profiles Bulk

tissue/ Blood
tumor draw

~ RNA :
Purify  profile g OR l}
O-= !
= ~= RNA

o Signature matrix
W > == 0T 00d3* == profile

V

Overview of CIBERSORT

CIBERSORT|—>

Significance| /

analysis

Cell proportions

*Q0QLO®O

Chen B, et al. Methods Mol Biol 2018



Immune phenotyping — geographic distribution

a |nfiltrated—excluded b Infiltrated—inflamed C Infiltrated-TLS

TLS = tertiary lymphoid structures
CTL = cytotoxic lymphocyte

TAM = tumor-associated macrophages
DC = dendritic cell

Tumor Immune-Microenvironment
(TIME) classification in TNBC

ID: Immune Desert

e
lo 4 H i
corcns® bt MR: Margin-Restricted

Recruitment Margin

SR: Stroma-Restricted

FI: FU“y Inﬂamed Binnewies M, et al. Nat Med 2018

Gruosso T, et al. J clin Invest 2019



TILs and PD1/PD-L1 axis

PD-1-mediated inhibition of T cells CTLA-4 and PD-1 pathway blockade

Lymph node Tumor site

ant-PD-1
=

‘ ant-PD-1 \

/N

Activation, proliferation

Migration
to tumor site

PD-1 V PD-L1

up-regulation up-regulation Aﬂﬂgﬂn
presenting /—\
PD-L1 cell

Proliferation
Cytokine production

TT—— IFN-Y

Reduced proliferation
Reduced cytokine production Tumor antigen Activation, proliferation
Reduced survival uptake Tumor elimination

Buchbinder El & Desai A. Am J Clin Oncol 2016



IMpassion130 — study design

/ Key IMpassion130 eligibility criteria®: \

+ Metastatic or inoperable locally advanced TNBC
— Histologically documented®

» No prior therapy for advanced TNBC

— Prior chemo in the curative setting, including
taxanes, allowed if TFI = 12 mo

ECOG PS 0-1

Stratification factors:

» Prior taxane use (yes vs no)
Liver metastases (yes vs no)
\ PD-L1 status on IC (positive [ 1%] vs negative [< 1%]y

Atezo + nab-P arm:
Atezolizumab 840 mg IV

— Ondays 1 and 15 of 28-day cycle

+ nab-paclitaxel 100 mg/m?2 IV
— Ondays 1, 8 and 15 of 28-day cycle

Double blind; no crossover permitted

Plac + nab-P arm:
Placebo |V

— Ondays 1 and 15 of 28-day cycle

+ nab-paclitaxel 100 mg/m? IV
— Ondays 1, 8 and 15 of 28-day cycle

. Co-primary endpoints were PFS and OS in the ITT and PD-L1+ populations®
Key secondary efficacy endpoints (ORR and DOR) and safety were also evaluated

RECIST v1.1
PD or toxicity

Schmid P, et al. NEJM 2018



IMpassion130 — results — PFS

A Progression-free Survival in the Intention-to-Treat Population

Median 1-Yr Rate of
No. of Events/  Progression-free Progression-free
No. of Patients  Survival (95% Cl) Survival (95% Cl)

mo %

Atezolizumab + Nab-Paclitaxel 358/451 7.2 (5.6-7.5) 23.7 (19.6-27.9)
Placebo+Nab-Paclitaxel 378/451 5.5 (5.3-5.6) 17.7 (14.0-21.4)
100+
0 Stratified hazard ratio for progression or death,
w207 0.80 (95% Cl, 0.69-0.92)
s 804 P=0.0025
- —
g 70
% 604
O 50— A g e
£ 40
S 304 , :
5 Atezolizumab +nab-paclitaxel
a 20
10 Placebo+nab-paclitaxel
0 T T T T T T e T T
0 3 6 9 12 15 18 21 24 27 30 33
Months
No. at Risk

Atezolizumab+ 451 360 226 164 77 34 20 11 6 1 NE NE
nab-paclitaxel

Placebo+ 451 327 183 130 57 29 13 5 1 NE NE NE
nab-paclitaxel

B Progression-free Survival i

the PD-L1-Positive fubgroup
Median 1-Yr Rate of

No. of Events/  Progression-free Progression-free
No. of Patients  Survival (95% Cl)  Survival (95% Cl)

mo %

Atezolizumab + Nab-Paclitaxel 138/185 7.5 (6.7-9.2) 29.1 (22.2-36.1)
Placebo + Nab-Paclitaxel 157/184 5.0 (3.8-5.6) 16.4 (10.8-22.0)
103—- Stratified hazard ratio for progression or death,
g 997 0.62 (95% Cl, 0.49-0.78)
& 801 P<0.001
o 70—
% 604
g“ 50— T e
£ 4 Atezolizumab-+ nab-paclitaxel
g 30— eZ0llZumab+nab-paclitaxe
& 20
10+ Placebo+nab-paclitaxel
0 T T T T T T T T T T T
0 3 6 9 12 15 18 21 24 27 30 33
Months
No. at Risk

