

Monoclonal and engineered antibodies in cancer therapy

Dr. Claudia Duranti, PhD Department of Experimental and Clinical Medicine University of Florence, Italy

"Basic and translational oncology" Italian-French Erasmus Intensive Course in Oncology organized in collaboration with European Master of Genetics - University Paris7-Paris5

Talk outline:

1.Experimental steps towards the production of monoclonal antibodies

2. Monoclonal antibodies in cancer therapy

3. What is next?.....Antibody engineering

Characteristics of Monoclonal Antibodies

Monoclonal antibodies are

♦ monospecific

=> recognize only one epitope (antigenic determinant)

homogenous

=> identical immunoglobulin molecules=> display identical binding strengths (affinity)

produced in unlimited quantities

usually derived from mouse

Model of Secreted IgG

Abbas, A. K., Lichtman, A. H., & Pillai, S. Cellular and molecular immunology. Philadelphia: Saunders/Elsevier

Structure of an IgG Antibody

Original by Dr. Mike Clark

Monoclonal antibodies are proteins that respond to a single antigenic determinant and are highly specific.

The development of a technology for Ab production has had an extraordinary impact both in the research field and in the clinic.

For the first time, in 1975, Kohler and Milstein produced a cell line by melting a normal B lymphocyte, capable of responding to a single antigenic epitope with a tumor B cell capable of growing indefinitely in vitro.

Nobel prize awarded in1984forthedevelopmentoftheHYBRIDOMATECHNOLOGY

Generation of Monoclonal Antibodies

G. Köhler and C. Milstein 1975

Protocol for monoclonal antibody (mAb) production

How to indefinitely amplify a B lymphocyte specific for a given antigen and select a single Ab producing clone?

Immunization

• For production of mouse monoclonal antibodies, mice of a suitable strain are hyper-immunized with multiple doses of antigen either intraperitoneally or sub-cutaneously.

Intraperitoneal injection

• Blood samples are taken before and a week after each immunization and the antibody titer is monitored.

Blood samples collection

• Three days before fusion mice are given a final intravenous boost in order to maximize the number of antigen-specific B cell blasts.

Intravenous injection

Repeated injections of the same antigen at intervals of several weeks stimulates specific B cells to secrete large amounts of anti-A antibodies into the bloodstream.

Because many different B cells are stimulated by antigen A, the blood will contain a variety of anti-A antibodies, each of which binds A in a slightly different way.

Cell fusion

Cell fusion

according to Kohler and Milstein protocol (1975)

CELL PROCESSING BEFORE FUSION

SPLEEN CELLS

On the day of fusion sacrifice the mouse by cervical dislocation. Open the abdominal cavity and harvest the spleen into a 25 ml plastic tube.

In a tissue culture hood transfer spleen and medium into a 90 mm Petri dish. Using sterile forceps and scissors, carefully remove any surrounding connective tissue.

With a 12 mm diameter Teflon homogeniser, gently squeeze the spleen fragments against the side of the tube in order to free the spleen cells.

Add another 5 ml of 20% BSP in DMEM to the spleen fragments in the Teflon homogeniser and repeat the previous step.

Count the total number of spleen cells in a haemocytometre by making a 1/50 dilution in methyl violet stain. This lyses the red blood cells and stains the white cells blue-violet. Use 1 x 10^{8} cells per fusion.

NS0 MYELOMA MURINE CELLS

- Maintain the mouse myeloma cells in log phase for at least 4-5 days before fusion in 10% BSP in DMEM (either in roller bottle or in 75 cm flasks at 37 C in a 5 % CO₂ incubator).
- Detach NS0 cells and count 100 *10⁶

CELL FUSION

- 2. Stir for 2 minutes;
- 3. Add 1 ml of 37°C preheated DMEM + 4 mM L-Gln in 1 minutes, stirring;
- 4. Repeat step 3;
- 5. Add 1 ml of 37°C preheated DMEM + 4 mM L-Gln in 30 sec, stirring;
- 6. Repeat step 5;

8.

9

- 7. Add 6 ml of 37°C preheated DMEM + 4 mM L-Gln in 2 minutes, stirring;
 - Add 12 ml of 37°C preheated DMEM + 4 mM L-Gln drop to drop, stirring;

Centrifuge at 800 g for 5 minutes and discard supernatant.

