

OVERVIEW ON PANCREATIC CANCER MULTIMODAL MANAGEMENT

Florence, 23rd of January 2020

"Basic and translational oncology" Italian-French Erasmus Intensive Course in Oncology organized in collaboration with European Master of Genetics - University Paris7-Paris5

Lapo Bencini, MD, PhD

Staff Surgeon Division of Oncologic Surgery and Robotics Department of Oncology Azienda Ospedaliero Universitaria-Careggi, Firenze

Where's the pancreas?

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

"The challange" of pancreatic cancer (PDAC)

- No screening program available
- Late presentation and diagnosis
- Fast growth and progression
- Complex surgery (=perioperative morbidity and mortality)

Highlights

Pancreatic tumors

• 95% develop from the exocrine portion of the pancreas

• 75% of all pancreatic carcinomas occur within the head or neck of the pancreas

• Hystology: most (90%) are Ductal Adenocarcinomas (PDAC)

• Other subtypes: Lynphoma, Sarcomas, Cystic neoplasm, etc.

Epidemiology (PDAC)

- Incidence: 8-10 cases per 100,000 persons per year in U.S.
- Most countries have incidence rates of 8-12 cases per 100,000 persons per year.
- India is less than 2 cases per 100,000 persons per year.
- Race and country: slightly higher in black males, Hawaiian, Korean, Czech, Latvian, and New Zealand Maori
- Gender influence: slightly higher in females (recent years)
- Cigarette smoking, diabetes and obesity, chronic pancreatitis: suspected for increasing incidence

Inherited risk factors and genetics

- Familial clustering up to 10%
- Peutz-Jeghers, Fanconi's syndrome (BRCA, DNA repair, Lynch, FAP)

	Gene*	Chromosome	Risk ratio
Familial breast and ovarian cancer	BRCA2	13	3.5-10
Familial atypical multiple mole melanoma syndrome	CDKN2A (P16)	9	9-47
Peutz-Jeghers syndrome	STK11 (LKB1)	19	132
Hereditary pancreatitis	PRSS1; SPINK1	7; 5	50-80
Hereditary non-polyposis colorectal cancer (Lynch syndrome)	Multiple	Multiple	9
Familial pancreatic cancer	PALB2	16	6
Familial pancreatic cancer (monoallelic); ataxia-telangiectasia (biallelic)	ATM	11	Unknown
*Gene synonyms are shown in parentheses.			
Table 1: Inherited disorders with increased risk of panc	reatic ductal aden	ocarcinoma ^{4,15,16}	

Epidemiologic features of all cancers in USA

Year	1975	1980	1985	1990	1995	2000	2005	2010
5-Year Relative Survival	48.7%	49.1%	52.5%	57.7%	61.6%	66%	67.7%	69.5%

Data from SEER (National Cancer Institute: Surveillance Epidemiology End Result program)

Azienda Ospedaliero

Incidence and mortality of pancreatic cancer have been slightly increasing during recent years in the USA. It means that survival and medical improvement are very poor. 4th leading cause of cancer related death.

Data from SEER (Surveillance Epidemiology End Result programNational Cancer Institute: Surveillance)

Highlights

Pathogenesis: several molecular steps (hits)

Normal epithelium

Pancreatic in situ neoplasia

Invasive Carcinoma

- Mitogenic pathways single gene mutations, epigenetic modifications
- Cell Cycle pathways
- Evasion of apoptosis
- DNA repair changes
- Epithelial-mesenchymal transition

Mijialevich. Langenbecks Arch Surg 2010, Abbas S. Surg Oncol 2013

Major molecular pathways and processes involved in pancreatic cancer

Matthaios D. Oncology 2011, Tatarian T. Surg Clin N Am 2016

Stromal-tumour interaction

The stroma can reach 50% of tumour tissue

Actors: Pancreatic Cancer Cells (PCC), Pancreatic Stellate Cells (PSC), Extracellulare Matrix (ECM), Inflammatory Cells

Tumour Microenvironment (TME)

