Biomarkers in

Oncology:

from diagnosis

January 22nd 2020

NOSIS

OUTLINE OF THE TALK

- ✓ Definition of Biomarkers in oncology
- ✓ Diagnostic Tests
- ✓ Definition of Cancer Classification and Staging
- \checkmark Histological Classification
- \checkmark TNM Classification
- ✓ Grading
- \checkmark Molecular Classification
- ✓ Examples: Breast Cancer

Colorectal Cancer

- ✓ Treatment
- ✓ Conclusions

A cancer biomarker refers to a substance or process that is indicative of the presence of cancer in the body.

A biomarker may be a molecule secreted by a tumor or a specific response of the body to the presence of cancer.

Cancer Biomarkers

Cancer Biomarkers

Biomarkers allow physicians to classify patients by their probable disease risk, prognosis and/or response to treatment

Insights into biomarkers analysis have resulted in scientists being able to understand **the diversity of lung cancer** better than ever before

References: Vargas AJ & Harris CC. Biomarker development in the precision medicine era: lung cancer as a case study. Nature Reviews Cancer. 2016:16:525-537 Document ID: Z4-9122 Date of preparation: February 2018 Date of expiry: February 2020 MedImmune Astra

Cancer Biomarkers

Risk Assessment	Screening/ Detection	Diagnosis	Prognosis	Prediction	Monitoring
Identify factors to assess disease susceptibility	Indicate the presence of disease; early detection	Definitive diagnosis and general typing	Assess disease aggressiveness & likelihood of recurrence	Predict efficacy or response to different treatments	Monitor disease recurrence & therapeutic response
 BRCA 1 & 2 Brevagen Sphingotest 	 Videssa[®] Breast 	 Immuno- histochemistry 	 OncotypeDx[®] Mammaprint[®] Prosigna 	HER2ER/PR	CA 27.29CEA

- ✓ Cancer is a <u>genetic disease</u> since it is due to alterations in patients' DNA.
- ✓ Deciphering the genetic changes is necessary to <u>understand</u> the disease.
- ✓ Unraveling the genetic bases of cancer allows us to design the best <u>treatment</u> protocols for each single patient.

\checkmark Diagnostic Tests

DIAGNOSTIC TESTS Diagnosis

- Identification of the presence/amount of a specific protein. It can be performed on blood samples (es. CEA, CA-125) and on tumour tissue (es. ER, HER2/Neu).
- Evaluation of the <u>expression of a set of genes (microarray technology</u>): diagnostic tests development, better classification, identification of new therapeutic targets, setting up of personalised treatments).

DIAGNOSTIC TESTS Diagnosis

Evaluation of <u>mutations and epigenetic changes</u>: gene sequencing (<u>Sanger sequencing</u>, <u>Pyrosequencing</u>, <u>Next</u> <u>Generation Sequencing</u>), <u>Beaming</u>.

Diagnosis

DIAGNOSTIC TESTS

PYROSEQUENCING

DIAGNOSTIC TESTS

DIAGNOSTIC TESTS

Nature Reviews | Gastroenterology & Hepatology

Diagnosis

DIAGNOSTIC TESTS

DIAGNOSTIC TESTS

DIAGNOSTIC TESTS

BEAMing (performed on cell-free tumour DNA)

Diagnosis

DIAGNOSTIC TESTS

✓ Definition of Cancer Classification and Staging

Cancer Classification and Staging

DISEASE CLASSIFICATION is central to <u>understand</u> the bases of the diseases, make <u>diagnosis</u> and assign <u>treatment</u>.

Cancer Classification and Staging

Cancer nomenclature is based on:

- 1. <u>Localization</u> (breast cancer, lung cancer....)
- 1. Within each organ-specific major type several <u>subgroups</u> are defined, taking into account cell type, histological grades and MOLECULAR MARKERS

 \checkmark Histological Classification

Histological Classification

Neoplasia Oma - Tumour Neoplasms Nomenclature: Carcin-oma - Hard Tumour Sarc-oma - Soft Tumour Cell of Origin Benign Malignant · Gland. Epithelium · Adenoma -Adencarcinoma

Papilloma -

- Lining. Epithelium
- Fibroblast
- Osteoblast
- Chondrocyte
- Lipocyte
- Smooth muscle
- Skeletal muscle

- Fibroma -
- Osteoma -
- Chondroma
- Lipoma
- Leiomyoma ٠
- Rhabdomyoma Rhabdomyosarcoma ٠

- Fibrosarcoma
- Osteosarcoma

Squamous cell ca.