From cell fusion you will get:

- B lymphocytes not fused
- not fused myeloma NS0 cells
- Lymphocyte B-lymphocyte B
- myeloma NS0 cell-myeloma NS0 cell
- lymphocyte B-cell of myeloma NS0

Nature Reviews | Immunology

Hybridoma cells as they appear under microscopy examination

How to select hybridomas (B lymphocyte-myeloma cells)?

HAT (hypoxanthine-aminopterin-thymidine)

- B-cell/NS0 hybrid selection requires the use of a selective agent, added to the medium, which is HAT.
- HAT contributes to selection, exploiting the following mechanism: NS0 myeloma cells lack of the expression of *Hypoxanthine-Guanine PhosphoRibosyl Transferase (HGPRT)* enzyme.
- *HGPRT* is an enzyme that catalyses the conversion of hypoxanthine to inosine monophosphate and guanine to guanosine monophosphate, transferring the 5-phosphoribosyl group from 5-phosphoribosyl 1-pyrophosphate (PRPP) to the purine, thus playing a central role in the generation of purine nucleotides through the purine salvage pathway.
- Cells that do not express this enzyme can produce purine nucleotides only through the de novo pathway; but the latter is blocked by aminopterine.
- B lymphocytes not fused, hybrid Lymphocyte B-lymphocyte B have a short lifespan.

Only hybrids B lymphocytes- NS0 myeloma cells survive

FIG. 21. Pathways of nucleotide biosynthesis showing enzymatic steps that are altered in mutant cells used as fusion partners. Mutant cells lacking HOFRT or TK cannot use the corresponding salvage pathway for nucleotide biosynthesis. Such mutants cannot survive in medium containing arimopterin to poison the de novo synthesis pathway. However, individual mutant cells that have fused with spleen cells and thus do contain the HGPRT or TK enzyme can survive in appropriate selective medium by using the salvage pathway. HGPRT, hypoxanthine guaranie phosphorhoosyl transferase, TK, thymdine kinase.

Media+HAT (Ipoxantina, Aminopterina, Timidina)

FIG. 21. Pathways of nucleotide biosynthesis showing enzymatic steps that are altered in mutant cells used as fusion partners. Mutant cells lacking HGPRT or TK cannot use the corresponding salvage pathway for nucleotide biosynthesis. Such mutants cannot survive in medium containing aminopterin to poison the de novo synthesis pathway. However, individual mutant cells that have fused with spleen cells and thus do contain the HGPRT or TK enzyme can survive in appropriate selective medium by using the salvage pathway. HGPRT, hypoxanthine guanine phosphoribosyl transferase; TK, thymidine kinase.

- 1. Antigen
- 2. Antigen antibody complex
- 3. Antigen antibody complex + conjugate
- 4. Antigen antibody complex + conjugate + substrate= coloured product

Antibody large scale production through... Massive culture in specific media

...flasks

....mAb therapeutic applications

Nature Reviews | Cancer

Table 2 | Tumour-associated antigens targeted by therapeutic monoclonal antibodies in oncology

Antigen category	Examples of antigens	Examples of therapeutic mAbs raised against these targets	Tumour types expressing antigen
Haematopoietic	CD20	Rituximab	Non-Hodgkin's lymphoma
differentiation		Ibritumomab tiuxetan and tositumomab	Lymphoma
	CD30	Brentuximab vedotin	Hodgkin's lymphoma
	CD33	Gemtuzumab ozogamicin	Acute myelogenous leukaemia
	CD52	Alemtuzumab	Chronic lymphocytic leukaemia
Glycoproteins	EpCAM	IGN101 and adecatumumab	Epithelial tumours (breast, colon and lung)
expressed by solid tumours	CEA	Labetuzumab	Breast, colon and lung tumours
	gpA33	huA33	Colorectal carcinoma
	Mucins	Pemtumomab and oregovomab	Breast, colon, lung and ovarian tumours
	TAG-72	CC49 (minretumomab)	Breast, colon and lung tumours
	CAIX	cG250	Renal cell carcinoma
	PSMA	J591	Prostate carcinoma
	Folate-binding protein	MOv18 and MORAb-003 (farletuzumab)	Ovarian tumours
Glycolipids	Gangliosides (such as GD2, GD3 and GM2)	3F8, ch14.18 and KW-2871	Neuroectodermal tumours and some epithelial tumours
Carbohydrates	Le ^y	hu3S193 and IgN311	Breast, colon, lung and prostate tumours
Targets of	VEGF	Bevacizumab	Tumour vasculature
anti-angiogenic mAbs	VEGFR	IM-2C6 and CDP791	Epithelium-derived solid tumours
	Integrin αVβ3	Etaracizumab	Tumour vasculature
	Integrin α5β1	Volociximab	Tumour vasculature
Growth and differentiation	EGFR	Cetuximab, panitumumab, nimotuzumab and 806	Glioma, lung, breast, colon, and head and neck tumours
signalling	ERBB2	Trastuzumab and pertuzumab	Breast, colon, lung, ovarian and prostate tumours
	ERBB3	MM-121	Breast, colon, lung, ovarian and prostate, tumours
	MET	AMG 102, METMAB and SCH 900105	Breast, ovary and lung tumours
	IGF1R	AVE1642, IMC-A12, MK-0646, R1507 and CP 751871	Glioma, lung, breast, head and neck, prostate and thyroid cancer
	EPHA3	KB004 and IIIA4	Lung, kidney and colon tumours, melanoma, glioma and haematological malignancies
	TRAILR1	Mapatumumab (HGS-ETR1)	Colon, lung and pancreas tumours and
	TRAILR2	HGS-ETR2 and CS-1008	haematological malignancies
	RANKL	Denosumab	Prostate cancer and bone metastases
Stromal and extracellular matrix	FAP	Sibrotuzumab and F19	Colon, breast, lung, pancreas, and head and neck tumours
antigens	Tenascin	81C6	Glioma, breast and prostate tumours