- Growth factors
- Neo-angiogenesis Resistance to Chemotherapy

Highlights

Diagnosis of pancreatic cancer

- Symptoms: jaundice, pain, pruritus, diabetes, nausea and vomiting, palpable mass
- Imaging: CT (diagnosis and resectability), NMR, EUS (Computed Tomography, Nuclear Magnetic Resonance, Endoscopic Ultrasonography)
- Blood check: CA 19.9 (Biomolecular marker) raised in 75-85% of patients (if >300 U/mL mostly unresectable)
- Biopsy: CT/EUS-guided fine-needle aspiration

TNM Staging (AJCC 2016)

Pancreas

T1	Tumou	ur 2 cm or less	M categor	y unchanged		
	T1a	Tumour 0.5 cm or less	33314045353			
	T1b	Tumour greater than 0.5 cm and less than 1 cm	Stage		NO	140
	T1c	Tumor greater than 1 cm but no	Stage IA	11 T2	NO	MO
		more than 2 cm	Stage IIA	T3	NO	MO
T2	Tumou more t	ur more than 2 cm but no than 4 cm	Stage IIB	T1, T2, T3	N1	MO
ТЗ	Tumou	ur more than 4 cm in greatest	Stage III	T1, T2, T3	N2	MO
	dimen	sion		Τ4	Any N	MO
T4	Tumou meser artery	ur involves coeliac axis, superior nteric artery and/or common hepatic	Stage IV	Any T	Any N	M1
N1	Metas	tases in 1 to 3 nodes				
N2	Metas	tases in 4 or more nodes				

Pancreatic cancer survival: Stage-related (Overall 5-ys survival: <8%)

The stage (TNM) of disease in highly correlated with survival (Data from NCI 2008)

7 % of patients are diagnosed in the early stages (localized stage)

26 % of patients are diagnosed in the stage of nodes' invasion or invasion to adjacent structures (regional stage)

52 % of patients are diagnosed when metastases are present (distant stage)

14 % of patients receive no formal or incorrect staging (unstaged)

<u>5-yrs survival</u> is highly stage-correlated : 16.4 % for the "localized" 7.0 % for the "regional" **1.8 % for the "distant"** 4.3 % for the "unstaged"

*Data from NCI (National Cancer Institute, USA)

Pancreatic cancer: vascular invasion or metastasis at presentation

Source: Appl Radiol @ 2008 Anderson Publishing, Ltd

Highlights

Clinical algorithm for PDAC

Hartwig. Lancet Oncol 2013

Surgery for pancreatic cancer (Survival increases from <5% to up 20%)

Head and Neck

Body and Tail

Figure 3. The Whipple procedure. Before the procedure (A). After the procedure; note the anastomosis of the hepatic duct and the remaining pancreas and stomach to the jejunum (B).

McDowell. Ann Surg 2015

Azienda Ospedaliero Universitaria

Contraindications to surgery

- Metastases (liver or other)
- Carcinosis (positive cythology in peritoneal lavage)
- Vascular invasion (major arteries)
- Older age or general medical controindications

Good surgeons vs. surgeons too good

A correct lymphadenectomy (>12 nodes retrieved) is imperative for staging

but

• Extended lymphadenectomy vs. standard: few advantages

Xu X. World J Surg Oncol 2013; Jang JY. Ann Surg 2014

Prognostic factors (in those few operated with radical intent)

Positive

- Radical surgery
- High-volume centres
- Biomolecular markers
- Adjuvant therapy
- Socio-economic and cultural level

Negative

- Vascular invasion
- Node positive
- Dimension of the tumour (>3-4 cm)
- CA 19.9 > 50 U/ml

Lim JE. Ann Surg 2003, Fong Y. Ann Surg 2005

5-Year Survival Rate of resected pancreatic cancers (<30% over years)

Azienda Ospedaliero Universitaria Careggi

Perioperative Mortality

Due to rarity of disease and complexity of surgery, it should be performed in highly experienced Centres with high volumes of patients (more than 1/month)!