- Chondrosarcoma
 - Liposarcoma
 - Leiomyosarcoma

$\checkmark\,$ TNM Classification

TNM Classification of Malignant Tumours

SEVENTH EDITION

EDITED BY LESLIE SOBIN | MARY GOSPODAROWICZ | CHRISTIAN WITTEKINI

- 1. To aid the clinician in the planning of treatment
- 2. To give some indication of prognosis
- 3. To assist in evaluation of the results of treatment
- 4. To facilitate the exchange of information between treatment centres
- 5. To contribute to the continuing investigation of human cancer
- 6. To support cancer control activities

The General Rules of the TNM System

The TNM system for describing the anatomical extent of disease is based on the assessment of three components:

- T The extent of the primary tumour
- N The absence or presence and extent of regional lymph node metastasis
- M The absence or presence of distant metastasis

The addition of numbers to these three components indicates the extent of the malignant disease, thus:

```
T0, T1, T2, T3, T4 N0, N1, N2, N3 M0, M1
```

cTNM (CLINICAL)

Essential to select and evaluate therapeutic options Defined before treatment Based on evidences aquired by clinical examination, imaging, endoscopy, biopsy....

Tumor grade: description of a tumor based on how abnormal the tumor cells and the tumor tissue look under a microscope.

It is an indicator of how quickly a tumor is likely to grow and spread.

If a grading system for a tumor type is not specified, the following system is generally used:

GX: Grade cannot be assessed (undetermined grade)

- G1: Well differentiated (low grade)
- G2: Moderately differentiated (intermediate grade)
- G3: Poorly differentiated (high grade)
- G4: Undifferentiated (high grade)

Grading

Example: breast cancer

Grading

Example: colorectal cancer

 \checkmark Molecular Classification

Molecular Classification

BIOMOLECULAR STAGING

- Identification of <u>tumour markers</u> involved in different processes that lead to tumour progression.
- Better <u>patients' stratification</u> into TNM stagingdefined risk groups.
- Potentially applicable to: primary tumour, lymphnodes, bone marrow, serum.
- Useful for: <u>early diagnosis</u>, prognosis estimation, <u>occulte metastases identification</u>, predictive markers <u>for chemotherapy resistence or response</u>.
- > Panels of biomarkers depending on the tumour type.

Breast Cancer

Breast Cancer

HISTOLOGICAL CLASSIFICATION

TNM CLASSIFICATION

ANATOMI	C STAGE/P	ROGNOSTIC	GROUPS
Stage 0	Tis	N0	MO
Stage IA	T1*	N0	MO
Stage IB	Т0	N1mi	MO
-	T1*	N1mi	MO
Stage IIA	Т0	N1**	MO
	T1*	N1**	M0
	T2	N0	M0
Stage IIB	T2	N1	M0
	Т3	N0	MO
Stage IIIA	Т0	N2	M0
-	T1*	N2	MO
	T2	N2	MO
	Т3	N1	MO
	Т3	N2	MO
Stage IIIB	T4	N0	MO
-	T4	N1	MO
	T4	N2	MO
Stage IIIC	Any T	N3	MO
Stage IV	Any T	Any N	M1

Breast Cancer

The One-Step Nucleic acid Amplification (<u>OSNA</u>) assay is a molecular procedure that can identify deposits of breast cancer cells in the sentinel lymph node.

sysmex

MOLECULAR CLASSIFICATION

Breast Cancer

MOLECULAR CLASSIFICATION

MOLECULAR DIAGNOSTICS TESTS

MAMMAPRINT®

10% chance of recurrence within 10 years with no treatment

29% chance of recurrence within 10 years with no treatment

MOLECULAR DIAGNOSTICS TESTS

ONCOTYPE DX®

Stage 1 and 2 Breast Cancer, node negative, ER+; expression of 21 genes (16 genes known to be related with breast cancer and 5 reference genes)

- Reported as a Recurrence Score (RS)
- RS < 18 = low risk
- 18 ≤ RS < 31 = intermediate risk
- RS ≥ 31 = high risk

- Quantifies the standard pathologic characterization
- Complex algorithm that adds the HER2, proliferation, and invasion scores, and subtracts the estrogen score in a weighted fashion

MOLECULAR DIAGNOSTICS TESTS

PROSIGNA®

Compare patient profile to intrinsic subtypes^{3,6}

The end result is the Risk of Recurrence (ROR, 0-100) estimating the risk of relapse within 10 years.

