








1 An Introduction to Options 
and Markets 

1.1 Introduction 

This book is about mathematical models for financial markets, the assets 
that are traded in them and, especially, financial derivative products 
such as options and futures. There are many kinds of financial market, 
but the most important ones for us are: 

e S tock  marke ts ,  such as those in New York, London and Tokyo; 
e B o n d  marke ts ,  which deal in government and other bonds; 

v.en- e Cur rency  marke t s  or foreign exchange markets ,  where c u . ~  
cies are bought and sold; 

e Commodi ty  markets ,  where physical assets such a s  oil, gold, cop- 
per, wheat or electricity are traded; 

e F'utures and opt ions  markets, on which the derivative products that 
are the subject of this book are traded. 

The reader may not have encountered al1 of the financial terms ir1 
bold face in this list. Most will be explained in detail later in the book 
when we need them. However, we do assume that the raison d'etre of 
the currency and commodity markets is clear, and we hope that read- 
ers are familiar with the idea behind stocks (also known as shares  or 
equities).  Roughly speaking, a company that needs to  raise money, 
for example to  build a new factory or develop a new product, can do 
so by selling shares in itself to  investors. The company is then 'owned' 
by its shareholders; if the company makes a profit, part of this may be 
paid out to  shareholders as a dividend of so much per share, and if the 
company is taken over or otherwise wound up, the proceeds (if any) are 
distributed to  shareholders. Shares thus have a value that reflects the 
views of investors about the likely future dividend payments and capital 
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4 An Introduction to Options and Markets 

growth of the company; this value is quantified by the price at  which 
they are bought and sold on stock exchanges.l 

We have, then, a collection of markets on which assets of various kinds 
are bought and sold. As markets have become more sophisticated, more 
complex contracts than simple buylsell trades have been introduced. 
Known as financial derivatives, derivative securities, derivative 
products ,  contingent claims or just derivatives, they can give in- 
vestors of al1 kinds a great range of opportunities to tailor their dealings 
to their investment needs. This book explains some of the financial the- 
ory and models that have been developed to analyse derivatives, a theory 
that is necessarily mathematical in character (the specialists now em- 
ployed by al1 major financial institutions to work in this area are called 
'rocket scientists'!), but which is at  bottom a very elegant and clear 
combination of mathematical modelling and analysis. First, though, we 
need to become familiar with some of the necessary financial jargon, and 
to see how derivatives work. We begin with the example of an option, 
which is one of the commonest examples of a derivative security. 

1.2 What is an Option? 

The simplest financial option, a European cal1 option, is a contract 
with the following conditions: 

At a prescribed time in the future, known as the expiry date or 
expirat ion da te ,  the holder of the option muy 

purchase a prescribed asset, known as the underlying asset or, 
briefly, the underlying, for a 

prescribed amount, known as the exercise price or s tr ike price. 

The word 'may' in this description implies that for the holder of the 
option, this contract is a right and not an obligation. The other party 
to the contract, who is known as the wri ter ,  does have a potential obli- 
gation: he must se11 the asset if the holder chooses to buy it. Since the 
option confers on its holder a right with no obligation it has some value. 
Moreover, it must be paid for at  the time of opening the contract. Con- 
versely, the writer of the option must be compensated for the obligation 
he has assumed. Two of our main concerns throughout this book are: 

' In practice, companies may have a much more complex structure for their equity, 
but in an introductory text we try not to get enmeshed in these details. The ideas 
we describe carry over with the appropriate modifications throughout. 
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How much would one pay for this right, i.e. what is the value of an 
option? 
How can the writer minimise the risk associated with his obligation? 

A Simple Example: A Call Option 

How much is the following option now worth? Today's date is 22 August 
1995. 

On 14 April 1996 the holder of the option may 

purchase one XYZ share for 250p. 

In order to  gain an intuitive feel for the price of this option let us 
imagine two possible situations that might occur on the expiry date, 14 
April 1996, nearly eight months in the future. 

If the XYZ share price is 270p on 14 April 1996, then the holder of the 
option would be able to  purchase the asset for only 250p. This action, 
which is called exercising the option, yields an immediate profit of 20p. 
That is, he can buy the share for 250p and immediately se11 it in the 
market for 270p: 

270p - 250p = 20p profit. 

On the other hand, if the XYZ share price is only 230p on 14 April 1996 
then it would not be sensible to exercise the option. Why buy something 
for 250p when it can be bought for 230p elsewhere? 

If the XYZ share only takes the values 230p or 270p on 14 April 1996, 
with equal probability, then the expecked profit to be made is 

Ignoring interest rates for the moment, it seems reasonable that the 
order of magnitude for the value of the option is 10p. 

Of course, valuing an option is not as simple as this, but let us suppose 
that the holder did indeed pay 10p for this option. Now if the share price 
rises to 270p a t  expiry he has made a net profit calculated as follows: 

profit on exercise = 20p 
cost of option = -10p 

net profit = 10p 

This net profit of 10p is 100% of the up-front premium. The downside 
of this speculation is that if the share price is less than 250p a t  expiry he 
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has lost al1 of the 10p invested in the option, giving a loss of 100%. If the 
investor had instead purchased the share for 250p on 22 August 1995, 
the corresponding profit or loss of 20p would have been only f 8% of the 
original investment. Option prices thus respond in an exaggerated way 
to changes in the underlying asset price. This effect is called gearing. 

We can see from this simple example that the greater the share price 
on 14 April 1996, the greater the profit. Unfortunately, we do not know 
this share price in advance. However, it seems reasonable that the higher 
the share price is now (and this is something we do know) then the higher 
the price is likely to be in the future. Thus the value of a call option 
today depends on today's share price. Similarly, the dependence of the 
call option value on the exercise price is obvious: the lower the exercise 
price, the less that has to be paid on exercise, and so the higher the 
option value. 

Implicit in this is that the option is to expire a significant time in the 
future. Just before the option is about to expire, there is little time for 
the asset price to change. In that case the price at expiry is known with 
a fair degree of certainty. We can conclude that the call option price 
must also be a function of the time to expiry. 

Later we also see how the option price depends on a property of the 
'randomness' of the asset price, the volatility. The larger the volatility, 
the more jagged is the graph of asset price against time. This clearly 
affects the distribution of asset prices at expiry, and hence the expected 
return from the option. The value of a call option should therefore 
depend on the volatility. Finally, the option price must depend on pre- 
vailing bank interest rates; the option is usually paid for up-front at the 
opening of the contract whereas the payoff, if any, does not come until 
later. The option price should reflect the income that would otherwise 
have been earned by investing the premium in the bank. 

Put Options 
The option to' buy an asset discussed above is known as a call option. 
The right to se11 an asset is known as a put option and has payoff 
properties which are opposite to those of a call. A put option allows its 
holder to se11 the asset on a certain date for a prescribed amount. The 
writer is then obliged to buy the asset. Whereas the holder of a call 
option wants the asset price to rise - the higher the asset price at expiry 
the greater the profit - the holder of a put option wants the asset price 
to fa11 as low as posible. The value of a put option also increases with 
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the exercise price, since with a higher exercise price more is received for 
the asset at  expiry. 

1.3 Reading the Financial Press 

Armed with the jargon of calls, puts, expiry dates and so forth, we are in 
a position to read the options pages in the financia1 press. Our examples 
are taken from the Financial Times of Thursday 4 February 1993. 

In Figure 1.1 is shown the traded2 options section of the Financial 
Times. This table shows the prices of some of the options traded on the 
London International Financial Futures and Options Exchange (LIFFE). 
The table lists the 1 s t  quoted prices on the previous day for a large 
number of options, both calls and puts, with a variety of exercise prices 
and expiry dates. Most of these examples are options on individual 
equities, but at the bottom of the third column we see options on the 
FT-SE index, which is a weighted arithmetic average of 100 equity shares 
quoted on the London Stock Exchange. 

First, let us concentrate on the prices quoted for Rolls-Royce options, 
to be found in the third column labelled 'R. Royce'. Immediately be- 
neath R. Royce is the number 134 in parentheses. This is the closing 
price, in pence, of Rolls-Royce shares on the previous day. To the right 
of R. Royce/(134) are the two numbers 130 and 140: these are two ex- 
ercise prices, again in pence. Note that for equity options the Financial 
Times prints only those exercise prices each side of the closing price. 
Many other exercise prices exist (at intervals of 10p in this case) but are 
not printed in the Financia1 Times for want of space. 

Now examine the six numbers to the right of the 130. The first three 
(11, 15, 19) are the prices of cal1 options with different expiry dates, and 
the next three (9, 14, 17) are the prices of put options. The expiry date 
of each of these options can be found by looking at the top of its column. 
There we see that Rolls-Royce has options expiring in March, June and 
September, at a specified time on a specified date in each month, in this 
case at 18:OO on the third Wednesday of the month concerned (trading 
ceases slightly earlier). Option prices are quoted on an exchange only for 
a small number of expiry dates and only for exercise prices at discrete 
intervals (here . . . , 130, 140, . . . ). For LIFFE-traded options on equities 
the expiry dates come in intervals of three months. When it is created, 

The word 'traded' here refers to an option that is traded on an exchange such as 
LIFFE or the CBOE (Chicago Board Options Exchange). 
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Option 
price 

300 4 

2650 2750 2850 2950 
Exercise price 

Figure 1.2 The FT-SE index call option values versus exercise price and the 
option values at expiry assuming that the index value is then 2872. 

the longest dated option has a lifespan of nine months. Later in the year 
the December series of Rolls-Royce options will come into being. 

Since a call option permits the holder to  pay the exercise price to  
obtain the asset, we can see that call options with exercise price 140p 
are cheaper than those with exercise price 130p. This is because more 
must be paid for the share at exercise. The converse is true for puts: 
the holder of a 140p put can realise more by selling the share a t  exercise 
than the holder of a 130p put, and so the former is worth more. 

Now let us look a t  the options on the FT-SE index. Towards the bot- 
tom of the third column we see prices for the FT-SE index call options. 
(Although the index is just a number, the contract is given a nominal 
price in pounds equal to  10 times the FT-SE value.) The exercise prices 
are quoted a t  intervals of 50 from 2650 to  3000 and expiry dates a t  
monthly intervals. Since these options expire on the third Friday of the 
month, the February options have only about 10 days left. In Figure 1.2 
we plot the value of the February call options against exercise price. 

The closing value of the FT-SE index on 3 February 1993 was 2872. 
Suppose that the FT-SE index had exactly the same value a t  expiry 
as on 3 February 1993. Then the value of each call option contract a t  
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expiry would be the 'ramp function' 

£10 x (2872 - exercise value) for exercise value 5 2872 
O for exercise value 2 2872. 

In Figure 1.2 we also plot this ramp function. Notice that the data 
points are close t o  but above the ramp function. The difference between 
the two is due to the indeterminacy in the future index value: the index 
is unlikely to be a t  2872 a t  the time of expiry of the February options. 
We return to the example of the FT-SE index call options in Chapter 3. 

Finally, note that for each option type there is only one quoted price 
in this table. In reality the option could not be bought and sold for the 
same price since the market-maker has to  make a living. Thus there are 
two prices for the option. The investor pays the ask (or offer) price and 
sells for the bid price, which is less than the ask price. The price quoted 
in the newspapers is usually a mid-price, the average of the bid and ask 
prices. The difference between tlie two prices is known as the bid-ask or 
bid-offer spread. 

Technical Point: The trading of options. 
Before 1973 al1 option contracts were what is now called 'over-the-counter' 
(OTC). That is, they were individually negotiated by a broker on behalf 
of two clients, one being the buyer and the other the seller. Trading 
on an official exchange began in 1973 on the Chicago Board Options 
Exchange (CBOE), with trading initially only in call options on some of 
the most heavily traded stocks. As increased competition followed the 
listing of options on an exchange, the cost of setting up an option contract 
decreased significantly. 

Options are now traded on al1 of the world's major exchanges. They 
are no longer restricted to equity options but include options on indices, 
futures, government bonds, commodities, currencies etc. The OTC mar- 
ket still exists, and options are written by institutions to meet a client's 
needs. This is where exotic option contracts are created; they are very 
rarely quoted on an exchange. 

When an option contract is initiated there must be two sides to the 
agreement. Consider a call option. On one side of the contract is the 
buyer, the party who has the right to exercise the option. On the other 
side is the party who must, if required, deliver the underlying asset. The 
latter is called the writer of the option. 

Many options are registered and settled via a clearing house. This 
central body is also responsible for the collection of margin from the 
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writers of options. This margin is a sum of money (or equivalent) which 
is held by the clearing house on behalf of the writer. It is a guarantee 
that he is able to meet his obligations should the asset price move against 
him. 

The trade in the simplest call and put options (colloquially called 
vanilla options, because they are ubiquitous) is now so great that it can, 
in some markets, have a value in excess of that of the trade in the un- 
derlying. In some cases too the exchange-traded options are more liquid 
than the underlying asset. To give an idea of the size3 of the deriva- 
tives (including futures) markets, there is an estimated $10,000 billion in 
derivatives investments worldwide in total (this is a gross figure; the net 
figure is much smaller). In late 1992, Citicorp alone had an estimated 
exposure equivalent to a notional contract value of $1426bn. As the num- 
ber and type of derivative products have increased so there has been a 
corresponding growth in option pricing as a subject for academic and 
corporate research. This is especially true today as increasingly exotic 
types of options are created. 

1.4 What are Options For? 

Options have two primary uses: speculation and hedging. An investor 
who believes that a particular stock, XYZ again, say, is going to rise 
can purchase some shares in that company. If he is correct, he makes 
money, if he is wrong he loses money. This investor is speculating. As 
we have noted, if the share price rises from 250p to  270p he makes a 
profit of 20p or 8%. If it falls to 230p he makes a loss of 20p or 8%. 
Alternatively, suppose that he thinks that the share price is going to rise 
within the next couple of months and that he buys a call with exercise 
price 250p and expiry date in three months' time. We have seen in the 
earlier example that if such an option costs 10p then the profit or loss is 
magnified to  100%. Options can be a cheap way of exposing a portfolio 
to  a large amount of risk. 

If, on the other hand, the investor thinks that XYZ shares are going to  
fa11 he can, conversely, se11 shares or buy puts. If he speculates by selling 
shares that he does not own (which in certain circumstances is perfectly 
legal in many markets) he is selling short and will profit from a fa11 in 
XYZ shares. (The opposite of a short position is a long position.) The 

These values are taken from a review of the derivatives market in the Financia1 
Times of 8 December 1992. 
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same argument concerning the exaggerated movement of option prices 
applies to  puts as well as calls, and if he wants to  speculate he may 
decide to buy puts instead of selling the asset. However, suppose that 
the investor already owns XYZ shares as a long-term investment. In this 
case he might wish to  insure against a temporary fa11 in the share price, 
while being reluctant to  liquidate his XYZ holdings only to  buy them 
back again later, possibly a t  a higher price if his view of the share price 
is wrong, and certainly having incurred some transaction costs on the 
two deals. 

The discussion so far has been from the point of view of the holder 
of an option. Let us now consider the position of the other party to the 
contract, the writer. While the holder of a call option has the possibility 
of an arbitrarily large payoff, with the loss limited to the initial premium, 
the writer has the possibility of an arbitrarily large loss, with the profit 
limited to the initial premium. Similarly, but to a lesser extent, writing a 
put option exposes the writer to  large potential losses for a profit limited 
to the initial premium. One could therefore ask 

Why would anyone write an option? 

The first likely answer is that the writer of an option expects to  make 
a profit by taking a view on the market. Writers of calls are, in effect, 
taking a short position in the underlying: they expect its value to  fall. It  
is usually argued that such people must be present in the market, for if 
everyone expected the value of a particular asset to  rise its market price 
would be higher than, in fact, it is. (These 'bears' are also potential 
customers for put options on the underlying.) Similarly, there must also 
be people who believe that the value of the underlying will rise (or the 
price would be lower than, in fact, it is). These 'bulls' are potential 
writers of put options and buyers of call options. An extension of this 
argument is that writers of options are using them as insurance against 
adverse movements in the underlying, in the same way as holders do. 

Although this motivation is plausible, it is not the whole story. Mar- 
ket makers have to make a living, and in doing so they cannot neces- 
sarily afford to bear the risk of taking exposed positions. Instead, their 
profit comes from selling a t  slightly above the 'true value' and buying a t  
slightly below; the less risk associated with this policy, the better. This 
idea of reducing risk brings us to the subject of hedging. We introduce 
it by a simple example. 

Since the value of a put option rises when an asset price falls, what 
happens to the value of a portfolio containing both assets and puts? 
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The answer depends on the ratio of assets and options in the portfolio. 
A portfolio that contains only assets falls when the asset price falls, 
while one that is al1 put options rises. Somewhere in between these 
two extremes is a ratio a t  which a small unpredictable movement in the 
asset does not result in any unpredictable movement in the value of the 
portfolio. This ratio is instantaneously risk-free. The reduction of risk 
by taking advantage of such correlations between the asset and option 
price movements is called hedging. If a market maker can se11 un  option 
for more than i t  i s  worth and then hedge away al1 the risk for the rest 
of the option's lzfe, he has locked i n  a guamnteed, risk-free profit. This 
idea is central to the theory and practice of option pricing. 

Beyond the primary roles just discussed, many more general problems 
can be cast in terms of options. This is an increasingly important way 
of analysing decision-making. A simple example is that of a company 
which owns a mine, from which gold can be produced a t  a known cost. 
The mine can be started up and closed down, depending on current gold 
prices. How much does this flexibility add to  the value of the company in 
the eyes of a predator, or of its shareholders? An answer can be arrived 
at by modelling the mine as an option, in this case on gold. In a similar 
vein, in valuing of a piece of vacant land we may want to try to quantify 
the value added by the fact that property prices may rise fast enough in 
the future for it to  be worth leaving the land vacant for later resale. 

1.5 Other Types of Option 

Cal1 and put options form a small section of the available derivative 
products. Our earlier description of an option contract concentrated 
on a European option, but nowadays most options are what is called 
American. The European/American classification has nothing to do 
with the continent of origin but refers to a technicality in the option 
contract. An Amer ican  opt ion  is one that may be exercised at any 
time prior to  expiry. The options described above, which may only 
be exercised at expiry, are called European .  To the mathematician, 
American options are more interesting since they can be interpreted 
as free boundary problems - we see this in Chapter 7 and again in 
Chapter 9. Not only must a value be assigned to the option but, and 
this is a feature of American options only, we must determine when it  i s  
best to exercise the option. We see that the 'best' time to exercise is not 
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subjective, but that it can be determined in a natural and systematic 
way. 

Other types of option which we describe in this book include the 
so-called exotic or path-dependent options. These options have values 
which depend on the history of an asset price, not just on its value on 
exercise. An example is an option to purchase an asset for the arithmetic 
average value of that asset over the month before expiry. An investor 
might want such an option in order to hedge sales of a commodity, say, 
which occur continually throughout this month. Another example might 
be an oil refiner who buys oil at the spot rate, which may vary, but wants 
to se11 the refined product at  a constant price. Once the idea of history 
dependence is accepted it is a very small step to imagining options which 
depend on the geometric average of the asset price, the maximum or the 
minimum of the asset price, etc. This then brings us to the question 
of how to calculate the arithmetic average, say, of an asset price which 
may be quoted every 30 seconds or so; for a very liquid stock this would 
give about 250,000 prices per year. In practice the option contract might 
specify that the arithmetic average is the mean of the closing price every 
business day, of which there are only 250 every year. (In contrast to 'tick 
data', these latter prices are reliable and not open to dispute.) Does this 
'discrete sampling' give different option values if the sampling takes place 
at different times? 

We show how to put the following options into a unifying framework: 

barrier options (the option can either come into existence or become 
worthless if the underlying asset reaches some prescribed value before 
expiry) ; 
Asian options (the price depends on some form of average); 
lookback options (the price depends on the asset price maximum or 
minimum). 

We discuss European and American versions of these as well as  both 
continuous and discrete sampling of the history-dependent factor. 

1.6 Forward and Futures Contracts 

Apart from options, we shall also analyse two other common contingent 
claims, forward contracts and futures contracts. A forward contract 
is an agreement between two parties whereby one contracts to buy a 
specified asset from the other for a specified price, known as the forward 
price, on a specified date in the future, the delivery date or maturity 
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date. This contract has similarities to an option contract if we think 
of the forward price as equivalent to the exercise price. However, what 
is lacking is the element of choice: the asset has to be delivered and 
paid for. A forward contract is also different from an option contract in 
that no money changes hands until delivery, whereas the premium for an 
option is paid up-front. It  therefore costs nothing to  enter into a forward 
contract. A further difference from option contracts is that the forward 
price is not set at one of a number of fixed values for al1 contracts on 
the same asset with the same expiry. Instead, it is determined at the 
outset, individually for each contract. 

A futures contract is in essence a forward contract, but with some 
technical modifications. Whereas a forward contract may be set up be- 
tween any two parties, futures are usually traded on an exchange which 
specifies certain standard features of the contract such as delivery date 
and contract size. A further complication is the margin requirement, 
a system designed to protect both parties to a futures contract against 
default. Whereas the profit or loss from a forward contract is only re- 
alised at the expiry date, the value of a futures contract is evaluated 
every day, and the change in value is paid to one party by the other, so 
that the net profit or loss is paid across gradually over the lifetime of 
the contract. Despite these differences, it can be shown that under some 
not too restrictive assumptions the futures price is almost the same as 
the forward price. When . ----- interest rates are predictable, the two coincide 
exactly. For later use, we note that it again costs nothing to enter into -- 

a futures contract. 
Because neither forward nor futures contracts contain the element of 

choice (to exercise or not to exercise) that is inherent in an option, they 
are easier to value. Nevertheless, because they are not central to our 
development of the subject, we defer their treatment until Chapter 6. 

1.7 Interest Rates and Present Value 

For almost the whole of this book we assume that the short-term bank 
deposit interest rate is a known function of time, not necessarily con- 
stant. This is not an unreasonable assumption when valuing options, 
since a typical equity option has a total lifespan of about nine months. 
During such a relatively short time interest rates may change but not 
usually by enough to affect the prices of options significantly. (An in- 
terest rate change from 8% p.a. to 10% p.a. typically decreases a nine- 
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month option value by about 2%.) However, towards the end of the 
book, in Chapters 17 and 18 on bond pricing, we relax the assumption 
of known interest rates and present a model where the short-term rate 
is a random variable. This is important in valuing interest rate depen- 
dent products, such as bonds, since they have a much longer lifespan, 
typically 10 or 20 years; the assumption of known or constant interest 
rates is not a good one over such a long period. 

For valuing options the most important concept concerning interest 
rates is that of present  value or discounting. Ask the question 

How much would 1 pay now to receive a guaranteed amount E a t  the 
future time T? 

If we assume that interest rates are constant, the answer to  this ques- 
tion is found by discounting the future value, E, using continuously 
compounded interest. With a constant interest rate r, money in the 
bank M ( t )  grows exponentially according to 

d M  
- = r dt .  
M 

The solution of this is simply 

M = cert , 

where c is the constant of integration. Since M = E at  t = T, the value 
a t  time t of the certain payoff is 

M = ,ye-r(T-t) 

If interest rates are a known function of time r ( t ) ,  then (1.1)  can be 
modified trivially and results in 

f irther Reading 

Sharpe (1985) describes the workings of financia1 markets in general. 
It  is a very good broad introduction to  investment theory and practice. 
Blank, Carter & Schmiesing (1991) discuss the uses of options and 
other products by different sorts of finance practitioners. Copeland, 
Koller & Murrin (1990) discuss the use of options in valuing compa- 
nies. 



Exercises 17 

Good descriptions of options and trading strategies can be found in 
MacMillan (1980), Hull(1993), Gemmill(1993) and the opening chap- 
ters of Cox & Rubinstein (1985). 
Hull (1993) describes the workings of futures markets in some detail. 
Cox, Ingersoll & Ross (1981) establish the equivalence of forward and 
futures prices using an  arbitrage argument. 
For a more mathematical treatment of many aspects of finance see 
Merton (1990). 

Exercises 

1. It is customary for shares in the UK to have prices between lOOp and 
lOO0p (in the US, between $10 and $100), perhaps because then typical 
daily clianges are of the same sort of size as the last digit or two, and 
perhaps so that average purchase sizes for retail investors are a sensible 
number of shares. A company whose share price rises above this range 
will usually issue new shares to bring it back. This is called a scrip 
issue in the UK, a stock split in the US. What is the effect of a one-for- 
one issue (Le. one new share for each old one) on the share price? IIow 
should option contracts be altered? What will be the effect on option 
prices? Illustrate with an example such as Reuters from Figure 1.1. 
Repeat for a two-for-one issue. 

2. A stock price is S just before a dividend D is paid. What is the price 
immediately after the payment? 

3. Should the value of cal1 and put options increase with uncertainty? 
Why? 

4. "If taxes and transaction costs are ignored, options transactions are a 
zero-sum game." What is meant by this? 



2 Asset Price Random Walks 

2.1 Introduction 

Since the mid-1980s it has been impossible for newspaper readers or 
television viewers to  be unaware of the nature of financial time series. 
The values of the major indices (Financia1 Times Stock Exchange 100, or 
FT-SE, in the UK, the S&P 500and Dow Jones in the US and the Nzkkei 
Dow in Japan) are quoted frequently. Graphs of these indices appear on 
television news bulletins throughout the day. As an extreme example of 
a financial time series, Figure 2.1 shows the FT-SE daily closing prices 
for the six months each side of the October 1987 stock market crash. To 
many people these 'mountain ranges' showing the variation of the value 
of an assetl or index with time are excellent examples of the 'random 
walk'. 

It  must be emphasised that this book is not about the prediction of 
asset prices. Indeed, our basic assumption, common to most of option 
pricing theory, is that we do not know and cannot predict tomorrow's 
values of asset prices. The past history of the asset value is there as 
a financial time series for us to examine as much as we want, but we 
cannot use it to forecast the next move that the asset will make. This 
does not mean that it tells us nothing. We know from our examination 
of the past what are the likely jumps in asset price, what are their mean 
and variance and, generally, what is the likely distribution of future asset 
prices. These qualities must be determined by a statistical analysis of 
historical data. Since this is not a statistical text, we assume that we 

We use the word 'asset' for any financial product whose value is quoted or can, 
in principie, be measured. Examples include equities, indices, currencies and 
commodities. 
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F T - S E  

Apr. 1987 Oct .  1987 Apr. 1988 

Figure 2.1. FT-SE closing prices from April 1987 to April 1988. 

know them, although a brief discussion is given in the Technical Point 
at  the end of the next section. 

Almost al1 models of option pricing are founded on one simple model 
for asset price movements, involving parameters derived, for example, 
from historical or market data. This chapter is devoted to a discussion 
of this model. 

2.2 A Simple Model for Asset Prices 

It  is often stated that asset prices must move randomly because of the 
efficient market hypothesis. There are severa1 different forms of this 
hypothesis with different restrictive assumptions, but they al1 basically 
say two things: 

The past history is fully reflected in the present price, which does not 
hold any further information; 
Markets respond immediately to any new information about an asset. 

Thus the modelling of asset prices is really about modelling the arrival 
of new information which affects the price. With the two assumptions 
above, unanticipated changes in the asset price are a Markov process. 
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Firstly, we note that the absolute change in the asset price is not by 
itself a useful quantity: a change of l p  is much more significant when 
the asset price is 20p than when it is 200p. Instead, with each change 
in asset price, we associate a r e tu rn ,  defined to be the change in the 
price divided by the original value. This relative measure of the change 
is clearly a better indicator of its size than any absolute measure. 

Now suppose that at time t the asset price is S .  Let us consider a 
small subsequent time interval dt, during which S changes to S + dS, as 
sketched in Figure 2.2. (We use the notation d .  for the small change in 
any quantity over this time interval when we intend to consider it as an 
infinitesimal change.) How might we model the corresponding return on 
the asset, dS/S? The commonest model decomposes this return into two 
parts. One is a predictable, deterministic and anticipated return akin to 
the return on money invested in a risk-free bank. I t  gives a contribution 

to the return dS/S, where p is a measure of the average rate of growth 
of the asset price, also known as the drift. In simple models p is taken 
to be a constant. In more complicated models, for exchange rates, for 
example, p can be a function of S and t.  

The second contribution to  dS/S models the random change in the 
asset price in response to externa1 effects, such as unexpected news. It 
is represented by a random sample drawn from a normal distribution 
with mean zero and adds a term 

to dS/S. Here a is a nurnber called the volatility, which measures the 
standard deviation of the returns. The quantity d X  is the sample from 
a normal distribution, which is discussed further below. 

Putting these contributions together, we obtain the s tochast ic  dif- 
ferential equat ion  

d S  
- = a d X + p d t ,  
S (2.1 

which is the mathematical representation of our simple recipe for gen- 
erating asset prices. 

The only symbol in (2.1) whose role is not yet entirely clear is dX. If 
we were to  cross out the term involving dX, by taking a = O, we would 



2.2 A Simple Model for Asset Prices 

Figure 2.2. Detail of a discrete random walk. 

be left with the ordinary differential equation 

When p is constant this can be solved exactly to give exponential growth 
iri the value of the asset, i.e. 

where So is the value of the asset a t  t = to. Thus if a = O the asset price 
is totally deterministic and we can predict the future price of the asset 
with certainty. 

The term dX,  which coritains the randomness that is certainly a fea- 
ture of asset prices, is known as a Wiener process. It  has the followiilg 
properties: 

e d X  is a random variable, drawn from a normal distribution; 
e the mean of d X  is zero; 
e the variance of d X  is dt. 
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One way of writing this is 

where 4 is a random variable drawn from a standardised normal dis- 
tribution. The standardised normal distribution has zero mean, unit 
variance and a probability density function given by 

for -m < < < m. If we define the expectation operator E by 

for any function F, then 

E[41 = 0 

and 

= 1, 

The reason that dX  is scaled with a is that any other choice for the 
magnitude of dX would lead to  a problem that is either meaningless or 
trivial when we finally consider what happens in the limit dt -, O, in 

which we are particularly interested for the reasons given above. (We 
also mention that if dX were not scaled in this way, the variance of the 
random walk for S would have a limiting value of O or m.) We return 
to this point later. 

We have given some economically reasonable justification for the 
model (2.1). A more practica1 justification for it is that it fits real time 
series data very well, at  least for equities and indices. (The agreement 
with currencies is less good, especially in the long term.) There are some 
discrepancies; for instance, real data appears to have a greater probabil- 
ity of large rises or falls than the model predicts. But, on the whole, it 
has stood the test of time remarkably well and can be the starting point 
for more sophisticated models. As an example of such generalisation, 
the coefficients of dX and dt in (2.1) could be any functions of S and/or 
t .  The particular choice of functions is a matter for the mathematical 
modeller and statistician, and different assets may be best represented 
by other stochastic differential equations. 

Equation (2.1) is a particular example of a random walk. It cannot 
be solved to give a deterministic path for the share price, but it can 
give interesting and important information concerning the behaviour of 
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Figure 2.3. The probability density function (pdf) for S'IS. 

S in a probabilistic sense. Suppose that today's date is to and today's 
asset price is So. If the price at a later date t', in six months' time, say, 
is S', then S' will be distributed about So with a probability density 
function of the form shown in Figure 2.3. The future asset price, S', is 
thus most likely to  be close to  So and less likely to be far away. The 
further that t' is from to the more spread out this distribution is. If 
S follows the random walk given by (2.1) then the probability density 
function represented by this skewed bell-shaped curve is the lognormal 
distribution (we show this below) and the random walk (2.1) is therefore 
known as a lognormal random walk. 

We can think of (2.1) as a recipe for generating a time series - each 
time the series is restarted a different path results. Each path is called a 
realisation of the random walk. This recipe works as follows. Suppose, 
as an example, that today's price is $1, and we have p = 1, u = 0.2 with 
dt = 11250 (one day as a proportion of 250 business days per year). We 
now draw a number a t  random from a normal distribution with mean 
zero and variance 11250; this is dX. Suppose that we draw the number 
d X  = 0.08352.. . . Now perform the calculation in (2.1) to  find dS: 
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Add this value for d S  to the original value for S to arrive a t  the new value 
for S after one time-step: S + d S  = $1.020704.. . . Repeat the above 
steps, using the new value for S and drawing a new random number. As 
this procedure is repeated it generates a time series of random numbers 
which appears similar to genuine series from the stock market, such as 
that in Figure 2.1. 

Firstly, let us now briefly consider some of the properties of (2.1). 
Equation (2.1) does not refer to the past history of the asset price; 
the next asset price ( S  + dS) depends solely on today's price. This 
independence from the past is called the Markov property. Secondly, 
we consider the mean of dS: 

since &[dX] = O. On average, the next value for S is higher than the old 
by an amount pSdt .  

Thirdly, the variance of d S  is 

The square root of the variance is the standard deviation, which is thus 
proportional to  o. 

If we compare two random walks with different values for the parame- 
ters p and a ,  we see that the one with the larger value of p usually rises 
more steeply and the one with the larger value of o appears more jagged. 
Typically, for stocks and indices the value of o is in the range 0.05 to 
0.4 (the units of a2 are per annum). Government bonds are examples of 
assets with low volatility, while 'penny shares' and shares in high-tech 
companies generally have high volatility. The volatility is often quoted 
as a percentage, so that a = 0.2 would be called a 20% volatility. 

In the next section we learn how to manipulate functions of random 
variables. 

Technical Point: Parameter Estimation. 
None of the analysis that we have presented so far is of much use unless 
we can estimate the parameters in our random walk. In particular, we 
find later that only the volatility parameter, a ,  in the random walk (2.1) 
appears in the value of an option. How can we estimate a, for example 
from historic data? 

This is not a statistics textbook; see the section on Further Reading 
for references on parameter estimation. A simple approach is as follows. 
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Suppose that we have the values of the asset price S at n + 1 equal time- 
steps; closing prices, say. Cal1 these values So,.  . . , S, in chronological 
order with So the first value. 

Since we are assuming that changes in the asset price follow (2.1), 
where dX is normally distributed, we can use the usual unbiased variance 
estimate ü2 for u*. Let 

t hen 

The time-step between data points, dt, is assumed to be constant, and if 
measured as a fraction of a year the resulting parameters are annualised. 

There is a great deal more to the subject of parameter estimation, for 
example sizes of data sets or time dependence, but this book is not the 
place to discuss them. 

2.3 It6's Lemma 

In real life asset prices are quoted at discrete intervals of time. There 
is thus a practical lower bound for the basic time-step dt of our random 
walk (2.1). If we used this time-step in practice to value options, though, 
we would find that we had to deal with unmanageably large amounts of 
data. Instead, we set up our mathematical models in the continuous 
time limit dt + O; it is much more efficient to solve the resulting differ- 
ential equations than it is to value options by direct simulation of the 
random walk on a practical timescale. In order to do this, we need some 
technical machinery that enables us to handle the random term dX as 
dt + 0, and this is the content of this section. 