"Antibody therapy of cancer", Andrew M. Scott¹, Jedd D. Wolchok and Lloyd J. Old, Nature Reviews, 2012

Therapeutic Effects of Monoclonal Antibodies

Direct effects

- ♦ Blockade of growth factors / growth factor receptors
- ♦ Induction of apoptosis
- ♦ Inhibition of angiogenesis

Indirect effects

- Complement-dependent cytotoxicity (CDC)
- ♦ Antibody-dependent cellular cytotoxicity (ADCC)
- Vehicel for toxins, radionuclides and cytostatic drugs
- ♦ Anti-idiotype antibody formation
- Effector cell targeting using bispecific antibodies

Strategies for Therapeutic Application of Monoclonal Antibodies

in vivo:

- mAb against differentiation antigens (ADCC, complement fixation)
- mAb with direct anti-proliferative effects (growth receptors, apoptosis)
- mAb interfering with angiogenesis
- mAb as carriers for radioisotopes (radioimmunotherapy)
- mAb as carriers for toxins (immunotoxins)
- Anti-idiotype mAb
- Bispecific mAb to focus effector cell activity (effector cell targeting)

ex vivo:

- Autologous BM/SC transplantation: purging of the autograft with mAb
- Allogeneic BM/SC transplantation: prevention of GVHD by T cell depletion

Monoclonal antibody evolution...

Milestone *mAbs* used in cancer therapy

Rituximab

Cetuximab

Trastuzumab

Bevacizumab

Monoclonal antibody development

...A FAST STORY

Monoclonal antibody development

MABS 2018, VOL. 10, NO. 2, 183–203 https://doi.org/10.1080/19420862.2018.1415671

PERSPECTIVE

Antibodies to watch in 2018

Hélène Kaplon^a and Janice M. Reichert^b

^aLaboratory UMRS 1138 "Cancer, Immune Control and Escape", Cordeliers Research Centre, Paris, France; ^bThe Antibody Society, Framingham, MA, USA

International non-proprietary name	Brand name	Target; Format	Indication first approved	Date of first EU approval	Date of first US approval
Brodalumab	Siliq, Lumicef, Kyntheum	IL-17RA; Human IgG2	Plaque psoriasis	7/17/17	2/15/17
Avelumab	Bavencio	PD-L1; Human IgG1	Merkel cell carcinoma	9/18/17	3/23/17
Dupilumab	Dupixent	IL-4Rα; Human IgG4	Atopic dermatitis	9/27/17	3/28/17
Ocrelizumab	Ocrevus	CD20; Humanized IgG1	Multiple sclerosis	EC decision pending	3/29/17
Durvalumab	Imfinzi	PD-L1; Human IgG1	Bladder cancer	In review	5/1/17
Sarilumab	Kevzara	IL-6R; Human IgG1	Rheumatoid arthritis	6/23/17	5/22/17
Guselkumab	Tremfya	IL-23 p19; Human IgG1	Plaque psoriasis	11/23/17	7/13/17
Inotuzumab ozogamicin	Besponsa	CD22; Humanized IgG4; ADC	Acute lymphoblastic leukemia	6/29/17	8/17/17
Benralizumab	Fasenra	IL-5R α ; Humanized IgG1	Asthma	EC decision pending	11/14/17
Emicizumab	Hemlibra	Factor IXa, X; Humanized IgG4, bispecific	Hemophilia A	In review	11/16/17

Table 1 (Antibody therapeutics approved) in the European Union or United States during 2017*.