Palliative surgical treatment of pancreatic cancer

- Jaundice
- Duodenal outflow obstruction

Pain

Survival's expectacy of more than 6 months

Acceptable clinical condition

PALLIATIVE SURGERY, ENDOSCOPIC/PERCUTANEOUS TREATMENTS, NEUROLYSIS

The role of laparoscopy/robotic in pancreatic cancer

- Diagnosis and Staging (biopsy, citology)
- Palliative surgery
- Curative surgery

- No survival advantages
- Trends to better perioperative recovery
 - (early adjuvant chemotherapy?)

Adjuvant therapy

- Neoadjuvant: radiochemotherapy (gemcitabine+RT, 5-FU+cisplatinum+RT) or chemotherapy only (gemcitabine, cisplatinum or FOLFIRINOX) Promising results but still experimental
- Adjuvant: Surgery + gemcitabine superior to surgery alone (5-yrs survival 21 vs.
 9%) Better: gemcitabine + capecitabine

Figure 5: Schematic algorithm of treatment for pancreatic cancer

Oettle H. JAMA 2007; Neuhaus P "CONKO-001". Clin Oncol 2008; Ghosn M. World J Gastronterol 2014, Kamisawa T. Lancet 2016; Neoptolemos JP. Lancet 2017

Ghosn M. World J Gastronterol 2014

Standard therapies have reached their maximum. Can we improve pancreatic cancer survival otherwise?

Yes we can!

No, we cannot yet

State of the art in the field of pancreatic cancer research

- Urgency to pass "from bench to bedside"
- New drugs based on the molecular single patient profile
- Older drugs with enhanced delivery and kinetics
- Choice of "the right drug for the right patient"

"Targeted or Tailored therapy"

Neoplastic progression. Every step as a possible target for molecular therapy

- Self-sufficiency (in growth signals)
- Insensitivity to growth-inhibitory signals
- Evasion of apoptosis
- Sustained angiogenesis
- Limitless replicative potential
- Tissue invasion
- Metastasis
- Escape from immune surveillance
- Epigenetic modifications (metilation, acetylation, miRNA)
- Resistance to chemotherapy

The ideal characteristics of a cancer target (molecular marker)

- Highly expressed in the tumoral cells
- High density found in tumoral tissues
- Homegeneous distribution in tumoral tissues
- Poorly (or absent) expressed in adjacent tissues
- Easily to detect
- Easily to quantify

 Differences in markers' tissues distribution could play a role in the failure of conventional therapy

THE THERAPEUTIC TARGET SHOULD BE IDENTICAL TO THE TRACING TARGET (Therapy & Diagnosis)

Molecular biomarkers in pancreatic cancer: predictive role

Management of pancreatic adenocarcinoma

Table Prognostic and Predictive Biomarkers in Pancreatic Cancer

Prognostic Biomarker	Prognostic Value		
CA 19-9	Poor prognosis if elevated, particularly postoperatively ^{13,21,31-33}		
SMAD4 or DPC4	Poor prognosis if inactivated ^{45,54-57}		
CSC markers (CD44 ⁺ CD24 ⁺ ESA ⁺ , CD133 ⁺ , ALDH, Nestin, and c-Met)	Poor prognosis if elevated ^{73,74,76,77}		
Histologic parameters	Poor prognosis if necrosis, vascular invasion, lymphatic invasion, and perineural invasion are present ¹²¹⁻¹²³		
Predictive Biomarker	Companion Therapy		
Fanconi anemia signaling proteins (BRCA2 and PALB2)	Mitomycin-C, platinum-based chemotherapy (cisplatin), and PARP inhibitors (mitoxantrone, iniparib, and olaparib) ^{100-104,107,108}		
SPARC or osteonectin	Albumin-bound paclitaxel (nab-paclitaxeD ¹¹⁷⁻¹¹⁹		

Ansari D. Br J Surg. 2011, Jazieh KA. Semin Radiat Oncol 2014

Molecular biomarkers in pancreatic cancer: predictive role

CA19.9; SMAD4; Stem Cells Markers; BRCA2; FA, FH, PALB2

«Systematic review of immunohistochemical biomarkers to identify prognostic subgroups of patients with pancreatic cancer»