It6's lemma is the most important result about the manipulation of 
random variables that we require. It  is to  functions of random variables 
what Taylor's theorem is to functions of deterministic variables, in that 
it relates the small change in a function of a random variable to the 
small change in the random variable itself. Our heuristic approach to  
It6's lemma is based on the Taylor series expansion; for a more rigorous 
yet still readable analysis, see the books referred to  a t  the end of the 
chapter. 
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Before coming to It6's lemma we need one result, which we do not 
prove rigorously (see Technical Point 1 below). This result is that, with 
probability 1, 

d x 2  + dt as dt -t O. (2.4) 

Thus, the smaller dt becomes, the more certainly d X 2  is equal to  dt .  
Suppose that f ( S )  is a smooth function of S and forget for the moment 

that S is stochastic. If we vary S by a small amount d S  then clearly f 
also varies by a small amount provided we are not close to  singularities 
of f .  From the Taylor series expansion we can write 

where the dots denote a remainder which is smaller than any of the 
terms we have retained. Now recall that d S  is given by (2.1). Here d S  
is simply a number, albeit random, and so squaring it we find that 

We now examine the order of magnitude of each of the terms in (2.6). 
(See Technical Point 2 below for the symbol O(.).) Since 

d X  = O(&), 

the first term is the largest for small d t  and dominates the other two 
terms. Thus, to leading order, 

Since d X 2  -t d t ,  to leading order 

We substitute this into (2.5) and retain only those terms which are a t  
least as large as O ( d t ) .  Using also the definition of d S  from (2.1), we 
find that 

df d 2 f  df = -(OS d X  + p S  d t )  + ;u2s2-dt  
d S  d S 2  

+ ;u2s2- dt .  
d S 2  d 2 f  > (2.7) 
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This is It6's lemma2 relating the small change in a function of a random 
variable to the small change in the variable itself. 

Because the order of magnitude of dX is O(&), the second derivative 
of f with respect to S appears in the expression for df at order dt. The 
order dt terms play a significant part in our later analyses, and any other 
choice for the order of dX would not lead to the interesting results we 
discover. It  can be shown that any other order of magnitude for dX 
leads to unrealistic properties for the random walk ín the limit dt -, 0; 
if dX » the random variable goes immediately to zero or infinity, 
and if d X  « Jdt the random component of the walk vanishes in the 
limit dt 4 0. 

Observe that (2.7) is made up of a random component proportional 
to d X  and a deterministic component proportional to dt. In this re- 
spect it bears a resemblance to equation (2.1). Equation (2.7) is also a 
recipe, this time for determining the behaviour of f ,  and f itself follows 
a random walk. 

The result (2.7) can be further generalised by considering a function 
of the random variable S and of time, f (S, t) .  This entails the use of 
partial derivatives since there are now two independent variables, S and 
t. We can expand f ( S  + dS, t + dt) in a Taylor series about (S, t) to get 

Using our expressions (2.1) for dS  and (2.4) for dX2 we find that the 
new expression for df is 

a f )  dt. ('2.8) + ;o2s2- + - as2 dt  

As a simple example of the theory above, consider the function 
f (S) = log S .  Differentiation of this function gives 

df 1 - = -  1 d2f -- 
d S  S 

and - - 
d S 2 -  S2' 

We have here applied It6's lemma to functions of the random variable S, which 
is defined by (2.1). The lemma is, of course, more general than this and can be 
applied to functions of any random variable, G, say, described by a stochastic 
differential equation of the form 

dG = A(G, t )  d X  + B(G, t )  dt. 

Thus given f (G), It6's lemma says that 

df = A-dX + B- + S A - ~ - -  
d j  ( dC dG 

dG2 d 2 f )  dt. 
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Thus, using (2.7), we arrive at 

df = a d X  + ( p  - +a2) dt. 

This is a constant coefficient stochastic differential equation, which says 
that the jump df ik normally distributed. Now consider f itself: it is tbe 
sum of the jumps df (in the limit, the sum becomes an integral). Since a 
sum of normal variables is also normal, f  - fo has a normal distribution 
with mean (p - 4a2)t  and variance a2t .  (Here, of course, fo = log So 
is the initial value of f  .) The probability density function of f  ( S )  is 
therefora 

1 e-(f-fo-(p-302)t)2/202t 
am (2.9) 

for -m < f < m. 
Now that we have the probability density function of f  ( S )  = log S ,  

it is not difficult to show (the derivation is left as an exercise) that the 
probability density function of S itself is 

for O < S < m; (2.10) is known as the lognormal dis tr ibut ion,  and 
the random walk that gives rise to  it is oken called a lognormal random 
walk. We shall use it later, when we discuss risk neutrality in Chapter 5 
and in the binomial method in Chapter 10. 

Technical Point 1: T h e  Limit of d X 2  as d t  -+ 0. 
To be technically correct we should write the stochastic differential equa- 
tion (2.1) in the integrated form 

S ( t )  = S( to)  + o l: S d X  + Jli S d t .  

Al1 the theory for stochastic calculus is based on this representation of a 
random walk and, strictly speaking, (2.1) is only shorthand notation. 

We do not yet llave a definition for the term involving the integration 
with respect to the Wiener process. One definition of such integrals, due 
to It6, is that, for any function h,  

h ( r )  d X ( r )  = lim Intm 
m-+w 

where 
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Here to < t l  . . . < t, = t is any partition (or division) of the range 
[to, t] into m smaller regions and X is the running sum of the random 
variables d X .  The important point to  note about (2.11) is that the value 
of the function h inside the summation is taken a t  the left-hand end of 
the small regions, i.e. a t  t = tk  and not a t  tk+l. (This is, in effect, where 
the Markov property is incorporated into the model.) 

If X(t )  were a smooth function the integral would be the usual Stieltjes 
integral and it would not matter that h was evaluated a t  the left-hand 
end. However, because of the randomness, which does not go away as 
dt -+ 0, the fact that the summation depends on the left-hand value of h 
in each partition becomes important. For example, 

The 1 s t  term would not be present if X were smooth. 
Using the formal definition of stochastic integration it can be shown 

t hat 

which when written in the shorthand notation becomes (2.7) as 'derived' 
above. We can conclude that the rules for differentiation and integration 
are different from those of classical calculus, but can generally be derived 
heuristically by remembering the simple rule of thumb 

dX2 = dt. 

Technical Point 2: Order Notation. 
Order notation is a convenient shorthand representation of the idea 
that some complicated quantity, such as a term in an equation, is 'about 
the same size as' some other, usually sinlpler, quantity. Suppose that 
F ( t )  and G(t) are two functions of t and that, as t -+ 0, 

F( t )  l CG(t) 

for some constant C (equivalently, lim,,o F(t)/G(t)  is bounded by C). 
Then we write 

F ( t )  = 0(G( t ) )  as t -+ O. 

There is nothing special about t = O in this definition; we could have 
been concerned with any value of t (including infinity). If the limit of 
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F(t)/G(t) is actually 1, it is usual to write 

although conventions differ on the exact interpretation of the symbol 
('twiddles'); it is sometimes taken to be equivalent to O(.). If 
F(t)/G(t) -+ O as t -+ O, we write 

this is sometimes abbreviated to 

In the discussion of It6's lemma above, we have both dX = O(&%) as 
dt -+ O and dX - Jdt as dt -+ O. We see also that dX dt = o(dt) as 
dt -+ O (or dX dt < dt), and this is why we are able to ignore terms of 
this size in It6's lemma. 

2.4 The Elimination of Randomness 

The two random walks in S (equation (2.1)) and f (equation (2.8)) are 
both driven by the single random variable dX. We can exploit this fact 
to  construct a third variable g whose variation dg is wholly deterministic 
during the small time period dt. For the moment this appears to be 
merely a clever trick but it takes on major importance when we come 
to  value options. 

Let A be a number a t  our disposal and let 

where A is held constant during the time-step dt. We can write 

dg=df  - A d S  

-A(oS dX + pS dt) 

(If A were allowed to vary during the time-step then in evaluating dg 
we would need to include terms in d a . )  Now, by choosing A = df /dS 
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(evaluated before the jumps, i.e. a t  time t) we can make the coefficient 
of dX vanish. This leaves a value for dg which is known: the random 
walk for g is purely deterministic. Essentially, this 'trick' used the fact 
that the two random walks, for S and for f ,  are correlated and so not in- 
dependent. Since their random components are proportional, by taking 
the correct linear combination of f and S it can be eliminated altogether. 
This is just the argument we used informally in Section 1.4, and in the 
next chapter it turns out to be crucial in the discussion of option pricing. 

Further Reading 

Cox & Rubinstein (1985) give a good description of the binomial 
model in which asset prices do not change continuously in time but 
rather jump at discrete intervals to  one of two new values. Such 
discrete models, although not necessarily accurate models of the real 
world, can often give insight into financia1 problems. 
Jump-diffusion models are discussed by Jarrow & Rudd (1983) and 
Merton (1976). In these models asset prices behave as we have de- 
scribed with one additional property: they can occasionally undergo 
random jumps of a substantial fraction of their value. 
For a further and more detailed description of the movement of equity 
prices see Brealey (1983), Fama (1965) and Mandelbrot (1963). 
See Spiegel (1980) for general details of parameter estimation, and 
Leong (1993) for information specific to  option pricing. 
See Schuss (1980) or 0ksendal (1992) for accounts of stochastic cal- 
culus. 
Option Pricing has more details on the probability distribution of an 
asset that follows a random walk, and of 'technical indicators' such as 
moving averages. 
Chapter 3 of Merton (1990) deals with the question of the order of 
magnitude of dX. 

Exercises 
1. If dS = aSdX + pSdt, and A and n are constants, find the stochastic 

differential equations satisfied by 

(a) f (S) = AS,  (b) f ( S )  = S". 

2. Use It6's lemma to confirm that equation (2.12) is correct. 
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3. Derive (2.10) from (2.9). 

4. Consider the general stochastic differential equation 

dG = A(G, t )  dX + B(G, t )  dt. 

Use It6's lemma to show that it is theoretically possible to find a func- 
tion f (G)  which itself follows a random walk but with zero drift. 

5 .  There are n assets satisfying the following stochastic differential equa- 
tions: 

$Si = aiSidX,  +p2Sidt  for i = 1 , . . .  ,n.  

The Wiener processes dXi satisfy 

&[dXi] = O, & [ d ~ ' ]  = dt 

as usual, but tlie asset price changes are correlated with 

where -1 5 pij = pJz < 1. 
Derive It6's lemma for a function f (S1, . . . , S,) of the n assets S I , .  . . , S, 



3 The Black-Scholes Model 

3.1 Introduction 

We begin this chapter with a discussion of the concept of arbitrage, a 
concept which, in certain circumstances, allows us to establish precise 
relationships between prices and thence to determine them. We then 
discuss option strategies in general and use arbitrage, together with 
the model for asset price movements that we discussed in the previous 
chapter, to derive the celebrated Black-Scholes differential equation for 
the price of the simplest options, the so-called European vanilla options. 
We also discuss the boundary conditions to be satisfied by different types 
of option, and we set the scene for the derivation of explicit solutions. 
This chapter is  fundam.enta1 to the whole subject of option pricing and 
should be read with cure. 

3.2 Arbitrage 

One of the fundamental concepts underlying the theory of financial 
derivative pricing and hedging is that of arbitrage. This can be loosely 
stated as "there's no such thing as a free lunch." More formally, in finan- 
cial terms, there are never any opportunities to make an instantaneous 
risk-free profit. (More correctly, such opportunities cannot exist for a 
significant length of time before prices move to eliminate them.) The 
financial application of this principie leads to some elegant modelling. 

Almost al1 finance theory, this book included, assumes the existence 
of risk-free investments that give a guaranteed returnl with no chance 

l As explained in Chapter 17 the return available may depend on the time for which 
the deposit is made; the different rates available for different periods reflect the 
possibility that interest rates may change in the future. We need only assume that  
a known guaranteed short-term return is always available. 
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of default. A good approximation to  such an investment is a government 
bond or a deposit in a sound bank. The greatest risk-free return that 
one can make on a portfolio of assets is the same as the return if the 
equivalent amount of cash were placed in a bank. 

The key words in the definition of arbitrage are 'instantaneous' and 
'risk-free'; by investing in equities, say, one can probably beat the bank, 
but this cannot be certain. If one wants a greater return then one must 
accept a greater risk. Why should this be so? Suppose that an oppor- 
tunity did exist to make a guaranteed return of greater magnitude than 
from a bank deposit. Suppose also that most investors behave sensi- 
bly. Would any sensible investor put money in the bank when putting 
it in the alternative investment yields a greater return? Obviously not. 
Moreover, if he could also borrow money a t  less than the return on the 
alternative investment then he should borrow as inuch as possible from 
the bank to invest in the higher-yielding opportunity. In response to 
the pressure of supply and demand we would expect the bank to raise 
its interest rates to attract money and/or the yield from the other in- 
vestment to drop. There is some elasticity in this argument because of 
the presence of 'friction' factors such as transaction costs, differences in 
borrowing and lending rates, problems with liquidity, tax laws, etc., but 
on the whole the principle is sound since the market place is inhabited 
by arb i t ragers  whose (highly paid) job it is to  seek out and exploit 
irregularities or mispricings such as the one we have just illustrated. 

Technical Point: Risk. 
Risk is commonly described as being of two types: specific and non- 
specific. (The latter is also called market or systematic risk.) Specific risk 
is the component of risk associated with a single asset (or a sector of the 
market, for example chemicals), whereas non-specific risk is associated 
with factors affecting the whole market. An unstable management would 
affect an individual company but not the market; this company would 
show signs of specific risk, a highly volatile share price perhaps. On 
the other hand the possibility of a change in interest rates would be a 
non-specific risk, as such a change would affect the market as a whole. 

It is often important to distinguish between these two types of risk 
because of their behaviour within a large portfolio (a portfolio is a term 
for a collection of investments). Provided one has a sensible definition of 
risk, it is possible to diversify away specific risk by having a portfolio with 
a large number of assets from different sectors of the market; however, 
it is not possible to diversify away non-specific risk. (Market risk can 
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be eliminated from a portfolio by taking opposite positions in two assets 
which are highly negatively correlated - as one increases in value the 
other decreases. This is not diversification but hedging, which is of the 
utmost importance in the analysis of derivatives.) It is commonly said 
that specific risk is not rewarded, and that only the taking of greater 
non-specific risk should be rewarded by a greater return. 

A popular definition of the risk of a portfolio is the variance of the 
return. A bank account which has a guaranteed return, at least in the 
short term, has no variance and is thus termed riskless or risk-free. On the 
other hand, a highly volatile stock with a very uncertain return and thus 
a large variance is a risky asset. This is the simplest and commonest 
definition of risk, but it does not take into account the distribution of 
the return, but rather only one of its properties, the variance. Thus as 
much weight is attached to the possibility of a greater than expected 
return as to the possibility of a less than expected return. Other, more 
sophisticated, definitions of risk avoid this property and attach different 
weights to different returns. 

3.3 Option Values, Payoffs and Strategies 

Now we turn to option pricing. Let us introduce some simple notation, 
which we use consistently throughout the book. 

We denote by V the value of an option; when the distinction is impor- 
tant we use C ( S ,  t )  and P(S, t )  to denote a call and a put respectively. 
This value is a function of the current value of the underlying asset, 
S ,  and time, t: V = V(S, t ) .  The value of the option also depends on 
the following parameters: 
u, the volatility of the underlying asset; 
E, the.exercise price; 
T, the expiry; 
T. the interest rate. 

First, consider what happens just at the moment of expiry of a call 
option, that is, a t  time t  = T. A simple arbitrage argument tells us its 
value a t  this special time. 

If S > E at  expiry, it makes financia1 sense to exercise the call option, 
handing over an amount E, to obtain an asset worth S .  The profit from 
such a transaction is then S - E .  On the other hand, if S < E at  expiry, 
we should not exercise the option because we would make a loss of E - S .  
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Figure 3.1 The value of a call option a t  and before expiry against exercise 
price; option values from FT-SE index option data. 

In this case, the option expires worthless. Thus, the value of the call 
option at expiry can be written as 

C(S, T) = max(S - E, O). (3.1) 

As we get nearer to the expiry date we can expect the value of our 
call option to approach (3.1). To confirm this we reproduce in Figure 
3.1 the figure from Chapter 1 which compares real FT-SE index call 
option data with the value of the option a t  expiry for fixed S. In this 
figure we show max(S - E, O) as a function of E for fixed S ( = 2872) 
and superimpose the real data for V taken from the February call option 
series. Observe that the real data is always just above the predicted line. 
This reflects the fact that there is still some time remaining before the 
option expires - there is potential left for the asset price to  rise further, 
giving the option even greater value. This difference between the option 
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Figure 3.2 The payoff diagram for a call, C(S ,T) ,  and thk'option value, 
C(S,  t), prior to expiry, as functions of S. 

value before and a t  expiry is called the time value and the value a t  
expiry the intrinsic ~ a l u e . ~  

If one owns an option with a given exercise price, then one is less 
interested in how the option value varies with exercise price than with 
how it varies with asset price, S.  In Figure 3.2 we plot 

as a function of S (the bold line) and also the value of an option a t  some 
time before expiry. The latter curve is just a sketch of a plausible form 
for the option value. For the moment the reader must trust that the 
value of the option before expiry is of this form. Later in this chapter 
we see how to  derive equations and sometimes formulz for such curves. 

The bold line, being the payoff for the option at expiry, is called a 
payoff diagram. The reader should be aware that some authors use 
the term 'payoff diagram' or 'profit diagram' to mean the difference 
between the terminal value of the contract ( O U T  payoff) and the original 
premium. We choose not to use this definition for two reasons. Firstly, 

Other important jargon is at-the-money, which refers to that option whose ex- 
ercise price is closest to the current value of the underlying asset, in-the-money, 
which is a call (put) whose exercise price is less (greater) than the current as- 
set price - so that the option value has a significant intrinsic component - and 
out-of-the-money, which is a call or put with no intrinsic value. 
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Figure 3.3 The payoff diagram for a put, P(S,T), and the option value, 
P(S, t ) ,  prior to expiry, as functions of S. 

the premium is paid a t  the start of the option contract and the return, 
if any, only comes at expiry. Secondly, the payoff diagram has a natural 
interpretation, as we see, as the final condition for a diffusion equation. 

I t  should now be clear that each option and portfolio of options has 
its own payoff at expiry. An argument similar to that given above for 
the value of a call a t  expiry leads to the payoff for a put option. At 
expiry it is worthless if S > E but has the value E - S for S < E. Thus 
the payoff at expiry for a put option is 

The payoff diagram for a European put is shown in Figure 3.3, where 
the bold line shows the payoff function max(E - S, O). The other curve 
is again a sketch of the option value prior to  expiry. Although the time 
value of the call option of Figure 3.2 is everywhere positive, for the put 
the time value is negative for sufficiently small S, where the option value 
falls below the payoff. We return to  this point later. 

Although the two most basic structures for the payoff are the call and 
the put, in principle there is no reason why an option contract cannot 
be written with a more general payoff. An example of another payoff is 
shown in Figure 3.4. This payoff can be written as 

B'H(S - E), 

where N(.) ,is the Heaviside function, which has value O when its 
argument is negative but is 1 otherwise. This option may be interpreted 
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Figure 3.4 The payoff diagram for a cash-or-nothing call, equivalent to a bet 
on the asset price. 

as a straight bet on the asset price; it is called a cash-or-nothing call. 
Options with general payoffs are usually called binaries or digitals. 

By combining calls and puts with various exercise prices one can con- 
struct portfolios with a great variety of payoffs. For example, we show 
in Figure 3.5 the payoff for a 'bullish vertical spread', which is con- 
structed by buying one call option and writing one call option with the 
same expiry date but a larger exercise price. This portfolio is called 
'bullish' because the investor profits from a rise in the asset price, 'verti- 
cal' because there are two different exercise prices involved, and 'spread' 
because it is made up of the same type of option, here calls. The payoff 
function for this portfolio can be written as 

with E2 > El. . 
Many other portfolios can be constructed. Some examples are 'com- 

binations', containing both calls and puts, and 'horizontal' or 'calendar' 
spreads, containing options with different expiry dates. Others are given 
in the exercises a t  the end of this chapter. 

The appeal of such strategies is in their ability to redirect risk. In 
exchange for the premium - which is the maximum possible loss and 
known from the start - one can construct portfolios to benefit from 
virtually any move in the underlying asset. If one has a view on the 
market and this turns out to be correct then, as we have seen, one can 
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Figure 3.5. The payoff diagram for a bullish vertical spread. 

make large profits from relatively small movements in the underlying 
asset. 

3.4 Put-cal1 Parity 

Although call and put options are superficially different, in fact they can 
be combined in such a way that they are perfectly correlated. This is 
demonstrated by the following argument. 

Suppose that we are long one asset, long one put and short one call. 
The call and the put both have the same expiry date, T, and the same 
exercise price, E. Denote by Ii the value of this portfolio. We thus have 

r I = S + P - C ,  

where P and C are the values of the put and the call respectively. The 
payoff for this portfolio a t  expiry is 

S + max(E - S, O) - max(S - E, O). 

This can be rewritten as 

Whether S is greater or less than E at expiry the payoff is always the 
same, namely E. 
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Now ask the question 

How much would 1 pay for a portfolio that gives a guaranteed E at 
t =T? 

This is, of course, the same question that we asked in Chapter 1, and 
the answer is arrived at by discounting the final value of the portfolio. 
(Note that here we do have to assume the existence of a known risk-free 
interest rate over the lifetime of the option.) Thus this portfolio is now 
worth ~ e - ~ ( ~ - ~ ) .  This equates the return from the portfolio with the 
return from a bank deposit. If this were not the case then arbitragers 
could (and would) make an instantaneous riskless profit: by buying and 
selling options and shares and a t  the same time borrowing or lending 
rnoney in the correct proportions, they could lock in a profit today with 
zero payoff in the future. Thus we conclude that 

This relationship between the underlying asset and its options is called 
put-cal1 parity. It  is an example of risk elimination, achieved by car- 
rying out one transaction in the asset and each of the options. In the 
next section, we see that a more sophisticated version of this idea, in- 
volving a continuous rebalancing, rather than the one-off transactions 
above, allows us to  value European cal1 and put options independently. 

3.5 The Black-Scholes Analysis 

Before describing the Black-Scholes analysis which leads to  the value of 
an option we list the assumptions that we make for most of the book. 

The asset price follows the lognormal random walk (2.1). 
Other models do exist, and in many cases it is possible to perform 
the Black-Scholes analysis to derive a differential equation for the 
value of an option. Explicit formulz rarely exist for such models. 
However, this should not discourage their use, since an accurate 
numerical solution is usually quite straightforward. 

The risk-free interest rate r and the asset volatility u are known func- 
tions of time over the life of the option. 

Only in Chapters 17 and 18 do we drop the assumption of determin- 
istic behaviour of r; there we model interest rates by a stochastic 
differential equation. 
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There are no transaction costs associated with hedging a portfolio. 
In Chapter 16 we describe a model which allows for transaction 
costs. 

The underlying asset pays no dividends during the life of the option. 
This assumption can be dropped if the dividends are known before- 
hand. They can be paid either at  discrete intervals or continuously 
over the life of the option. We discuss this point further in Chap- 
ter 6. 

There are no arbitrage possibilities. 
The absence of arbitrage opportunities means that al1 risk-free port- 
folios must earn the same return. 

Trading of the underlying asset can take place continuously. 
This is clearly an idealisation, and becomes important in the chapter 
on transaction costs, Chapter 16. 

Short selling is permitted and the assets are divisible. 
We assume that we can buy and se11 any number (not necessarily 
an integer) of the underlying asset, and that we may se11 assets that 
we do not own. 

Suppose that we have an option whose value V(S, t )  depends only on 
S and t .  It  is not necessary at  this stage to specify whether V is a call 
or a put; indeed, V can be the value of a whole portfolio of different 
options although for simplicity the reader can think of a simple call or 
put. Using It6's lemma, equation (2.8), we can write 

This gives the random walk followed by V. Note that we require V to 
have a t  least one t derivative and two S derivatives. 

Now construct a portfolio consisting of one option and a number -A 
of the underlying asset. This number is as yet unspecified. The value of 
this portfolio is 

n = V - A S .  (3.4) 

The jump in the value of this portfolio in one time-step is 

Here A is held fixed during the time-step; if it were not then dll would 
contain terms in dA. Putting (2.1), (3.3) and (3.4) together, we find 
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that II follows the random walk 

(3.5) 
As we demonstrated in Section 2.4, we can eliminate the random com- 
ponent in this random walk by choosing 

Note that A is the value of d V / d S  at  the start of the time-step d t .  
This results in a portfolio whose increment is wholly deterministic: 

d V  
dII = (- + ;a2s2- 

d t  
d t .  a s2  

We now appeal to the concepts of arbitrage and supply and demand, 
with the assumption of no transaction costs. The return on an amount 
II invested in riskless assets would see a growth of rII d t  in a time dt .  If 
the right-hand side of (3.7) were greater than this amount, an arbitrager 
could make a guaranteed riskless profit by borrowing an amount IT to 
invest in the portfolio. The return for this risk-free strategy would be 
greater than the cost of borrowing. Conversely, if the right-hand side of 
(3.7) were less than r I I d t  then the arbitrager would short the portfolio 
and invest IT in the bank. Either way the arbitrager would make a 
riskless, no cost, instantaneous profit. The existence of such arbitragers 
with the ability to trade at low cost ensures that the return on the 
portfolio and on the riskless account are more or less equal. Thus, we 
have 

Substituting (3.4) and (3.6) into (3.8) and dividing throughout by dt  we 
arrive at  

This is the Black-Scholes part ial  differential equation.  With its 
extensions and variants, it plays the major role in the rest of the book. 

It  is hard to overemphasise the fact that, under the assumptions stated 
earlier, any derivative security whose price depends only on the current 
value of S and on t ,  and which is paid for up-front, must satisfy the 
Black-Scholes equation (or a variant incorporating dividends or time- 
dependent parameters). Many seemingly complicated option valuation 
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problems, such as exotic options, become simple when looked a t  in this 
way. It  is also important to note, though, that many options, for example 
American options, have values that depend on the history of the asset 
price as well as its present value. We see later how they fit into the 
Black-Scholes framework. 

Before moving on, we make three remarks about the derivation we 
have just seen. Firstly, the delta, given by 

is the rate of change of the value of our option or portfolio of options 
with respect to S.  It  is of fundamental importance in both theory and 
practice, and we return to  it repeatedly. It  is a measure of the correlation 
between the movements of the option or other derivative products and 
those of the underlying asset. 

Secondly, the linear differential operator Lss  given by 

has a financia1 interpretation as a measure of the difference between the 
return on a hedged option portfolio (the first two terms) and the return 
on a bank deposit (the last two terms). Although this difference must 
be identically zero for a European option, in order to avoid arbitrage, 
we see later that this need not be so for an American option. 

Thirdly, we note that the Black-Scholes equation (3.9) does not con- 
tain the growth parameter p. In other words, the value of an option is 
independent of how rapidly or slowly an asset grows. The only parame- 
ter from the stochastic differential equation (2.1) for the asset price that 
affects the option price is the volatility, u. A consequence of this is that 
two people may differ in their estimates for p yet still agree on the value 
of an option. 

3.6 The Black-Scholes Equation 

Equation (3.9) is the first partial differential equation that we have de- 
rived in this book. The theory and solution methods for partial differen- 
tia1 equations are discussed in depth in Chapters 4 and 5; nevertheless, 
we now introduce a few basic points in the theory so that the reader is 
aware of what we are trying to achieve. 

By deriving the partial differential equation for a quantity, such as an 
option price, we have made an enormous step towards finding its value. 
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We hope to  be able to  find an expression for this value by solving the 
equation. Sometimes this involves solution by numerical means if exact 
formulz cannot be found. However, a partial differential equation on its 
own generally has many solutions; for example, the values of puts, calls 
and S itself al1 satis& the Black-Scholes equation. The value of an option 
should be unique (otherwise, arbitrage possibilities would arise), and so, 
to  pin down the solution, we must also impose boundary conditions. A 
boundary condition specifies the behaviour of the required solution a t  
some part of the solution domain. 

The most frequent type of partial differential equation in financia1 
problems is the parabolic equation. A parabolic equation for a function 
V(S, t )  is a specific relationship between V and its partial derivatives 
with respect to the independent variables S and t.  In the simplest case, 
the highest derivative with respect to S is a second derivative, and the 
highest derivative with respect to  t is only a first derivative. Thus (3.9) 
comes into this category. If the equation is linear and the signs of these 
particular derivatives are the same, when they appear on the same side of 
the equation, then the equation is called backward parabolic; otherwise 
it is called forward parabolic. Equation (3.9) is backward parabolic. 

Once we have decided that our partial differential equation is of this 
parabolic type we can make general statements about the sort of bound- 
ary conditions that lead to a unique solution. Typically, we must pose 
two conditions in S ,  which has the second derivative associated with it, 
but only one in t. For example we could specify that 

and 

V(S, t )  = Vb(t) on S = b 

where Va and Vb are given functions of t .  
If the equation is of backward type we must also impose a 'final' 

condition such as 

V(S, t)  = VT(S) on t = T 

where VT is a known function. We then solve for V in the region t < T. 
That is, we solve 'backwards in time', hence the name. If the equation 
is of forward type we impose an 'initial' condition on t = 0, say, and 
solve in t > O, in the forward direction. Of course, we can change from 
backward to  forward by the simple change of variables t' = -t. This 
is why both types of equation are mathematically equivalent and it is 
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common to transform backward equations into forward equations before 
any analysis. It is important to remember, however, that the parabolic 
equation cannot be solved in the wrong direction; that is, we should not 
impose initial conditions on a backward equation. 

3.7 Boundary and Final Conditions for European 
Options 

Having derived the Black-Scholes equation for the value of an option, 
we must next consider final and boundary conditions, for otherwise the 
partial differential equation does not have a unique solution. For the 
moment we restrict our attention to a European call, with value now 
denoted by C(S, t), with exercise price E and expiry date T. 

The final condition, to be applied at t = T, comes from the arbitrage 
argument described in Section 3.3. At t = T, the value of a call is known 
with certainty to be the payoff: 

C(S, T) = max(S - E, O). (3.10) 

This is the final condition for our partial differential equation. 
Our 'spatial' or asset-price boundary conditions are applied at zero 

asset price, S = 0, and as S -+ m. We can see from (2.1) that if S is 
ever zero then dS is also zero and therefore S can never change. This is 
the only deterministic case of the stochastic differential equation (2.1). 
If S = O at expiry the payoff is zero. Thus the call option is worthless 
on S = O even if there is a long time to expiry. Hence on S = O we have 

As the asset price increases without bound it becomes ever more likely 
that the option will be exercised and the magnitude of the exercise price 
becomes less and less important. Thus as S -, co the value of the option 
becomes that of the asset and we write 

For a European call option, without the possibility of early exercise, 
(3.9)-(3.12) can be solved exactly to give the Black-Scholes value of a 
call option. We show how to do this in Chapter 5, and at the end of this 
section we quote the results for a European call and put. 

For a put option, with value P(S,  t), the final condition is the payoff 

P(S,  T) = max(E - S, O). (3.13) 
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We have already mentioned that  if S is ever zero then it must remain 
zero. In  this case the final payoff for a put is known with certainty t o  be 
E. To determine P(O, t )  we simply have t o  calculate the  present value 
of an amount E received a t  time T. Assuming that  interest rates are 
constant we find the boundary condition a t  S = O to  be 

More generally, for a time-dependent interest rate we have 

As S -+ cm the  option is unlikely to  be exercised and so 

Technical Point: Boundary Conditions at Infinity. 
We see later that we can transform (3.9) into an equation with constant 
coefficients by the change of variable S = Eex.  The point S = O becomes 
x = -m and S = co becomes x = m. As we also see, a physical analogy 
to the financia1 problem is the flow of heat in an infinite bar. Clearly, pre- 
scribing the temperature of the bar a t  x = f co has no effect whatsoever 
a t  finite values of x unless the temperature is highly singular there. If 
the temperature a t  infinity is well-behaved then the temperature in any 
finite region of the bar is governed wholly by the initial data: it cannot 
be influenced by the ends a t  infinity. Since most option problems can be 
transformed into the diffusion equation it is also not strictly necessary to 
prescribe the boundary condítíons at  S = O and S = m. We only need 
to insist that the value of the option is not too singular. 

We can distinguish between 

prescribing a boundary condition in order to make the solution unique, 
and 
determining the solution in the neighbourhood of the boundary, per- 
haps to assist or check a numerical solution. 

The boundary conditions (3.11) and (3.12) contain more information than 
is strictly mathematically necessav (see Section 4.3.2). Nevertheless, 
they are financially useful: they te11 us more information about the be- 
haviour of the option a t  certain special parts of the S-axis and can be 
used to improve the accuracy of any numerical method. It can be shown 
that an even more accurate expression for the behaviour of C as  S + cw, 

is 
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This is a simple correction to (3.12) which accounts for the discounted 
exercise price. 

Throughout the book we give boundary conditions to show the local 
behaviour of the option price. 

3.8 The Black-Scholes Formule for European Options 

Here we quote the exact solution of the European call option problem 
(3.9)-(3.12) when the interest rate and volatility are constant; in Chap- 
ter 5 we show how to derive it systematically. In Chapter 6 we drop the 
constraint that r and a are constant and find more general fo rmul~ .  

When r and a are constant the exact, explicit solution for the Euro- 
pean call is 

C(S, t )  = SN(dl )  - ~ e - ' ( ~ - ~ ) ~ ( d ~ ) ,  (3.17) 

where N(.)  is the cumulative distribution function for a standardised 
normal random variable, given by 

and 
log(S/E) + (r - i a 2 ) ( T  - t)  

d2 = 
a- 

For a put, i.e. (3.9), (3.13), (3.14) and (3.15), the solution is 

It is easy to show that these satisfy put-cal1 parity (3.2). 
The delta for a European call is 

and for a put it is 

The latter follows from the former by put-cal1 parity. 



3.8 The Black-Scholes Formule 

Figure 3.6 The European call value C(S, t) as a function of S for several values 
of time toexpiry; ~ = 0 . 1 ,  o =0.2 ,  E = 1 a n d T -  t =O, 0.5, 1.0and 1.5. 

Figure 3.7 The European put value P(S,  t )  as a function of S for several values 
of time to expiry; r =0.1, o =0.2,  E= 1 and T-t =O, 0.5, 1.0 and 1.5. 

Other derivatives of the option value (with respect to  S ,  t ,  r and a) 
can play important roles in hedging and are discussed briefly a t  the end 
of this chapter. 