Atezolizumab+ 185 146
nab-paclitaxel

Placebo+ 184 127
nab-paclitaxel

104 75 38 19 10 6 2 1 NE  NE

62 44 22 11 5 5 1 NE NE NE

Schmid P, et al. NEJM 2018



Table 1| Factors that predict response to immune checkpoint inhibitor therapy

Factor

Tumour mutation burden
PDL1 expression

Copy number variation
HLA class | diversity

LOH at HLA class | alleles

T cell repertoire clonality
change

T cell-inflamed
microenvironment

SERPINB3 or SERPINB4
mutations

Gut microbial diversity
Specific gut microbial
species

TGFp expression

Mutations in the
B-catenin pathway

JAK2 mutations (rare)*
B2M mutations (rare)*

STK11 mutations
(common)

Association
with favourable
clinical outcome
Positive

Positive

Negative

Positive

Negative

Positive
Positive
Positive
Positive
Positive or
negative

Negative

Negative

Negative
Negative

Negative

Validated

in phase Il
clinical trial?
Yes

Yes

TBD

TBD

TBD
TBD

TBD
TBD

TBD
TBD

TBD

TBD

TBD
1BD

TBD

Predictive
versus
prognostic®
Predictive
Predictive
Prognostic,
predictive or both

Predictive

Predictive
Predictive
Prognostic,
predictive or both

Predictive

Predictive

Predictive
Predictive

Predictive

Predictive
Predictive

Predictive

Cancer type

Multiple cancer
types
Multiple cancer
types

Multiple cancer
types

Melanoma and
NSCLC

Melanoma
Melanoma
Multiple cancer
types

Melanoma

Melanoma

Melanoma
Colon cancer and
urothelial cancer
Melanoma
Melanoma

Melanoma

NSCLC

Tissue type
for biomarker
assessment®

Blood or
tumour tissue

Tumour tissue
Tumour tissue
Blood

Tumour tissue

Tumour tissue
or blood

Tumour tissue
Tumour tissue

Oral or gut
Oral or gut

Tumour tissue

Tumour tissue
or blood

Tumour tissue
or blood

Tumour tissue
or blood

Tumour tissue
or blood

Possible assay type for
biomarker assessment

NGS WES or targeted gene
panel sequencing

Immunohistochemistry

NGS WES or targeted gene
panel sequencing

NGS WES or PCR-based
typing

TBD

TBD

NGS RNA-seq or
immunostaining

NGS WES

PCR or NGS
PCR or NGS

NGS RNA-seq or
expression panel

NGS WES, targeted gene
panel sequencing or
RNA-seq

NGS WES or targeted gene
panel sequencing

NGS WES or targeted gene
panel sequencing

NGS WES or targeted gene
panel sequencing

HLA, human leukocyte antigen; LOH, loss of heterozygosity; NSCLC, non-small-cell lung cancer; NGS, next-generation sequencing; PDL1, programmed cell death
1 ligand 1; RNA-seq, RNA sequencing; TBD, to be determined; TGFp, transforming growth factor-p; WES, whole-exome sequencing. “Predictive refers to a given
biomarker that has an effect dependent on the immune checkpoint inhibitor therapy, and prognostic refers to a biomarker that has a specific effect independent of
the therapy. "Blood detection of mutations refers to cell-free DNA analysis. ¢JAK2 and B2M mutations are controversial. Responses have been seen in patients with
these mutations. Intratumoural heterogeneity likely needs to be assessed along with these mutations.

Havel J, et al. Nat Rev Cancer 2019
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Technological advances

Single-cell analysis

Tregs

macrophages /

Myeloid
cells

monocytes%-
7.

&
/' »

neutrophils 1
NK cells

Spatial transcriptomics

Azizi E, et al. Cell 2018
Salmén F, et al. Nat Protoc 2018



Single-cell analysis

Applications of single-cell sequencing in cancer research

Bulk tissue = mixture of different types of cells

(tumor cell subpopulations, immune cells, stroma, ...)