Conclusions: «None of the molecular markers described can be recommended for routine clinical use»

Ansari D. Br J Surg. 2011, Jazieh KA. Semin Radiat Oncol 2014

Molecular therapeutic targets in pancreatic cancer

Molecular Target	ts and Novel Agents i	n Pancreatic Cancer*	
Target [†]	Frequency (%)‡	Novel agents	
HER family			
EGFR	90	mAbs: cetuximab, panitumumab (ABX-EGF), EMD 72000; TKIs: gefitinib (ZD1839, Iressa), erlotinib (OSI-774, Tarceva), EKB-569	
HER-2/neu	10	Trastuzumab (Herceptin), CI-1033	
VEGF pathway		mAbs: bevacizumab; TKIs:	
		sorafenib, sutinib, PTK787	
VEGF			
VEGF receptors			
Ras-Raf-MEK-ERK s	ignaling pathways		
Ras	90	FI'ls: R115777 (tipitarnib), SCH66336, BMS-214662	
Raf		Bay 43-9006 (sorafenib)	
MEK		CI-1040	
PI3K/Akt pathways		17-AAG (non specific)	
Akt		CCI-779, RAD001	
mTOR	67	Curcumin (nonspecific), bortezomib (PS-341, VELCADE) (nonspecific)	
NF-ĸB			
Other molecular tar	gets		
COX-2	75	Celecoxib, rofecoxib	
LOX		LY293111	
IL-8	70	ABX-IL8	

Hochster HS. Cancer 2006

Targeted therapy in pancreatic cancer

Borja-Cacho D. Am J Surg 2008

Stromal-tumour interaction as a possible target for new therapies

Lunardi S. Cancer Letter 2013; Arcangeli A. Philos Trans R Soc Lon B Biol Sci 2014

Targeted therapy pancreatic cancer microenvironment

Table 1 Recent and ongoing preclinical and clinical studies of experimental therapies targeting tumor microenvironment of pancreatic ductal adenocarcinoma

Therapeutic target	Treatments in preclinical and clinical trials	Up to date preclinical/ clinical trial results
FAP	Sibrotuzumab (colorectal cancer)	Hofheinz et al ^[99] , 2003
Hyaluronan	PEGPH20	Strimpakos et al ^[91] , 2013
MMPs	BAY 12-9566	Moore et al ^[100] , 2003
	Marimastat	Bramhall <i>et al</i> ^[101] , 2002
PD-L1	BMS-936559	Brahmer et al ^[102] , 2012
CTLA-4	Ipilimumab	Le et al ^[95] , 2013
CD8 ⁺ T cells	GVAX	Lutz et al ^[93] , 2011
		Laheru <i>et al</i> ^[94] , 2008
CD40	CP-870,893	Beatty et al ^[103] , 2013
Smo/SHh	Vismodegib (GDC-0449)	Stephenson et al ^[90] , 2011
	IPI-926	
Type II TGFβ receptor	Trabedersen	Oettle et al ^[92] , 2009
γ-secretase (Notch pathway)	PF-03084014 (preclinical)	Yabuuchi et al ^[78] , 2013
	-	(preclinical)
HGF/c-met	Many different compounds (solid cancers)	Venepalli et al ^[104] , 2013
		(solid cancers)
Different molecules in NF- $_{\ensuremath{\kappa}} B$ cascade	Many different compounds (i.e., curcumin, proteasome inhibitor)	Arlt et al ^[105] , 2012
	Therapeutic target FAP Hyaluronan MMPs PD-L1 CTLA-4 CD8* T cells CD40 Smo/SHh Type II TGFβ receptor γ-secretase (Notch pathway) HGF/c-met Different molecules in NF-KB cascade	Therapeutic targetTreatments in preclinical and clinical trialsFAPSibrotuzumab (colorectal cancer)HyaluronanPEGPH20MMPsBAY 12-9566MarimastatMarimastatPD-L1BMS-936559CTLA-4IpilimumabCD8' T cellsGVAXCD40CP-870,893Smo/SHhVismodegib (GDC-0449)IPI-926Type II TGFβ receptorType II TGFβ receptorTrabedersenγ-secretase (Notch pathway)PF-03084014 (preclinical)HGF/c-metMany different compounds (solid cancers)Different molecules in NF-1xB cascadeMany different compounds (i.e., curcumin, proteasome inhibitor)