In Figures 3.6 and 3.7 we show plots of the European call and put 
values for severa1 times up to  expiry. Note how the curves approach 
the payoff functions as t --+ T. In Figure 3.8 we show the European 
call delta as a function of S, again for severa1 times up to expiry. The 
delta is always between zero and one, and approaches a step function 
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Figure 3.8 The European call delta as a function of S for severa1 values of 
time toexpiry; r =0.1, u=0.2 ,  E = 1 and T - t  = 0, 0.5, 1.0 and 1.5. 

as t -, T. Recall that the writer of a call option will be required to 
deliver the asset if S > E at  expiry, and not otherwise. If he follows the 
delta-hedging strategy, with a portfolio C - AS, he will automatically 
hold the correct amount (one or zero) of the asset a t  expiry. This is 
to  be expected, since delta-hedging is a risk-free strategy right up to 
expiry. If the option expires in-the-money, the required asset will have 
been bought over the lifetime of the option, firstly in setting up the 
initial hedge, and secondly in a series of transactions as S changes. The 
cost of these purchases and/or sales, less the exercise price E, is exactly 
balanced by the initial premium and bank interest. Conversely, if the 
option expires out-of-the-money, the initial hedge is gradually sold. (It 
should also be noted that if the values of the asset just before expiry are 
close to E, the hedge may change from nearly zero to  nearly one many 
times. This is awkward to handle in practice, since each transaction 
incurs costs. We discuss transaction costs further in Chapter 16.) 

Equations (3.17) and (3.18) for the values of European call and put 
options are interesting in that they contain the function for the cumula- 
tive normal distribution N ( x ) .  Thus the value of an option is related to 
the probability density function for the random variable log S. It  can be 
shown, and we discuss this in Chapter 5, that the value of an option has 
a natural interpretation as a certain discounted expected value of the 
payoff a t  expiry. This leads to the subject of the 'risk-neutral valuation' 
of contingent claims, a phrase which is explained there. 
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3.9 Hedging in Practice 

Hedging is the reduction of the sensitivity of a portfolio to the move- 
ment of an underlying asset by taking opposite positions in different 
financia1 instruments. Two extreme cases have been introduced above; 
in both cases the sensitivity of the portfolio was reduced to  zero. The 
first example was in the demonstration of put-cal1 parity for European 
options and the second was in the Black-Scholes analysis with delta- 
hedging. These are, however, fundamentally different hedging strategies. 
The former involves a one-off transaction in three products (a call, a put 
and the underlying); the resulting portfolio can then be left unattended 
with the riskless return locked in. The latter is a dynamic strategy; the 
delta hedge is only instantaneously risk-free, and it requires a continu- 
ous rebalancing of the portfolio and the ratio of the holdings in the asset 
and the derivative product. The delta-hedge position must be monitored 
continually, and in practice it can suffer from losses due to  the costs of 
transacting in the underlying. 

One use for delta-hedging is for the writer of an option who also wishes 
to cover his position. If the writer can get a premium slightly above 
the fair value for the option then he can trade in the underlying (or a 
futures contract on the underlying, since this is usually cheaper to  trade 
in because the transaction costs are lower) to maintain a delta-neutral 
position until expiry. Since he charges more for the option than it was 
theoretically worth he makes a net profit without any risk - in theory. 
This is only a practica1 policy for those with access to  the markets a t  
low dealing costs, such as market makers. If the transaction costs are 
significant then the frequent rehedging necessary to maintain a delta- 
neutral position renders the policy impractical. We discuss this point 
further in Chapter 16. 

The delta for a whole portfolio is the rate of change of the value of 
the portfolio with respect to  changes in the underlying a s ~ e t . ~  Writing 
ll for the value of the portfolio, 

Thus, when delta hedging between an option and an asset, the position 
taken is called 'delta-neutral', since the sensitivity of the hedged portfolio 
to  asset price changes is instantaneously zero. For a general portfolio 

This definition, which is standard, is not quite consistent with our previous use of 
A and n (which is also standard). There, A was the sensitivity of a single option 
to asset price changes and iI was the hedged portfolio. There should be little risk 
of confusion. 
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the maintenance of a delta-neutral position may require a short position 
in the underlying asset. This entails the selling of assets which are not 
owned - so-called short selling. A broker may require a margin to cover 
any movements against the short seller but this margin usually receives 
interest at the bank rate. 

There are more sophisticated trading strategies than simple delta- 
hedging, and here we mention only the basics. In delta-hedging the 
largest random component of the portfolio is eliminated. One can be 
more subtle and hedge away smaller order effects due, for instance, to 
the curvature (the second derivative) of the portfolio value with respect 
to the underlying asset. This entails knowledge of the gamma of a 
portfolio, defined by 

The decay of time value in a portfolio is represented by the theta ,  given 

Finally, sensitivity to volatility is usually called the vega and is given 

by an - 
da ' 

and sensitivity to interest rate is called rho, where 

Hedging against any of these dependencies requires the use of another 
option as well as the asset itself. With a suitable balance of the under- 
lying asset and other derivatives, hedgers can eliminate the short-term 
dependence of the portfolio on movements in time, asset price, volatility 
or interest rate. 

3.10 Implied Volatility 

We have suggested in the above modelling and analysis that the way to 
use the Black-Scholes and other models is to take parameter values esti- 
mated from historical data, substitute them into a formula (or perhaps 
solve an equation numerically), and so derive the value for a derivative 
product. This is no longer the commonest use of option models, at 
least not for the simplest options. This is partly because of difficulty 
in measuring the value of the volatility of the underlying asset. Despite 
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our assumption to the contrary, it does not appear to be the case that 
volatility is constant for long periods of time. Furthermore, it is not ob- 
vious that the historic volatility is independent of the time series from 
which it is calculated, nor that it accurately predicts the future volatility 
that we require, over the lifetime of an option. 

A direct measurement of volatility is therefore difficult in practice. 
However, despite these difficulties it is plainly true that option prices 
are quoted in the market. This suggests that, even if we do not know 
the volatility, the market 'knows' it . Take the Black-Scholes formula 
for a call, for example, and substitute in the interest rate, the price of 
the underlying, the exercise price and the time to expiry. Al1 of these 
are very simple to measure and are either quoted constantly or are de- 
fined as part of the option contract. Al1 that remains is to specify the 
volatility and the option price follows. Since a call option price increases 
monotonically with volatility (this is easy to show from the explicit for- 
mula and, as we have already mentioned, is clear financially) there is a 
one-to-one correspondence between the volatility and the option price. 
Thus we could take the option price quoted in the market and, working 
backwards, deduce the market's opinion of the value for the volatility 
over the remaining life of the option. This volatility, derived from the 
quoted price for a single option, is called the implied volatility. 

There are more advanced ways of calculating the market view of 
volatility using more than one option price. In particular, using op- 
tion prices for a variety of expiry dates one can, in principle, deduce the 
market's opinion of the future values for the volatility of the underlying 
(the t e r m  s t ructure  of volatility). 

One unusual feature of implied volatility is that the implied volatil- 
ity does not appear to be constant across exercise prices. That is, if 
the value of the underlying, the interest rate and the time to expiry are 
fixed, the prices of options across exercise prices should reflect a uniform 
value for the volatility. In practice this is not the case and this high- 
lights a flaw in some part of the model. (Also, puts and calls tend to 
give slightly different implied volatilities.) Which part of the model is 
inaccurate is the subject of a great deal of academic research. We illus- 
trate this effect in Figure 3.9, which shows the implied volatilities as a 
function of exercise price using the FT-SE index option data in Figure 
1.1. Observe how the volatility of the options deeply in-the-money is 
greater than for those at-the-money. This curve is traditionally called 
the 'smile', although depending on market conditions it may be lopsided 
as in Figure 3.9, or even a 'frown'. 
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Figure 3.9 Implied volatilities as a function of exercise price. Data is taken 
from FT-SE index option prices. 

Technical Point: Trading Volatility. 
In practice volatility is not constant, nor is it predictable for timescales of 
more than a few months. This, of course, limits the validity of any model 
that assumes the contrary. This problem may be reduced by pricing 
options using implied volatility as described above. Thus one trading 
strategy is to calculate implied volatilities from prices of al1 options on 
the same underlying and the same expiry date and then to buy the one 
with the lowest volatility and se11 the one with the highest. The hope is 
then that the prices move so that implied volatilities become more or less 
comparable and the portfolio makes a profit. 

More sophisticated modelling involves describing volatility itself as a 
random variable satisfying some stochastic differential equation. This 
results in a two-factor model. If the volatility is random then it is 
no longer possible to construct the perfect hedge, in which a portfolio 
grows by a deterministic amount, using the asset alone. However, it is in 
principle possible to use other options, but the details are too complex 
to go into here. 



Exercises 55 

Further Reading 

Carefully read the original papers of Black & Scholes (1973) and Mer- 
ton (1973). 
Compare the binomial method for valuing options with the differen- 
tia1 equation approach. The binomial method can be found in, for 
example, Cox & Rubinstein (1985). We discuss it in Chapter 10. 
Jarrow & Rudd (1983) and Cox & Rubinstein (1985) describe 'jump- 
diffusion' models and 'constant elasticity of variance' models. In the 
former the asset price random walk need not be continuous but can 
have random discontinuous jumps; in the latter the volatility can be 
a function of S. 
Hull (1993) considers the estimation of volatility using the implied 
volatilities of severa1 options. Hull & White (1987) discuss the varia- 
tion of volatility with time. 
There has been a great deal of work done on testing the validity of 
the Black-Scholes formule in practice; see Hull (1993). For details 
of how the call option formula stands up in practice see MacBeth 
& Merville (1979) and for a test of put-cal1 parity see Klemkosky & 
Resnick (1979). 
Gemmill (1992) gives a practical example illustrating the practical 
shortcomings of the purely theoretical approach to hedging. 
More sophisticated hedging strategies are described in Cox & Rubin- 
stein (1985). 

Exercises 

1. Today's date is 9 January 2000 and XYZ's share price stands at $10. On 
8 November 2000 there is to be a Presidential election and you believe 
that, depending on who is elected, XYZ's share price will either rise 
or fa11 by approximately 10%. Construct a portfolio of options which 
will do well if you are correct. Calls and puts are available with expiry 

. dates in March, June, September, December and with strike prices of 
$10 plus or minus 50#. Draw the payoff diagram and describe the payoff 
mathematically. 

2. Draw the expiry payoff diagrams for each of the following portfolios: 

(a) Short one share, long two calls with exercise price E (this com- 
bination is called a straddle); 

(b) Long one call and one put, both with exercise price E (this is 
also a straddle: why?); 
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(c) Long one call and two puts, al1 with exercise price E (a  s t r ip) ;  
(d) Long one put and two calls, al1 with exercise price E (a s t r ap ) ;  
(e) Long one call with exercise price El and one put with exercise 

price E2. Compare the three cases El > E2 (known as a s t r an -  
gle), El = E2 and El < E2. 

(f) As (e) but also short one call and one put with exercise price E 
(when El < E < E2, this is called a but ter f ly  spread) .  

Use the market data of Figure 1.1 to calculate the cost of an example 
of each portfolio. What view about the market does each strategy 
express? 

3. Show by substitution that two exact solutions of the Black-Scholes 
equation (3.9) are 

(a) V(S, t)  = AS, 
(b) V(S, t )  = Aert , 

where A is an arbitrary constant. What do these solutions represent 
and what is the A in each case? 

4. Show that the f o r m u l ~  (3.17) for a call and (3.18) for a put also satisfy 
(3.9) with the relevant boundary conditions (one a t  each of S = O and 
S = m) and final conditions at t = T. Show also that they satisfy 
put-cal1 parity. 

5 .  Sketch the graphs of the A for the European call and put. Suppose that  
the asset price now is S = E (each of these options is at-the-money). 
Convince yourself that it is plausible that the delta-hedging strategy is 
self-financing for each option, in the two cases that the option expires 
in-the-money and out-of-the-money; look a t  the contract from the point 
of view of the writer. 

6. Find the most general solution of the Black-Scholes equation that has 
the special form 

(a) V = V(S) ; 
(b) V = A(t)B(S). 

These are examples of 'similarity solutions', which are discussed further 
in Chapter 5. Time-independent options as in (a) are called perpetua1 
options. 

7. Use arbitrage arguments to prove the following simple bounds on Eu- 
ropean call options on an asset that  pays no dividends: 

(a) C I S ;  
(b) C 2 S - Ee-r(T-t); 
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(c) If two otherwise identical calls have exercise prices El and E2 

with El < E2, then 

O j C(S,t;  E,) - C(S,t;E,) 5 E2 - E , ;  

(d) If two otherwise identical call options have expiry times TI and 
T2 with Ti < T2, then 

C(S, t ;  Ti) I C(S, t ;  T2). 

Derive similar restrictions for put obtions. 

8. Derive equation (3.16). 

9. Suppose that a share price S is currently $100, and that tomorrow it 
will be either $101, with probability p, or $99, with probability 1 -p .  
A call option, with value C, has exercise price $100. Set up a Black- 
Scholes hedged portfolio and hence find the value of C. (Ignore interest 
rates.) 

Now repeat the calculation for a cash-or-nothing call option with 
payoff $100 if the final asset price is above $100, zero otherwise. What 
difference do you notice? 

This very simple discrete model is the basis of the binomial method, 
described in Chapter 10. 



4 Partial Differential Equations 

4.1 Introduction 

The modelling of Chapter 3 culminates in the formulation of the pricing 
problem for a derivative product as a partial differential equation. We 
now take a break from the financial modelling to discuss, in this and 
the next chapter, some of the theory behind such differential equations. 
In this chapter we describe the elementary theory and the nature of 
boundary and initial conditions. In Chapter 5 we derive some explicit 
solutions, including the original Black-Scholes fo rmul~ .  Later, in Chap- 
ter 7, we describe in detail the special problems arising when there are 
free boundaries. This chapter is of particular importance when consid- 
ering the valuation of American options. 

The study of partial differential equations in complete generality is 
a vast undertaking. Fortunately, however, almost al1 the partial differ- 
ential equations encountered in financial applications belong to a much 
more manageable subset of the whole: second order linear parabolic 
equations. These technical terms are discussed below; more detailed 
treatments of the areas beyond the scope of this text are given in some 
of the references at the end of the chapter. 

We begin this chapter with a review of second order linear parabolic 
equations: their physical interpretation, mathematical properties of their 
solutions, and techniques for obtaining explicit solutions to specific prob- 
lems. Then, we exploit this knowledge in the context of financial models 
to  derive explicit solutions to some option valuation problems, and we 
set the scene for the numerical methods of Chapters 8 and 9. 

Before doing this, though, it is helpful to  step back and consider in 
general terms the questions we should ask when considering a partial 
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differential equation. Such questions usually include any or al1 of the 
following: 

Does the equation make sense mathematically? If it is to be solved 
in a region, what must we say about the solution on the boundary of 
that region in order to obtain a well-posed problem, i.e. one whose 
solution exists, is unique, and is, in some sense, 'well-behaved'? Such 
specifications of the solution on the boundary are called boundary 
conditions or, if applied at a particular value of time, initial con- 
ditions or final conditions. The term 'well-behaved' used here is 
usually taken to imply that the solution depends con~inuously on the 
initial and boundary conditions, so that small changes in these condi- 
tions cannot induce large changes in the solution itself. Beyond this, 
we also want to know what mathematical properties the solution must 
or can have. For example, is it guaranteed to be smooth or can it have 
discontinuities? 
Can we develop analytical tools to  solve the equation? Explicit solu- 
tions are useful both to illustrate the general behaviour of the equation 
and for their application in practice. We note, though, that many ex- 
plicit solutions may be so cumbersome as to  be of less practica1 use 
than a well-designed numerical approximation. 
How should we solve the equation numerically, should this be nec- 
essary? What implications do the mathematical properties of the 
solution have for the numerical method we choose? Are there alter- 
native formulations, such as a change of variable or a weak statement 
of the problem (see Chapter 7), that lead to a better (simpler, more 
adaptable, more accurate, more robust, faster) numerical scheme? 

These aims guide us in the sections to follow. 

4.2 The Diffusion Equation 

The heat or diffusion equationl 

has been studied for nearIy two centuries as a model of the flow (or 
diffusion) of heat in a continuous medium. It  is one of the most successful 

We use x rather than S as the spatial independent variable because al1 our a g  
plications of the diffusion equation occur after a change of variable of the form 
S = Eez.  We use T a s  the 'time' variable rather than t for a similar reason; the 
details are given later. 
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and widely used models of applied mathematics, and a considerable body 
of theory on its properties and solution is available. It is often helpful 
as a guide to intuition to bear in mind the physical situations that lead 
to the heat equation, and we mention them wherever it is appropriate. 
Thus, we recall that equation (4.1) models the diffusion of heat in one 
space dimension, where u(x, T) represents the temperature in a long, 
thin, uniform bar of material whose sides are perfectly insulated so that 
its temperature varies only with distance x along the bar and, of course, 
with time T .  

We begin with a list of some of the elementary properties of the dif- 
fusion equation. 

It is a linear equation. That is, if u1 and u2 are solutions, then so is 
clui + c2u2 for any constants cl and c2. 
It is a second order equation, since the highest order derivative 
occurring is the second, in the term d2u/dx2. 
It is a parabolic equation. Its characteristics are given by 
T = constant. (The terms 'parabolic' and 'characteristic' are discussed 
further in Technical Point 1 at the end of this section.) Thus, infor- 
mation propagates along these lines in (x, T) space, and if a change is 
made to u at a particular point, for example on the boundary of the 
solution region, its effect is felt instantaneously everywhere else. 
Generally speaking, its solutions are analytic functions of x. This 
means that for each value of T greater than the initial time, u(x, T) 
regarded as a function of x has a convergent power series in terms of 
x - xo for each xo away from spatial boundaries. For practica1 pur- 
poses, for T > O we can think of a solution of the diffusion equation 
as being as smooth a function of x as we could ever need, but discon- 
tinuities in time may be induced by the boundary conditions. This 
is again a consequence of the fact that information propagates with 
infinite speed along the characteristics T = constant. 

From the physical point of view, diffusion is a smoothing out process: 
heat flows from hot to cold and so evens out temperature differences. 
The properties above go some way towards showing that solutions of 
the diffusion equation, which is a mathematical model of the physical 
process, have the same tendency. Anticipating some results from Sec- 
tion 4.3, it can be shown further that even though the initial values of 
u may be rather irregular or jagged, for any T > O the solution of the 
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initial value problem 

with initial data 

and 

is analytic for al1 T > O. This smoothness, which is characteristic of al1 
(forward) linear parabolic equations, is very helpful when it comes to  
numerical solution. 

An illustration of al1 these points is the following special solution, 
which is derived in Section 5.2: 

For T > O this is a smooth Gaussian curve, but at T = O it is 'equal' to  
the delta function (hence our notation): 

At T = 0, u ~ ( x , ~ )  vanishes for x # O; a t  x = 0 it is 'infinite', but its 
integral is still 1. (This is to be interpreted as follows: since for al1 
T > O, u ~ ( x ,  T) dx = 1, the limit as T tends to zero from above of 
the integral is still 1. Further information on delta functions is given 
in Technical Point 2 below.) We show u ~ ( x ,  T) in Figure 4.1 for severa1 
values of T; note how the curve becomes taller and narrower as T gets 
smaller. 

The delta function initial value for u6(x, T) says that al1 the heat is 
initially concentrated at x = O .  This function models the evolution of an 
idealised 'hotspot', a unit amount of heat initially concentrated into a 
single point, and it is called the fundamental solution of the diffusion 
equation. I t  also illustrates the infinite propagation speed mentioned 
above. At T = 0, the solution (4.2) is zero for al1 x # 0, but for any 
T > O, however small, and any x, however large, U~(X,  T) > 0: the heat 
initially concentrated a t  x = O immediately diffuses out to  al1 values of 
x. Note, though, that u6 falls off very rapidly as 1x1 + m. 

Finally, note that the right-hand side of equation (4.2) is just the 
normal distribution of probability theory, with mean zero and variance 
27. This solution of the diffusion equation can be interpreted as the 



Partial Dzfferentzal Equatzons 

Figure 4.1. The fundamental solution of the diffusion equation. 

probability density function of the  future position of a particle that 
follows a constant coefficient random walk along the x-axis. The delta 
function initial condition simply says that  the particle is initially known 
to  be a t  the origin. 

Technical Point 1: Characteristics of Second Order Linear Par- 
tia1 Differential Equations. 
We can think of the characteristics of a second order linear equation as 
curves along which inforrnation can propagate, or as curves across which 
discontinuities in the second derivatives of u can occur. Suppose that 
u(x ,  r )  satisfies the general second order linear equation 

dzu d2 u  a2u 
4x7 r )  - + b(x, 7 )  - + C ( X ,  r )  - dx2 dxdr dr2 

du du 
+ d(x, 7)-  dx + e(x,  7)-  dr + f ( x ,  T ) U  + g(x, T )  = O. 

The idea is to see whether the derivative terrns can be written in terms 
of directional derivatives, so that the equation is partly like an ordinary 
differential equation along curves with these vectors as tangents. These 
curves are the characteristics. If we write them as x  = x ( 0 ,  r  = T ( [ ) ,  
where E is a parameter along the curves, then x(E) and T(<)  satisfy 
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There now arises the question whether this equation, regarded as a quad- 
ratic in (dx/d<)/(dr/d<), has two distinct real roots, two equal real roots, 
or no real roots at  all. These cases correspond to the discriminant bZ -4ac 
being greater than zero, zero, or less than zero. The first case, two real 
families of characteristics, is called hyperbolic, and is typical of wave- 
propagation problems. These do not often occur in finance. The second 
case, an exact square, is called parabolic; the diffusion equation, which 
has b = c = O, is the simplest example. Al1 the second order equations 
in this book are parabolic. The final case, with no real characteristics, is 
called elliptic, and is typical of steady-state problems such as perpetua1 
options in multi-factor models which are beyond the scope of this book. 

Note that the definitions given here are pointwise: the hyperbolic/ 
parabolic/elliptic distinction is specified at each point. It is possible for 
an equation to change type as a(x, T ) ,  b(x, T) and c(x, T )  vary, if the 
discriminant changes sign. In particular, the Black-Scholes equation (in 
S and t rather than x and T ) ,  

is parabolic for S > O (it is in fact hyperbolic a t  S = O, where it reduces 
to an ordinary differential equation with characteristic S = O). This fact 
has important financia1 implications: the line S = O is a barrier across 
which information cannot cross. 

Technical Point 2: The Delta Function and the Heaviside 
Function. 
The Dirac delta function, written 6(x), is not in fact a function in the 
normal sense of the word, but is rather a 'generalised function'. For tech- 
nical reasons, its definition is as a linear map, but it is really motivated by 
the need for a mathematical description of the limit of a function whose 
effect is confined to a smaller and smaller interval, but yet remains finite. 

Suppose, for example, that 1 receive money a t  the rate f (t) dt in a time 
dt where f is equal to the following function: 

1/26, Itl 5 6 

( t )  = {O, ,t, > 6 .  

This function is drawn in Figure 4.2 for severa1 values of e. As E gets 
smaller the graph becomes taller and narrower. It is clear that the total 
payment is 
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2~ 

Figure 4.2. Three members of a limiting sequence for the delta function. 

and is equal to  1 independently of E,  but that for al1 t # O, f (t) -+ O as 
E -, O. The limiting 'function' is zero for al1 nonzero t ,  yet its integral is 
still l! This is an informal way of defining the delta function, 6(t): it is 
the 'limit' as E 4 O of any one-parameter family of functions 6,(t) with 
the following properties: 

a for each E,  S,(t) is piecewise smooth; 

[6.(t)dt = 1; 

for each t # O, lim 6,(t) = 0. 
€'O 

Such a sequence of functions is called a delta sequence. The function f ( t )  
above is one such; another, which uses x as the independent variable2 
instead of t, is 

1 - z 2 / 4 c  6,(z) = - 
2 f i e  

With E replaced by t ,  this is the fundamental solution of the diffusion 
equation discussed above. It is easily confirmed that the latter function 
has integral 1, and that, like f ( t ) ,  for x # O it tends to  zero as 6 -+ 0, 
while for x = O its value increases without limit. 

This 'pointwise' view of the delta function is rather hard to work with, 
since the functions 6, become increasingly badly behaved near the origin 
as E 4 O. Indeed, the limiting 'function' is not a normal function a t  al1 
(this is why the term 'generalised function' is used). Instead, we exploit 

Whether we use x, t or any other letter as the argument for the delta function 
depends on the application we have in mind. 
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the fact that integration smooths out the bad behaviour; the integral of 
any member of a delta sequence is well-behaved, being equal to 1. This 
idea motivates the definition of the delta function via its integral action: 
for any smooth function 4(x), called a test function, 

(In fact, this defines the delta function as the continuous linear map from 
smooth functions 4(x) to real numbers that has the value 4(O), usually 
written as (6,4) = 4(0).) 

It is apparent that for any a ,  b > 0, 

and that for any xo, 

so multiplying 4 by 6(x - xo) and integrating 'picks out' the value of 4 
a t  s o .  We also have 

6(s) ds = 'Ft(x), 

where H(x)  is the Heaviside function, defined by 

O for x < 0 
l í (x)  = 

1 for x 2 O. 

Conversely, 

The last pair of relations shows that tiie derivative of a function that 
has a jump discontinuity has a delta function component at  the same 
point, multiplied by the magnitude of the jump. This fact is often useful 
in the analysis of differential equations with discontinuous functions or 
coefficients. We give a simple example. 

Suppose that M(t)  represents the amount of money owned by a person 
who is initially penniless, but at  time t = to > O receives an amount Dg. 
Then, clearly, 

for O < t < to 
M(t) = 

O+Da f o r t 2 t 0 ,  
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and so M(t )  satisfies the differential equation 

The discontinuity in M(t )  gives a delta function in dM/dt at t = to. 
Conversely, when we see a differential equation with a delta function 
on the right-hand side, there must be a corresponding delta function in 
the highest order derivative on the left-hand side in order to maintain a 
balance. This in turn means that the next highest order derivative has 
a jump discontinuity of magnitude equal to the coefficient of the delta 
function. These jump conditions can be used to join together smooth 
segments of the solution across discontinuities. The delta function in 
examples like this can be multiplied by a smooth function of x  or t ,  but 
care must be taken to avoid products like 6(x)'F1(x) or ( 6 ( ~ ) ) ~ ,  for which 
no sensible definition can easily be given. 

4.3 Initial and Boundary Conditions 

We now consider what initial and boundary conditions are appropriate 
for solutions of the diffusion equation, first in a finite region, then in an 
infinite one. 

4.3.1 The Initial Value Pmblem o n  a Finite Interval 

Suppose we wish to  solve du/dr  = 82u/8x2 in the finite interval 
-L < x  < L and for T > O ,  representing heat flow in a bar of finite 
length 2L. 

Obviously we should specify the initial temperature u(%, O )  = uo(x )  for 
-L < x  < L. With the heat flow analogy in mind, it seems reasonable on 
physical grounds that we have enough information to  determine u ( x ,  T )  

uniquely if we specify either the temperatures a t  the ends of the bar or 
the heat fluxes at both ends, but not both. This turns out to  be the 
case; in fact both the following statements of the problem can be shown 
to be well-posed: 

du d2u 
- (i) - - - -L < x  < L, with u(x ,  0 )  = ug(x), 

dr  dx2'  
4-4 7 )  = 9 - ( ~ ) ,  u (L ,r )  = g+(r); 
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du d2u - (ii) - - - -L < x < L, with u(x, O) = uo(x), 
61- dx2'  

du au 
--(-L, T) = h-(T), -(L,T) = h+(~-) .  

a x  ax 
In the first case it is the temperature and in the second case the heat 
fluxes that are specified a t  x = -L and x = L. 

4.3.2 The Initial Value Pmblem un un Infinite Intemral 

Suppose now that we consider heat flow in a very long bar, by taking the 
limit L -+ cc in the example above. When the bar is infinitely long, it 
is still important to say how u behaves at large distances, but we do not 
have to be as precise in our specification of u at  the 'boundaries' x = f cc 
as we were in the finite case. There are some technical difficulties here, 
associated with the notion of infinity, but roughly speaking as long as u is 
not allowed to grow too fast, the solution exists, is unique, and depends 
continuously on the initial data uo(x). To be specific, the solution to 
the initial value problem 

with 

4x7 0) = uo(x), 

where 

(i) UO(X) is sufficiently well-behaved, (4.5) 

(ii) lim uo(x)e-ax2 = 0 for any a > 0, 
1x1 '~  

(4.6) 

and lastly where 

lim u(x, r)eWax2 = O for any a > 0, I- > 0, 
1 x 1 ' ~  

(4.7) 

is well-posed. The precise definition of the phrase 'sufficiently well- 
behaved' here is beyond the scope of this book, but certainly any func- 
tion that has no worse than a finite number of jump discontinuities is 
acceptable. We also note that although it is necessary to prescribe the 
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behaviour at  infinity, in practice the limitations above are not too severe. 
Al1 the initial value problems in this book satisfy the growth conditions 
quite comfortably. 

We sometimes need to consider initial value problems defined on a 
semi-infinite interval, for example in the analysis of barrier options. In 
this case we require a combination of the two sets of conditions above. If, 
for example, we need to solve (4.3) for O < x < m, T > O, then given suf- 
ficiently smooth initial data uo(x) for O < x < m ,  a sufficiently smooth 
boundary value at  x = 0, u ( 0 , ~ )  = g O ( ~ ) ,  and the growth conditions 
(4.6), (4.7) as x + oo, the problem is well-posed. 

4.4 Forward versus Backward 

In al1 the above we have discussed the forward equation 

with conditions given at r = O. The reader may ask, what is wrong with 
the equation 

(with the same initial and boundary conditions)? This equation might, 
for example, arise if in a forward problem we had replaced r by 70 - T 

for some constant TO, whereupon au /d r  becomes -6'uld.r. It turns out 
that this backward problem is ill-posed: for most initial and boundary 
data the solution does not exist at  all, and even if it does exist, it is 
likely to blow up (for example, u may tend to oo) within a finite time. 
A good example is the fundamental solution of the diffusion equation 
(4.2). At time 70 this solution is equal to 

which is as smooth and well-behaved as we could wish. If we use this 
function as our initial data uO(x) for equation (4.8), then the solution is 

and this becomes singular (blows up) at  r = 70, when it is equal to the 
delta function 6(x). Moreover, it cannot be continued beyond this time 
(at least, not as a 'normal7 function). 
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Physically this distinction makes good sense. If the forward diffusion 
equation models the evolution of the temperature from its initial values, 
the backward equation poses the question of determining the tempera- 
ture from which the initial distribution could have evolved; this is clear 
from the time-reversal argument above. Since forward diffusion smooths 
out jagged temperature distributions, backward diffusion makes smooth 
initial data become more jagged. Another way of seeing this is to note 
that under forward diffusion heat flows from hot to cold, whereas un- 
der backward diffusion it flows from cold to hot, and so the hot places 
become ever hotter, leading to blow-up. 

There are, however, some well-posed problems for equation (4.8); in 
particular the final value problem for the backward diffusion equation 
is well-posed. Thus, we can solve (4.8) for O < r < 70 with u(x, rO) 
given. This is easily shown by converting (4.8) to a forward problem by 
replacing T by r o  - T. 

Further Reading 

For further information about first order partial differential equations 
and their solution see Williams (1980), Strang (1986), Keener (1988) 
and Kevorkian (1990). 

e Three books devoted wholly to the diffusion equation are those by 
Crank (1989), Hill & Dewynne (1990) and Carslaw & Jaeger (1989). 

e More details about delta functions, and about other generalised func- 
tions (or 'distributions') are given by Richards & Youn (1990). 

Exercises 
1. Show that the solution to the initial value problem is unique provided 

that it is sufficiently smooth and decays sufficiently fast at infinity, as 
follows: 

Suppose that u,(x,T) and U ~ ( X , T )  are both solutions to the initial 
value problem (4.3)-(4.7). Show that v(x, T) = u1 - u2 is also a solution 
of (4.3) with v(x, O) = 0. 

Show that if 
m 

E ( r )  = [m v2 dx, 

t hen 
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and, by integrating by parts, that 

thus E(T) 3 0, hence V(X,T) E 0. 
Note, though, that as  yet we have no guarantee that u(x, T) exists, 

nor that the above manipulations can be justified. 

2. Show that sinnx edn2' is a solution of the forward diffusion equation, 
and that sinnx en'' is a solution of the backward diffusion equation. 
Now try to solve the initial value problem for the forward and backward 
equations in the interval -n < x < n,  with u = O on the boundaries 
and u(x, 0) given, by expanding the solution in a Fourier series in x with 
coefficients depending on T. What difference do you see between the 
two problems? Which is well-posed? (The former is useful for double 
knockout options; see Exercise 3 in Chapter 12.) 

3. Verify that ug(x, T) does satisfy the diffusion equation for T > 0. 



5 The Black-Scholes Forrnulae 

5.1 Introduction 

In this chapter we describe some techniques for obtaining analytical so- 
lutions to diffusion equations in fixed domains, where the spatial bound- 
aries are known in advance. Free boundary problems, in which the spa- 
tia1 boundaries vary with time in an unknown manner, are discussed in 
Chapter 7. We highlight in particular one method: we discuss similarity 
solutions in some detail. This method can yield important information 
about particular problems with special initial and boundary values, and 
it is especially useful for determining local behaviour in space or in time. 
It  is also useful in the context of free boundary problems, and in Chap- 
ter 7 we see an application to the local behaviour of the free boundary 
for an American call option near expiry. Beyond this, though, we can 
also use similarity techniques to derive the fundamental solution of the 
diffusion equation, and from this we can deduce the general solution for 
the initial-value problem on an infinite interval. This in turn leads im- 
mediately to the Black-Scholes formulz for the values of European call 
and put options. Finally, we extend the method to some options with 
more general payoffs, and we discuss the risk-neutral valuation method. 

5.2 Similarity Solutions 

It  may sometimes happen that the solution u(x, 7) of a partial differential 
equation, together with its initial and boundary conditions, depends only 
on one special combination of the two independent variables. In such 
cases, the problem can be reduced to an ordinary differential equation 
in which this combination is the independent variable. The solution to  
this ordinary differential equation is called a similarity solution to  the 
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original partial differential equation. The mathematical reasons for the 
existence of this reduction are subtle and beyond the scope of this book, 
although the Technical Point at  the end of this section, which deals 
with the mechanics of finding similarity solutions, does hint at  them. 
We simply give two examples here. 

Example 1. Suppose that u(x, T)  satisfies the following problem on the 
semi-infinite interval x > 0: 

with the initial condition 

u(x,O) = O, 

and a boundary condition a t  x = 0, 

u(0,r)  = 1; 

we also require that 

These equations model the evolution of temperature in a long bar, ini- 
tially at  zero temperature, after the temperature a t  one end is suddenly 
raised to 1 and held there. 