—> Transcriptomics/genomics studies use RNA/DNA
sequencing of homogenized samples

- Averaged transcriptome and mixture of
mutational/CNAs data from different cell types

III

* Examples of single-cell “omics” techniques:

- RNA-sequencing

- DNA-sequencing (e.g. for CNV)

- ATAC-sequencing (for single-cell epigenomics)
- Immune profiling (e.g. cell surface proteins,

antigen specificity)
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Single cell isolation methods for RNA-seq

"Wlicro-manipulationw (
’ Automated Pipetting

@ °
o
Cell Stress Low Moderate Moderate
Selection Yes Yes No* / Yes**
Doublet Low Low Low-High
Throughput Low Moderate Moderate
Capture
efﬁFc)ency Low Moderate Moderate
Academic / - CellenONE (Cellenion)* - MARS-Seq (39) - C1 (Fluidigm)
Comrnpeiea) - Smart-Seq2 (42) - Smart-Seq_2 (42) - ddSeq (Biorad / lllumina)
- ICell8 (Clontech)**
scRNA workflow - Rhapsody (BD)
Example . Rare cells based on
afiita Fragile rare cells DR maring Large cell numbers

$Automated pipetting system

*Preselection or enrichment can be performed prior

++0nly reagents added to wells containing singlets, determined by system
FWP: Fluidigm white paper

PB: Product brochure / manual

FACS w ( Microwell \ (
encapsulation

Droplet
encapsulation

Moderate
No*
Moderate
High
Low-Moderate

- InDrop (1CellBio)
- DropSeq (Dolomite-bio)
- 10X (Chromium)

Large cell numbers

Nguyen A, et al. Front Immunol 2018



Chemoresistance evolution in TNBC delineated by
single-cell sequencing

Graphical Abstract

1. neoadjuvant chemotherapy - - -
o o o MMM
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30-50% of TNBCs are resistant to NeoADJ chemotherapy
- lack of genomic biomarkers

Highlights

Single-cell sequencing of breast cancer patients treated with
chemotherapy

Patients showed clonal persistence or extinction in response
to therapy

Resistance occurred through adaptive selection of pre-
existing genomic aberrations

Chemotherapy induced transcriptional reprogramming of
resistant signatures

Kim C, et al. Cell 2018



Gene sighatures associated with chemoresistance in TNBC
—> transcriptional reprogramming and therapeutic opportunities to overcome resistance
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Characterization of the tumor immune
microenvironment

* Single-cell RNA-sequencing of breast tumor immune A Tregs 50':
microenvironment to build immune atlas in breast macrophages / '} N IRE
carcinoma : § §

2k

* This atlas revealed vast diversity in immune cells of
both the adaptive and innate immune systems
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Azizi E, et al. Cell 2018



—> loss of spatial information

Si n g I e-cel IS are co | | e Cte d fro m sSus p ens | ons a Barcoded oligo-dT microarray slide Spatial spots Spatial spot with

spatial probes

of dissociated tissue

Spatial transcriptomics allows to retain the
positional context of gene expression levels

Spatially resolved transcriptomics
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Stahl PL, et al. Science 2016
Salmén F, et al. Nat Protoc 2018



Spatially resolved transcriptomic techniques

Spatial e .

Transcriptomics Slide-seq LCM-seq seqFISH

MERFISH Liver single Goosen e
cell zonation

Data collection
m C Custom data hubs) m

24 datasets (305 sub-datasets) from 5 species

¥

Spatially variable (SV) genes | | Browse/Search/Upload/Download
|
> SV genes identified by SpatialDE S p at I a I D B > Technique introduction
and trendsceek > Dataset description
> GO and KEGG enrichment analysis > Data search/upload/download

fpatially resolved transcriptomic data visualization and comparisox

Spatial Transcriptomics Slide-seq
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Fan Z, et al. Nucleic Acids Res 2019



Spatial transcriptomics and tumor heterogeneity

Different tumor areas (e.g. ductal
carcinoma in situ) can present high
degree of heterogeneity in gene
expression

Unexpected level of heterogeneity
within a biopsy, which would not be
possible to detect with regular bulk
transcriptome analysis

Log2 (norm counts)

01234567

St . \UCL1
o = I

il e S -,

Features
(D) Histological section of a breast cancer biopsy containing invasive ductal cancer (INV) and
six separate areas of ductal cancer in situ (1 to 6),with analyzed spatial transcriptomics

features.
(E) Gene expression heat map over the different areas in four adjacent sections (D)

Stahl PL, et al. Science 2016
Salmén F, et al. Nat Protoc 2018



Spatial transcriptomics — potential applications

Measure gene activity and map biological
processes (e.g. EMT, CSC, immune response)