10 monoclonal antibodies (mAbs) have received

their first marketing approvals in 2017 by FDA and EMA

∂ OPEN ACCESS

Check for updates

università degli studi FIRENZE

Primary sponsoring company	INN or code name	Molecular format	Target	Most advanced phase	Late-stage study indication(s)
Actinium Pharmaceuticals	l-131-BC8, lomab-B	Murine lgG1, radiolabeled	CD45	Phase 3	Ablation of bone marrow prior to hematopoietic cell transplantation in AML patients
Sanofi	Isatuximab	Humanized* IgG1	CD38	Phase 3	Multiple myeloma
TG Therapeutics	Ublituximab	Chimeric lgG1	CD20	Phase 3	Chronic lymphocytic Leukemia, non-Hodgkin lymphoma, multiple sclerosis
AstraZeneca/ MedImmune LLC	Moxetumomab pasudotox	Murine IgG1 dsFv immunotoxin	CD22	Phase 3	Hairy cell leukemia
MorphoSys	XMAB-5574, MOR208	Humanized IgG1	CD19	Phase 2/3	Diffuse large B-cell lymphoma
Pfizer	Utomilumab	Human IgG2	4-1BB (CD137)	Phase 3	Diffuse large B-cell lymphoma
Hoffmann-La Roche	Polatuzumab vedotin	Humanized IgG1 ADC	CD79b	Phase 3	Diffuse large B-cell lymphoma
Viventia Bio	Oportuzumab monatox	Humanized scFv immunotoxin	EpCAM	Phase 3	Bladder cancer
Seattle Genetics	Enfortumab vedotin	Human IgG1 ADC	Nectin 4	Pivotal Phase 2	Urothelial cancer
Jiangsu HengRui Medicine Co., Ltd	Camrelizumab	Humanized IgG4	PD-1	Phase 2/3	Hepatocellular carcinoma, esophageal carcinoma
MacroGenics	Margetuximab	Chimeric IgG1	HER2	Phase 3	Breast cancer
Synthon Biopharmaceuticals BV	(vic-)trastuzumab duocarmazine	Humanized IgG1 ADC	HER2	Phase 3	Breast cancer
Immunomedics, Inc	Sacituzumab govitecan	lgG1 ADC	TROP-2 (epithelial glyco-protein-1)	Phase 3	Triple-neg. breast cancer
Celldex Therapeutics	Glembatumumab vedotin	Human IgG2 ADC	gpNMB	Pivotal Phase 2	gpNMB+ breast cancer, melanoma
Daiichi Sankyo	DS-8201	Humanized ADC	HER2	Pivotal Phase 2	HER2+ gastric or gastroesophageal junction adenocarcinoma
Gilead Sciences	Andecaliximab	Humanized ⁺ IgG4	MMP-9	Phase 3	Gastric cancer or gastroesophageal junction adenocarcinoma
AbbVie	Depatuxizumab mafodotin	lgG1 ADC	EGFR	Phase 2b/3	Glioblastoma
AstraZeneca/ MedImmune LLC	Tremelimumab	Human IgG2	CTLA-4	Phase 3	Non-small cell lung, head & neck, urothelial cancer, hepatocellular carcinoma
Recombio SL Regeneron Pharmaceuticals	Racotumomab Cemiplimab	Murine lgG1 Human mAb	NGcGM3 PD-1	Phase 3 Pivotal Phase 2; Phase 3	Non-small cell lung cancer Cutaneous squamous cell carcinoma; non-small cell
Innovent Biologics (Suzhou)	IBI308	Human mAb	PD-1	Phase 3	Squamous cell non-small cell
Co. Ltd. BeiGene	BGB-A317	Humanized mAb	PD-1	Phase 3	lung cancer Non-small cell
AbbVie	Rovalpituzumab	Humanized IgG1	DLL3	Phase 3	Small cell lung cancer
ImmunoGen	Mirvetuximab soravtansine	IgG1 ADC	Folate receptor 1	Phase 3	Epithelial ovarian cancer, peritoneal carcinoma, fallopian tube cancer
Biocad	BCD-100	Human mAb	PD-1	Phase 2/3	Melanoma
Novartis	PDR001	Humanized IgG4	PD-1	Phase 3	Melanoma
Philogen SpA	L19IL2/L19TNF	scFv immuno- conjugates	Fibronectin extra- domain B	Phase 3	Melanoma
Tracon	Carotuximab	Chimeric IgG1	Endoglin	Phase 3	Soft tissue sarcoma, angiosarcoma, renal cell