Following the arguments suggested in the Technical Point below, we 
look for a solution in which u(x, 7) depends only on x and T through the 
combination 5 = x/&, so that u(x, T) = U(c). Differentiation shows 
that 

and 

where ' = d/d[. Substitution into equation (5.1) shows that al1 the 
terms involving T on its own may be cancelled, and U(<) satisfies the 
second order ordinary differential equation 

From the initial and boundary conditions (5.2)-(5.4), 
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(The second of these incorporates both (5.2) and (5.4), since as T -+ O 
from above, < -, m.) 

Separating the variables, we find that 

U'(<) = ce-r2/4 

for some constant C. Integrating, 

where D is a further constant. Applying the boundary conditions (5.6), 
€ writing So = So - Srm, and using the standard result 

we find that 

that is, 

I t  is easy to verify that this function does satisfy the problem statement 
(5.1)-(5.4), so that the solution does indeed depend only on x/&. 

Example 2. For our second example we derive the fundamental solution 
u6(x, T), which we introduced in Chapter 4. We again look for a solution 
of the diffusion equation that depends on x only through the combination 
[ = x / J ; ,  but now we try the form 

The T - ' / ~  term multiplying U6 (5) is there to ensure that U(X, 7) dx 
is constant for al1 7, which can be shown by direct calculation. A com- 
putation similar to the example above shows that U6(<) satisfies the 
ordinary differential equation 
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The general solution of this, obtained by integrating twice, the second 
time with the help of the integrating factor e ~ ' / ~ ,  is 

for constant C and D. Choosing D = O and normalising the solution 
by setting C = 1/(2&), so that S-wm u dx = 1, yields the fundamental 
solution 

as required. 
The similarity solution technique is rarely successful in solving a com- 

plete boundary value problem, because it requires such special symme- 
tries in the equation and the initial and boundary conditions. On the 
other hand, it comes into its own in local analyses in space or in time, 
for example the initial motion of a free boundary in an American option 
problem and the value of an at-the-money option shortly before exercise, 
which are hard to resolve numerically. 

Technical Point: Group Invariances and Similarity Solutions. 
The key to the similarity solutions above is that both the equations 
and the initial and boundary conditions are invariant under the scal- 
ings x ++ Xx, r ++ X 2 r  for any real number A. Such a scaling is called 
a one-parameter group of transformations. This invariance is readily 
verified using the new variables X = Xx, T = X 2 r ,  whereupon u is eas- 
ily seen to satisfy du/dT = d2u/dX2. Furthermore, in Example 1, the 
initial and boundary conditions become u(X, O) = 0, u(0, T)  = 1 for any 
A. Now x / f i  = x/fl is the only combination of X and T which is 
independent of A,  and so the solution must be a function of x/& only. 
It is essential that t he equation, the boundary conditions and the initial 
conditions should al1 be invariant under the scaling transformation for 
the method to work. In Example 2, the function of r, in this case r-'12, 
multiplying U&(<) is present because the diffusion equation, being linear, 
is also invariant under the one-parameter group u H pu. A good practi- 
cal test for similarity solutions is to try u = rP f (x/rP) in the hope that 
x and r will remain in the equations only in the combination = x/rP. 
In Example 1 above, the result of doing this is a = O from the bound- 
ary condition at x = O and 0 = S from the diffusion equation, while in 
Example 2, a = -4  because we want the integral of u(x, r )  over x to be 
independent of r ,  and again = 1. 
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5.3 An initial value problem for the diffusion equation 

The fundamental solution of the diffusion equation can be used to  derive 
an explicit solution to  the initial value problem (4.3)-(4.7), in which we 
have to  solve the diffusion equation for -m < x < co and T > O, with 
arbitrary initial data u(x, O) = uo(x) and suitable growth conditions a t  
x = f OO. The key to the solution is the fact that we can write the initial 
data as 

00 

uo(x) = J uo(t)b(< - X) d< 
-00 

where b(.) is the Dirac delta function. We recall that the fundamental 
solution of the diffusion equation, 

has initial value 

u ~ ( s ,  o) = 6 ( ~ ) .  

Now note that because ua(s - x,  T )  = u6(x - S, 71, 

is a solution of the diffusion equation using either s or x as the spatial 
independent variable, and its initial value is 

Thus, for each S, the function 

regarded as a function of x and T with s held fixed, satisfies the diffusion 
equation du/dr  = d2u/dx2, and has initial data uo(s)b(s - z). Because 
the diffusion equation is linear, we can superpose solutions of this form. 
Doing so for al1 s by integrating from s = - m  to  s = m ,  we obtain a 
further solution of the diffusion equation, 

which has initial data 
m 

u o ( s ) b ( s - x ) d s = ~ o ( x ) .  
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This, therefore, is the explicit solution of the initial value problem (4.3)- 
(4.7). It  can be shown (Exercise 1 of Chapter 4) that this solution is 
unique. The derivation above is not the only way of finding it: the 
Fourier transform is an alternative, but we do not describe it here (see 
any of the books referred to  in Chapter 4 for treatments). 

The solution (5.7) can be interpreted physically as follows. Recall 
that the fundamental solution of the diffusion equation describes the 
spreading out of a unit 'packet' of heat which, at  T = O, is al1 concen- 
trated at  the origin. Mathematically, this 'packet' is represented by a 
delta function. Now imagine the initial temperature distribution uO(x) 
as being made up of many small packets, the packet at  x = S having 
magnitude uO(s)  ds. Each of these evolves to give a temperature distri- 
bution equal to the fundamental solution, multiplied by uO(s) and with 
x replaced by x - s. Because the diffusion equation is linear, we obtain 
the whole temperature distribution by superposing (adding) the evolu- 
tions of these individual packets; in the limit, this sum is replaced by 
the integral (5.7). 

5.4 The Black-Scholes Formula? Derived 

The Black-Scholes equation and boundary conditions for a European 
cal1 with value C(S, t) are, as described in Sections 3.5 and 3.6, 

with 

C(0, t )  = O, C(S, t )  N S as S --+ a, 

and 

C(S, T) = max(S - E ,  O) 

Equation (5.8) looks a little like the diffusion equation, but it has more 
terms, and each time C is differentiated with respect to S it is multiplied 
by S, giving nonconstant coefficients. Also the equation is clearly in 
backward form, with final data given at  t = T. 

The first thing to do is to get rid of the awkward S and S2 terms mul- 
tiplying aC/dS  and d2C/dS2. At the same time we take the opportu- 
nity of making the equation dimensionless, as defined in the Technical 
Point below, and we turn it into a forward equation. We set 
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This results in the equation 

du d2v -- -- dv + ( k -  1)- -kv 
d r  dx2 dx  

where k = r/!jo2. The initial condition becomes 

Notice in particular that this equation contains only one dimensionless 
parameter, k = r/$a2, although there are four dimensional parameters, 
E, T, u2 and r ,  in the original statement of the problem. There is in fact 
another, !ju2T, the dimensionless time to expiry, and these two are the 
only genuinely independent pararneters in the problem; the effect of al1 
other factors is simply brought in by inverting the above transformations, 
1.e. by a straightforward arithmetical calculation. 

Equation (5.10) now looks much more like a diffusion equation, and 
we can turn it into one by a simple change of variable. If we try putting 

for some constants a and p to be found, then differentiation gives 

We can obtain a; equation with no u term by choosing 

while the choice 

O = 2 a + ( k - 1 )  
6 

eliminates the Ó'u/ax term as well. These equations for a and P give 

We then have 
= e - ~ ( k - 1 ) ~ - ~ ( k + 1 ) 2 ~  

u(x,7)1 

where 
au - a 2 ~  

for - oo < x < m, T > O, a7 ax2 
with 
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This may seem like a long way to travel from the original formulation, 
but we have reached the payoff. The solution to the diffusion equation 
problem is just that given in equation (5.7): 

where uo(x) is given by (5.11). 
It remains to evaluate the integral in (5.12). It  is convenient to make 

the change of variable x' = ( S  - x)/&, so that 

say. 
We evaluate Il by completing the square in the exponent to get a 

standard integral: L 

where 

and 

is the cumulative distribution function for the normal distribution. 
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The calculation of I2 is identical to that of I l ,  except that (k + 1) is 
replaced by (k - 1) throughout. 

Lastly, we retrace our steps, writing 

u(x, T) = e-+(k-l)x-+(k+1)2~ U(X,T) (5.13) 

and then putting x = log(S/E), r = !ja2(~ - t)  and C = Eu(x, T ) ,  to  
recover 

C(S, t )  = SN(dl )  - E ~ - ' ( ~ - ~ ) N ( ~ z ) ,  (5.14) 

where 

The corresponding calculation for a European put option follows sim- 
ilar lines. Its transformed payoff is 

and we can proceed as above. However, having evaluated the call, a 
simpler way is to  use the put-cal1 parity formula 

C - P = S - ~ ~ - ' ( ~ - t )  

for the value P of a put given the value of the call. This yields 

where we have used the identity N(d) + N(-d) = 1. 
The deltas of call and put options are calculated by differentiation: 

for the call, 
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since a rather painful calculation shows that SN1(dl) = ~ e - ' ( ~ - ~ ) ~ ' ( d ~ )  
(divide both sides by N1(dz) = ( ~ / d % ) e - * ~ ;  first). Then, the delta for 
the put is 

again using put-cal1 parity. These quantities are vital if an option posi- 
tion is to  be hedged correctly. 

Some computer algebra packages offer a limited range of financial 
routines. Maple, for example, has a Black-Scholes call command. It  has 
to  be loaded by typing 

and then the command 

returns the Black-Scholes value of the call with exercise price E, time to 
expiry T-t, current asset price S, interest rate r and volatility sigma. In 
this example the symbols have to  be replaced by their numerical values, 
but the routine can also be used as a function. For example, 

generates a plot of the call values for O < S < 20, with the other 
parameters held fixed at the values indicated. Other Maple features can 
also be used; for example 

plot the delta and gamma respectively. Although there is no separate 
put routine, it is easy to write one using the call routine and put-cal1 
parity. 

Technical Point: Dimensionless Variables. 
The differential equations used to model physical and financial processes 
often contain many parameters; these might be material properties of 
the substances involved, for example, thermal conductivity, or constants 
of the underlying stochastic processes, such as their rate of return or 
volatility. An early step in most solutions is to scale the dependent and 
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independent variables with 'typical values' in order to collect these pa- 
rameters together as far as possible. Thus above we scaled S and V with 
E, the only a prior5 typical value available. Although S might be mea- 
sured in .£ (or $, or DM, or any other units), x has no units, and nor does 
v. This is important, since an expansion of the form es = 1+S+$S2+.  . . 
is meaningless if S is a dimensional quantity. (Note that an absolute 
change in an asset value, dS, is dimensional, but that the relative change, 
dS/S, is not.) 

Having carried out this scaling, we can collect the remaining param- 
eters into dimensionless groups, also called dimensionless param- 
eters. This scaling tells us the true number of independent constants 
in the solution. If one of the resulting dimensionless parameters is very 
large or very small, we may subsequently be able to exploit this fact to 
construct a useful approximation to the solution. Such an approximation 
is called an asymptotic expansion, and the theory of asymptotic 
analysis aims to devise techniques for this kind of approximation. It 
also aims to analyse the techniques in order to make sure that we can be 
confident that the effects we have neglected in making the approximation 
are genuinely unimportant. 

In the Black-Scholes equation, both T and a2 have units (time)-'; 
(years)-1 or (days)-', for example. The quantity Ic = r / ~ a 2  is a dimen- 
sionless parameter. Another is S U ~ T ,  the dimensionless lifetime. These 
are the only dimensionless parameters in the basic problem for a Euro- 
pean cal1 or put. 

5.5 Binary Options 

Although we discussed only vanilla calls and puts in the previous sec- 
tion, it was only a t  the very last stage that we needed to  know which 
option we were dealing with. The function uo(s) in equation (5.7) can 
clearly be the payoff for any combination of options: the linearity of 
the Black-Scholes equation guarantees that we can value portfolios of 
options by superposition. In this way, we can value combinations such 
as straddles, strangles and so on. Furthermore, the payoff need not be a 
finite combination of calls and puts: we can consider any function of S 
that we wish. Options with payoffs more general than vanilla calls and 
puts are known as b inary  opt ions  or digi tal  options. 

Suppose that the payoff a t  time T is A(S), and that the value of the 
option is V ( S , t ) ,  so V(S,T) = A(S). We first work out the function 
uo(x) corresponding to  A(S) after the transformations that we used 
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above. That is, we set S = Eex and then V(S, t)  = ~ e ~ ~ + ~ ' u ( x , r ) ,  
where a, B and r have their previous meanings. From the payoff, 
V(S, T) = A(S) = EeaXuo(x). Then, from equation (5.7) we have a 
formula for u(x, 7); undoing the changa of variable leads to the explicit 
formula 

for V(S, t ) .  This formula obviously includes vanilla calls and puts as 
particular cases. The delta is given by the derivative of (5.16) with 
respect to S. In deriving (5.16), we have assumed that a and r are 
constant and that the underlying pays no dividends. The inclusion of 
a dividend term is not difficult, and if o or r is a known function of t 
then the methods described in Chapter 6 may be applied to obtain exact 
formule 

One particularly popular binary option has already been mentioned: 
the cash-or-nothing call, whose payoff is 

A(S) = BN(S - E).  

This option can be interpreted as a simple bet on the asset price; if 
S > E at expiry the payoff is B and otherwise it is zero. (More often, 
though, it is found as part of a 'structured product' with conditions that 
allow for a fixed payment to be made if an asset is above a certain value 
on a certain date.) Its value is 

where do is as above. Another binary option, sometimes known as a 
supershare, has payoff l l d  if E < S < E + d at expiry and zero 
otherwise: 

1 
A(S) = - (H(S - E) - H(S - E - d) )  

d 

(in the limit d -+ O the payoff becomes a delta function). Its valuation 
is left as an exercise. 

Although these options are easy to value using (5.16) they can present 
problems in hedging near the time of expiry, caused by the discontinuities 
in the payoff function. Consider, for example, the difficulties associated 
with hedging a cash-or-nothing call with payoff BX(S - E). By differ- 
entiating N(S  - E )  with respect to S we see that as t -, T the delta 
of the option tends to the function B6(S - E). Away from S = E this 
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function is zero, and therefore close to expiry we expect that we should 
not have to hedge the option. However, if S is close to E near expiry 
there is a high probability that the asset price will cross the value E, 
perhaps many times, before expiry. Each time this value is crossed the 
delta goes from nearly zero to very large and back to nearly zero. The 
Black-Scholes model assumes that the option is continuously hedged 
with a number of assets equal to the delta; this is clearly impractical 
if, at  one moment, the portfolio contains no assets, then is rehedged to 
contain a large number of the assets only for that position to be liqui- 
dated shortly afterwards. Yet, if this rehedging is not done, the payoff 
at  expiry is either zero or B, and cannot be known for certain.l It  is 
therefore open to question whether options with discontinuous payoffs 
can be valued according to the simple Black-Scholes formula (5.16). 

5.6 Risk Neutrality 

A rather different view of option valuation from that presented above 
is the risk-neutral approach. This stems from the observation that 
the growth rate p does not appear in the Black-Scholes equation (3.9). 
Therefore, although the value of an option depends on the standard 
deviation of the asset price, it does not depend on its rate of growth. 
Indeed, different investors may have widely varying estimates of the 
growth rate of a share yet still agree on the value of an option. Moreover, 
the risk preferences of investors are irrelevant: because the risk inherent 
in an option can al1 be hedged away, there is no return to be made over 
and above the risk-free return. Whether for vanilla options or other 
products, it is generally the case that if a portfolio can be constructed 
with a derivative product and the underlying asset in such a way that the 
random component can be eliminated - as was the case in our derivation 
of the Black-Scholes equation in Chapter 3 - then the derivative product 
may be valued as if al1 the random walks involved are risk-neutral. 
This means that the drift term in the stochastic differential equation for 
the asset return (for our equity model, p )  is replaced by r wherever it 
appears. The option is then valued by calculating the present value of 
its expected return at expiry with this modification to the random walk. 
The process works as follows. 

We begin by recalling that the present value of any amount at time T 

There is a similar but less important effect close to expiry for vanilla options if the 
asset price is close to the exercise price. 
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is that amount discounted by multiplying by e-T(T-t). Then, we set up 
a risk-neutral world: we pretend that the random walk for the return on 
S has drift r instead of p. From this, we can calculate the probability 
density function of future values of S: we use equation (2.10) with p 
replaced by r .  It  is most important to realise that the new probability 
density function is not that of S .  Next, we calculate the expected value 
of the payoff A(S) using this probability density function. That is, we 
multiply A(S) by the risk-neutral probability density function and inte- 
grate over al1 possible future values of the asset, from zero to  infinity. 
Finally, we discount to get the present value of the option. The resulting 
formula is, as before, 

e-r(T-t) 
V(S, t )  = 

,JT;;(s-ij 
(5.17) 

,- (1og(s1/s)-(T- tC2)(T-t)) 2 /2r2(~- t )A (SI) Sr. dS1 

This expression can be shown by direct differentiation to satisfy equation 
(3.9). When the payoff is simple, it can be integrated explicitly to give 
the Black-Scholes formula for (for example) a European cal1 option. 

The idea of replacing p by r is very elegant. I t  does, however, have 
some major drawbacks. First, it requires us to know the probability den- 
sity function of the future asset values (under the risk-neutral assump- 
tion). This is easy enough for our constant-coefficient random walks, but 
if we want to use any more complicated model, we must first find the 
distribution before integrating to calculate the expected return. Often, 
the calculation of the probability density function involves solving a par- 
tia1 differential equation equivalent to that satisfied by the option, and 
the subsequent integration must in general be carried out numerically as 
well. It  is usually quicker to solve the option pricing equation directly. 
Moreover, when we come to exotic options or American options, it is 
much more difficult to  see how to implement the risk-neutral approach, 
while (as we show) the direct approach via the partial differential equa- 
tion for the option can be extended in a clear-cut way. 

A further drawback is that risk neutrality can lead to confusion. For 
example, it is sometimes said that 

"It can be shown that p = r," 
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"The delta of an option is the probability that it will expire in the 
money." 

Both of these statements are wrong. If the first statement were correct 
then al1 assets would have the same expected return as a bank deposit 
and no one would invest in equities (see the Technical Point on risk 
in Chapter 2). If p were equal to r then the second statement would 
be correct. The probability that S > E at t = T can be found by 
calculating the expected value of 3i(S - E). This necessarily involves 
the parameter p. 

Finally, risk-neutrality is far from easy to grasp intuitively, which 
is perhaps the source of the confusion above. The key steps in the 
derivation of the Black-Scholes equation, namely no arbitrage and that 
risk-free portfolios earn the risk-free rate, are intuitively clear. 

Further Reading 

For a discussion of similarity solutions of the diffusion equation see 
Crank (1989) and Hill & Dewynne (1990). 
The risk-neutral method is set out in the papers by Cox & Ross (1976) 
and Harrison & Pliska (1981). For some details of option valuation 
under risk neutrality, see Harrison & Kreps (1979) and Hull (1993). 

Exercises 

1. Find a similarity solution to the problem 

with 

u($, 0) = H(x). 

Show that duldx is the fundamental solution u&(x,T), either by di- 
rect differentiation or by constructing the initial value problem that it 
satisfies. 

2. Suppose that U(X,T) satisfies the following initial value problem on a 
semi-infinite interval: 
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with 

u(x,O) = uo(x), x > o, u(0,r )  = o, T > o. 
Define a new function v(x, T) by reflection in the line x = O, so that 

Show that v ( 0 , ~ )  = 0, and use (5.7) to show that 

The function multiplying uO(s) here is called the Green's function 
for this initial-boundary value problem. This solution is applicable to 
barrier options. 

3. Find similarity solutions to 

with 

u(x, O) = 0, x > 0, u(0, t) = 0, T > 0. 

in the two cases (a) F(x) = x; (b) F(x)  = 1. 
Extend case (b) by letting u ( 0 , ~ )  = T. A related similarity solu- 

tion plays an important role in the free boundary problems studied in 
Chapter 7. 

4. Suppose that a and b are constants. Show that the parabolic equation 

can always be reduced to the diffusion equation. Use a change of time 
variable to show that the same is true for the equation 

where C(T) > O. Suppose that a2 and r in the Black-Scholes equation 
are both functions of t, but that r / a2  is constant. Derive the Black- 
Scholes formule in this case. 

5. Suppose that in the Black-Scholes equation, r ( t )  and a2( t )  are both non- 
constant but known functions of t. Show that the following pracedure 
reduces the Black-Scholes equation to the diffusion equation. 
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(a) Set S = Eex, C = Ev as before, and put t = T - t' to get the 
equation 

Note that we have not yet scaled time, but merely changed its 
origin. 

(b) Now introduce a new time variable + such that iu2(t')dt1 = d+, 
i.e. 

t' 

+(tl) = i a 2 ( s )  ds. 

(See the previous question where this calculation is requested.) 
This change of time variable amounts to measuring time weighted 
by volatility, so that the new 'time' passes more slowly when the 
volatility is high. The resulting equation is 

where a(+) = r/$a2 - 1, b(+) = r/$a2 (note that the dependence 
of r and a2 on + is obtained by substituting for t' in terms of i 
by inverting the change of variable above). 

(c) Show (or verify) that the general solution of the first order partial 
differential equation obtained from the equation for v by omitting 
the term d2v/dx2, namely 

where dA/d+ = a(+) and dB/d+ = b(+), and F(.)  is an arbitrary 
function. 

(d) Now seek a solution to the full equation for v in the form 

where 2 = x + A(+) is as above. Choose B(7) so that V satisfies 
the diffusion equation 

(e) What happens to the initial data under this series of transfor- 
mations? 
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See Harper (1993) for further examples of this ingenious procedure ap- 
plied to other equations. 

6. Show that equation (5.10) can also be reduced to  the diffusion equation 
by writing 

v(x, T) = e-k7V(J, T), 

where 

J = x + (k - 1)T. 

What disadvantages might there be to  this change of variables? 

7. If C(S, t) and P(S, t) are the values of a European call and put with 
the same exercise and expiry, show that C - P also satisfies the Black- 
Scholes equation (5.8), with the particularly simple final data C - P = 

S - E a t  t = T. Deduce from the put-cal1 parity theorem that S - 
Ee-r(T-t) is also a solution; interpret these results financially. 

8. Use the explicit solution of the diffusion equation to derive the Black- 
Scholes value for a European put option without using put-cal1 parity. 

9. Calculate the gamma, theta, vega and rho for European call and put 
options. 

10. Use Maple (or any other computer algebra package) to  plot out the 
functions of Exercise 9. Use the plot3d command to  generate three- 
dimensional plots of call and put options as functions of two variables, 
for example, S and t or S and o. 

11. What is the random walk followed by a European call option? 

12. If u(x, O) in the initial value problem for the heat equation on an infinite 
interval (equations (4.3)-(4.7)) is positive, then so is u(x, T) for T > 0. 
Show this, and deduce that any option whose payoff is positive always 
has a positive value. 

13. Consider the following initial value problem on an infinite interval: 

with 

u(x,O) = O  and u - -+  O as x +  f m .  

It can be shown (for example by the Green's function representation of 
the solution) that if f (x, T) 2 O then u(%, 7) 2 O. Why is this physically 
reasonable? Use this result to show that if C1 (S, t) and C2(S, t) are the 



values of two otherwise identical calls with different volatilities al and 
az < al, then Cz < Ci. 1s the same result true for puts? 

14. In dimensional variables, heat conduction in a bar of length L is mod- 
elled by 

for O < X < L, where U(X,T)  is the dimensional temperature, p is 
the density, c is the specific heat, and k is the thermal conductivity. 
Suppose also that U. is a typical value for temperature variations, ei- 
ther of the initial temperature Uo(X), or of the boundary values a t  
X = O, L; make the equation dimensionless. 

15. What is the value of an option with payoff 'H(E - S)? What is the value 
of a supershare? 

16. The European asset-or-nothing call pays S if S > E at expiry, and 
nothing if S 5 E .  What is its value? 

17. What is the probability that a European call will expire in-the-money? 

18. An option has a general payoff A(S) a t  time T ,  and its value is V(S, t). 
Show how to synthesise it from vanilla call options with varying exercise 
prices; that is, how to find the 'density' f (E)  of calls, with the same 
expiry T, exercise price E and price C(S, t ;  E) ,  such that 

Verify that your answer is correct 

(a) when A(S) = max(S - E, O) (a vanilla call); 
(b) when A(S) = S. (What is the synthesizing portfolio here?) 

Repeat the exercise using cash-or-nothing calls as the basis. 

19. Suppose that European calls of al1 exercise prices are available. Regard- 
ing S as fixed and E as variable, show that their price C(E,  t )  satisfies 
the partial differential equation 

20. "If an asset has zero volatility, then its future path is deterministic, and 
specified completely by p. Therefore, we can calculate exactly the value 
of a call option on the asset, and it too must depend explicitly on p. 
However, it is repeatedly stated above that this is not the case." Why 
is this not a contradiction? 



6 Variations on the 
Black-Scholes Model 

6.1 Introduction 

We have now completed the Black-Scholes analysis of vanilla European 
cal1 and put options. Although the fo rmul~  that we have derived are 
useful, there are many more complicated situations in which they are 
not adequate. This chapter is devoted to a number of straightforward 
extensions of the Black-Scholes analysis. We see how to incorporate div- 
idends, how to deal with forward and futures contracts, and how to  put 
time-varying parameters into the Black-Scholes equation, but we still 
use straightforward calls and puts as the building blocks. Later chap- 
ters deal with American and 'exotic' options which have more complex 
contract structures. 

There is one possible direction of generalisation that we do not discuss 
in this book: we assume that al1 our models are driven by stochastic pro- 
cesses of the type discussed previously. We do not use models that, for 
example, postulate some essential nonlinearity in the underlying mar- 
kets, as might be attributed to feedback from derivatives markets into 
asset prices. Although there is some evidence that markets are not as 
close to our models as we would like, the Black-Scholes world is a good 
enough approximation for most purposes, both theoretical and practical. 

6.2 Options on Dividend-paying Assets 

6.2.1 Dividend Stmctures 

Many assets, such as equities, pay out dividends. These are payments 
to shareholders out of the profits made by the company concerned, and 
the likely future dividend stream of a company is reflected in today's 
share price. The price of an option on an underlying asset that pays 
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dividends is affected by the payments, so we must modify the Black- 
Scholes analysis. 

When we model dividend payments, we need to consider two issues: 

When, and how often, are dividend payments made? 
e How large are the payments? 

There are severa1 possible different structures for dividend payments. 
Individual companies usually make two or four payments per year, which 
may need to be treated discretely, but the large number of dividend 
payments on an index such as the S&P 500 are so frequent that it 
may be best to regard them as a continuous payment rather than as 
a succession of discrete payments. Another example where dividends 
can be modelled as continuous is when the asset is a foreign currency, 
in which case the 'dividend' represents payments a t  the foreign interest 
rate (we assume for now that this is constant). 

The amounts paid as dividends may be modelled as either determinis- 
tic or stochastic. In this book we consider only deterministic dividends, 
whose amount and timing are known at  the start of an option's life. 
This is a reasonable assumption, since many companies endeavour to 
maintain a similar dividend policy from year to year. 

6.2.2 A Constant Dividend Yield 

Let us consider the very simplest payment structure. Suppose that in 
a time dt the underlying asset pays out a dividend DoSdt where Do is 
a constant. This payment is independent of time except through the 
dependence on S .  The dividend yield is defined as the proportion of 
the asset price paid out per unit time in this way. Thus the dividend 
DoSdt  represents a constant and continuous dividend yield Do. This 
dividend structure is a good model for index options and for short- 
dated currency options (it is debatable whether (2.1) is a good model 
for currencies over long timescales). In the latter case Do = r f ,  the 
foreign interest rate. 

First, we consider the effect of the dividend payments on the asset 
price. Arbitrage considerations show that in each time-step dt, the asset 
price must fa11 by the amount of the dividend payment, Do dt, in addition 
to the usual fluctuations. I t  follows that the random walk for the asset 
price (2.1) is modified to 

d S  = OS dX + ( p  - Do)S dt. (6.1) 
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We have seen that the Black-Scholes equation is unaffected by the 
coefficient of dt in the stochastic differential equation for S and so one 
might expect the dividend to have no effect on the option price. This 
is not the case. We have allowed for the effect of the dividend payment 
on the asset price but not its effect on the value of our hedged portfolio. 
Since we receive DoSdt for every asset held and since we hold -A of 
the underlying, our portfolio changes by an amount 

- DoSA dt, (6.2) 

i.e. the dividend our assets receive. Thus, we must add (6.2) to our 
earlier to arrive at 

The analysis proceeds exactly as before but with the addition of this 
new term. We find that 

For a call option the final condition is still C(S, T) = max(S - E, O), 
and the boundary condition at  S = O remains as C(0, t)  = O. The only 
change to the boundary conditions when we use the modified Black- 
Scholes equation (6.3) is that 

This is because in the limit S 4 m ,  the option becomes equivalent to 
the asset but without its dividend income. 

We could calculate the value of this option in the same way as we 
did without dividends: that is, reduce equation (6.3) to the diffusion 
equation and solve in the usual way. However, it is quicker to notice 
that we can make the coefficients of SdC/dS and C in (6.3) equal by 
setting 

C(S, t) = e-DO(T-t )~l  (S, t). 

We then see that C1(S, t)  satisfies the basic Black-Scholes equation (3.9) 
with r replaced by r - Do and with the same final value. The value of 
Ci(S, t)  is therefore just that of a normal European call with interest 
rate r - Do, and it is now straightforward to show that with dividends, 
the value of a European call option is 
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Figure 6.1 A comparison of European call option values with (lower curve) 
and without dividends (upper curve). There are six months to expiry, E = 1, 
u = 0.4 and r = 0.1. The bold curve has Do = 0.07. 

where 

(Alternatively, we can use the variable S = SeDot; the value of the 
call is the usual Black-Scholes value with S replaced by ~ e - ~ ~ ( ~ - ~ )  
throughout.) 

In Figure 6.1 we see the European call option values as functions of 
S with six months to expiry, o = 0.4 and T = 0.1; the top curve is the 
value of the option in the absence of dividends, and the lower bold curve 
has a constant and continuous dividend yield Do = 0.07. 

Further properties of options on assets with a continuous dividend 
yield are developed in the exercises at the end of the chapter. 

6.2.3 Discrete Dividend Payments 

Suppose that our asset pays just one dividend during the lifetime of the 
option, at time t = td .  As abovc, we shall consider only the case in 
which the dividend yield is a known-constant d,  (obviously, O 5 d ,  < 1; 
usually it is a few percent at  most). Thus, at time t d ,  holders of the 



94 Variations on the Black-Scholes Model 

asset receive a payment d y S ,  where S is the asset price just before the 
dividend is paid. 

First, consider the effect of the dividend payment on the asset price. 
Its value just beforel the dividend date, at time t i ,  cannot equal its 
value just after, at time td.  If it did, the strategy of buying the asset 
immediately before t d ,  collecting the dividend, and selling straight away, 
would yield a risk-free profit. It  is clear that, in the absence of other 
factors such as taxes, the asset price must fa11 by exactly the amount of 
the dividend payment. Thus, 

S ( t 2 )  = S ( t 2 )  - d y S ( t d )  = S ( t d ) ( l  - d y ) .  (6.5) 

We now have to incorporate this jump into our model for options. 
The ideas we present below are important not only for discrete divi- 

dends, but also for many esotic options with discrete contract features. 
They should be read with care. 

6.2.4 Jump Conditions for Discrete Dividends 

We have just seen that a discrete dividend payment inevitably results 
in a jump in the value of the underlying asset across the dividend date. 
Our next task is to determine what effect the jump has on the option 
price. This brings us to the subject of jump conditions. 

Jump conditions arise when there is a discontinuous change in one 
of the independent variables affecting the value of a derivative security. 
Here, the cause of a jump is the discontinuous change in asset price due 
to the discrete payment of a dividend, but later we shall deal with other 
causes in connection with exotic options. The jump condition relates the 
values of the option across the jump; in this case it relates the values of 
the option before and after the dividend date. 

Jump conditions may be derived in two equivalent ways. One method 
is via financial arguments, and is based on arbitrage considerations. The 
other way is a purely mathematical method, based on the manipulation 
of delta functions and first order hyperbolic partial differential equa- 
tions. We present the financial argument here; for the mathematical 
arguments, see the Technical Point at the end of this section and Option 
Pricing. 

Away from the dividend date the value of the option varies because 
of the random movement of the asset price; this variation is gradual in 

We shall consistently use the notation t -  and t+ to denote the moments just 
before and just after time t .  



6.2 Options on Dividend-paying Assets 95 

time, since the movement of the asset price is continuous in time (albeit 
random). Across the dividend date, however, the value of the asset 
changes discontinuously. This change in asset price is given by (6.5). 

Now consider the effect of this discontinuous change in the asset value, 
S ,  on an option, with value V(S, t), contingent on that asset. To elim- 
inate the same sort of arbitrage possibilities as those considered above, 
the value of the option must be continuous as a function of time across 
the dividend date; the value of the option is the same immediately be- 
fore the dividend date as it is immediately after (recall that the holder 
of the option does not receive the dividend). Thus we arrive at  the jump 
condition 

v (S@; ), t i )  = V (S@$), td) (6.6) 

This jump condition arises from eliminating arbitrage possibilities for 
any given realisation of the asset and option values. That is, the option 
value must be continuous in time for any realisation of the asset's random 
walk. We have just asserted that the option price is continuous in time, 
yet we have called this a jump condition, which implies discontinuity. 
How can we reconcile these two statements? 

In this book, we analyse option models using partial differential equa- 
tions with S and t as independent variables. We do this instead of 
thinking of S as a function of t, as is implicit in (6.6), because we need 
to be able to consider al1 possible realisations of the asset's random walk. 
Bearing this in mind, let us now consider what happens to the option 
value across a dividend date in a Black-Scholes model. Since we regard 
S and t as independent variables in such a formulation, it would seem 
at first sight that this question could be phrased as 

e How does V change across a dividend date for S fixed? 

In fact, in any realisation, S would not be fixed across a dividend 
date. The question we have just posed is not quite appropriate to the 
problem, and it is better to ask 

m How does V change as a function of S across a dividend date? 

The answer is that V changes discontinuously according to (6.6) with 
~ ( t d )  and S( td)  related by (6.5). That is, we have 

V (S, t d )  = V (S(1 - dy), td) 

This says that the value of the option at asset value S immediately before 
the dividend payment is the same as the value of the option immediately 
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after the dividend payment, but at asset value S(1- dy) .  Thus, for ñxed 
S the value of the option changes discontinuously across a dividend 
date. However, (6.7) is equivalent to insisting that the option value is 
continuous in time for any realisation of the asset's random walk. 