ECM: Extracellular matrix; MMP: Matrix metalloproteinase; PD-L1: Programmed death receptor ligand 1; CTLA-4: Cytotoxic T-lymphocyte antigen 4; SHh: Sonic hedgehog; Smo: Smoothened; TGF β : Transforming growth factor β ; HGF: Hepatocyte growth factor; NF- κ B: Nuclear factor κ -B; PSC: Pancreatic stellate cell; FAP: Fibroblast activation protein.

Example: Targeting the Hedgehog pathway

Rucki AA. World J Gastroenterol 2014

Molecular targets in pancreatic cancer: Clinical Phase II Studies

Table 3. Selecte	d Strategic Targets in Pancre	atic Cancer.*			
Target	Agent	Drug Class	Mechanism of Action	Trial Phase	Reference
SPARC	Nanoparticle albumin- bound paclitaxel	Cytotoxic agent	SPARC, expressed in cancer cells and stroma in the pancreas, binds nanoparticle albumin-bound paclitaxel, increasing local drug delivery	3	Li and Saif ⁷⁵
IGF-IR	MK 0646, A MG 479, R1507	Monoclonalantibody	Inhibits ligand binding activation of the IGF-IR and cell proliferation	3	Hewish et al.78
Death receptor	AM G 655, CS1008	Monoclonal antibody	Agonist antibodies to membrane death receptors induce apoptosis	2	Li and Saif, ⁷⁵ Derosier et al. ⁷⁹
Mucin-1	90Y-h PA M4	Radioimmunoconjugate	Targets mucin-1 expressed in pancreatic-cancer cells and delivers radiation load	1–2	Gold et al. ⁸⁰
Hedgehog pathway	GDC-0449, IPI-926	Small-molecule inhibitor	Inhibits smoothened receptor, resulting in inhibition of cell proliferation; targets cancer stroma and cancer stem cells in the pancreas	1	Olive et al., ²⁹ Jimeno et al. ³²
c-kit, PDGFR, FGFR	Masitinib	Small-molecule inhibitor	Multikinase inhibitor targets c-kit, PDGFR, and FGFR3 and affects the FAK pathway; masitinib was shown to enhance the antiproliferative effects of gemcitabine in predinical studies	3	Liand Saif ⁷⁵
MEK	AZD 6244	Small-molecule inhibitor	Targets and inhibits MEK, decreasing cell proliferation	2	Chung et al. ⁸¹
Src	AZD0530, dasatinib	Small-molecule inhibitor	Targets and inhibits Src kinase, resulting in inhibition of cell proliferation and invasion	2	Rajes hkumaret al.77
RAS	Sarilasib	Small-molecule inhibitor	Dislodges all forms of RAS from the plasma membrane, inhibiting RAS signaling	2	Haklai et al. ⁸²
PSCA	AGS-1C4D4	Monoclonalantibody	Binds membrane PSCA; specific mechanisms of cell killing undetermined	2	Wente et al.83
Mesothelin	MO RAb-009	Monoclonalantibody	Binds membrane mesothelin; specific mechanisms of cell killing undetermined	2	Hassan et al. ⁸⁴
TNF-α	TNFerade	Gene therapy	A denoviral gene therapy increases intratumoral concentration of TNF- $lpha$	3	Murugesan et al.85

* The abbreviation c-kit denotes stem-cell factor receptor; FAK focal adhesion kinase; FGFR fibroblast growth factor receptor; IGF-IR type I insulin-like growth factor receptor; MEK mitogenactivated protein kinase–extracellular-signal-regulated kinase, PDGFR platelet-derived growth factor; PSCA prostate stem-cell antigen; SPARC secreted protein, acidic, cysteine-rich; and TNF-α tumor necrosis factor α.