Table 4. Antibody therapeutics in late-stage clinical studies for cancer indications

carcinoma, wet age related macular degeneration

MABS 2019, VOL. 11, NO. 2, 219-238 https://doi.org/10.1080/19420862.2018.1556465

PERSPECTIVE

Hélène Kaplon^a and Janice M. Reichert ^{ob}

alnstitut de Recherches Servier, Croissy-sur-Seine, the Division of Biotechnology & Biomarker Research, France; bThe Antibody Society, Framingham, MA, USA

∂ OPEN ACCESS

Check for updates

32 antibodies are undergoing evaluation in late-stage clinical studies of patients with cancer

Primary sponsoring company	INN or code name	Molecular format	Target(s)	Most advanced phase	Pivotal Phase 2, Phase 2/3 or 3 indications
TG Therapeutics ADC Therapeutics Sarl	Ublituximab Loncastuximab	Chimeric IgG1 Humanized IgG1	CD20 CD19	Phase 3 Pivotal Phase 2	Chronic lymphocytic leukemia Diffuse large B-cell lymphoma
Hoffmann-La Roche	tesirine Polatuzumab	ADC Humanized IgG1	CD79b	Phase 3	Diffuse large B-cell lymphoma
Dfinar	vedotin	ADC	4 100 (CD127)	Phase 2	Diffure large R cell lumphoma
MorphoSys	XMAB-5574, MOR208	Humanized IgG1	CD19	Phase 2/3	Diffuse large B-cell lymphoma
Sanofi	Isatuximab	Humanized IgG1	CD38	Phase 3	Multiple myeloma
Jiangsu HengRui Medicine Co., Ltd	Camrelizumab	Humanized IgG4	PD-1	Phase 3; regulatory review in China	Hodgkin's lymphoma, hepatocellular carcinoma
Actinium	I-131-BC8, Iomab-B	Murine IgG1, radio-labeled	CD45	Phase 3	Ablation of bone marrow prior to hematopoieti cell transplantation in AML patients
Tracon	Carotuximab	Chimeric IaG1	Endoalin	Phase 3	Angiosarcoma
Alphamab Oncology	KN035	mAb, single domain	PD-L1	Phase 3	Bile tract carcinoma
Viventia Bio	Oportuzumab monatox	Humanized scFv	EpCAM	Phase 3	Bladder cancer
Bio-Thera Solutions	BAT8001	Humanized IgG1	HER2	Phase 3	Breast cancer
Synthon Biopharmaceuticals BV	(vic-)trastuzumab duocarmazine	Humanized IgG1 ADC	HER2	Phase 3	Breast cancer
MacroGenics	Margetuximab	Chimeric IgG1	HER2	Phase 3	Breast cancer
Daiichi Sankyo	Trastuzumab deruxtecan	Humanized ADC	HER2	Phase 3	Breast cancer, HER2+ gastric or gastroesophage junction adenocarcinoma
Five Prime Therapeutics, Zai Lab Limited	Bemarituzumab	Humanized IgG1	FGFR2b	Phase 3	Gastric and gastro-esophageal junction
Astellas	Zolbetuximab, claudiximab	Chimeric IgG1	Claudin-18.2	Phase 3	Gastric and gastro-esophageal junction adenocarcinoma
Gilead Sciences	Andecaliximab	Humanized IgG4	MMP9	Phase 3	Gastric cancer or gastroesophageal junction adenocarcinoma
AbbVie	Depatuxizumab mafodotin	lgG1 ADC	EGFR	Phase 2b/3	Glioblastoma
Y-mabs Therapeutics	Naxitamab	Humanized mAb	GD2	Phase 3	High risk neuroblastoma and refractory osteomedullary disease
Bristol-Myers Squibb	Relatlimab (BMS- 986016)	Human mAb	LAG-3	Phase 2/3	Melanoma
Biocad	BCD-100	Human mAb	PD-1	Phase 2/3	Melanoma
Novartis	Spartalizumab, PDR001	Humanized IgG4	PD-1	Phase 3	Melanoma
Philogen SpA	L19IL2 + L19TNF	scFv conjugates	Fibronectin extra-domain B	Phase 3	Melanoma
Y-mAbs Therapeutics	131I-omburtamab	Murine mAb, radiolabeled	B7-H3	Phase 2/3	Neuroblastoma central nervous system/ lentomeningeal metastases
BeiGene	Tislelizumab (BGB- A317)	Humanized mAb	PD-1	Phase 3; regulatory review in China	Non-small cell lung cancer, Hodgkin's lymphom
Innovent Biologics	IBI308	Human mAb	PD-1	Phase 3; regulatory	Squamous cell non-small cell lung cancer
CStone Pharmaceuticals	CS1001	Human	PD-L1	Phase 3	Non-small cell lung cancer
AstraZeneca/ Medimmune LLC	Tremelimumab	Human IgG2	CTLA4	Phase 3	Non-small cell lung, head & neck, urothelial car
Tesaro, Inc.	TSR-042	Humanized mAb	PD-1	Phase 3	Ovarian cancer
mmunoGen	Mirvetuximab soravtansine	lgG1 ADC	Folate receptor 1	Phase 3	Ovarian cancer
AbbVie	Rovalpituzumab tesirine	Humanized IgG1 ADC	DLL3	Phase 3	Small cell lung cancer
Seattle Genetics	Enfortumab vedotin	Human IgG1 ADC	Nectin 4	Phase 3	Urothelial cancer