It is certainly true that the holder of the option does not receive any 
benefit from the dividend payment, and so the option price must reflect 
this forgone benefit. The fact that the option price is continuous for 
each realisation of the asset's random walk, even though the asset value 
is not, does not mean that the option value is unaffected by dividend 
payments. The effect of the jump condition (6.6) is felt throughout the 
life of the option, propagated by the partial differential equation that 
governs its value. 

Finally, note that the delta of an option does change across a divi- 
dend date. A corresponding adjustment must be made to any hedged 
portfolio. 

6.2.5 The Cal1 Option with One Dividend Payment 

Let us now value a European call with one dividend payment, as above. 
Recall how we solve in the absence of dividends: because the Black- 
Scholes equation is backward parabolic, we work backwards from expiry, 
when we know the value with certainty. When a dividend is paid, this 
idea is elaborated as follows: 

Solve the Black-Scholes equation back from expiry until just after the 
dividend date (i.e. until t = t i ) ;  
Implement the jump condition (6.7) across t = td, to find the values 
at t = t i ;  
Solve the Black-Scholes equation backwards from t = t i ,  using these 
values as final data. 

In effect, we solve the Black-Scholes equation twice, once for T > t > td, 
and once for td > t > O (the present day). The values at t = td are 
linked by (6.7). A very similar structure emerges when we value certain 
exotic options. 

Let us write Cd(S, t) for the vaiue of our call option (in the discussion 
above, V(S, t)  can represent any dividend-paying derivative product). 
Let us also write C(S ,  t ;  E )  for the value of a vanilla European call option 
with exercise price E (the other parameters, r, a and T are understood). 
For times after the dividend date, our option is identical to a vanilla call: 
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no more dividends will be paid. Thus, 

Cd(S,t) = C(S,t; E) for td+ < t < T. 

Now we use (6.7): 

= C(S(1  - d,), t i ;  E ) .  (6.8) 

At this point, we could use the values we have just calculated in our 
formula (5.14) for solutions of the Black-Scholes equation. However, 
there is a short cut. The call option in (6.8) is evaluated not a t  S ,  but 
a t  S(l - d,): a uniform scaling of S by (1 - d,). A uniform scaling of 
this kind leaves the Black-Scholes equation invariant, and so C(S(1 - 
d,), t ;  E) is a solution, which is equal to  our option value at t = t i ,  and 
hence for al1 times before td. 

It  only remains to  identify C(S(1-d,), t ;  E ) .  At expiry, this derivative 
product has value 

Thus, it is the same as (1 - d,) calls with exercise price E(l - d,)-l. 
For times before td, our call has value 

Note that the effect of the dividend is to decrease the value of the call. 
This is reasonable because the option holder does not receive the divi- 
dend, and the effect of the latter is to decrease S and hence the upside 
potential of the option. 

Technical Point: Continuous and Discrete Dividends Unified. 
In this Technical Point, we outline a way to unify continuous and discrete 
dividend payments. For more details, see Option Pricing. Suppose the 
dividend structure is a quite general function of S and t,  D(S,t).  The 
constant-yield case above had D(S, t)  = DOS, while in the discrete case, 
D(S, t)  = DaSb(t-td) for some constant D6, which we relate to d, below. 
As above, the stochastic differential equation (2.1) describing the random 
walk followed by the asset must be modified for the dividend payment, 
so that it becomes 

dS = aS dX + (PS - D(S, t)) dt. (6.9) 
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When the dividend payment is discrete, this gives 

Integrating across the dividend date, we find that 

Since t i  and td differ only infinitesimally, the only nonzero term on the 
right-hand side is the one containing the delta function, and hence we 
obtain 

Thus, for a discrete payment D6S6(t - td), the asset is discounted by 

consequently, D6 = - logd,. (Thus if a company pays out half of the 
asset price at time td, this discretely paid constant dividend yield gives 
e-D" $ (this is d,), D i  = log 2.) 

For any given realisation the value of the option is continuous, and 
hence the appropriate jump condition is 

V(S(td),td) = ~ ( ~ ( t d ) , t d )  

with S(td) and S ( t i )  related by (6.10). 

6.3 Forward and Futures Contracts 

Forward and futures contracts are in some ways easier to  value than 
options. This is because al1 the risk can be eliminated by a once-and- 
for-al1 hedge a t  the beginning of the contract. As a corollary, they can 
be valued independently of any assumptions about the behaviour of the 
asset price, provided only that the future course of interest rates can be 
predicted. Nevertheless, we prefer to  discuss them here in the Black- 
Scholes framework. 

We need only analyse the forward contract, since, as stated in C h a p  
ter 1, forward and futures prices are the same (under some not too 
restrictive assuinptions). Recall that the forward price is not set a t  one 
of a number of fixed values for al1 contracts on the same asset with the 
same expiry. Instead, it is determined a t  the outset, individually for each 
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contract. Suppose that the time at  which the contract is agreed is t, and 
that the asset price at  that time is S(t).  Denoting the forward price by 
F, we must find a relationship between S(t)  and F that will ensure fair 
value for both parties to the contract. We assume that interest rates are 
constant over the duration of the contract. 

There are severa1 ways of deriving the forward price. We begin with 
one based on arbitrage. Consider first the party who is short the con- 
tract, and so must deliver the asset at  time T.  Although he does not 
know at  time t what the asset price will be at  time T, this does not 
matter. He can satis@ his part of the contract by borrowing an amount 
S(t)  when the contract begins, buying the asset, and using the money 
received at  exercise, F, to pay off the loan. Assuming that the risk-free 
interest rate r is constant, the loan will cost ~ ( t ) e ~ ( ~ - ~ ) .  The forward 
price must therefore be given by 

If this were not so, there would be a risk-free profit or loss on the trans- 
action, in contradiction to the absence of arbitrage. A similar argument 
applies to the party who is long the contract, and yields the same price. 

Another way of looking at  this result is to  notice that a long position 
in the forward contract is equivalent to a long position in a European cal1 
option and a short position in a put option, both with the same expiry 
and exercise price as the forward contract. (This is just a restatement 
of the put-cal1 parity result (3.2).) Since the forward contract has zero 
value when it is set up (no money changes hands), the exercise price of 
the options, E, which is also equal to the forward price F ,  must be such 
that S - ~ e - ~ ( ~ - ~ )  = O; this gives (6.11). 

Our final interpretation is perhaps the least obvious of the three, but it 
is a pointer to the way in which we approach more complicated derivative 
products. It  is not always possible to find a sirnple 'financial' solution, 
such as the one above, based on the construction of an equivalent port- 
folio (here, the asset and a loan), and so to build the answer out of 
products we know how to value. We step back to see that the forward 
contract is a derivative contract, albeit of a simple form. Therefore, it 
must satisfy the Black-Scholes equation. The payoff, a t  time T ,  is S- F ;  
it is easy to find the solution at  any earlier time t as 

Since the value of the contract is zero when it is initiated, we arrive 
at  (6.11). 
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We also note that the value of a forward contract changes with time, 
because S changes. At any time t' between t and T,  a party to a forward 
contract can lock in a profit (or loss) by entering into the equal and 
opposite contract. The argument above shows that the value then is 

when t' = t the value is zero, and when t' = T it is the payoff, S(T) -F. 
We have so far assumed that the asset in question pays no dividend. 

If it pays a constant dividend yield Do, a simple modification to the 
argument above shows that the forward price is related to the current 
price by 

F = ~( t )~( r -Do)(T- t ) .  (6.13) 

(The proof of this is requested in the Exercises.) In some cases Do may 
be negative, an example being the cost of holding an asset such as gold, 
which has to be stored and insured. 

6.4 Options on Futures 

Many options have as their underlying asset not the cash product but 
rather the corresponding futures contract, which is often more liquid 
and involves lower transaction costs. Options on futures therefore have 
a value that depends on F and t ,  i.e. of the form V(F,t).  Since 

we can derive a partial differential equation for V(F, t )  from the ordinary 
Black-Scholes equation (written in terms of S and t )  via the change of 
variable rule. That is, we replace S by throughout, and we 
replace 

and 

The result is 

We can, of course, derive equation (6.14) directly, just as we derive 
the Black-Scholes equation. There is, though, a slight finesse in the 



6.5 Time-dependent Parameters 101 

argument. We take the usual hedged portfolio Il = V - AF.  Noting that 
the volatility of F is also a (see Exercise 9), we have that dF2 = c2F2dt. 
It6's lemma thus gives 

and as  expected, the choice A = dV/dF makes the portfolio instanta- 
neously risk-free, so 

Now comes the subtlety. We want to equate dll to the risk-free return 
on the portfolio. What we really mean here is that if at time t we were 
to set up the portfolio, we should earn the risk-free rate on the money 
thus used. The cost of setting up the portfolio is just V, since it costs 
nothing to enter into a futures contract. Therefore, dll = rVdt, and we 
obtain equation (6.14). (At the corresponding point in the derivation 
of the Black-Scholes equation on an ordinary asset, we have to trade in 
-A of the asset to set up the hedge, and this involves a cash flow.) 

Since equation (6.14) is identical to the Black-Scholes equation when 
the asset pays dividends at  a rate r ,  we can use the results obtained 
earlier to price specific contracts. For example, the value of a European 
cal1 is easily found to be 

where d i  and dz are just as in the usual Black-Scholes formule (5.14), 
but with S replaced by F. The valuation of the put and the put-cal1 
parity relationship are left as exercises, as is the case when the asset 
pays dividends. 

6.5 Time-dependent parameters in the Black-Scholes 
equation 

In this section we show how to derive explicit formulz for options with 
time-varying interest rate and volatility. A model of this kind may be 
useful to someone who has, for example, strong views about the likely 
future course of interest rates or volatility. Although r ( t )  and ~ ( t )  vary, 
we have to assume that we know how they do so. Random variations in 
either parameter lead to much more complicated two-factor models; in 
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and remove the remaining time dependence by setting 
T 

y(t) = 1 oz(r) dr. 
t 

With these choices (6.16) becomes 

and has coefficients which are independent of time: this equation con- 
tains no reference to r or o. If V(S, f ) is any solution of (6.17), then 
the corresponding solution of (6.16), in original variables, is 

Let us now denote by Vss any solution of the Black-Scholes equation 
for constant r ,  o and zero dividends. In view of the above, this solution 
can be written in the form 

for some function vBS. By comparing (6.18) and (6.19) we see that to go 
from an explicit solution of the Black-Scholes equation with constant r 
and a and zero dividends we simply perform the following substitutions: 

wherever we see r in the explicit formula replace it by 

lT r ( i )  d i ;  
T - t  

wherever we see a2 in the explicit formula replace it by 

lT a y T )  di. 
T - t  

(Note that these f o r m u l ~  give the average, over the remaining lifetime 
of the option, of the interest rate and squared volatility respectively.) 
The reader should check carefully that this procedure gives a value that 
is a solution of the modified Black-Scholes equation (6.15), and that for 
a given option such as a call, the payoff condition is satisfied. 
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F'urther Reading 

For the  original derivation of the Black-Scholes f o r m u l ~  with time- 
dependent parameters see Merton (1973). 
In this book we have assumed that  dividends are known. For a model 
with stochastic dividends see Geske (1978). 
Gemmill (1992) discusses the practica1 implications of discrete divi- 

dend payments. 

Exercises 

1. What is the put-cal1 parity relation for options on an asset that pays a 
constant continuous dividend yield? 

2. What is the delta for the call option with continuous and constant 
dividend yield? 

3. Find a transformation that reduces the Black-Scholes equation with a 
constant continuous dividend yield to the diffusion equation. What is 
the transformed payoff for a call? How many dimensionless parameters 
are there in the problem? 

4. Show that the value of a European call option on an asset that pays a 
constant continuous dividend yield lies below the payoff for large enough 
values of S. Show also that the call on an asset with dividends is less 
valuable than the call on an asset without dividends. 

5. Calculate the value of a put option for both continuous and discrete 
dividend yields (one payment). What is the put-cal1 parity relation in 
the latter case? Do the dividends increase or decrease the value of the 
put? Why? 

6. Calculate the value of a call on an asset that pays out two dividends 
during the lifetime of the option. 

7. Another model for dividend structures is to assume that the dividend 
payment will be a fixed amount D paid a t  time td.  Work out the jump 
condition for a derivative product, and calculate the value of a call and 
put. What possible disadvantages might this model have? 

8. Suppose that a forward contract had the additional condition that a 
premium Z had to be paid on entering into the contract. How would 
the fonvard price be affected? 

9. What is the random walk followed by the futures price F? 



10. Derive the put-cal1 parity result for the forward/futures price in the 
form 

C - P = ( F  - E ) ~ - ' ( ~ - ~ ) .  

What is the corresponding version when the asset pays a constant con- 
tinuous dividend yield? 

11. What is the forward price for an asset that pays a single dividend 
d,S(td) at  time td? 

12. Analyse the range forward contract, which has the following features. 
There are two exercise prices, El and E2, with E, < E2. The holder of 
a long position must purchase the asset for El if at  expiry S < E,, for 
S if El 5 S 5 E2, and for E2 if S > E2. The exercise prices are to be 
chosen so that the initial cost is zero. 

13. What is the model for derivative products on an asset that pays a time- 
varying dividend yield D(t)S? Show how to incorporate this variation 
into the time-dependent version of the Black-Scholes model described 
in Section 6.5; how are the functions <r(t), B(t) and y(t) modified? 



American Options 

7.1 Introduction 

We recall from Section 1.5 that an American option has the additional 
feature that exercise is permitted a t  any time during the life of the op- 
tion. (Of course, this relies on the assumption that there is a well-defined 
payoff for early exercise.) The explicit f o r m u l ~  quoted in Chapter 5, 
which are valid for European options where early exercise is not permit- 
ted, do not necessarily give the value for American options. In fact, since 
the American option gives its holder greater rights than the European 
option, via the right of early exercise, potentially it has a higher value. 
The following arbitrage argument shows how this can happen. 

Figure 7.1 shows that before expiry there is a large range of asset 
values S for which the value of a European put option is less than its 
intrinsic value (the payoff function). Suppose that S lies in this range, 
so that P(S ,  t )  < max(E - S, O), and consider the effect of exercising the 
option. There is an obvious arbitrage opportunity: we can buy the asset 
in the market for S, at the same time buying the option for P; if we 
immediately exercise the option by selling the asset for E, we thereby 
make a risk-free profit of E - P - S .  Of course, such an opportunity 
would not last long before the value of the option was pushed up by 
the demand of arbitragers. We conclude that when early exercise is 
permitted we must impose the constraint 

V(S, t )  > max(S - E, O). (7.1) 

American and European put options must therefore have different val- 
ues. 

A second example of an American option whose value differs from 
that of its European equivalent is a cal1 option on a dividend-paying 
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Figure 7.1. The European put 

asset. Recall from equation (6.4) that for large values of S, the dominant 
behaviour of the European option is 

C(S, t )  N 

If Do > O, this certainly lies below the payoff max(S - E ,  0) for large S ,  
and an arbitrage argument as above shows that the American version of 
this option must also be more valuable than the European version, since 
it must satisfy the constraint 

C(S,  t )  2 max(S - E, O). 

In both of these cases, there must be some values of S for which 
it is optimal from the holder's point of view to exercise the American 
option. If this were not so, then the option would have the European 
value, since the Black-Scholes equation would hold for al1 S:  we have 
seen that this is not the case. The valuation of American options is 
therefore more complicated, since at each time we have to determine 
not only the option value, but also, for each value of S ,  whether or 
not it should be exercised. This is what is known as a free boundary 
problem. Typically a t  each time t there is a particular value of S which 
marks the boundary between two regions: to  one side one should hold 
the option and to the other side one should exercise it. (There may 
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be severa1 such values; for the moment we suppose that there is just 
one.) We denote this value, which in general varies with time, by SS (t), 
and refer to it as the optimal exercise price. Since we do not know 
SS a priori we are lacking one piece of information compared with the 
corresponding European valuation problem. With the European option 
we know which boundary conditions to apply and, equally importantly, 
where to apply them. With the American problem we do not know a 
priori where to apply boundary conditions; the unknown boundary SS (t) 
is for this reason called a free boundary. This situation is common to 
many financia1 and physical problems; as a canonical example and an aid 
to intuition, as well as an introduction to the mathematical and, later, 
numerical techniques available, we mention the obstacle problem. 

7.2 The Obstacle Problem 

At its simplest, an obstacle problem arises when an elastic string is held 
fixed at  two ends, A and B, and passes over a smooth object which 
protrudes between the two ends (see Figure 7.2). Again, we do not 
know a priori the region of contact between the string and the obstacle, 
only that either the string is in contact with the obstacle, in which case 
its position is known, or it must satisfy an equation of motion, which, 
in this case, says that it must be straight. Beyond this, the string must 
satisfy two constraints. The first simply says that the string must lie 
above or on the obstacle; combined with the equation of motion, the 
curvature of the string must be negative or zero. Another interpretation 
of this is that the obstacle can never exert a negative force on the string: 
it can push but not pull. The second constraint on the string is that its 
slope must be continuous. This is obvious except at points where the 
string first loses contact with the obstacle, and there it is justified by 
a local force balance: a lateral force is needed to create a kink in the 
string, and there is none. In summary, 

m the string must be above or on the obstacle; 
m the string must have negative or zero curvature; 

the string must be continuous; 
m the string slope must be continuous. 

Under these constraints, the solution to the obstacle problem can be 
shown to be unique. The string and its slope are continuous, but in 
general the curvature of the string, and hence its second derivative, has 
discontinuities. 
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Figure 7.2 The classical obstacle problem: the string is held h e d  at A and B 
and must pass smoothly over the obstacle in between. 

7.3 American Options as Free Boundary Problems 

An American option valuation problem can also be shown to  be uniquely 
specified by a set of constraints, very similar to  those just given for the 
obstacle problem. They are: 

e the option value must be greater than or equal to the payoff function; 
e the Black-Scholes equation is replaced by an inequality (this is made 

precise shortly); 
e the option value must be a continuous function of S; 
a the option delta (its slope) must be continuous. 

The first of these constraints says that the arbitrage profit obtainable 
from early exercise must be less than or equal to  zero. It does not mean 
that early exercise should never occur, merely that arbitrage opportuni- 
ties should not. Thus, either the option value is the same as the payoff 
function, and the option should be exercised, or, where it exceeds the 
payoff, it satisfies the appropriate Black-Scholes equation. It  turns out 
that these two statements can be combined into one inequality for the 
Black-Scholes equation, which is our second constraint above. There are 
some interesting features to  this inequality, and we return to it briefly 
below. 

The third constraint, that the option value is continuous, follows from 
simple arbitrage. If there were a discontinuity in the option value as 
a function of S, and if this discontinuity persisted for more than an 
infinitesimal time, a portfolio of options only would make a risk-free 
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profit with probability 1 should the asset price ever reach the value at  
which the discontinuity occurred.' 

Just as in the obstacle problem, we do not know the position of S f ,  and 
we must impose two conditions at  Sf if the option value is to be uniquely 
determined. This is one more than if Sf were specified. The second 
condition a t  S f ,  our fourth constraint above, is that the option delta 
must also be continuous there. Its derivation is rather more delicate, 
and we only give an informal financially based argument, for the specific 
case of the American put. 

7.4 The American Put 

Consider the American put option, with value P(S,  t).  We have already 
argued that this option has an exercise boundary S = Sf (t),  where the 
option should be exercised if S < Sf ( t )  and held otherwise. Assuming 
that Sf (t) < E, the slope of the payoff function max(E - S, O) at  the 
contact point is -1. There are three possibilities2 for the slope (delta) 
of the option, dP/dS,  at S = Sf (t): 

We show that the first two are incorrect. 
Suppose first that aP/BS < -1. Then as S increases from Sf ( t ) ,  

P(S , t )  drops below the payoff max(E - S,O), since its slope is more 
negative; see Figure 7.3(a). This contradicts our earlier arbitrage bound 
P(S,  t )  > max(E - S, O), and so is impossible. 

Now suppose that dP /dS  > -1, as in Figure 7.3(b). In this case, we 
argue that an option value with this slope would be sub-optimal for the 
holder, in the sense that it does not give the option its maximum value 
consistent with the Black-Scholes risk-free hedging strategy and the ar- 
bitrage constraint P(S ,  t) > max(E - S, O). In order to see this, we must 
discuss the strategy adopted by the holder. There are two aspects to 
consider. One is the day-to-day arbitrage-based hedging strategy which, 

l This result does not imply that there is a blanket prohibition of discontinuous 
option prices, caused for example by an instantaneous change in the terms of the 
contract such as the imposition of a constraint by a change from European to 
American. Indeed, such discontinuities, or jumps, play an important part in later 
chapters. 
A fourth is that aP/BS does not exist a t  S = S f ( t ) .  We assume, as can be shown 
to be the case, that it does. 
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Figure 7.3. Exercise price (a) too low (b) too high. 

as above, leads to the Black-Scholes equation. The other is the exercise 
s t ra tegy:  the holder must decide, in principle, how far S should fa11 be- 
fore he would exercise the option. The basis of this decision is, naturally 
enough, that  the chosen strategy should maximise an appropriate mea- 
sure of the value of the option to its h01der.~ Because the option satisfies 
a partial differential equation with P(Sf (t)  , t )  = E - Sf (t) as one of the 
boundary conditions, the choice of Sf (t) affects the value of P(S ,  t) for 
al1 larger values of S .  Clearly the case of Figure 7.3(a) corresponds to  
too low a value of Sf ( t ) ,  and an arbitrage profit is possible for S just 
above Sf ( t ) .  Conversely, if d P / d S  > -1 a t  S = Sf (t), the value of 
the option near S = Sf (t) can be increased by choosing a smaller value 
for S f :  the exercise value then moves up the payoff curve and BP/dS 
decreases. The option is thus again misvalued. In fact, the increase 
in P is passed on by the partial differential equation to al1 values of S 
greater than S f ,  and by decreasing Sf we arrive a t  the crossover point 
between our two incorrect possibilities, which simultaneously maximises 
the benefit to  the holder and avoids arbitrage. This yields the correct 
free boundary condition BP/BS = -1 a t  S = Sf (t). 

This choice also minimises the benefit to  the writer, but since the holder can close 
the contract by exercising and the writer cannot, the latter's point of view is not 
relevant to this argument. Of course, the writer requires a greater premium in 
recompense for the one-sided nature of the contract. 
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We must stress that the argument just given is not a rigorous for- 
mal derivation of the second free boundary condition. Such a deriva- 
tion might be couched in the language of stochastic control and optimal 
stopping problems, or of game theory; both are beyond the scope of this 
book. Suffice it to say that the correct formulation of a rational opera- 
tor's strategy when holding an American option can be shown to lead to 
the condition that the option value meets the payoff function smoothly, 
as long as the latter is smooth too. 

Finally, we return to the second constraint above, the 'inequality' 
satisfied by the Black-Scholes operator. Recall that the Black-Scholes 
partial differential equation follows from an arbitrage argument. This 
argument is only partially valid for American options, but the intimate 
relationship between arbitrage and the Black-Scholes operator persists; 
the former now yields an inequality (rather than an equation) for the 
latter. 

We set up the delta-hedged portfolio as before, with exactly the same 
choice for the delta. However, in the American case it is not necessarily 
possible for the option to be held both long and short, since there are 
times when it is optimal to exercise the option. Thus, the writer of an 
option may be exercised against. The simple arbitrage argument used 
for the European option no longer leads to a unique value for the return 
on the portfolio, only to an inequality. We can only say that the return 
from the portfolio cannot be greater than the return from a bank deposit. 
For an American put, this gives 

The inequality here would be an equality for a European option. When 
it is optimal to hold the option the equality, i.e. the Black-Scholes equa- 
tion, is valid and the constraint (7.1) must be satisfied. Otherwise, it 
is optimal to exercise the option, and only the inequality in (7.2) holds 
and the equality in (7.1) is satisfied-the payoff, or obstacle, is the so- 
lution. It  is easy to verify that this is so: when P = E - S ,  for S < E, 
substitution into (7.2) gives 

In summary, the American put problem is written as a free boundary 
problem as follows. For each time t ,  we must divide the S axis into two 
distinct regions. The first, O < S < Sf(t) ,  is where early exercise is 
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Figure 7.4 The values of European and American put options as functions of 
S; r = 0.1, u = 0.4, E = 1 and six months to expiry. The upper curve is 
the value of the American put, which joins smoothly onto the payoff function 
(also shown) . 

optimal and 

In the other region, Sf (t) < S < m, early exercise is not optimal and 

The boundary conditions at S = Sf (t) are that P and its slope (delta) 
are continuous: 

We can think of these as being one boundary condition to determine 
the option value on the free boundary, and the other to determine the 
location of the free boundary. It is very important to realise that the 
condition 

is not implied by the fact that P(Sf(t) ,  t) = E - Sf(t). Since we do not 
know a priori where Sf (t) is, we need an extra condition to determine it. 
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Arbitrage arguments show that the gradient of P shoiuld be continuous, 
and this gives, us the extra condition we require. 

In Figure 7.4 we compare the values of European and American put 
options a t  six months before expiry with a = 0.4 and r = 0.1. The 
former is given by the explicit formula (3.18) and tkie latter has been 
calculated numerically by the methods of Chapter 9. 

Technical Point: E'ree Boundary Conditions. 
We emphasise also that both the boundary conditions for the American 
put are based on financia1 reasoning, namely arbitrage. Many other can- 
didates are equally possible from the purely mathematilral point of view; 
although it would not be a model for option pricing, we would also get a 
well-posed free boundary problem if we imposed a cond.ition such as 

or one such as 

This latter condition is, in fact, the proper free boundary condition for 
the Stefan model of melting ice. It is, of course, a tota:lly inappropriate 
condition for American puts. 

7.5 Other American Options 

The arguments we have just given for the American put apply, with ap- 
propriate modifications, to any vanilla option or combination of options 
with payoff A(S), or even A(S, t). Including a c0nstan.t dividend yield, 
the option value V(S, t )  satisfies the Black-Scholes inecquality 

Where exercise is optimal, V(S, t )  = A(S) and the inequality is strict 
(< rather than S). Otherwise V(S, t)  > A(S), and the inequality is an 
equality. At the free boundary (or boundaries, for there may be severa1 
of them if the payoff is complicated enough), both V 2nd BV/aS must 
be continuous. The specification of the problem is completed by the 
terminal condition 

V(S, T )  = A(S), 
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together with appropriate conditions a t  infinity. We see other examples 
of such partial differential inequalities in later chapters on exotic options. 

Technical Point: Options with Discontinuous Payoffs. 
The condition that the A for an American option must be continuous 
assumes that the payoff function itself has a continuous slope. That is, 
it is possible for the option value to meet the payoff tangentially only if 
the payoff has a well-defined tangent a t  the point of contact. 

As an example, consider an American cash-or-nothing cal1 option with 
payoff given by 

The payoff is discontinuous. The option value is continuous except at  
expiry, but the A is discontinuous at  S = E. It is clear that the optimal 
exercise boundary is always at  S = E; there is no gain to be made from 
holding such an option once S has reached the exercise price. Indeed, 
interest on the payoff is lost if the option is held after S has reached E. 
Thus, there is no point in hedging for S > E ;  looked at another way, 
A = O for S > E .  Clearly A > O for S < E. 

Mathematically, we find that we have two boundary conditions, namely 
V(0, t )  = O, V(E, t) = B and a payoff condition V(S, T )  = O for O 5 S < 
E .  There is no point in considering values of S > E, since the option 
would have been exercised. Unlike the usual American option, where 
'spatial' boundary conditions are applied at  an unknown value of S, and 
so an extra condition is needed, both the spatial conditions here are at  
known values of S .  These three conditions therefore give a unique solution 
of the Black-Scholes equation. This option is one of the few American 
options to have a useful explicit solution (see Exercise 6 of this chapter). 

This option also illustrates very well the idea that the exercise strategy 
for an American option should maximise its value to the holder. It is 
particularly clear here that the choice S f ( t )  = E gives the largest values 
of V(S ,  t )  for al1 S < E ,  as illustrated in Figure 7.5. 

7.6 Linear Complementarity Problems 

I t  is clear from the discussion above that  the mathematical analysis of 
American options is more complicated than that  of European options. It 
is almost always impossible to  find a useful explicit solution to  any given 
free boundary problem, and so a primary aim is to  construct efficient 
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Figure 7.5 European and American values of a cash-or-nothing cal1 with 
E = 10, B = 5, r = 0.1, u = 0.4, D = 0.02 and one year to expiry. 

and robust numerical methods for their computation. This means that 
we need a theoretical framework within which to analyse free boundary 
problems in fairly general terms. 

Our starting point is the idea that, since it is difficult to deal with 
free boundaries, it is worth the effort of attempting to reformulate the 
problem in such a way as to eliminate any explicit dependence on the 
free boundary. The free boundary does not then interffere with the solu- 
tion process, and it can be recovered from the solution after the latter 
has been found. We start by considering a simple e:uample of such a 
reformulation, called a linear complementarity problem, in the context 
of the obstacle problem. We then apply the lessons learnt from the ob- 
stacle problem to more complicated American options. These problems 
too have linear complementarity formulations which lead to efficient and 
accurate numerical solution schemes with the desirable property of not 
requiring explicit tracking of the free boundary (the ::ame ideas apply 
equally well to complicated exotic options). These inethods are dis- 
cussed in detail in Chapter 9. The linear complementarity approach 
also leads to  the idea of a variational inequality, and thence to existence 
and uniqueness proofs for the solution. 
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7.6.1 The Obstacle Problem 

Consider the obstacle problem described in Section 7.2, in which we 
take the ends of the string to be a t  x = f 1 and write u(x) for the 
string displacement and f (x)  for the height of the obstacle, both for 
-1 5 x 5 1. We assume that f ( f 1 )  < 0, and that f (x)  > O at  some 
points -1 < x < 1, so that there definitely is a contact region. We 
also assume, a t  least initially, that f" < O, where ' = dldx, thereby 
guaranteeing that there is only one contact region. The free boundary 
is then the set of points, marked as P (x = xp)  and Q (x = XQ) in 
Figure 7.2, where the string first meets the obstacle. These are a pnon 
unknown, and have to be determined as part of the solution. 

In the contact region, u = f ,  while where the string is not in contact 
with the obstacle it is straight, so u" = O. Normally, one would need just 
two boundary conditions to determine the straight portions of the string 
uniquely, and the values of u at  the two ends of each straight portion 
would certainly do; indeed, we do have u(-1) = 0, u(xp) = f (xp )  and 
similar conditions for the other straight portion. However, because P 
and Q are unknown, we need two more boundary conditions than usual 
in order to determine these points, and here a physical argument based 
on a force balance shows that at  points such as P and Q, u' must be 
continuous as well as u. As a free boundary problem we can write the 
particular example given in Figure 7.2 as the problem of finding u(x) 
and the points P ,  Q such that 

Given any particular f (x) with the same general shape as in Figure 
7.2 it is straightforward in principle to show that u(x), P and Q are 
uniquely determined by this problem, and to find them. The procedure is 
tedious, and for al1 but specially simple f ,  P and Q must be determined 
numerically as solutions of an algebraic or transcendental equation. The 
details are even more complicated when f" is.not always less than or 
equal to zero, because then multiple contact regions can occur, but again, 
in principle, it can be done. 
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An alternative approach to the problem is to note that the string 
either lies above the obstacle, u > f ,  in which case it is straight, u" = 0, 
or is in contact with the obstacle, u = f, in which case u" = f" < 0. 
This means that we can write the problem as what i:j called a linear 
complementarity problem:4 

subject to the conditions that 

u(-1) = u(1) = O, U, U' are continuou:s. (7.6) 

This statement of the problem has a tremendous advantage over the 
free boundary version (7.4): there is no explicit merition of the free 
boundary points A and B. They are still present, but only implicitly 
via the constraint u > f .  If we can devise an algorithm to solve the 
constrained problem, we just have to look at the resulting values of u - f ;  
the free boundaries are where this function switches from being zero to 
nonzero. One such algorithm is the Projected SOR algorithm described 
in Chapter 9 in the context of American options; this is an iterative 
procedure which, starting with an initial guess for u that is certainly 
above f, produces a sequence of ever more accurate a~~proximations to 
the true solution. The constraint is simply implementeti, for if values of 
u less than f are generated, they are simply reset to equal f .  

It is beyond the scope of this book to prove that the linear comple- 
mentarity formulation is equivalent to the free boundary formulation 
(the hard part being to prove that any solution of the former is also a 
solution of the latter), nor do we show that there is a uriique solution to 
the former. The proofs use techniques of functional anslysis, in partic- 
ular the theory of variational inequalities, but the basic idea is simply 
minimisation of the appropriate energy functional over the convex space 
of al1 suitably smooth functions v(x )  that satisfy the constraint v 2 f .  

7.6.2 A Linear Complementarity Problem for the American 
Put Option 

We now extend the analogy between the obstacle probleni and the Black- 
Scholes formulation of the free boundary problem for an flmerican put by 

In general, a problem of the form 

A B = O ,  A ~ O ,  azo ,  
is called a complementarity problem, and in this example the f;tctors A = u" and 
B = u - f are both linear in u and f .  



7.6 Linear Complementarity Problems 119 

showing that the latter can also be reduced to a linear complementarity 
problem. In fact, the 'spatial' parts of the two problems are almost 
identical, and the major difference is that the put gives an evolution 
problem, in contrast to the static obstacle problem. The analogy also 
carries over to the numerical methods for the two problems: the 'spatial' 
part of the put problem is solved by the same Projected SOR algorithm, 
while the 'temporal', or evolution, part is used to time-step the solution 
forwards. 

We first transform the American put problem from the original (S, t) 
variables to (x, T) as before. We see in later chapters that this is in some 
ways better from the numerical point of view, and some of the manipula- 
tions are easier. These transformations were given in Chapter 5; the only 
difference now is that there is an optimal exercise boundary. In original 
variables this was S = Sf ( t ) ,  and we write it as x = xf ( r ) ;  note that 
because Sf ( t )  < E, xf (7) < O. Also, the payoff function max(E - S, 0) 
becomes the function 

Thus, we have 

du d2u - -  - - for x > xf (T), 
d r  dx2 

u(., T) = g(x, T )  for x 5 xf (T), 

with the initial condition 

( l  

l k+l)x,,) ~ ( x ,  O) = g(x, O) = max el("-')" - e?( 

and the asymptotic behaviour 

lim u(x, T )  = 0. 
x-00 

(As x + -cm, we are in the region where early exercise is optimal, and 
so u = g.) We also have the crucial constraint 

and the conditions that u and duldx are continuous at x = xf ( t ) ,  al1 of 
which follow from the corresponding conditions in the original problem. 