Correlation between gene expression and
morphological intratumor heterogeneity

Characterization of heterogeneous tumor cell
subpopulations

Characterization of cell-cell interactions (e.g.
tumor cells and microenvironment, including
immune and stroma cells)

c - . Inflammation

Reactive stroma

) sescesese onoj'é'ii
o o« cepith I\A;al,\,cells ®
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i 2. \ ' Inflammation
© 5_ ¢ B .0 -
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Loe

Stromal heterogeneity and reactive stroma in the microenvironment
of inflammation in prostate cancer

Stahl PL, et al. Science 2016
Berglund E, et al. Nat Commun 2018



Artificial Intelligence

Artificial intelligence

Artificial Intelligence is the science of making machines do things requiring
human intelligence. It is human intelligence in machine format where computer
programs develop data-based decisions and perform tasks normally performed
Artificial intelligence by humans.

Artificial intelligence is any computer program that does something smart.

Machine learning

Machine learning Machine learning takes artificial intelligence a step further in the way that
algorithms are programmed to learn and improve without the need for human
data input and reprogramming.

Deep
learning Deep learning

Deep learning is the next generation of machine learning that introduces multiple
layers of learning from massive datasets. Deep learning decisions and data
classifications are refined at each layer to produce accurate insights.

Chan HCS, et al. Trends Pharmacol Sci 2019



Artificial intelligence in oncology

Detection Integration

INEN:} (different types
patterns, of data,
biomarkers,...) clustering,...)

Prediction

(prognosis, response,
disease evolution, drug
development,...)




Integration of multi-omic data to predict prognosis

Similarity
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Cancer Integration via Multikernel
Learning (CIMLR) method applied to
multi-omic data from 36 cancer types
from TCGA to reveal molecular subtypes

Discovered subtypes exhibit significant
differences in patient survival for 27
cancer types

This method outperformed current
state-of-the-art tools in speed, accuracy,
and prediction of patient survival

Ramazzotti D, et al. Nat Commun 2018



CIMLR in breast cancer
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In breast cancer, CIMLR separates 663 tumors into 13 clusters with different overall and
disease-specific survival
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Kaplan—Meier curves showing overall survival for the 13
clusters of breast cancer

Ramazzotti D, et al. Nat Commun 2018



Digital pathology and machine learning to score
Tumor Infiltrating Lymphocytes

Highlights
e Deep learning based computational stain for staining tumor-
infiltrating lymphocytes (TILS)

e TIL patterns generated from 4,759 TCGA subjects (5,202 H&E
slides), 13 cancer types

e Computationally stained TILs correlate with pathologist eye
and molecular estimates

e TIL patterns linked to tumor and immune molecular features,
cancer type, and outcome

Slides -

and Genomic Data

OO

13 Cancer Types
~5000 Participants

Correlate with Clinical

Extract,
Refine
TILs

Saltz J, et al. Cell Rep 2018



Automated assessment of local
structures in the TIL infiltrate and
association with molecular
and clinical readouts

1.00

Ball-Hall Index Adjusted, BRCA

Strata
+= above median
=+ below median

o
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Survival Probability
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b 3

p=0.016

0.00
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Time

Association of TIL Local Spatial Structure
with survival in breast cancer (BRCA)

(A-D) Four cases representing different degrees of lymphocyte infiltration.
Left: H&E diagnostic image at low magnification with tumor regions circled in yellow.

Middle: TIL map; red represents a positive TIL patch, blue represents a tissue region with no TIL patch,

while black represents no tissue.
Right: diagrams of clusters of TIL patches derived from the affinity propagation clustering of the TIL
patches.
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TCGA-33-AASL |LUSC 26245 20.6 40 656.1 293456 41.0 447 159518 0.015 2065.4 Brisk Diffuse
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Saltz J, et al. Cell Rep 2018



With the technological revolution of
Al, may come an educational one:
medical researchers will have to
understand the basics of artificial
intelligence, and, conversely,
computer scientists will have to be
trained to understand medicine

Credit: Dong Wenjie / Moment / Getty

Al added to the curriculum for doctors-to-be

Medical schools and graduate research programs embrace artificial intelligence.

Brouillette M. Nat Med 2019



Conclusions

Breast cancer is a heterogeneous disease

Inter- and intra- tumor heterogeneity
- Therapeutic and clinical implications

Translational research allows a better
understanding of breast cancer biology and of the
mechanisms of treatment resistance/sensitivity

Biomarker identification
- Integration of multiple “omics” data

These findings can be applied to refine patient
prognosis (risk of relapse/progression) and to
allow treatment personalization at a patient-level
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