Data available as of November 30, 2018. Abbreviations: ADC, antibody drug conjugate; CTLA-4, cytotoxic T-lymphocyte–associated antigen 4; DLL3, delta-like protein 3; EGFR, epidermal growth factor receptor; EpCAM, epithelial cell adhesion molecule; FGFR2, fibroblast growth factor receptor 2; HER2, human epidermal growth factor receptor-2; MMP-9, matrix metallopeptidase 9; PD-1, programmed cell death 1; PD-L1, programmed death ligand-1.

Table 4. Investigational monoclonal antibodies in late-stage clinical studies for cancer indications.

Effects of Trastuzumab (Herceptin)

EGFR signaling

- The EGFR is activated by growth factors (e.g. epidermal growth factor (EGF) and transforming growth factor- α (TGF- α)).
- EGFR-activation leads to the building of either receptor homo- or heterodimers.
- Receptor dimerization initiates an intracellular signaling cascade, gene activation and the stimulation of cell cycle progression.

The importance of EGFR as a target

"Evidence for a role for the EGFR in the inhibition and pathogenesis of various cancers has led to the rational design and development of agents that selectively target this receptor."

* Baselga 2002

Erbitux[®] (cetuximab)

- Erbitux[®] (cetuximab) is an IgG1 mAb targeting the EGFR
- Binding blocks EGFR signaling and inhibits proliferation, angiogenesis and metastasis, and stimulates apoptosis and differentiation
- The main toxicity is an acne-like rash that generally improves during treatment, and usually does not preclude continued treatment

Figure 3. Mechanisms of action of cetuximab. (A) Cetuximab has a higher affinity for the EGFR than either $TGF\alpha$ or EGF and effectively blocks ligand binding and ligand induced EGFR phosphorylation.⁷⁷⁻⁸⁰ (B) Cetuximab has been noted to sterically hinder the binding of EGFR to other HER family members.⁸¹ (C) Cetuximab promotes the internalization and degradation of the EGFR, abrogating its downstream signaling cascades.⁸³ (D) Cetuximab treatment of cancer cell lines and human tumor xenografts have shown a dramatic cell cycle arrest in the G₁ phase of the cell cycle. Further investigations indicated that this was due to an increased expression of the cell cycle inhibitor $p27^{Kprl}$. This increased expression led to the formation of $p27^{Kprl}$. Cdk2 complexes and the prevention of cells from exiting the G₁ phase of the cell cycle. ⁶⁶⁻⁶⁸ (E) It has been noted that EGFR expressing tumor lines display a significant increase in pro-angiogenic factors leading to increased angiogenesis to the tumor. Treatment with cetuximab has been shown to dramatically decrease the expression of pro-angiogenic factors. In addition to decreased angiogenesis, there is evidence that cetuximab therapy may lead to decreased invasion and metastatic spread of tumor cell.⁸⁶⁻⁹⁷ (F) Cetuximab treatment has also been noted to influence the balance of apoptosis and cell survival through modulation of the expression of Bax, which promotes apoptosis and Bcl2, which promotes survival. Treatment with cetuximab has also been noted to influence the salas been been survival to expression of Bax and decreased Bcl2.³⁵⁻⁹⁷ (G) Antibody-dependent cellular cytotoxicity mediated by cetuximab has also been noted in several studies.^{91,90}