In order to avoid technical complications, let us accept that, since we 
are going to have to restrict any numerical scheme to a finite mesh, we 
may as well restrict the problem to a finite interval. That is, we consider 
the problem (7.8)-(7.11) only for x in the interval -x- < x < x+, 
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where x+ and x- are large. This means that we impose the boundary 
conditions 

In financia1 terms, we assume that we can replace th~r  exact boundary 
conditions by the approximations that for small values of S, P = E - S, 
while for large values, P = 0. 

The fact that both the obstacle problem and the Arnerican put prob- 
lem satisfy constraints suggests that the latter might also have a linear 
complementarity formulation, and this is indeed the case. The option 
problem is very similar to the obstacle problem, but with an obstacle 
which is time-dependent, that is, the transformed payof function g(x, 7). 

We can write (7.8)-(7.11) in the linear complementarity form 

with the initial and boundary conditions (7.9) and (7.12), namely 

and the conditions that 
du 

U(X, T) and - (x, T) are continuous.. (7.14) 
dx  

The two possibilities in this formulation correspond to situations in 
which it is optimal to exercise the option (u = g) and those in which it 
is not (u > g). 

Once again, the great advantage of this formulatiori is that the free 
boundary (or boundaries) need not be tracked explicitly. As with the 
obstacle problem, a considerable amount of work is necessary to prove 
that the linear complementarity formulation is equivalent to the original 
free boundary problem, and that there is a unique soliition. Again, the 
techniques used are those of functional analysis and parizbolic variational 
inequalities, and more details can be found in the blooks referred to 
above. 
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7.7 The American Call with Dividends 

(This section may be omitted at a first reading without loss of continuity.) 

We now consider some analytical aspects of the model for an American 
call option on a dividend-paying asset, introduced in Section 6.2. Recall 
that the value C(S, t)  of the call satisfies 

so long as exercise is not optimal. The payoff condition is 

C(S, T) = max(S - E, O), (7.16) 

and because the option can be exercised at any time, we always have 

If there is an optimal exercise boundary S = Sf (t) (and we shortly see 
that there is), then at S = Sf (t), 

If an optimal exercise boundary does exist, then (7.15) is valid only 
while C(S, t) > max(S - E, O), since a direct calculation shows that 
max(S - E, O) is not a solution of the Black-Scholes equation (7.15). 
Again, (7.15) can be replaced by the inequality 

in which equality holds only when C(S,t) > max(S - E, O). As in 
the case of the American put, the financia1 reason for this is that, if 
early exercise is optimal, then it is so because the option would be less 
valuable if it were held than if it were exercised immediately and the 
funds deposited in a bank. 

7.7.1 General Results on American Cal 1 Options 

In what follows we shall assume that the interest rate and dividend yield 
satisfy r > Do > O. As for the European call, it is convenient to make 
(7.15)-(7.18) dimensionless and to reduce (7.15) to a constant coefficient 
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Figure 7.6. c ( x ,  0) for the American call problem. 

and forward equation. It  also happens to be helpful here to subtract off 
the payoff S - E from the call value C(S, t). We therefore put 

and the result is 

for -m < x < m, 7 > O, with 

f (x) is defined in (7.22). The graph of the function c(x, O) is sketched in 
Figure 7.6. The two dimensionless parameters k (which also appeared 
in the European call solution earlier) and k' are given by 

k = r / i a 2 ,  k' = ( r  - oo)/;a2. (7.21) 

The function f is given by 

f (x) = (k' - k)ex + k. (7.22)' 

Since r > Do > O, it follows that k > k' > 0. 
Assume for the moment that a free boundary does exist, and as be- 

fore call it x = xf( t )  (in original variables, S = Sf(t)) .  Then at this 
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Figure 7.7. The consumption/replenishment term f (x). 

boundary we have 

Note that the boundary conditions on the free boundary have been sim- 
plified; this is the reason for subtracting the payoff function from the 
cal1 value. The constraint C > max(S - E, O) becomes 

The behaviour of f (x) is crucial to the behaviour of the free boundary. 
Indeed, when f (x) is given by (7.22) the existence of this term implies the 
existence of the optimal exercise boundary. To see this, let us consider 
further its graph, sketched in Figure 7.7. We see that f(x) is positive 
for x < xo where 

xo = log (Ic/(k - k')) = log(rlD0) > O, 

and negative for x L xo. 
We now look at what would happen if there were no constraint and 

thus no free boundary. Consider the initial data c(x, 0) for positive values 
of x. For x > O, c(x, O) = dc(x, O)/dx = d2c(x, 0)/¿3x2 = O. Thus, from 
(7.19) at expiry we have 
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For O < x < xo, f (x )  > O and c immediately becomes positive. For 
x > xo, f (x )  < O and c immediately becomes negative. Unfortunately, 
the latter does not satisfy the constraint, which for x > O requires that 
c remain positive. If we hold the option in x > xo the constraint is 
violated and the option value has fallen below its intrinsic value. This 
is impossible for an American style option, and hence we deduce that 
there must be an optimal exercise boundary. 

Moreover, it is clear from this argument where the optimal exercise 
boundary xf (7) must start from. We must have xf (O+) = xo, since this 
is the only point that is consistent with c(xf (O+), O+)  = O. Financially, 
this corresponds to 

and is independent of a. Thus, immediately before expiry, the option 
should be exercised a t  asset values such that the return on the asset, 
DOS, exceeds the interest rate return on the exercise price, r E .  At 
expiry, of course, it will be exercised if S > E; here the optimal exercise 
boundary jumps discontinuously a t  t = T. Note also that if Do = 0, 
xf = CCI (Sf (T) = cm) and there is no free boundary: without dividends 
we recover the well-known result that it is always optimal to hold an 
American cal1 to expiry. 

We also point out that the point S = r E / D  is the value of S at which 

Technical Point: Physical Interpretation. 
Equation (7.19) is a little more complicated than the diffusion equation; 
there are three extra terms, (k' - l)dc/dx, -kc and f (x). The first of 
these can be interpreted as a convection term, the second as a reaction 
term and the third, f (x) ,  can be interpreted as a consumption term 
where f (x) < O or a replenishment term where f (x) > O. In order to 
understand the meaning of these terms and their effect on c(x, t ) ,  let us 
consider combinations of these with other terms in (7.19). 

Consider the term (k - l)dc/dx. Physically, this represents convection 
(financially, drift). This may be seen by balancing it against the dc/dr on 
the left-hand side of the partial differential equation and, for the moment, 
dropping al1 the other terms. This balance gives the first order hyperbolic 
equation dc/dr = (k' - l)dc/dx. This equation may be solved by the 
method of characteristics to yield c ( x , ~ )  = F ( X  + (k' - 1 ) ~ )  for some 
function F. Since c is constant along the lines x + (k' - l ) ~  = constant, 
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this represents a wave travelling with constant speed 1 - k': hence the use 
of the word 'convection7. This analysis suggests that by changing to the 
moving frame of reference J = x + (k' - l ) ~ ,  the (k' - l)dc/dx term could 
be eliminated from the problem. This is indeed the case; the equation 
becomes 

ac 8 2 ~  - -  
67 dJ2 

kc - f (J - (k' - 1 ) ~ )  , 

in the variables and T .  

The second term in (7.19) new to the diffusion equation, -kc, r e p  
resents reaction (or discounting) at a rate proportional to c. If we 
balance this term against the dc/dr we find that this balance gives 
c = This suggests this term could be eliminated by writing 
C(X, T) = e - k T ~ ( x ,  T), to account for the exponential decay implied by it. 
This is the case, and the problem in the new dependent variable w is 

dw d2w - ekT f (< - (k' - 1 ) ~ ) ~  aT at2 
Finally, and most importantly, the third new term in (7.19), f(x),  

represents a consumption term if f (x) < O and a replenishment term if 
f (x) > O .  We may see this by balancing this term against the dcldr  
term. If f (x) < O ,  then dc/dr < O in this balance and c(x, T) decreases 
with 7, while if f (x) > O ,  c(x, T) increases. 

7.7.2 A Local Analysis of the h e  Boundary 

We now ask how the free boundary x = x ~ ( T )  initially moves away from 
xf (O) = xo. We cannot solve the problem for the free boundary exactly, 
but we can find an asymptotic solution which is valid close to  expiry. 

In order to  perform this analysis, which is local in both time and asset 
price, we look a t  equation (7.19) only near x = xo, and for small values of 
T.  We approximate f (x) by a Taylor series about xo (which corresponds 
to  the final position of the optimal exercise boundary), namely 

f (x) = f (so) + fl(xo)(x - xo) + O((x - xoI2) 
(5 - xO)fl(xO) 

= -k(x - XO). 

We need only keep the highest spatial derivative of c, i.e. d2c/Ó'x2, since 
this will be larger than c or dcldx in a region where c is changing rapidly. 
The upshot is an approximate local problem for c. Call this local solution 
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E(x, r); it satisfies 

ac a2c --  - -- a~ dx2 k(x - xo) 

with 

It  is fortunate that we can solve this local problem exactly. In fact, it 
has a similarity solution in terms of the variable 

of the form 
= T3/2 c*(O, 

where c* satisfies some yet to be determined ordinary differential equa- 
tion. At the same time we try a free boundary of the form 

where to is also yet to be determined. Although the free boundary is 
still unknown, we now have to find only the constant Jo rather than a 
fully r-dependent function xf ( r ) .  

Substituting the expression i. = T ~ / ~ c * ( [ )  into the partial differential 
equation for i: gives 

and dividing through by fi gives, as intended, an ordinary differential 
equation. We have 

d2c* dc* - + 'J- - 3C* = kE 
d t2  d t  

while the free boundary conditions 

di: 
c = - = O  dx on x = x f ( r )  

reduce to 
dc* 

c*(to) = -(<o) = 0. 
d t  

We also need to know how C(x, T) behaves for J -+ -m. This fol- 
lows from the behaviour of C(x, T) for large negative x: as x -+ -a, 
d2C/dx2 -+ 0 and so i:(x, r )  looks like -kxr. Thus 
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(implying also that C = T ~ C *  7 3  ( x  - X O ) / T ~  N XT + smaller terms). 
The first step in solving this two point boundary value problem for 

c*(J )  is to find the general solution of the homogeneous ordinary differ- 
ential equation 

d2c* dc* - +'J-  - "* =o.  
dJ2 dJ 

Fortunately one solution, c; (J)  say, is easy to find. Trying simple low 
order polynomial solutions shows that 

c; ( E )  = ,E3 + 6J 

is an exact solution of the homogeneous equation. A second independent 
solution may be found by the method of reduction of order: we set 
c; ( J )  = c; ( J ) a ( J )  and we find a first order ordinary differential equation 
for a(<). The arithmetic is straightforward but tedious, and the result 
is that cS(J)  is found to be 

Thus the general solution of the homogeneous equation is 

c* ( J )  = Ac; (0 + BcS ('9. 
The second step in solving the original ordinary differential equation 

(7.23) is to observe that c i ( J )  = -kJ is an exact solution. Thus the 
general solution is given by the sum of cp and the general solution of the 
homogeneous equation, i.e. 

c*(J)  = -kJ + Ac;(J)  + BcS(J). 

As J -, -cm, cS(J)  -+ O ,  while c; (J)  tends to cc like t3. We know 
c*(J)  - -k< as < -, -cm and therefore A = O. Thus 

c*(J )  = -k< + Bcjl(<). 

The free boundary conditions c* ( < O )  = O and dc*(Jo)/dJ = O give us two 
equations for B and Jo.  These are 

dc; 
B c S ( 6 ) = t 0 ,  and B-( t0 )=1 .  

dJ 
Dividing these equations gives 
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Figure 7.8. The function c ( x ,  T) at four different times, including expiry. 

which, after some rearrangement, leads to  the transcendental equation 

The constant B is then given by B = Jo/cS ([o). 
Transcendental equations of the form (7.24) are characteristic features 

of similarity solutions of free boundary problems. It  can be shown, for 
example by graphical methods, that this equation has just one root, 
and this can be found (by a numerical method such as the bisection 
algorithm or Newton iteration) to be 

We have found a local solution t (x,  T )  which is a valid approximation to 
the American call problem for T near to  zero and x near to  xo. 

Reverting to financia1 variables, we have shown that a t  expiry the 
optimal exercise price of an American call on a dividend-paying asset 
tends to  the value rE/Do.  Also, from the local analysis, we know that 
a s t - t T  



7.7 The American Cal1 with Dividends 

Figure 7.9. The option value C(S, t )  at the same four times as in Figure 7.8. 

where <o is a 'universal constant' of cal1 option pricing. Beyond this 
interesting fact, the local analysis is also important for the early stages 
of a numerical calculation where prices change rapidly: the effect of the 
rapid changes in Sf( t)  is felt throughout the solution region, not just 
near S = Sf(T).  In Figures 7.8 and 7.9 we show the values of c ( x ,  T )  in 
dimensionless variables, and the original C(S, t ) ,  prior to expiry. 

Further Reading 
Readers who prefer a more formal derivation of the continuity of the 
delta a t  the optimal exercise price will find it in the books by Merton 
(1990) and Duffie (1992). 
For more on the theory of linear complementarity problems and varia- 
tional inequalities see the books by Elliott & Ockendon (1982), Fried- 
man (1988) and Kinderlehrer & Stampacchia (1980). 
Approximate solutions for American options have been found by Rol1 
(1977), Whaley (1981), Barone-Adesi & Whaley (1987) and Johnson 
(1983). 
Hill & Dewynne (1990) and Crank (1984) discuss similarity solutions 
to free boundary problems for the diffusion equation. 
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Exercises 

1. The ins ta lment  opt ion has the same payoff as a vanilla call or put 
option; it may be European or American. Its unusual feature is that, 
as well as paying the initial premiurn, the holder must pay 'instalrnents' 
during the life of the option. The instalments may be paid either contin- 
uously or discretely. The holder can choose a t  any time to stop paying 
the instalments, a t  which point the contract is cancelled and the option 
ceases to exist. When instalments are paid continuously a t  a rate L(t)  
per unit time, derive the differential equation satisfied by the option 
price. What new constraint must it satisfy? Formulate a free boundary 
problem for its value. 

2. Consider American vanilla call and put options, with prices C and P. 
Derive the following inequalities (the second part of the last inequality is 
the version of put-cal1 parity result appropriate for American options): 

P 2 max(E - S, O), C > - S - ~ e - ' ( * - ~ ) ,  

Also show that, without dividends, it is never optimal to exercise an 
American call option. 

3. Find the explicit solution to the obstacle problem (7.4) when the ob- 
stacle is f (x) = - x2. Repeat when f (x) = S - sin2(nx/2); the free 
boundaries now have to be found nurnerically. 

4. A space of functions K is said to be convex if, whenever u E K and 
v E K, (1 - X)u + Av E K for al1 O 5 X 5 1. Show that the space K 
of al1 piecewise continuously differentiable functions v(x) (-1 < x 5 1) 
satisfying v > f and v ( f  1) = O is convex. (These functions are called 
test functions.) 

The obstacle problem may also be forrnulated as: find the function u 
that minimises the energy 

over al1 v E K. (This is the usual energy minimisation but with the con- 
straint incorporated.) If u is the minimiser, and v is any test function, 
use the fact that E[(1 - X)u + Av] - E[u] 2 O for a11 X to  show that 

This is the variational inequality for the obstacle problem. 
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5. Set up the American call with dividends as a linear complementarity 
problem. 

6. Transform the American cash-or-nothing call into a linear complemen- 
tarity problem for the diffusion equation and show that the transformed 
payoff is 

g(x, r )  = be3(k+1)2r+$(k-1)z~(x),  (E7.1) 

where b = BIE. 
Since in this case the free boundary is always a t  x = 0, the problem 

can be solved explicitly: do this. (Hint: put u(x, T) = b e i ( k + 1 ) 2 r ~ ( x )  + 
w(x, T) and choose X(x) appropriately, then use images, as  discussed 
in Chapter 12. Alternatively, use Laplace transforms or Duhamel's 
theorem.) 

7. Set up the American call and put problems as linear complementarity 
problems using the original (S ,  t) variables. (This is not necessarily a 
good formulation as far as numerical solution is concerned.) 

8. The function u(x, 7)  satisfies the following free boundary problem with 
free boundary x = xf ( r ) ,  where x (0) = 0: 

Show that there is a similarity solution with U(X,T) = ul(x/&), 
xf (T) = [ O f i ,  where (0 satisfies the transcendental equation 

(This is a solution to  the Stefan problem, in which u(x, T) models the 
temperature in a pure material that melts a t  temperature u = O; here 
a semi-infinite bar of the material is initially solid a t  the melting tem- 
perature, and melting is initiated by raising the temperature a t  x = O 
to 1 and holding it there, so that the region O < x < x f ( r )  is liquid. 
The conditions a t  the free boundary express the facts that melting takes 
place a t  u = 0, and that the heat flux into the free boundary is balanced 
by the rate a t  which latent heat is taken up during the change of phase 
from solid to liquid.) 
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9. The function c ( x , r )  satisfies the following problem in the region 
O < x  < x f ( r ) ,  where x f ( 0 )  = 0 :  

Show that there is a similarity solution with c ( x , r )  = r cC(x / \ / ; ) ,  

x f  (7) = where E. satisfies the transcendental equation 

10. Show that u(%, 7 )  and c (x ,  7 )  of the previous two exercises are related 

by 
ac u = -  
87' 

This requires you to show that the equations and boundary conditions 
al1 correspond. The only tricky part is to  deal with the free boundary 
conditions for c ( x ,  7 ) :  differentiating the condition c ( x f  ( T ) ,  T )  = O with 
respect to T yields 

which demonstrates that the condition u  ( x f  ( r ) , ~ )  = O holds; the 
second free boundary condition for u  is obtained by differentiating 
d c ( x f ( r ) , r ) / d x  with respect to  T and using the partial differential 
equation for c ( x ,  7 ) .  
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8.1 Introduction 

Finite-difference methods are a means of obtaining numerical solutions 
to  partial differential equations (as we see in this chapter) and linear 
complementarity problems (as we see in the following chapter). They 
constitute a very powerful and flexible technique and, if applied cor- 
rectly, are capable of generating accurate numerical solutions to al1 of 
the models derived in this book, as well as to many other partial dif- 
ferential equations arising in both the physical and financial sciences. 
Needless to  say, in such a brief introduction to the subject as we give 
here, we can only touch on the basics of finite differences; for more, 
see Option Pricing. Nevertheless, the underlying ideas generalise in a 
relatively straightforward manner to many more complicated problems. 

As we saw in Chapter 5, once the Black-Scholes equation is reduced 
to  the diffusion equation it is a relatively simple matter to find exact 
solutions (and then convert these back into financial variables). This 
is, of course, because the diffusion equation is a far simpler and less 
cluttered equation than the Black-Scholes equation. For precisely this 
reason also, it is a much simpler exercise to find numerical solutions of 
the diffusion equation and then, by a change of variables, to  convert 
these into numerical solutions of the Black-Scholes equation, than it is 
to solve the Black-Scholes equation itself numerically. In this chapter, 
therefore, we concentrate on solving the diffusion equation using finite- 
differences. This allows us to  introduce the fundamental ideas in as 
uncluttered an environment as possible. 

This is not to say that one should not use finite differences to  solve the 
Black-Scholes equation directly. There are many examples (particularly 
of multi-factor models) where it is not feasible or even not possible to 
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reduce the problem to a constant coefficient diffusion equation (in one 
or more dimensions); in this case there is little choice but to use finite 
differences on the (generalisations) of the Black-Scholes equation. Direct 
application of finite-difference methods to the Black-Scholes equation 
is left to  the exercises at the end of the chapter; the reader who has 
understood the underlying principles of finite differences should have no 
difficulty with these. 

Recall from Sections 5.4 and 7.7..1 that, by using the change of vari- 
ables (5.9) the Black-Scholes equation (3.9) for any European option 
can be transformed into the diffusion equation 

The payoff function for the option determines the initial conditions for 
u(x, T), and the boundary conditions for the option determine the condi- 
tions at  infinity for u(x, 7) (that is, as x + f m); for a put they are given 
by (3.13), (3.14) and (3.15); for a call they are given by (3.10), (3.11) 
and (3.12); and for a cash-or-nothing call the payoff is given by (E7.1). 

The values of the option V(S, t ) ,  in financia1 variables, may be recov- 
ered from the non-dimensional u(x, 7) using (5.9), yielding 

V = ~ + ( 1 + k ) ~ + ( l - k ) ~ & ( k + l ) ~ c ~ ( ~ - t )  u (lag ( S I E ) ,  i a 2 ( ~  - t ) )  , 
where k = r/io2 

8.2 Finite-difference Approximations 

The idea underlying finite-difference methods is to replace the partial 
derivatives occurring in partial differential equations by approximations 
based on Taylor series expansions of functions near the point or points 
of interest. For example, the partial derivative dulL3-r may be defined to 
be the limiting difference 

du u(x, 7 + 67) - u(x, 7) 
- (x, 7) = lim 
d r  67-0 67 

If, instead of taking the limit 67 -+ O, we regard 67 as nonzero but small, 
we obtain the approximation 

au U(X, T + 6 ~ )  - U(X, T) 
- (x, 7) Ñ 
d r  67 

+ o (67). 

This is called a finite-difference approximation or a finite differ- 
ence of d u l a r  because it involves small, but not infinitesimal, differ- 
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Figure 8.1 Forward-, backward- and central-difference approximations. The 
slopes of the lines are approximations to the tangent at (x, 7). 

ences of the dependent variable u. This particular finite-difference ap- 
proximation is called a forward difference, since the differencing is in 
the forward 7 direction; only the values of u a t  T and T + 67 are used. 
As the O(6r) term suggests, the smaller 67 is, the more accurate the 
approximation.' 

We also have 

au U(X,T) - U(X,T - 6 ~ )  - (x, T) = lim 
87 67-0 67 

1 

so that the approximation 

is likewise a finite-difference approximation for du ld r .  We cal1 this 
finite-difference approximation a backward difference. 

We can also define central differences by noting that 

au U(X, T + 67) - u(x, T - 67) 
-(x,T) = lim 
87 67-0 2 67 

This gives rise to  the approximation 

l The O ( 6 r )  terrn arises frorn a Taylor series expansion of u(x, T + 6 ~ )  about (x, 7); 
see Exercises 1-3. 
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reduce the problem to a constant coefficient diffusion equation (in one 
or more dimensions); in this case there is little choice but to use finite 
differences on the (generalisations) of the Black-Scholes equation. Direct 
application of finite-difference methods to the Black-Scholes equation 
is left to the exercises at the end of the chapter; the reader who has 
understood the underlying principles of finite differences should have no 
difficulty with these. 

Recall from Sections 5.4 and 7.7.1 that, by using the change of vari- 
ables (5.9) the Black-Scholes equation (3.9) for any European option 
can be transformed into the diffusion equation 

The payoff function for the option determines the initial conditions for 
u(x, T), and the boundary conditions for the option determine the condi- 
tions at infinity for u(x, T) (that is, as x + f m); for a put they are given 
by (3.13), (3.14) and (3.15); for a call they are given by (3.10), (3.11) 
and (3.12); and for a cash-or-nothing call the payoff is given by (E7.1). 

The values of the option V(S, t), in financia1 variables, may be recov- 
ered from the non-dimensional u(x, T) using (5.9), yielding 

where k = r / $ 0 2 .  

8.2 Finite-difference Approximations 

The idea underlying finite-difference methods is to replace the partial 
derivatives occurring in partial differential equations by approximations 
based on Taylor series expansions of functions near the point or points 
of interest. For example, the partial derivative d u l d ~  may be defined to 
be the limiting difference 

du U(X, T + 67) - U(X, 7) 
- (x, T) = lim 
d~ 67-0 67 

If, instead of taking the limit 67 -+ O, we regard 67 as nonzero but small, 
we obtain the approximation 

du u(x, T + 67) - u(x, T) 
- (2, 7) X 
d7 67 

+ O ( ~ T ) .  (8.1) 

This is called a finite-difference approximation or a finite differ- 
ence of d u / a ~  because it involves small, but not infinitesimal, differ- 
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Figure 8.1 Forward-, backward- and central-difference approximations. The 
slopes of the lines are approximations to the tangent at (x, 7). 

ences of the dependent variable u. This particular finite-difference ap- 
proximation is called a forward difference, since the differencing is in 
the forward T direction; only the values of u a t  T and T + 67 are used. 
As the O(6r)  term suggests, the smaller 67 is, the more accurate the 
approximation. l 

We also have 

du U ( X , T )  - U ( X , T  - 67) - (x ,  7 )  = lim 
d~ &-+O 67 7 

so that the approximation 

is likewise a finite-difference approximation for auldr. We cal1 this 
finite-difference approximation a backward difference. 

We can also define central differences by noting that 

du u(x, + 67) - u(x,  T - Sr) 
- ( x , T )  = lim 
dr 6 ~ - O  2 67 

This gives rise to  the approximation 

l The O(6r)  term arises from a Taylor series expansion of u(x, T + 67) about (x, 7); 
see Exercises 1-3. 
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Figure 8.1 shows a geometric interpretation of these three types of finite 
differences. Note that central differences are more accurate (for small 
67) than either forward or backward differences; this is also suggested 
by Figure 8.1. (For the analysis of the accuracy of finite-difference ap- 
proximations, see Exercises 1-3 at the end of the chapter.) 

When applied to the the diffusion equation, forward- and backward- 
difference approximations for du ld r  lead to explicit and fully implicit 
finite-difference schemes, respectively. Central differences of the form 
(8.3) are never used in practice because they always lead to bad numeri- 
cal schemes (specifically, schemes that are inherently unstable). Central 
differences of the form 

arise in the Crank-Nicolson finite-difference scheme. 
We can define finite-difference approximations for the x-partial deriva- 

tive of u in exactly the same way. For example, the central finite- 
difference approximation is easily seen to be2 

au U(X + SX, T) - U(X - SX, T) 
-(X,T) = 
dx 2 SX 

+ o ((aXI2). (8.5) 

For second partial derivatives, such as d2u/dx2, we can define a 
symmetric finite-difference approximation as the forward difference of 
backward-difference approximations to the first derivative or as the back- 
ward difference of forward-difference approximations to the first deriva- 
tive. In either case we obtain the symmetric central-difference ap- 
proximation 

d2u u(x + SX,T) - 2 4 2 ,  T) + U(X - Sx, T) 
-(x, 7) Ñ 
dx2 ( 6 ~ ) ~  + ~ ( ( S X ) ~ ) .  (8.6) 

Although there are other approximations, this approximation to d2u/dx2 
is preferred, as its symmetry preserves the reflectional symmetry of the 
second partial derivative; it is left invariant by reflections of the form 
x H -x. It is also more accurate than other similar approximations. 

8.3 The Finite-difference Mesh 

To continue with the finite-difference approximation to the diffusion 
equation we divide the x-axis into equally spaced nodes a distance Sx 

Although central differences of the form (8.3) are never used for 7- or t-partial 
derivatives, differences of the form (8.5) for e- or S-partial derivatives are used; 
see, for example, Exercises 9 and 13. 
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Figure 8.2. The mesh for a finite-difference approximation. 

apart, and the 7-axis into equally spaced nodes a distance 67 apart. 
This divides the (x, 7) plane into a mesh, where the mesh points have 
the form (n 6x, m 67); see Figure 8.2. We then concern ourselves only 
with the values of u(x, 7) at mesh points (n6x, m 67); see Figure 8.3. 
We write 

u n  = u(n Sx, m Sr) (8.7) 

for the value of u(x, 7) at the mesh point (n 6x, m 67). 

8.4 The Explicit Finite-difference Met hod 
Consider the general form of the transformed Black-Scholes model for 
the value of a European option, 

with boundary and initial conditions 

U(X,T) N~- , (x ,7 ) ,  u(x,7) w u m ( x , r )  as X - t  *o3 

u(x, O) = uo(x). 
(8.8) 

We use the notation U-,(T), u,(T) and uo(x) to emphasise that the 
following does not in any way depend on the particular boundary and 
initial conditions involved. (For puts, calls and cash-or-nothing calls 
these are given as above.) 
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Figure 8.3. The finite-difference approximation at a fixed time-step. 

Confining our attention to values of u at mesh points, and using a 
forward difference for du/dr, equation (8.1), and a symmetric central 
difference for d2u/¿3x2, equation (8.6), we find that the diffusion equation 
(8.8) becomes 

Ignoring terms of O(67) and O ( ( ~ X ) ~ ) ,  we can rearrange this to give the 
difference equations 

where 

(Note that, whereas (8.9) is exact, albeit vague about the error terms, 
(8.10) is only approximate.) 

If, at time-step m, we know u: for al1 values of n we can explicitl~i 
calculate u:+'. This is why this method is called explicit. Note that 
un+' depends only on u:+1, u: and u:- l ,  as shown in Figure 8.4. This 
figure also suggests that (8.10) may be considered as a random walk on 
a regular lattice, where u: denotes the probability of a marker being at 
position n at time-step m, and cr denotes the probability of it moving to 
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Figure 8.4. Explicit finite-difference discretisation. 

the right or left by one unit and (1 - 2a) is the probability of it staying 
put. 

If we choose a constant x-spacing 62, we cannot solve the problem for 
al1 -m < x < m without taking an infinite number of x-steps. We get 
around this problem by taking a finite, but suitably large, number of 
x-steps. We restrict our attention to the interval 

where - N -  and N+ are large positive integers. 
To obtain the finite-difference solution for the option price, we divide 

the non-dimensional time to expiry of the option, $ a 2 ~ ,  into M equal 
time-steps so that 

67 = ;LT~T/M. 

We then solve the difference equations (8.10) for N -  < n < N+ and 
O < m < M ,  and use the boundary conditions from (8.8) to determine 
u%+ and 21%- : 

u;- = u_,(N-6xl m 6r), O < m 5 M ,  
(8.12) 

U%+= u , ( N + ~ x , ~ ~ T ) ,  O < m < M.  

To start the iterative procedure we use the initial condition from (8.8): 
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f or ( n=Nminus ; n<=Nplus ; ++n ) 
oldu Cnl = pay-of f ( n*dx ; 

for( m=l; m<=M; ++m 
C 
tau = m*dt ; 

newu [Nminus] = u-m-inf ( Nminus*dx , tau ) ; 
newu [ Nplus] = U-p-inf ( Nplus*dx,tau ) ; 

for( n=Nminus+l; n<Nplus; ++n ) 
nevu [nl = olduCn1 

+ a* (oldu [n-11-2*oldu [n] +oldu [n+l] ) ; 

f or ( n=Nminus; n<=Nplus; ++n ) 
oldu Cnl = nevu cnl ; 

1 

for( n=Nminus; n<=Nplus; ++n ) 
values [nl = oldu [nl ; 

1 

Figure 8.5 Pseudo-code for the explicit finite-difference solution of the diffu- 
sion equation. The variables are a = a, tau = 7, Nminus = N-, Nplus = N+. 
The values of u: are stored in the array oldu[], and the values of un+' are 
stored in the array newu[]. Initially the values of un are put in oldu[]. Once 
al1 of the u:'' are found they are copied back into oldu[] and the process is 
repeated until al1 the required time-steps have been completed. The numerical 
solution is copied into values[] and returned to the calling program. 

As the equations determining u;+' in terms of the u? are explicit, this 
process can be easily coded for a computer to solve; a pseudo-code is 
given in Figure 8.5. 

In Figure 8.6 we compare explicit finite-difference solutions for a Eu- 
ropean put with the exact Black-Scholes formula (note that we have 
transformed back into financia1 variables using (5.9)). We have delib- 
erately chosen to  regard cu and 57 as variable, rather than the more 
obvious choice of Sx and Sr, to  illustrate an extremely important point. 
When cu = 0.25 and a = 0.5 there is good agreement between computed 
and exact solutions, whereas when a = 0.52, the computed solution is 
nonsensical. This illustrates the stability problem for explicit finite 
differences. 
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S a = 0.25 a = 0.50 a = 0.52 exact 

Figure 8.6 Comparison of exact Black-Scholes solution and explicit finite- 
difference solutions for a European put with E = 10, r = 0.05, a = 0.20 and 
with six months to expiry. Note the effect of taking a > S. 

The stability problem arises because we are using finite precision com- 
puter arithmetic to  solve the difference equations (8.10). This introduces 
rounding errors into the numerical solution of (8.10). The system (8.10) 
is said to  be stable if these rounding errors are not magnified a t  each 
iteration. If the rounding errors do grow in magnitude a t  each iteration 
of the solution procedure, then (8.10) is said to  be unstable. 

It  can be shown (see Exercise 5 a t  the end of the chapter) that the 
system (8.10) is: 

stable if O < ai < (stability condition); 
unstable if a > (instability condition). 

If we regard the explicit finite-difference equations in terms of a ran- 
dom walk, instability corresponds to  the presence of negative probabil- 
ities (specifically, the probability of a marker staying put, 1 - 2a, is 
negative) . 

The stability condition puts severe constraints on the size of time- 
steps. For stability we must have 

Thus if we start with a stable solution on a mesh and double the number 
of x-mesh points, for example to improve accuracy, we must quarter the 
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size of the time-step. Each time-step then takes twice as long (twice 
as many x-mesh spacings) and there are four times as many time-steps. 
Thus, doubling the number of x-mesh points means that finding the 
solution takes eight times as long. 

It  can be shown that the numerical solution of the finite-difference 
equations converges to the exact solution of the diffusion equation as 
62 + O and 67 4 O, in the sense that 

if and only if the explicit finite-difference method is stable; the proof of 
this is beyond the scope of this text and we refer the reader to Option 
Pricing. 

Note that because of the method's independence from the initial and 
boundary conditions, the explicit finite-difference method is easily adapt- 
ed to deal with more general binary and barrier options (see Exercise 7). 

8.5 Implicit Finite-difference Methods 

Implicit finite-difference methods are used to overcome the stability lim- 
itations imposed by the restriction O < a 5 S, which applies to the 
explicit method. Implicit methods allow us to  use a large number of 
x-mesh points without having to take ridiculously small time-steps. 

Implicit methods require the solution of systems of equations. We 
consider the techniques of LU decomposition and SOR for solving nu- 
merically these systems. By using these techniques implicit methods 
may be made almost as efficient as the explicit method in terms of 
arithmetical operations per t i m e - ~ t e ~ . ~  As fewer time-steps need to be 
taken, implicit finite-difference methods are usually more efficient over- 
al1 than explicit methods. We shall consider both the fully implicit and 
Crank-Nicolson methods. 