ROR is calculated taking into account the PAM50 gene signature, intrinsic subtype, tumour size, nodal status, and proliferation score.

Development of Prosigna[™] is Based on PAM50 Gene Signature

Source: Supervised Risk Predictor of Breast Cancer Based on Intrinsic Subtypes, ICO.2009

Colorectal Cancer

HISTOLOGICAL CLASSIFICATION

- Adenocarcinoma (85%)
- Mucinous adenocarcinoma (10%)
- Signet-ring cell carcinoma
- Medullary carcinoma
- Undifferentiated carcinoma
- Small cell carcinoma
- Adenosquamous carcinoma
- Squamous carcinoma

Colorectal Cancer

CLASSIFICATION

TNM CLASSIFICATION

Colorectal Cancer

ANATOMIC STAGE/PROGNOSTIC GROUPS							
Stage	T	N	М	Dukes*	MAC*		
0	Tis	NO	MO	-	-		
1	T1	NO	MO	A	A		
	T2	N0	MO	Α	B1		
IIA	T3	NO	MO	В	B2		
IIB	T4a	NO	MO	В	B2		
IIC	T4b	NO	MO	В	B3		
IIIA	T1-T2	N1/N1c	MO	C	C1		
	T1	N2a	MO	C	C1		
IIIB	T3T4a	N1/N1c	MO	C	C2		
	T2T3	N2a	MO	C	C1/C2		
	T1-T2	N2b	MO	C	C1		
IIIC	T4a	N2a	MO	C	C2		
	T3T4a	N2b	MO	C	C2		
	T4b	N1-N2	M0	C	(3		
IVA	Any T	Any N	M1a	-	-		
IVB	Any T	Any N	M1b	-	-		

NOTE: cTNM is the clinical classification, pTNM is the pathologic classification. The y prefix is used for those cancers that are classified after neoadjuvant pretreatment (for example, ypTNM). Patients who have a complete pathologic response are ypT0N0cM0 that may be similar to Stage Group 0 or I. The r prefix is to be used for those cancers that have recurred after a disease-free interval (rTNM). * Dukes B is a composite of better (T3 N0 M0) and worse (T4 N0 M0) prognostic groups, as is Dukes C (any TN1 M0 and Any T N2 M0). MAC is the modified Astler-Coller classification.

Up to 30% of all patients classified in stage II suffer from local recurrence or distant metastases within 5 years of undergoing surgery, leading to significantly poorer survival rates. These patients are classified in a lower lymph node status (false-negative rates up to 24%), which impacts on the decisions made concerning their further therapy options.

OSNA[®] allows the investigation of the entire lymph node and its results are comparable with ultra-staging (IHC). Studies have shown that a lymph node analysis of pNO patients with OSNA[®] yielded an upstaging rate of approximately 26%, compared with the standard histological test method. These patients' therapies could thus be adjusted accordingly.

Colorectal Cancer

Colorectal Cancer <u>MOLECULAR CLASSIFICATION</u>

- *k-ras* mutations
- *P53* mutations
- LOH 17p (p53)
- LOH 18q (dcc)
- Microsatellite instability (MMR)
- DNA methylation
- Altered expression of TGFb
- Apc mutation/loss

Colorectal Cancer

MOLECULAR DIAGNOSTICS TESTS

ONCOTYPE DX COLON®

Stage 2 Colon Cancer; expression of 12 genes

(7 genes known to be related with colon cancer and 5 reference genes)

The end result of the testing is a Recurrence Score (0-100) indicating the risk of recurrence in the three years after surgery.

The test has been validated but it's not currently included in standard clinical practice.

Colorectal Cancer

MOLECULAR DIAGNOSTICS TESTS

ONCOBEAM[™] RAS CRC ASSAY

Stage 4 Colon Cancer; evaluation of *K*- and *N-RAS* mutations in specific codons

The end result of the testing is the mutational status of K- and N-RAS in plasma (ctDNA).

The test has been validated but it's not included in standard clinical practice yet.

✓ Treatment

Example: Blood-based RAS testing for colorectal cancer

✓ Conclusions