Strategies for Therapeutic Application of Monoclonal Antibodies

in vivo:

- mAb against differentiation antigens (ADCC, complement fixation)
- mAb with direct anti-proliferative effects (growth receptors, apoptosis)
- mAb interfering with angiogenesis
- mAb as carriers for radioisotopes (radioimmunotherapy)
- mAb as carriers for toxins (immunotoxins)
- Anti-idiotype mAb
- Bispecific mAb to focus effector cell activity (effector cell targeting)

ex vivo:

Autologous BM/SC transplantation: purging of the autograft with mAb
Allogeneic BM/SC transplantation: prevention of GVHD by T cell depletion

Inhibition of Angiogenesis

Targets for Angiogenesis Inhibition

Avastin[™] (bevacizumab)

- Recombinant humanized monoclonal IgG₁ antibody¹
- Recognizes all isoforms of VEGF²
- Estimated half-life is approximately 20 days (range, 11-50 days)¹

Avastin[™] (bevacizumab) PI. February 2004.
 Presta et al. *Cancer Res.* 1997;57:4593.

NANOBODIES APPLICATIONS IN ONCOLOGY

Table 1 Antibod	y constructs and	l potential use	es in oncology
-------------------	------------------	-----------------	----------------

	Antibody constructs	Examples of targets	Potential clinical use
(scFv	CC49, ERBB2 and Le ^v	Imaging and cell targeting
	Diabody	Le ^v and TAG-72	Imaging and drug delivery
	Affibody	ERBB2	Imaging and drug delivery
	Minibody	CEA and ERBB2	Imaging and drug delivery
	Protein-Fc	Angiopoietin 1, angiopoietin 2, VEGFR1 and VEGFR2	Imaging and therapy
	Intact IgG	CD20, CD33, EGFR, ERBB2 and VEGF	Imaging therapy and drug delivery
	IgE and IgM	GM2	Therapy
	Drug conjugates	CD30, CD33 and ERBB2	Therapy
	Loaded nanoparticles	A33, EGFR and transferrin	Drug delivery
	Bispecifics	CD19–CD3, EPCAM–CD3 and gp100–CD3	Therapy

Nanobodies have great applications in clinical and diagnostic setting, with remarkable results especially for molecular imaging.
 Oliveira S. et al., Journal of Controlled Release, 2013

Scott et al. Nature Reviews, 2012

ION CHANNELS AND TRANSPORTERS... IN CANCER

Vandenberg J.I., Physiologica Revievs, 2012

KCa 3.1, KCa 1. Kv 11.1

K2P 9.1. KCa 1.1. Kv11.1

evadi

Madden D.R., Nature Review, 2002

^{activation} invasion and metastasis

KCa3.1.KCa1.1 Ky 11.1 KCa2.3

esisti death

GluR4, Glutamate Receptor ion channel

and-binding cleft

hERG1, Potassium channel

IgG structure

Recombinant Antibody Fragments

"Applications of single-chain variable fragment antibodies in therapeutics and diagnostics "

Nina E. Weisser, J. Christopher Hall, Biotechnology Adavances, 2009

• Production of a **monoclonal antibody** against the *glutamate receptor*, *GluR4*.

B5 Clones obtained from soft agar cloning

- *Antibody engineering:* production of scFv, to be used as a diagnostic and drug delivery agents.
- After *soft agar cloning*, 102 grown clones were picked, grown in 24 well-plates and screened through ELISA assay: 28 gave out of scale absorbance (OD 450)

Antibody engineering

triggered by glia.