8.6 The Fully-implicit Method 

The fully-implicit finite-difference scheme, which is usually known gs 
the implicit finite-difference method, uses the backward-difference 
approximation (8.2) for the du ld r  term and the symmetric central- 
difference approximation (8.6) for the d2u/dx2 term. This leads to the 

In their most efficient forms explicit and implicit methods require O ( 2 N )  and 
O ( 4 N )  arithmetical operations per time-step, respectively, where N is the number 
of x-grid points. 
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Figure 8.7. Implicit finite-difference discretisation. 

equation 

where we are using the same notation as in the previous sections. Again, 
we neglect terms of ~ ( S T ) ,  ~ ( ( S X ) ~ )  and higher and, after some rear- 
rangement, we find the implicit finite-difference equations 

- aun- ,  + ( 1  + 2a)u;  - aun+' = un- ' .  (8.14) 

As before, the space-step and the time-step are related through the 
parameter a,  defined by (8.11). In the implicit finite-difference equation 
(8.14), un ,  un-, and un+, al1 depend on un-' in an implicit manner; the 
new values cannot immediately be separated out and solved for explicitly 
in terms of the old values. The scheme is illustrated in Figure 8.7. 

Let us consider the European option problem discussed in the previous 
sections. We assume that we can truncate the infinite mesh at x = N - S x  
and x = N+6x1 and take N -  and N f  sufficiently large so that no 
significant errors are introduced. As before we find the u: using (8.13) 
and U N -  and u;+ using (8.12). The problem is then to find the un for 
m 2 1 and N -  < n < N +  from (8.14). 
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We can write (8.14) as the linear system 

The vector on the right-hand side of the middle term in this equation 
arises from the end equations, for example 

We can write (8.15) in the more compact form 

where u" and bm denote the (N+ - N- - 1)-dimensional vectors 

U ~ = ( U ; - + ~  , . . . ,  u;+-1), b m = u m - '  + a(u;;S-, O, O,. . . ,O, u;+), 

and M is the (N+  - N-  - 1)-square symmetric matrix given in (8.15). 
It  can be shown that, for a 2 0, M is invertible and so in principle 

u m  = M-'bm, (8.17) 

where M-' is the inverse of M .  We can therefore find u" given bm, 
which in turn may be found from um-' and the boundary conditions. 
As the initial condition determines u', we can find each um sequentially. 

8.6.1 Pmctical Considemtions 

In practice there are far more efficient solution techniques than matrix 
inversion. The matrix M has the property that it is tridiagonal; that 
is, only the diagonal, super-diagonal and sub-diagonal elements are non- 
zero. This has a number of important consequences. 
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First, it means that we do not have to store al1 the zeros, just the non- 
zero elements. The inverse of M ,  M-', is not tridiagonal and requires 
a great deal more ~ t o r a g e . ~  

Second, the tridiagonal structure of M means that there are highly 
efficient algorithms for solving (8.16) in O(N)  arithmetic operations per 
solution (specifically, about 4N operations). We now discuss two of these 
algorithms, L U  decomposition and SOR. 

8.6.2 The L U Method 

In LU decomposition we look for a decomposition of the matrix M into 
a product of a lower triangular matrix L and an upper triangular matrix 
U ,  namely M = LU, of the form 

In order to determine the quantities e,, y, and z,  (and observe that 
these have only to be calculated once) we simply multiply together the 
two matrices on the right-hand side of (8.18) and equate the result to 
the left-hand side. After some simple manipulation we find that 

This also shows that the only quantities we need to calculate and save 
are the y,, n = N -  + 1,. . . , N +  - 1. 

If N is the dimension of the system, storing M-' requires real numbers, 
whereas storing the non-zero elements of M requires 3N - 2. Furthermore, the 
most efficient means of inverting M requires O ( N 2 )  operations, and the matrix 
multiplication required to find ~ - ' b ~  requires a further O ( N 2 )  operations. 
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The original problem M u m  = bm can be written as L(Uum) = bm, 
which may then be broken down into two simpler subproblems, 

where qm is an intermediate vector. Thus, having eliminated the Cn from 
the lower triangular matrix and the zn from the upper triangular matrix 
using (8.19), the solution procedure is to solve the two subproblems 

and 

(8.21) 
The intermediate quantities q n  are easily found by forward substi- 

tution. We can read off the value of qN-+, directly, while any other 
equation in the system relates only q n  and q z l .  If we solve the system 
in increasing n-indicial order, we have q F l  available at the time we have 
to solve for q:. Thus we can find q," easily: 

m ~ 9 :  1 
q ~ - + ]  = bN-+] ,  9: = bn+- , n = N-+2, .  . . , N+-1. (8.22) 

Yn- 1 

Similarly, solving (8.21) for the u2 (given that we have found the in- 
termediate 9,") is easily achieved by backward substitution. This time 
it is that can be read off directly, and if we solve in decreasing 
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lu-find-y( y,a.Nminus.Nplus ) 

asq = a*a; 
y [~minus+l] = 1+2*a; 

lu-solver ( u, b , y, a, Nminus , Nplus ) 
C 
/* Must call lu-find-y before using this */ 

for( n-Nplus-2; n>Nminus; --n ) 
u Cnl = (q[nl +a*u[n+ll /y Cnl ; 

1 

Figure 8.8 Pseudo-code for LU tridiagonal solver. Variables are a = a,  
asq = a Z ,  Nplus = N+, Nminus = N-, b[n] = b:, q[n] = q:, U[.] = u:, y[n] = 
y,. The routine solves the problem only for Nminus + 1 5 n 5 Nplus - 1; 
the values a t  Nplus and Nminus are assumed to have been set by the calling 
routine. The calling routine must call luf ind-y before it calls lu-solver in 
order to set up y[]. 

n-indicial order we can find al1 of the u; in an equally simple manner: 
m 
qN+-l 

u;+-l = , Ln= " +au'+ll n = N +  - 2 , . .  . , N -  + 1. 
YN+-i Y n  

(8.23) 
Equations (8.19), (8.22) and (8.23) define the LU algorithm: 

m find the y, using (8.19); 
given the vector bm, use (8.22) to find the vector qm; 
use (8.23) to find the required solution u". 

Note that these depend only on the matrix M and not on bm. We propose solving 
the system Mum = bm for many time-steps. We have, however, to  find the y, 
once only; they are the same for each time-step. 
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The algorithm is illustrated by the pseudo-code in Figure 8.8. (Note that 
the ideas above can also be applied to quite general tridiagonal systems 
where the super-, sub- and diagonal elements vary with position in the 
matrix. Such matrices arise if the implicit method is used directly on 
the Black-Scholes equation; see Exercise 14.) 

8.6.3 The SOR Method 

The LU method discussed in the previous section is a direct method 
for solving the system (8.16) in that it aims to find the unknowns ex- 
actly and in one pass. An alternative strategy is to employ an iterative 
method. Iterative methods differ from direct methods in that one starts 
with a guess for the solution and successively improves it until it con- 
verges to the exact solution (or is near enough to the exact solution). 
In a direct method, one obtains the solution without any iteration. An 
advantage of iterative methods over direct methods is that they gener- 
alise in straightforward ways to American option problems and nonlinear 
models involving transaction costs, whereas direct methods do not. An- 
other advantage is that they are easier to program. On the other hand, 
a disadvantage of iterative methods is that, in the context of European 
option problems, they are somewhat slower than direct m e t h o d ~ . ~  

The acronym SOR stands for Successive Over-Relaxation, and the 
SOR algorithm is an example of an iterative method. It  is a refinement 
of another iterative method known as the Gauss-Seidel method, which 
in turn is a development of the Jacobi method. It  is easiest to  explain 
the SOR method by first describing these other two related but simpler 
methods. Al1 three iterative methods rely on the fact that the system 
(8.14) (or 8.15 or (8.16)) may be written in the form 

This equation is simply a rearrangement of either of (8.14), (8.15) or 
(8.16) that isolates the diagonal terms in the problem on the left-hand 
side of the equation. 

The idea behind the Jacobi method is to take some initial guess for u: 
for N -  + 1 <_ n 5 N +  - 1 (a good initial guess is the values of u from the 
previous step, i.e. u:-1) and substitute these into the right-hand side 

The LU algorithm described in the previous section requires about 4N oper- 
ations per time-step. The SOR algorithm described in this section requires 
4N x (number of iterations) per time-step. Typically the number of iterations 
is of the order of two or three. 
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of (8.24) to obtain a new guess for u: (from the left-hand side). The 
process is then repeated until the approximations cease to change (or 
cease to change significantly). When this happens we have the solution. 

Formally we can define the Jacobi method as follows. Let u:3k be 
the k-th iterate for u:. Thus, the initial guess is denoted by u:tO and 
as k --+ oo we expect u:lk -, u:. Then, given u:yk, we calculate u:vk+l 
using a modified form of (8.24), namely, 

The whole process is repeated until a measure of the error such as 

becomes sufficiently small for us to regard any further iterations as un- 
necessary; then we take as the value of u:. The method is known 
to converge to the correct solution for any value of a > O, although a 
full discussion of the convergence of the algorithm is beyond the scope 
of this text. 

The Gauss-Seidel method is a development of the Jacobi method. 
It  relies on the fact that when we come to calculate in (8.25) 
we have already found un::+'. In the Gauss-Seidel method we use this 
value instead of u:::. Thus, the Gauss-Seidel method is identical to 
the Jacobi method, except that (8.25) is replaced by 

The difference may be summarised by saying that, in the Gauss-Seidel 
method, we use an updated guess immediately when it becomes avail- 
able, while in the Jacobi method we use updated guesses only when 
they are al1 available. One practica1 consequence of using the most re- 
cent information (i.e. u?lk++' rather than un*k) is that the Gauss-Seidel 
method converges more rapidly than the Jacobi method and is therefore 
more efficient. In fact, the Gauss-Seidel method is even more efficient, 
as the updating is achieved by overwriting old iterates, whereas in the 
Jacobi method the old and new iterates have to be stored separately un- 
ti1 al1 the new iterates are found (and then copied over the old iterates). 
Again, it can be shown that the Gauss-Seidel algorithm converges to 
the correct solution if a is positive, although we do not show it here. 
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loops = o; 
do 
C 
error = 0.0; 
for( n=Nminus+l; n<Nplus; ++n ) 
€ 
y = ( b [n] +a* (u [n-11 +u [n+l] ) ) /(1+2*a) ; 
y = u [nl +omega* (y -u Cnl ) ; 
error += (u Cnl -y> * (u Cnl -y) ; 
u [nl =y; 

1 
++loops ; 

1 
while ( error > eps 1; 
return(1oops) ; 

1 

Figure 8.9 Pseudo-code for SOR algorithm for a European option problem. 
Here a = a, Nplus = N+, Nminus = N-,  b[n] = bn, u[n] = unpk  or u:'k", 
y = yn7k+', omega = w and eps is the desired error tolerance. The routine 
over-writes old iterates as soon as a new iterate is generated; thus for a given 
value of n in the loop, u[n - 11, u[n - 21, and so forth, will contain u , "y l ,  
u,+', etc., whereas u[n + 11, u[n + 21, and so forth, will contain U,"$, u,";:, 
etc. The algorithm is considered to have converged once the sum over n of 
the squares of the difference between unvk+'  and is less than the error 
tolerance eps. At this point the array u[ ] contains the SOR solution for UF. 
Note that the routine solves the problem only for Nminus + 1 _< n 5 Nplus - 1; 
the values at Nplus and Nminus are assumed to have been set by the calling 
routine. The routine returns the number of iterations executed in loops; this 
is so the calling routine may adjust omega to minimise the number of iterations. 

The SOR algorithm is a refinement of the Gauss-Seidel method. We 
begin with the (seemingly trivial) observation that 

um,k+l , m,k 
n U, + ( u F < ~ + ~  - 

As the sequence of iterates un>k is intended to converge to u n  as k 4 m, 
we can think of (ur?"' -unlk) as a correction term to be added to un>k  
to bring it nearer to the exact value of un .  The possibility then arises 
that we might be able to get the sequence to converge more rapidly 
if we over-correct; this is true if the sequence of iterates u r lk  -+ 

monotonically as k increases, rather than oscillating; this is the case for 
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both Gauss-Seidel and SOR. That is, we put 

where w > 1 is the over-correction or over-relaxation parameter. 
(Note that the term is the value that the Gauss-Seidel method 
would give for in SOR we view - ur>k  as a correction 
to be made to u ~ ~ k  in order to obtain urlk+'.) It can be shown that 
the SOR algorithm converges to the correct solution of (8.14) or (8.16) 
if a > O and provided O < w < 2. (When O < w < 1 the algorithm is 
referred to as under-relaxation rather than over-relaxation, which is used 
for cases where 1 < w < 2.) It  can be shown that there is an optimal 
value of w, in the interval 1 < w < 2, which leads to rnuch more rapid 
convergence than other values of u. This optimal value of w depends on 
the dimension of the matrix involved and, more generally, on the details 
of the matrix involved. There are means of calculating or estimating the 
optimal value of w, but typically these involve so many calculations that 
it is quicker to change w at each time-step until a value is found that 
minimises the number of iterations of the SOR loop. In Figure 8.9 we 
give the SOR algorithm for the fully implicit finite-difference equations 
for the diffusion equation. 

8.6.4 The Implicit Finite-digerence Algorithm 

The implicit finite-difference solution scheme is to solve (8.16) (or (8.14) 
or (8.15)) for each time-step using either the LU solver routine described 
in Section (8.6.2) or the SOR algorithm described in the previous section. 
This allows us to  time-step through and calculate the current value of 
the option. The algorithm using the LU method is illustrated in Figure 
8.10, and the algorithm using the SOR rnethod is illustrated in Figure 
8.11. 

In Figure 8.12 we compare implicit finite-difference solutions for a 
European put with a three month expiry time, exercise price E = 10, 
volatility (T = 0.4 and risk-free interest rate r = 0.1 with the exact 
Black-Scholes formula. As with the explicit method, the x-mesh spacing 
is first fixed and the time-step subsequently determined from a. We 
have chosen, as before, to  regard a and 67- as variable to highlight an 
important point about stability. Whether a = 0.5, a = 1.0 or a = 5.0, 
the computed solution agrees quite well with the exact solution and 
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for( n=Nminus; n<=Nplus; ++n ) 
values [n] = pay-of f (n*dx) ; 

lu-f ind-y ( y, a, Nminus , Nplus ) ; 

f or ( m=l; m<=M; ++m 
C 
tau = m*dt; 

for( n=Nminus+l; n<Nplus; ++n ) 
b [n] = values [nl ; 

values[Nminus] = u-m-inf( Nminus*dx, tau ) ;  
values [ Nplus] = u-p-inf ( Nplus*dx, tau ) ; 
b [Nminus+ll += a*values [Nminus] ; 
b [ Nplus-11 += a*values [ Nplus] ; 

iu-soiver í values ,b, y ,a,Nminus .Nplus ) ; 
1 

3 

Figure 8.10 Pseudo-code for an implicit solver using LU decomposition. M is 
the number of time-steps and a = a. Note that we have to call luf ind-y 
once (and only once) before using the routine lu-solver. We then store the 
initial values in the array values[] and repeatedly call lusolver to time-step 
through to expiry. Note the boundary value correction applied to the end 
values b[Nminus + 11 and b[Nplus - 11. 

there is certainly no evidence of the sort of instability seen in the explicit 
finite-difference solution when a > S. 

This illustrates the fact that the implicit scheme is stable where the 
explicit scheme is unstable (that is, for a > i). In fact, we can show 
that the implicit finite-difference method is stable for any a > 0; see Ex- 
ercise 11. The consequence is that we can solve the diffusion equation 
with larger time-steps using an implicit algorithm than we can using an 
explicit algorithm. This leads to more efficient numerical solutions; even 
though each time-step takes slightly longer in the implicit method the 
need for fewer time-steps more than compensates for this. The conver- 
gente of the implicit finite-difference approximation to the solution of 
the partial differential equation can be proved. Again, like the explicit 
finite-difference scheme, it is convergent if and only if it is stable. 
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a = dt/(dx*dx) ; 
eps = 1.0e-8; 
omega = 1.0; 
domega = 0.05; 
oldloops = 10000; 

for( n=Nminus; n<=Nplus; ++n 1 
values [n] = pay-of f (n*dx) ; 

for( m=l; m<=M; ++m ) 
C 
tau = m*dt ; 

for( n=Nminus+l; n<Nplus; ++n ) 
b [n] = values [nl ; 

values [Nminus] = u-m-inf ( Nminus*dx , tau ) ; 
values[ Nplus] = u-p-inf ( Nplus*dx, tau 1; 

SOR-solver( values,b,Nminus,Nplus,a,omega,eps,loops ) ;  
if ( loops > oldloops ) domega *= -1.0; 
omega += domega; 
oldloops = loops; 

1 

Figure 8.11 Pseudecode for an implicit solver using the SOR method. M is 
the number of time-steps, a = (Y, eps is the error tolerante and omega the SOR 
parameter. As in the previous pseudo-code, the routine first puts the initial 
values into the array values[] and then repeatedly calls SOR-solver to time- 
step through to expiry. There is no need to apply boundary value corrections 
to the end values b[Nminus + 11 and b[Nplus - 11, as the SOR routine does this 
automatically. The routine increments omega by domega at  each step. If this 
results in the number of iterations for the current step, loops, exceeding the 
iterations for the previous loop, oldloops, then the sign of domega is changed 
so that omega is moved back towards the value that minimises the number of 
iterations. 

8.7 The Crank-Nicolson Method 
The Crank-Nicolson finite-difference method is used to overcome the 
stability limitations imposed by the stability and convergence restric- 
tions of the explicit finite-difference method, and to have rates 
of convergence to the solution of the partial differential equation. (The 
rate of convergence of the implicit and explicit methods is O(&-).) 

The Crank-Nicolson implicit finite-difference scheme is essentially an 
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exact 

Figure 8.12 Comparison of exact Black-Scholes and fully implicit finite- 
difference solutions for a European put with E = 10, r = 0.1, u = 0.4 and 
three months to expiry. Even with a = 5.0 the results are accurate to 2 
decimal places. 

average of the implicit and explicit methods. Specifically, if we use a 
forward-difference approximation to the time partial derivative we ob- 
tain the explicit scheme 

and if we take a backward difference we obtain the implicit scheme 

The average of these two equations is 

q + l -  

67 
u' + 0 ( 6 ~ )  = 

(8.28) 
In fact, it can be shown that the terms in (8.28) are accurate to  0 ( ( 6 ~ ) ~ ) ,  
rather than O(6r); see Exercise 16. Ignoring the error terms leads to 
the Crank-Nicolson scheme 

where, as before, cu = 6~/(6x)' .  Note that un+', u= and u::: are 
now determined implicitly in terms of al1 of u n ,  u:+, and un-,. 
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average of the implicit and explicit methods. Specifically, if we use a 
forward-difference approximation to  the time partial derivative we ob- 
tain the explicit scheme 

and if we take a backward difference we obtain the implicit scheme 

The average of these two equations is 

(8.28) 
In fact, it can be shown that the terms in (8.28) are accurate to 0 ( ( 6 ~ ) ~ ) ,  
rather than O(&); see Exercise 16. Ignoring the error terms leads to 
the Crank-Nicolson scheme 

where, as before, cr = S T / ( S X ) ~ .  Note that and un:: are 
now determined implicitly in terms of al1 of U:, and u:-l. 
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Figure 8.12 Comparison of exact Black-Scholes and fully implicit finite- 
difference solutions for a European put with E = 10, T = 0.1, (T = 0.4 and 
three months to expiry. Even with cr = 5.0 the results are accurate to 2 
decimal places. 

average of the implicit and explicit methods. Specifically, if we use a 
forward-difference approximation to the time partial derivative we ob- 
tain the explicit scheme 

and if we take a backward difference we obtain the implicit scheme 

The average of these two equations is 

(8.28) 
In fact, it can be shown that the terms in (8.28) are accurate to 
rather than O(&); see Exercise 16. Ignoring the error terms leads to 
the Crank-Nicolson scheme 

where, as before, a = ST/(~X)'. Note that u:+', u,"-+: and U,":; are 
now determined implicitly in terms of al1 of u:, u:+, and u:-, . 
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Solving this system of equations is, in principle, no different from 
solving the equations (8.14) for the implicit scheme. This is because 
everything on the right-hand side of (8.29) can be evaluated explicitly if 
the u n  are known. The problem thus reduces to first calculating 

which is an explicit formula for Z r ,  and then solving 

This second problem is essentially the same as solving (8.14). 
Again we assume that we can truncate the infinite mesh at  x = N-6x 

and x = N+Sx, and take N- and N +  sufficiently large so that no 
significant errors are introduced. As before we can calculate u: using 
(8.13) and UN- and u;+ from the boundary conditions (8.12). 

There remains the problem of finding the un  for m > 1 and N- < 
n < N +  from (8.31). We can write the problem as a linear system 

where the matrix C is given by 

and the vectors um+' and bm are given by 

The vector on the extreme right-hand side of equation (8.34), in bm, 
arises from the boundary conditions applied at  the ends, as in the fully 
implicit finite-difference method. 

To implement the Crank-Nicolson scheme, we first form the vector bm 
using known quantities. Then we use an LU tridiagonal solver or an SOR 
solver to solve the system (8.32). This allows us to time-step through 
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average of the implicit and explicit methods. Specifically, if we use a 
forward-difference approximation to the time partial derivative we ob- 
tain the explicit scheme 

and if we take a backward difference we obtain the implicit scheme 

The average of these two equations is 

(8.28) 
In fact, it can be shown that the terms in (8.28) are accurate to 0 ( ( 6 ~ ) ~ ) ,  
rather than O(&); see Exercise 16. Ignoring the error terms leads to 
the Crank-Nicolson scheme 

where, as before, a = 6 ~ / ( 6 x ) ~ .  Note that un+1, u,-+: and u:' are 
now determined implicitly in terms of al1 of u n ,  un+, and u E 1 .  
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solving the equations (8.14) for the implicit scheme. This is because 
everything on the right-hand side of (8.29) can be evaluated explicitly if 
the ur are known. The problem thus reduces to first calculating 

which is an explicit formula for Z r ,  and then solving 

This second problem is essentially the same as solving (8.14). 
Again we assume that we can truncate the infinite mesh at  x = N-6x 

and x = N+6x, and take N- and N+  sufficiently large so that no 
significant errors are introduced. As before we can calculate u$ using 
(8.13) and u;- and u;+ from the boundary conditions (8.12). 

There remains the problem of finding the un for m 2 1 and N-  < 
n < N+ from (8.31). We can write the problem as a linear system 

where the matrix C is given by 

and the vectors um+' and bm are given by 

The vector on the extreme right-hand side of equation (8.34), in bm, 
arises from the boundary conditions applied at  the ends, as in the fully 
implicit finite-difference method. 

To implement the Crank-Nicolson scheme, we first form the vector bm 
using known quantities. Then we use an LU tridiagonal solver or an SOR 
solver to solve the system (8.32). This allows us to time-step through 
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for( n=Nminus; n<=Nplus; ++n ) 
val [nl = pay-of f ( n*dx ) ; 

for( m-1; m<=M; ++m ) 

t au = m*dt ; 
f or( n=Nminus+l; n<Nplus; ++n ) 
b = (1-a) *val [n] +a2* (val Cn+ll +val [n-11) ; 

val[Nminus] = u-m-inf ( Nminus*dx,tau 1; 
val [ Nplus] = u-p-inf ( Nplus*dx, tau ) ; 
b [Nminus+l] += a2*val [Nminus] ; 
b[ Nplus-l] += a2*val[ Nplus] ; 

Figure 8.13 Pseudo-code for a Crank-Nicolson solver using the LU method. 
The solution after M time-steps is returned in the array val[]. Here a = a and 
a2 = a/2. Note the boundary corrections to b[Nminus + 11 and b[Nplus - 11. 
Note also that the code is almost identical to the code in Figure 8.10; the main 
differences are in the use of a/2 instead of a and in the calculation of b[n]. 

the solution. The only difference between the LU or SOR solvers for the 
Crank-Nicolson and fully implicit methods is that whenever a appears 
in the algorithm for the implicit scheme, we replace it by +a for the 
Crank-Nicolson scheme. In Figures 8.13 and 8.14 we give pseudo-codes 
for the Crank-Nicolson method using LU and SOR solution methods 
respectively. 

In Figure 8.15 we compare Crank-Nicolson finite-difference solutions 
for a European put with four months t o  expiry, exercise price 10, volatil- 
ity o = 0.45 and risk-free interest rate r = 0.1 with the exact Black- 
Scholes formula. Notice that with a = S, a = 1.0 and even a = 10.0, 
the computed solution agrees very well with the exact solution. This 
demonstrates the fact that the Crank-Nicolson scheme is stable where 
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crank-f d2 ( val, dx , dt ,M, Nminus , Nplus ) 
C 
a = dt/ (dx*dx) ; 
a2 = a/2.0; 
eps = 1.0e-8; 
omega = 1.0; 
domega = 0.05; 
oldloops = 10000; 

for( n=Nminus; n<=Nplus; ++n ) 
val [nl = pay-of f ( n*dx ) ; 

t 
tau = m*dt; 

for( n=Nminus+l ; n<Nplus; ++n ) 
b Cn] = (1-a) *val [n] +a2* (val [n+ll +val [n-11) ; 

val[Nminus] = u-m-inf(Nminus*dx,tau); 
val [ Nplus] = u-p-inf ( Nplus*dx, tau) ; 

SOR-solver ( val, b, Nminus , Nplus , a2, omega, eps , loops ) ; 
if ( loops > oldloops ) domega *= -1.0; 
omega += domega; 
oldloops = loops; 

3 
3 

Figure 8.14 Pseudo-code for a Crank-Nicolson solver using the SOR method. 
The solution after M time-steps is returned in the array val[]. Here a = cu and 
a2 = a / 2 .  Note the boundary corrections to b[Nminus f 11 and b(Np1us - 11. 
Note also that the code is almost identical to the code in Figure 8.11; the main 
differences are in the use of cu/2 instead of a and in the calculation of b[n]. 

the explicit scheme is unstable (that is, for a: > 9 ) .  Moreover, its accu- 
racy is greater than that of the fully implicit scheme. 

We can show that the Crank-Nicolson scheme is both stable and con- 
vergent for al1 values of cr > O. For the proof of stability see Exercise 
17. 

Further Reading 

The books by Johnson & Riess (1982), Strang (1986) and Stoer & Bu- 
lirsch (1993) give excellent background material on some of the basic 
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exact 

Figure 8.15 Comparison of exact Black-Scholes and Crank-Nicolson finite- 
difference solutions for a European put with E = 10, r = 0.1, a = 0.45 and 
four months to expiry. Even with a = 10, the numerical and exact results 
differ oniy marginaliy. 

considerations of numerical analysis: accuracy of computer arithmetic, 
convergence and efficiency of algorithms and stability of numerical 
methods. 
Richtmyer & Morton (1967) and Smith (1985) are both very readable 
books on the subject of finite-difference methods. 
Brennan & Schwartz (1978) were the first to  describe the application 
of finite-difference methods to option pricing. 
Geske & Shastri (1985) give a comparison of the efficiency of various 
finite-difference and other numerical methods for option pricing. 

Exercises 

1. By considering the Taylor series expansion of u ( x ,  T + 67)  about ( x ,  T ) ,  

show that the forward difference (8.1) satisfies 

for some O 5 X < 1. Obtain a similar result for the backward-difference 
approximation (8.2) 

2. Expand u ( x ,  T + 67)  and U ( X , T  - 67)  as Taylor series about ( x , ~ ) .  
Deduce that the central-difference approximations (8.3) and (8.4) are 

indeed accurate to O 

3. Show that the central-symmetric-difference approximation (8.6) is ac- 

curate to 0 ( ( 6 ~ ) ~ ) .  
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4. Find the minimum number of arithmetical operations (divisions and 
multiplications) required per time-step of the explicit algorithm (8.10). 

5. Stability 1. Suppose that en are the finite-precision errors introduced 
into the solution of (8.10) because of initial rounding errors, e:, in 
the exact initial values when represented on a computer. Why do the 
e: also satisfy (8.10)? As a consequence of Fourier analysis, we may 
assume (without any loss of generality) that the errors take the form 
en  = Am s in(w)  for some given frequency w. Deduce from (8.10) that 

and infer that unless O 5 a 5 S there are always frequencies w for which 
the error grows without bound. 

6. For the explicit finite-difference scheme, show that if we increase the 
number of x-points by a factor of K, then the number of calculations 
performed increases by a factor of K3 (assuming a remains constant). 

7. What changes would be necessary to the boundary and initial condi- 
tions for the explicit finite-difference method to value a bullish vertical 
spread? What modifications would be needed to the pseudo-code in 
Figure 8.5 ? 

8. Write a computer program that implements the explicit finite-difference 
method for calls, puts, cash-or-nothing calls and cash-or-nothing puts. 

9. Consider the untransformed Black-Scholes equation (3.9). Use a mesh 
of equal S-steps of size 6 s  and equal time-steps of size 6t, central dif- 
ferences for S derivatives and backward differences for time derivatives 
to obtain the explicit finite-difference equations 

where V z  is the finite-difference approximation to V(n SS, m 6t) and 

Why is this an expcplicit method? What boundary and initial or fi- 
nal conditions are appropriate? What stability problems can you see 
arising? 

10. Find the minimum number of arithmetical operations (divisions and 
multiplications) required per time-step of the implicit algorithm (8.14) 
assuming that an LU solver is used. 



162 Fznite-dzfference Methods 

11. Stability 11. Suppose that e: are the finite-precision arithmetical er- 
rors introduced into the solution of (8.14) because of initial rounding 
errors, e:, in the exact initial values when represented on a computer. 
Following the analysis of Exercise 5, show that if the errors take the 
form e: = Xm sin(nw) for some given frequency w then, from (8.14), 

Deduce that if a > O errors of any frequency w do not grow in time. 

12. Write a computer program that implements the fully implicit finite- 
difference method for calls, puts, cash-or-nothing calls and puts. 

13. With the same notation as in Exercise 9 show that the implicit discreti- 
sation of the Black-Scholes equation may be written as 

where 
A n- - -S (a2n2 - (T - oo)n)  6t  

Bn= 1 + (u2n2 + r )  6t  

Cn= -; (u2n2 + (T - o o ) n )  6t. 

14. Show that LU decomposition for the system 

of Exercise 13, leads to the algorithm 

qr=VOm+l ,  q ~ = V ~ + l - A n q ~ l / F n - l ,  n = 1 , 2  ,..., N 

v,"=q:/FN, v,"=(q,"-Cnv,l)/Fn, n r N - 1 ,  ... ,2,1,  

where the qn are intermediate quantities and the F, are calculated from 
the matrix above using 

15. Describe the Jacobi, Gauss-Seidel and SOR algorithms for the system 
in Exercises 13 and 14. 
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16. Show that the right-hand side of (8.28) is a finite-difference approx- 
imation to S (a2u/6x2(x, T + 67) + a2u/dx2(x, T)) . By using Taylor's 
theorem deduce that 

Use Exercise 2 to show that 

Deduce that (8.28), viewed as a finite-difference approxirnation to 

is accurate to 0 ( ( 6 ~ ) ~  + ( 6 ~ ) ~ ) .  

17. Stability 111. Repeat the stability calculations in Exercises 5 and 11, 
but in this case for the Crank-Nicolson equations (8.31). Show that an 
error term e: = Xm sin(nw) implies 

Deduce that the Crank-Nicolson scheme is stable for al1 a > 0. 

18. Write down the system of equations resulting from the direct application 
of the Crank-Nicolson method to the Black-Scholes equation. Describe 
the LU decomposition and SOR algorithms for its solution. 

19. Consider the diffusion equation problem (this problem arises, for exam- 
ple, from an option whose payoff depends on the difference in prices of 
two uncorrelated assets) 

au  - d2u d2u + -, ar ax2 ay2 
u(x, Y,  0) = uo(x, y), 

as -+ -00, U(X,Y,T) N U ' ~ ( Y , T ) ,  

Assume equal x- and y-step sizes, Sx = by, a square grid 
N- 6x 5 i6x 5 N+ 6x and N- by 5 j 6y < N+6y, and let u; de- 
note the finite-difference approximation to u(i bx, j by, m 67). Write 
down the explicit, fully implicit and Crank-Nicolson finite-difference 
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schemes for this problem. What stability restrictions apply to the ex- 
plicit method? 



9 Methods for Arnerican 
Options 

9.1 Introduction 

Using finite-difference methods for European options is relatively 
straightforward, as there is no possibility of early exercise. As we have 
seen, the possibility of early exercise may lead to free boundaries. The 
chief problem with free boundaries, from the point of view of numerical 
analysis, is that we do not know where they are. This makes it diffi- 
cult to impose the free boundary conditions, since we have to determine 
where to impose them as part of the solution procedure. (Recall that 
in Chapter 8 we simply imposed the boundary conditions at fixed grid 
points.) 

There are two distinct strategies for the numerical solution of free 
boundary problems. One is to attempt to track the free boundary as  
part of the time-stepping process. In the context of valuation of Amer- 
ican options this is not a particularly attractive method, as the free 
boundary conditions are both implicit - that is, they do not give a di- 
rect expression for the free boundary or its time derivatives. We simply 
note the existence of such methods here, and refer the reader to the 
literature for a discussion of various boundary tracking strategies for 
implicit free boundary problems. 

The other strategy is to attempt to find a transformation that reduces 
the problem to a fixed boundary problem from which the free boundary 
can be inferred afterwards. There are many transformations that do 
this, but we consider only the particularly elegant method involving the 
use of the linear complementarity formulation. 

Recall from Chapter 7 that we can write the American option valua- 
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tion problem in the compact linear complementarity form 

where, as before, we are using the change of variables (5.9). The trans- 
formed payoff constraint function, g(x, T), is given by 

g(x, T) = e?(k+l)2~ max e ~ ( k - 1 ) ~  - e$(k+l)~ ,  o) ( 
for the put, 

g(x, T) = e+(k+1)2~ max e+(k+')x - e!i(k-l)~, O ( ) 
for the call and 

for the cash-or-nothing call and where k = r / i a 2 .  The initial and fixed 
boundary conditions become 

u(., O) = g(x, O), 

u(x, T) is continuous, 
du 
-(x, T) is as continuous as g(x, T), (9.2) 
dx 

lim U(%, T) = lim g(x, T). 
x + f  cm x-f CQ 

This framework extends in the obvious way to  more general payoff func- 
tions than the three forms for g(x, r )  given above. 

As noted already, one of the main advantages of the linear comple- 
mentarity formulation (9.1) is that there is no explicit mention of the 
free boundary. If we can solve the linear complementarity problem then 
we find the free boundary x = xf (T) a postenon by the condition that 
defines it, namely that 

for the put, and 

for the calls. The formulation remains valid if there are severa1 free 
boundaries, or indeed if there are none at  all; the free boundaries are 
defined as the points where u(x, T) first meets g(x, T). 
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9.2 Finite-difference Formulation 
We divide the (x, 7)-plane into a regular finite mesh as usual, and take a 
finite-difference approximation of the linear complementarity equations 
(9.1). As most of this discretisation is a simple extension of the finite- 
difference formulations given in the previous chapter, we only give a 
short account of it here. 