Targeted therapy

- Increased median survival (1 year) described with erlotinib only and bevacizumab (in addition to gemcitabine). Few months, high costs
- The standard is actually gemcitabine only (no radiotherapy) -Capecitabine (oral FU) as a second line – FOLFIRINOX (adj or met).

Moore MJ. J Clin Oncol. 2007, Ghosn W J Gastroeneterol 2014, Conroy T. NEJM 2018

Nanoparticles

Morgan. Ann Surg 2016

Nanotherapies in surgical disease

Category	Example	Size, nm	Particle Structure	Therapeutic Use
Organic	Liposomes	20-250	Spherical vesicle with lipid bilayer membrane structure and aqueous core	 Delivery of vaccines, toxoids, genes, anticancer, and anti-HIV therapeutics
	Dendrimers	1-30	Highly branched, monodispersed macromolecule with tendrils extending from a central core	 Delivery of therapeutics Conjugation of chemotherapeutics
	Polymeric micelles/ nanofibers	30	Core-shell structures of spontaneously self-assembled amphiphilic copolymers	 Delivery of therapeutics, including pH sensitivity drug release Imaging contrast agent Solid tumor therapeutics
Carbon based	Fullerenes	1	Carbon nanomaterial, in the form of a hollow sphere, tube, ellipsoid, cylinder, etc	 Delivery of therapeutics Conjugation to antibiotics as an antimicrobial agent Imaging contrast agent
Inorganic	Metal nanoparticles	1-100	Gold, copper, silver	 Imaging contrast agent Tumor imaging and therapeutics Gene delivery Optical, photoelectric, fluorescent, and photothermal properties Imaging contrast agent In vivo tumor imaging
	Quantum dots	2 - 10	Colloid semiconductor nanocrystals composed of atoms from groups II-VI or III-V of the periodic table of elements	 Gene delivery Breast cancer diagnostics Optical and fluorescent properties Therapeutics delivery Imaging contrast agent Biomedical implants

 Drug delivery, conjugation to chemotherapeutic agents, imaging contrast agent, gene delivery, biomedical implants

Morgan. Ann Surg 2016

Nab-Paclitaxel

• Nanoparticles albumin bound – paclitaxel (SPARC)

- Increased concentration in the tumour microenvironment
- More efficacy less dose delivered reduction of adverse effects

Morgan. Ann Surg 2016

Naliri

• Nanoliposomal irinotecan (Topoisomerase)

- Increased concentration in the tumour microenvironment
- More efficacy less dose delivered reduction of adverse effects

Wang-Gillam . Lancet 2016

Multimodal treatment of pancreatic cancer

The patients of low socioeconomic status receive suboptimal management for pancreatic adenocarcinoma in USA (Florida). Low Socio Economic Status patients were less likely to:

- Receive surgical resection (16.5% vs 19.8%; P < .001)
- Chemotherapy (30.7% vs 36.4%; P < .001)
- Radiotherapy (14.3% vs 16.9%; P = .003)
- Among surgical patients, 30-day mortality was higher (5.1% vs 3.7%; P < .001)
- Overall median survival was significantly worse (5.0 months vs 6.2 months; P < .001)

But Better trends in Teaching or University Hospitals......

Conclusions

ARTICLE

Azienda Ospedaliero Universitaria

•

doi:10.1038/nature14169

Whole genomes redefine the mutational landscape of pancreatic cancer

ARTICLE

Genomic analyses identify molecular subtypes of pancreatic cancer

Key message: The more subtypes the more targeted drugs

Dr. Lapo Bencini, PhD Division of Oncologic Surgery and Robotics

doi:10.1038/nature16965

Thank you for your attention

Dr. Lapo Bencini, MD, PhD (lapbenc@tin.it)

Staff Surgeon, Division of Oncologic Surgery and Robotics Department of Oncology Azienda Ospedaliero Universitaria-Careggi, Firenze