Table 1 Antibody constructs and potential uses in oncology					
Antibody constructs Examples of targets		Potential clinical use			
scFv	CC49, ERBB2 and Le ^y	Imaging and cell targeting			
Diabody	Le ^v and TAG-72	Imaging and drug delivery			
Affibody	ERBB2	Imaging and drug delivery			
Minibody	CEA and ERBB2	Imaging and drug delivery			
Protein-Fc	Angiopoietin 1, angiopoietin 2, VEGFR1 and VEGFR2	Imaging and therapy			
Intact IgG	CD20, CD33, EGFR, ERBB2 and VEGF	Imaging therapy and drug delivery			
IgE and IgM	GM2	Therapy			
Drug conjugates	CD30, CD33 and ERBB2	Therapy			
Loaded nanoparticles	A33, EGFR and transferrin	Drug delivery			
Bispecifics	CD19–CD3, EPCAM–CD3 and gp100–CD3	Therapy			

cell

Complement

MAC

C1q-

ΓNK cell

Picture from Antibody therapy of cancer (Scott et al. 2012).

Antibody expression

www.oncotarget.com

Oncotarget, 2018, Vol. 9, (No. 79), pp: 34972-34989

Research Paper

Generation and characterization of novel recombinant antihERG1 scFv antibodies for cancer molecular imaging

Claudia Duranti¹, Laura Carraresi², Angelica Sette^{1,4}, Matteo Stefanini², Tiziano Lottini¹, Silvia Crescioli^{1,5}, Olivia Crociani¹, Luisa Iamele³, Hugo De Jonge³, Ermanno Gherardi³ and Annarosa Arcangeli¹

• hERG1 is an ion channel overexpressed in several types of tumors.

scFv- hERG1 to be used as a diagnostic molecular tool.

The cDNA of the construct expressing the scFv-hERG1 was cloned into pPIC9K vector to express the protein in *Pichia Pastoris*. The vector has been modified to carry the His tag useful for purification.

А

EVQLQQSGPELVKPGASVKISCKTSGYTFTEYTVHWVKQSHGKSLEWIGGINPNGGTTY

• in silico studies indicated that there was a point mutation in a peculiar position

1-1

• we evaluated the binding properties of the two different antibodies

- scFv is stable;
- scFv is cleared;
- No signs of toxicity both from ECG and ex vivo analysis

• scFv as imaging tool tested in PDAC (pancreatic ductal adenocarcinoma) mouse model

5 min

30 min

в

10 min

60 min

Bispecific antibodies

- Integrin activates hERG1 channel (Arcangeli et al. 1993), and hERG1 channel modulate integrin downstream signalling
- Targeting hERG1 channel in specific macromolecular complexes selectively expressed on cancer cells, such as hERG1/ β 1integrin complex could be a valid strategy for cancer therapy (Becchetti et al., 2017).

Patent. Inventors: Arcangeli A, Duranti C. et al.

Patent Ref: 102017000083637

- mAbs
- Engeneered antibodies: scFv, bispecifics, T-CAR

3rd generation of cancer therapeutics

Thank you for your attention!

A.A. n°15627

a for

Regione Toscana

<u>Grant to</u> <u>A.A. n° B11J12000940002</u>

<u>Università di Firenze-</u> <u>Dipartimento Medicina Sperimentale e Clinica</u>

<u>Università di Pavia-</u> <u>Div. Immunology and General Pathology</u> <u>Dept. Molecular Medicine</u> Prof. Ermanno Gherardi Dr. Luisa Iamele Dr. Hugo de Jonge Prof. Annarosa Arcangeli Dr. Olivia Crociani Dr. Elena Lastraioli Dr. Jessica Iorio Dr. Tiziano Lottini Dr. Giacomo Bagni Dr. Laura Carraresi Dr. Massimo D'Amico Dr. Matteo Stefanini

human epidermal growth factor receptor Phosphorylation of the tyrosine kinase domain by means of homodimerization or heterodimerization induces both cell proliferation and survival signaling HER2 is the preferred dimerization partner for the other HER family members. The phosphorylated (activated) tyrosine residues on the intra- cellular domain of HER2 activate the lipid kinase phosphoinositide 3-kinase (PI3-K)

Binding of trastuzumab to a juxtamembrane domain of HER2 reduces shedding of the extracellular domain, thereby reducing p95 (Panel C). Trastuzumab may reduce HER2 signaling by physically inhibiting either homodimerization, as shown, or heterodimerization Bevacizumab acts by selectively binding circulating VEGF, thereby inhibiting the binding of VEGF to its cell surface receptors. This inhibition leads to a reduction in mi- crovascular growth of tumor blood vessels and thus limits the blood supply to tumor tissues. These effects also lower tissue interstitial pressure, increase vascular permeability, may increase delivery of chemotherapeutic agents, and fa- vor apoptosis of tumor endothelial cells