We approximate terms of the form d u / d ~  - d2u/dx2 by finite differ- 
ences on a regular mesh with step sizes 67 and Sx, and truncating so 
that x lies between N -  6x and N+ bx, 

where - N -  and N+ are suitably large numbers. 
Rather than going through the cases of explicit, implicit and Crank- 

Nicolson methods separately, we only consider the Crank-Nicolson 
method in any detail, and leave the other formulations as exercises. 
Thus we take (see Exercise 16 of the previous chapter) 

du .;+l- 
- (x, 7 + 6712) = 
6%- 67 U; + O ((67)2), 

and 

where, as usual, u: = u(nOx, m 6 ~ ) .  Dropping terms of 0 ( ( 6 ~ ) ~ )  and 

0((6x)~) ,  the inequality - d2u/dx2 > O is approximated by 

where, as usual, cr is given by (8.11). 
We write 

g r  = g(n bx, m 67) 

for the discretised payoff function. The condition u(x, 7) 2 g(x, T) is 
approximated by 

u:>gr f o r m > l ,  (9.5) 
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and the boundary and initial conditions (9.2) imply that 

m m O U N -  = gN- , U;+ = gN+ U: = gn. (9.6) 

If we define 2: by 

2; = ( 1  - (.)U: + ;a(u;+l + U:-,), (9.7) 

then (9.3) becomes 

- Sa(~n,l' + U;_',') 2 2,". ( 1  + Q)U,  (9.8) 

Note that at time-step (m + 1)br we can find 2: explicitly, since we 
know the values of u:. The linear complementarity condition that 

is approximated by 

( ( 1  + a)un+' - +cr(u:$ + u:?:) - 2:) (u:+' - gz+') = 0. (9.9) 

9.3 The Constrained Matrix Problem 
We now formulate the finite-difference approximation (9.5)-(9.9) as a 
constrained matrix problem and, in the following section describe how 
to solve this constrained problem using the projected SOR method. 

Let um denote the vector of approximate values at time-step m 6 7  
and gm the vector representing the constraint at this same time: 

We do not include the terms u;+ and u;+, as they are explicitly de- 
termined by the boundary conditions (9.6). Let the vector bm be given 

by 
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where the quantities 2; are determined from (9.7) and the vector on the 
extreme right-hand side of (9.11) includes the effects of the boundary 
conditions at n = N- and n = N+. 

If we reintroduce the (N+ - N- - 1)-square, tridiagonal, symmetric 
matrix (which we used in the Crank-Nicolson scheme in Chapter 8) 

we can rewrite our discrete approximation (9.5)-(9.9) to the linear com- 
plementarity problem (9.1)-(9.2) in matrix form, as 

We take the expression a 2 b, where a and b are vectors, to mean 
that each component of a is greater than or equal to the corresponding 
component of b, that is, un 2 bn for al1 n. 

The time-stepping is immanent in the scheme: the vector bm contains 
the information from the time-step m67 that determines the value of 
vm+l at time-step (m + 1)b-r. At each time-step we can calculate bm 
from already known values of vm. We can calculate gm for any m h ,  
and thus to time-step the system we need only solve the problem (9.13). 
This can be done using a modified form of SOR, known as projected 
SOR. 

9.4 Projected SOR 

Projected SOR is a minor modification of the SOR method described in 
Section 8.6.3. Consider the SOR algorithm (8.27). If we adapt this for 
a Crank-Nicolson finitedifference formulation of the problem we obtain 
the equations 

m+l,k+l= m+l,k m+l,k+l m+l,k 
'Un un + W ( Y ~  - U n  ). 

If these equations are iterated until the converge to un+', they 
give the solution of Cum+l = bm. To satisfy the constraint that 
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PSOR-solver ( u, b, g , Nminus , Nplus ,a, omega, eps , loops ) 
C 
loops = o; 
a2 = a/2.0; 
u [Nminus] = g [Nminusl ; 
u [ Nplus] = g [ Nplus] ; 

do 
C 
error = 0.0; 

for( n=Nminus+l; n<Nplus; ++n ) 

C 
y = (b [n] +a2* (u [n-11 +u[n+ll) / (l+a) ; 
y = max( g[nl, uCnl+omega*(y-u[nl) 1; 
error += (u [nl -y>* (u[nl -y) ; 
u[nl = y; 

1 
++loops ; 

) while ( error > eps ) ;  
return(1oops) ; 

1 

Figure 9.1 Pseudo-code for the projected SOR algorithm for an American 
option problem using Crank-Nicolson finite differences. Here a = a ,  a2 = $ a ,  
Nplus = N + ,  Nminus = N - ,  u[n] = un+''k or , b [n] = bñ, g[n] = 

m+',k+', omega = w and eps is the desired error tolerance. The S?+', y = Yn 
routine counts the number of iterations required and returns it in loops so 
that the calling program can optimize the over-relaxation parameter omega. 
Compare with Figure 8.9. 

um+' > - gm+l we simply modify the second of these equations to  enforce 
this result: 

Notice that the constraint is enforced a t  the same time as the iterate 
un+llk+l is calculated; the effect of the constraint is immediately felt 
in the calculation of uE:;'"', etc. Thus the projected SOR 
algorithm is to  iterate (on k) the equations 

until the difference (lum+l>k+l -um+ l y k I I  is small enough to be regarded 
as negligible. One then puts um+' = um+llk+l. 
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As the algorithm is iterative, any solution generated is self-consistent 
in that it does not violate any of the constraints (see the Technical 
Point below). Moreover, such a solution has the property that either 
um+l n = gn+l or the n-th component of Cum+' - bm vanishes. Thus 
the algorithm guarantees that both um+l 2 gm+l and (Cum+l - bm) . 
(um+' - bm) = O. The condition that Cum+' > bm follows as a conse- 
quence of the structure of C (specifically, froin the fact that it is positive 
definite; we refer the reader to  the literature for details). The algorithm 
is illustrated in Figure 9.1 and discussed further in the following section. 

Technical Point: The Need for Projected SOR. 
Inspection of (9.13) shows that for each component un+' of the vector 
um+l there are two, and only two, possibilities: 

Case 1 corresponds to the optimality of holding the option, and case 2 to 
the optimality of exercising the option. Further, from the linear comple- 
mentarity condition in (9.13) we see that, for cases 1 and 2 respectively, 
we must have: 

Notice that there is an interna1 consistency requirement here. It is not 
enough simply to solve Cum+' = bm and then apply the cut-off condition 
that any component u:+' of um+' that is less than the corresponding 
component gr+' of gm+' is replaced by that latter component. This 
strategy is frequently used (and is, in fact, valid for the explicit finite- 
difference discretisation of the linear complementarity formulation of the 
problem - the projected SOR algorithm reduces to this strategy in the 
case of explicit differences). The reason that it is invalid for implicit 
finite-difference formulations of the problem is simply that the compo- 
nents un+' of u"+' are al1 implicitly related to each other and we cannot 
modify one in isolation without affecting the others. If we modify umfl 
in the way suggested above, there are no guarantees that Cum+' 2 bm 
or that (Cum+' - bm) . (um+' - gm+') = O. The effect is to produce spu- 
rious 'solutions' that either fail to meet the free boundary conditions (Le. 
produce sub-optimal values for the option) or fail to satisfy the Black- 
Scholes inequality (i.e. produce values for which arbitrage opportunities 
are present). The projected-SOR algorithm is constructed in such a way 
as to guarantee an internally consistent solution of (9.13) (that is, one 
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that satisfies al1 the constraints simultaneously). This internally consis- 
tent solution is, it turns out, also the unique solution of (9.13), although 
we do not give a proof of this in this book. 

9.5 The Time-stepping Algorithm 

The algorithm for time-stepping from u" to um+' is thus a simple 
modification to the SOR solution for European options. Specifically, as 
above, let the vector 

um+l,k - m+l k um+l,k - (uN-$' 7 . .  ., N+-1) 

denote the k-th iterate of the algorithm a t  the (m + 1)-st time-step. 
(Thus, a t  time-step m + 1, we start with the initial guess um+'~O and, 
as we apply the projected SOR algorithm, we generate umf lvk+' from 
um+llk. We know that um+'lk + um+' as k + OO.) 

(i) Given um,  first form the vector bm using formulz (9.7) and (9.1 l ) ,  
and calculate the constraint vector gm+' using (9.4) and (9.10). 

(ii) Start with the initial guess um+'*O = max(um, gm+'), that is, 
~ ~ + ~ l ~  n = ~ ~ x ( u P ,  gn+'). 

(iii) In increasing n-indicial order, first form the quantity y:+' by 

(note, again, that we use the updated u:~i'"+' rather than the 

old U ~ T ' ~ ) .  Then generate u ~ + ' ~ ~ + '  using 

un+l,k+l = max (gñ+l, , ~ + l , ~  + l - unf19k)) , 

where 1 < w < 2 is the over-relaxation parameter. 
(iv) Test whether or not (Jum+'yk+' - um+'ykJJ is smaller than a pre- 

chosen tolerance E, that is, test whether 

If it is, go on to step (v). If it is not, go back to step (iii) and 
repeat the process with k replaced by k + 1. 

(v) When the vectors um+llk have converged to the required toler- 
ante, put um+' = um+lyk+'. 

(vi) Return to step 1 until the necessary number of time-steps have 
been completed. 
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American( u,dt,dx,Nminus.Nplus,M.omega,eps ) 
C 
a = dt/ (dx*dx) ; 
a2 = alpha/2.0; 
eps = 1.Oe-8; 
omega = 1.0; 
domega = 0.05; 
oldloops = 10000; 

for( m=l; m<=M; ++m ) 
C 
tau = m*dt ; 

for( n=Nminus+l; n<Nplus; ++n ) 

C 
g[n] = payoff( xCn1 ,tau 1; 
b Cn] = u [n] + a2* (u [n+ll-2*u[nl +u [n-11) ; 

3 
[~minus] = pay-of f ( x [Nminusl . tau ) ; 
[ ~plusl = pay-of f ( x C Nplusl ,tau ) ; 

U [Nminus] = g [Nminusl ; 
u [ Nplusl = g Nplusl; 

PSOR-solver ( u, b,g ,Nminus ,Nplus , a,omega, eps , loops ) ; 
if ( loops > oldloops ) domega *= -1.0; 
omega += domega; 
oldloops = loops; 

1 

Figure 9.2 Pseudo-code for solution of an American option problem. Compare 
with Figures 8.11 and 8.14. 

In Figure 9.2 we give a pseudo-code implementation of this algorithm. 

Technical Point: Bermudan Options. 
The projected SOR method is a generalisation of the SOR method. In- 
deed, the two methods are identical except that the step 

m + l , k + l  = U m + l . k  + W ( y k + l  - u m + l , k  
U n  n n 1 
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that occurs in the SOR algorithm becomes 

in the projected SOR algorithm. 
One advantage of the SOR algorithm over the LU algorithm when 

valuing European options is that the computer code is identical to the 
code for an American version except for a single line. Thus, using SOR or 
projected SOR, it is trivial to modify the code for a European or American 
option to value an option which may be exercised early, but only on 
predetermined dates. Such an option is referred to as a Bermudan 
option. During a period where the option may be exercised early, the 
constraint that its value exceeds the payoff applies. This implies that 
we use projected SOR during such a period. When early exercise is 
forbidden, the payoff constraint does not apply, and we use ordinary 
SOR. The difference between the two algorithms amounts to using or not 
using the max function. For completeness, in Figure 9.3 we give a general 
projected SOR algorithm that allows the early exercise constraint to be 
turned either on or off at each time-step. This may be used to value 
Bermudan options. 

9.6 Numerical Examples 

In Figure 9.4 we give values for the American put with interest rate 
r = 0.10, volatility a = 0.4 and exercise price E = 10. The calculation 
is carried out with cu = 1. 

In Figure 9.5 we show a numerically computed solution of an American 
cal1 problem with E = 10, r = 0.25, u = 0.8, Do = 0.2 and lifetime of 
one year, together with the corresponding European value. The smooth 
separation of the option value from the payoff function can be seen 
a t  the point Sf. (We determine the position of the free boundary a 
posteriori by finding the x-node x, = nSx a t  which u n  > g n  but for 
which un-, 5 g z l .  Further resolution is possible by assuming linear 
variations for u(x, m 67) and g(x, m 67) between grid points n Sx; we can 
then approximate the position of the free boundary by the intersection 
of the straight line segments joining g Z 1 ,  g n  and u ~ - ~ ,  un . )  
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loops = o; 
a2 = a/2.0; 
u [~minusl = g [Nminusl ; 
u [ Nplus] = g [ Nplusl ; 

do 
C 
error = 0.0; 

if ( early-exercise == TRUE) 
y = max( g[nl, u[nl+omega*(y-uCnl) 1; 

else 
y = u [nl +omega* (y-u [nl ; 

error += (U [nl -y) * (u [nl -y ; 
u Cnl =y; 

1 
++loops ; 

1 while ( error>eps 1; 
1 

Figure 9.3 Pseudo-code for generalised SOR algorithm for American, Euro- 
pean and Bermudan option problems using Crank-Nicolson finite-differences. 
Here a = a, a2 = +a, Nplus = N+, Nminus = N-, u[n] = or u n + 1 3 k f  l ,  

b[n] = b n ,  g[n] = gn+l, y = yc+'7k+1, omega = w and eps is the desired er- 
ror tolerance. The parameter early determines whether or not early exercise 
is allowed. If early exercise is allowed, early should be set to TRUE by the 
calling routine; projected SOR is then used. If early exercise is not allowed, 
early should be set to FALSE; SOR is then used. As the routine is called 
for each time-step a Bermudan option may be valued by calling the routine 
with early = TRUE at  time-steps when the option may be exercised early and 
early = FALSE at  time-steps when it may not. The routine returns the num- 
ber of iterations required in loops so the calling program can optimize the 
value of omega. 
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Asset Payoff 3 months 6 months 

Price Vaiue Amer. Euro. Amer. Euro. 

Figure 9.4 Crank-Nicolson solution for an American put with E = 10, T = 0.1, 
a = 0.4 and with expiry times of three and six months. 

Figure 9.5 Numerically calculated solution of an American cal1 problem with 
E = 10, T = 0.25, Do = 0.2, a = 0.8 and expiry date of one year. The 
parameter values have been chosen to exaggerate the difference between the 
American option and its European counterpart (also shown). 

9.7 Convergence of the Method 
A detailed analysis of the convergence of the finite-difference approxima- 
tion to  the linear complementarity form of the American option problem 
is somewhat beyond the aims of this book. A rigorous proof of the con- 
vergence involves the use of a good deal of abstract functional analysis 
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and is most easily presented within the framework of the finite-element 
solution of the variational inequality formulation of the problem. (The 
variational inequality formulation can be derived from, and is equivalent 
to, the linear complementarity formulation; see Optzon Pricing for more 
details.) As the numerical algorithms for solving the linear complemen- 
tarity formulation by finite differences and for solving the variational 
inequality formulation by finite elements are identical the convergence 
of the algorithm presented here can be established in this manner. A 
detailed analysis of the convergence may be found in the literature. 

Further Reading 

For the theoretical discussion (including the theoretical numerical 
analysis) of free boundary problems see Elliott & Ockendon (1982) 
and Kinderlehrer & Stampacchia (1980). 
For proofs of convergence of the projected SOR algorithm and of the 
finite-difference algorithm given in this chapter, see Elliott & Ock- 
endon (1982). 
For the numerical solution of impiicit free boundary problems by 
boundary tracking methods and for a general practica1 guide to the 
numerical solution of linear complementarity problems, see Crank 
(1984). 
The projected SOR algorithm was originally devised by Cryer (1971) 
in the context of quadratic optimization. 
The solution of American options using the explicit finite-difference 
method was first done by Brennan & Schwartz (1978). 

Exercises 

1. Write a computer program to implement the projected SOR method of 
valuing American options. 

2. Show that the explicit finite-difference discretisation of the linear com- 
plementarity problem (9.1) leads to the equations 

y:+'= (1 - 2a)u; + a(.:-, + u;+l), 

u;+'= max (y:+', gñ+l). 

Write a computer program to implement this scheme. 
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3. Show that the fully implicit finite-difference discretisation of (9.1) is 

C u m  2 bm, u" 2 g m ,  
(U" - g m )  . (Cum - bm) = O. 

where C is the tridiagonal matrix and bm is the vector given, respec- 
tively, by 

4. Describe the projected SOR method for the problem obtained in Exer- 
cise 3. 

5. Use an explicit finite-difference discretisation of the unmodified linear 
complementarity problem for an American put option to obtain the 
finite-difference equations 

where 

a,= (a2n2 - (r - Do)n) 6t 

b, = 1 - (a2n2 + r) 6t 

cn= S (u2n2 + ( r  - ~ ~ ) n )  6t, 

E is the exercise price and V," Ñ V(n 6S1 m 6t) is the option value. (See 
Exercise 9 of the previous chapter.) What changes would be necessary 
to value an American cal1 or a cash-or-nothing option? 

6. Use a fully implicit finite-difference discretisation of the untransformed 
linear complementarity problem for an American put to obtain the con- 
strained matrix problem 

( V m  - A ) .  (MV" - vm") = O 

where 

vm = (VOrn,. ..,V,"), 

A = (E ,  max(E - SS, O), max(E - 2 6S, O), . . . , max(E - N 65,O)) , 



and 
A,= -+ (02n2 - (T - ~ ~ ) n )  6t 

Bn= 1 + (02n2 + T) 6t 

Cn= -S (02n2 + (r - ~ ~ ) n )  St. 

(See Exercises 13 and 15 of the previous chapter.) 

7. Describe a projected SOR algorithm for the constrained matrix problem 
in Exercise 6. 

8. Write a routine that will value European, American and Bermudan 
options, using a fully implicit finite-difference method. 
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10.1 Introduction 

Binomial methods for valuing options and other derivative securities 
arise from discrete random waik models of the underlying security. They 
rely only indirectly on the Black-Scholes analysis through the assump- 
tion of risk neutrality; their relation to the partid differential equation 
and inequality models described and derived earlier in this book be- 
comes evident only when it is seen that binomial methods are particular 
cases of the explicit finite-difference method described in Chapter 8 (see 
Exercise 5). 

There are two main ideas underlying the binomial methods. The first 
of these is that the continuous random walk (2.1) may be modelled by 
a discrete random walk with the following properties: 

The asset price S changes only at  the discrete times 6t, 2 6t, 3 6t,. . . , 
up to M6t = T, the expiry date of the derivative security. We use 
6t instead of dt to denote the small but non-infinitesimal time-step 
between movements in the asset price. 
If the asset price is Sm at time m6t then at time (m + 1) 6t it may 
take one of only two possible values, u Sm > Sm or O Sm < Sm. (That 
is, during a single time-step, the asset price may move from S up to 
u S or down to O S; see Figure 10.1). Note that this is equivalent to 
assuming that there are only two returns 6S/S possible at each time- 
step, u - 1 > O and b - 1 < 0, and that these two returns are the same 
for al1 time-steps. 
The probability, p, of S moving up to uS is known (as is the probability 
(1 - p) of S moving down to OS). 
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Figure 10.1. Asset price movement in the binomial method. 

As we shall see, we choose the parametersl u, 3 and p in such a way 
that the important statistical properties of the discrete random walk 
described above coincide with those of a (slightly modified version of) 
the continuous random walk (2.1). 

Starting with a given value of the asset price (for example, today's 
asset price) the remaining life-time of the derivative security is divided 
up into M time-steps of size 6t = (T - t)/M. The asset price S is 
assumed to move only at times m 6t for m = 1,2,. . . , M. Then a tree 
of al1 possible asset prices is created. This tree is constructed by starting 
with the given value S, generating the two possible asset prices (uS and 
OS) at the first time-step, then the three possible asset prices (u2S, 
U D S  = DuS and o2S) at the second time-step, and so forth until the 
expiry time of the security is reached; see Figure 10.2. Note that as 
an up-jump followed by a down-jump leads to the same asset value as 
a down-jump followed by an up-jump the binomial tree reconnects and 
after m time-steps there are only m + 1 possible asset prices. 

The second assumption is that of a risk-neutral world, that is, one 
where an investor's risk preferences are irrelevant to derivative security 
valuation. This assumption may be made whenever it is possible to 
hedge a portfolio perfectly and make it riskless (see Section 5.6). Under 
these circumstances we may assume that investors are risk-neutral (even 
though most are not), and that the return from the underlying is the 
risk-free interest rate. The p in the stochastic differential equation dS = 

OS dX+pS dt is a measure of the expected growth rate of the underlying 
asset and, as we have seen, it does not enter into the Black-Scholes 

l Although we assume that u, o and p are independent of time t and asset price S, 
this is not an essential feature of the binomial method. 
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Figure 10.2. The binomial tree of possible asset prices. 

equation. Recalling the discussion of Section 5.6, in a risk-neutral world 
we replace the stochastic differential equation (2.1) by 

dS  - 
S 

= u d X  + rd t .  

We choose values for u, and p in our discrete random walk to reflect the 
important statistical properties of the continuous random walk (10.1) , 
i.e. with a growth rate r instead of p. 

Under the assumption of a risk-neutral world we observe that the 
value, Vm,  of the derivative security at time-step m b t  is the expected 
value of the security at  time-step (m + 1) bt discounted by the risk-free 
interest rate r: 

vm = E [ e - ~ 6 t ~ m + l ]  7 . (10.2) 

this is another way of interpreting the Black-Scholes formula (5.17). 
In a binomial method, we first build a tree of possible values of asset 

prices and their probabilities, given an initial asset price, then use this 
tree to determine the possible asset prices at  expiry and the probabilities 
of these asset prices being realised. The possible values of the security 
at expiry can then be ~a lcu la t ed ,~  and, by working back down the tree 
using (10.2), the security can be valued. A useful consequence is that 
we can quite easily deal with the possibility of early exercise and with 
dividend payments. 

We are assuming here that the payoff function is determined only by the value of 
the underlying at  expiry. This is not the case, for example, for a path-dependent 
option such as a lookback or an average strike. 
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10.2 The Discrete Random Walk 
The probability, p, of an up-jump and the jump sizes u and D are chosen 
so that the discrete random walk represented by the tree and the con- 
tinuous random walk (10.1) have the same mean and variance. That is, 
given that the value of the asset is Sm at time-step m 6t, we equate the 
expected values and variances of Sm+' (where Sm+' is the asset value 
at time-step (m + 1)6t) under the continuous risk-neutral random walk 
(10.1) and the discrete binomial model. 

Given that the asset value is Sm at time-step mbt, the expected value 
of S"+' under the continuous random walk model (10.1) is (see Exer- 
cise 1) 

where p(S, t; S', t') is the probability density function 

1 
p(S, t; S', t') = 

.-(iog(sl/s)-(r- jo2)( t~))2/2a2( t1- t )  
us ld%(FZj  

(10.3) 
for the risk-neutral random walk (10.1) (see Section 2.3). The expected 
value of S"+', given Sm, under the discrete binomial random walk is 

&b [S"'' 1 sm] = (pu + (1 - p ) ~ )  S". 

Equating these two expected values gives 

pu + (1 - p ) ~  = (10.4) 

The variance of Sm+', given Sm,  is defined to be 

var[sm+' Ism] = & [ ( s ~ + ' ) ~  lsm] - & [sm+l 1 sm12. 

Under the continuous random walk (10.1) we have (see Exercise 1) 
03 

E, [(s"+')~ Ism] = / (s ' ) '~ (sm, m 6t; S', (m + 1) 6t) dS' 
o 

- - e(2r+u2)6t (SrnI2, 

where p(S, t; S', t') is the density function (10.3). Thus the variance 
under the continuous process (10.1) is 

varc [sm+l l s m ]  = e2r6t  u26t - (e I ) ( S ~ ) ~ .  

Under the discrete binomial process we have 
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and, using (10.4), Eb[Sm+' lSm] = smer We therefore have 

Equating these two variantes we find that 

pU2 + (1  - p)02 = e(2r+02)6t. (10.5) 

Equations (10.4) and (10.5) are two equations for the three unknowns 
u,  a and p. In order to determine these three unknowns uniquely we 
require another equation. As (10.4) and (10.5) determine al1 the statisti- 
cally important properties of the discrete random walk (except, possibly, 
the requirements that u > 0 ,  a > O and O 5 p 5 l ) ,  the choice of the 
third equation is somewhat arbitrary. There are two popular choices, 

and 

p = '  
2' 

10.2.1 The Case u = 113 

In this case we obtain a binomial method where u,  a and p are determined 
by (10.4), (10.5) and (10.6). From (10.4) and (10.5) we find that 

,r 6 t  - 0 ,(2r+02)6t - a 2  
p=-= 

u2 - a 2  u - a  7 (10.8) 

so that 
e(2r+02)6t - 32 

er6t-a 

Using (10.6) to eliminate u then gives the quadratic equation3 

where 
e-r 6 t  + e(r+02)6t) (10.9) 

Solving for 0 and using (10.6) to  determine u and (í0.8) to  find p ,  we 
find 

In fact, it is easy to see that u also satisfies the same quadratic equation, i.e., 
U'-ZAU+I=O. 
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Figure 10.3. Binomial trees when (a) u = 1 / D  and (b )  p = S. 

If too large a time-step is taken, p or 1 - p may become negative, in 
which case the binomial method will fail. 

The choice (10.6) leads to a tree in which the starting asset price re- 
occurs every even time-step and which is symmetric about this price; see 
Figure (10.3a). The asset price drift, caused by the r d t  term in (10.1), 
is reflected in the fact that the probability of an up-jump differs from 
the probability of a down-jump; p # 1 - p. 

10.2.2 The Case p = 

In this case, the constants u are D determined by (10.4), (10.5) and p is 
given by (10.7). Thus we find that 

+ 0 = 2er6t, U2 + ~2 = 2e(2r+02)6t. (10.11) 
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The equations are clearly invariant under interchange of u and a ,  so we 
look for solutions of the form u = B + C, a = B - C, to find that 

a = d 6 ' ( 1 -  d-) , 

u= eT 6t (1 + J-) , (10.12) 

p= L. 
2 

The probabilities of an up-jump and a down-jump are equal in this case 
and we find that u0 > 1 (assuming r > O and St is not too large) and 
the tree is oriented in the direction of the drift (see Figure 10.3b). If 
too large a time-step is taken a may become negative, in which case the 
binomial method will fail. 

10.2.3 The Binomial T ' e  

Using either (10.10) or (10.12), we may build up a tree of possible asset 
prices. We start at the current time t = O. We assume that at this time 
we know the asset price, S!. Then at the next time-step 6t there are 
two possible asset prices, S: = uS: and Si  = OS:. At the following 
time-step, 26t, there are three possible asset prices S; = u2S!, SS = 
UDS: = auSg and S i  = a2Sg. At the third time-step 36t there are four 
possible asset prices, and so forth. At the m-th time-step m 6t there are 
m + 1 possible values of the asset price, 

(Note that here S: denotes the n-th possible value of S at time-step 
m 6t whereas on and un denote a and u raised to the n-th power.) At the 
final time-step, M 6t, we have M + 1 possible values of the underlying 
asset. In the case u = 110 we see that 

so that whenever m is even, SEl2 = S!. 
Note that the trees in Figure 10.3 reconnect. This has two conse- 

quences that are of immediate interest. The first is that the history of 
a particular asset price is lost, as there is clearly more than one path 
to any given point. Thus, in general, path-dependent options cannot 
be valued using these reconnecting trees. The second is that the total 
number of lattice points increases only quadratically with the number of 
time-steps. This means that a large number of time-steps can be taken. 
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10.3 Valuing the Option 

Assuming that we know the payoff function for our derivative security, 
and that it depends only on the values of the underlying asset at expiry, 
we are able to value it at expiry, i.e. time-step M  St. If we are considering 
a put, for example, we find that 

where E is the exercise price and VnM denotes the n-th possible value 
of the put at  time-step M  and the n-th possible asset value S$'. For a 
call, we find that 

VF = m a x ( ~ F  - E, O), n = O, 1,. . . , M ,  (10.14) 

and, similarly, for a cash or nothing call, with exercise price E and payoff 

We can find the expected value of the derivative security at the time- 
step prior to expiry, (M - l)St, and for possible asset price S$'-l, n = 

0,1,. . . M  - 1, since we know that the probability of an asset priced at  
S:-' moving to SZ1 during a time-step is p, and the probability of 
it moving to S$' is (1 - p). Using the risk-neutral argument we can 
calculate the value of the security at each possible asset price for time- 
step ( M  - 1). Similarly this allows us to find the value of the security 
at time-step ( M  - 2), and so on, back to time-step 0. This gives us the 
value of our security at the current time. 

10.4 European Options 

Let Vnm denote the value of the option at time-step m bt and asset price 
S: (where O 5 n 5 m). We calculate the expected value of the option 
at time-step mSt from the values at time-step (m + 1)6t and discount 
this to obtain the present value using the risk-free interest rate r, 
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euro-option( array,SO,u,d,p,r,dt,M ) 
C 

discount = exp(-r*dt) ; 

a r r ay  COI = SO ; 
f o r (  m=l; rn<=M; ++m ) 
C 

f o r (  n=m; n>O; --n ) 
a r r ay  En] = u*array [n-11 ; 

a r r ay  [O] = d*array COI ; 
1 

f o r (  n=O; n<=M; ++n ) 
a r r ay  [n] = pay-of f ( a r r ay  [nl ) ; 

< 
f o r (  n=O; n<m; ++n ) 
C 

tmp = p*array [n+il + (1-p) *array Cnl ; 
a r r ay  [n] = discount*tmp; 

1 

Figure 10.4 Pseudo-code for binomial model for a simple European option. 
a r r ay [ ]  is an array used to store the asset prices during the construction of 
the tree (the first f o r  loop) and the option values (the final f o r  loop). SO 
is the current value of the underlying, u = U, d = O and p = p; these latter 
three may be calculated using either (10.9) and (10.10) from Section 10.2.1 
or (10.12) from Section 10.2.2. r is the interest rate, d t  is the time-step and 
M the number of time-steps. The routine first builds a tree of possible asset 
prices, then fin& the values of the option at  expiry using the pay-off function. 
Finally it calculates the present values of the expected values of the option 
price, under a risk-neutral random walk, from expiry back until the present. 
The present value of the option is returned in array[O]. 

This gives 

As we know the value of VnM, n = 0,1,.  . . , M from the payoff function 
we can recursively determine the values of Vnm for each n = O, 1,. . . , m 
for m < M t o  arrive a t  the current value of the option, 1/00 

We do not require the asset prices Sr during the evduation of Eu- 
ropean option prices, other than the SF when finding vnM. At each 
time-step we can discard the  old S? as soon as we have calculated the  
S?+'. Once the  VnM have been found, we can discard the  S: as well. 
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Black- Binomial Method (u = 110) 

T Scholes M = 16 32 64 128 256 

0.25 4.8511 4.8511 4.8511 4.8511 4.8511 4.8511 
0.50 4.7048 4.7046 4.7047 4.7047 4.7048 4.7048 
0.75 4.5636 4.5626 4.5632 4.5634 4.5634 4.5636 
1.00 4.4304 4.4292 4.4300 4.4300 4.4300 4.4304 

Figure 10.5 Comparison of binomial method (with u = 110) and Black- 
Scholes vaiues for a European put with E = 10, S = 5, r = 0.06 and a = 0.3. 
Expiry time T is measured in years. 

Black- Binomial Method (p = 3) 
T Scholes M = 16 32 64 128 256 

Figure 10.6 Comparison of binomial method (with p = i) and Black-Scholes 
values for a European put with E = 10, S = 5, r = 0.12 and a = 0.5. The 
time to expiry, T, is measured in years. 

This observation leads t o  an extremely memory-efficient algorithm; the 
memory required varies linearly with the number of time-steps and the 
execution time varies quadratically with the number of timesteps. A 
pseudo-code for the algorithm is given in Figure 10.4. 

In Figure 10.5 we compare the values of a European put, calculated 
using the binomial method with u = 1/D (see Section 10.2.1), using 
M = 16, 32, 64, 128 and 256 time-steps, with the Black-Scholes value. 
In Figure 10.6 we compare the values of a European put, calculated using 
the binomial method with p = 4 (see Section 10.2.2), using M = 16, 32, 
64, 128 and 256 time-steps, with the Black-Scholes value. 

10.5 American Options 

We can easily incorporate the possibility of early exercise of an option 
into the binomial model. As before, we divide the time to  expiry into M 
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S COI COI = so ;  
f o r  ( m=l; m<=M; ++m 

f o r (  n=m+l; n>O; --n > 
s [m] En] = u*s Cm-11 Cn-11 ; 

S [m] [O] = d*s [m-11 101 ; 
3 

f o r  ( n=O; n<=M; ++n > 
v CM1 Cnl = pay-of f ( s  CM1 Cnl > ; 

f o r (  m=M; m>O; --m ) 
C 

f o r (  n=O; n<=m; ++n > 
C 

hold = (1-p)*v[m+l] [n] + p*vCm+l] [n+l] ; 
hold *= discount;  
vCm] [nl = max( hold,pay-off ( s Cm1 Cnl > > ; 

3 
3 

3 

Figure 10.7 Pseudo-code for binomial model for an American option. The 
arrays S[] [ ]  and v[][]  are used to store the trees of asset values and option 
values, respectively. SO is the current value of the asset, u = u, d = 0 and 
p = p; these latter three variables may be calculated using (10.10) and (10.11) 
(see Section 10.2.1) or (10.12) (see Section 10.2.2). The interest rate is r, 
the time-step d t  and the number of time-steps M. The routine first builds 
and stores the tree of asset prices, then calculates the payoff a t  expiry using 
pay-off and finally values the option by taking the maximum of the expected 
value and the payoff for early exercise at each time-step and asset price. 

equal time-steps 6t = T / M  and build our tree of possible stock prices, 

where So,o is the current value and S; is a possible value a t  time-step 
m6t. As in the previous sections we may calculate u, u and p either 
using (10.9) and (10.10) or using (10.12). At time M 6t we can calculate 
the possible values of the option from the payoff function, for example, 
for puts using (10.13), for calls using (10.14) and for cash-or-nothing 
calls using (10.15). 

Consider the situation a t  time-step m and a t  asset price S;. 
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The option can be exercised prior to expiry to yield a profit determined 
by the payoff function; for puts, calls and cash-or-nothing calls, respec- 
tively, these are 

max(E - Sr, O), max(Sr - E, O), O S r < E  
B S r Z E '  

If the option is retained, its value V$ is, as in the European case, 

The value of the option is the maximum of these two possibilities, i.e., 

For example, for a put we have 

V: = max rnax E - S:, O), e - r 6 t ( p ~ ~ : '  + (1 - p)~:")) ( ( 
and for a cal1 

V: = max rnax S: - E, O),  e-T6t(p~G;1 + (1 - p ) v ~ + l ) ) .  ( ( 
Implementing the scheme is almost as simple as the European case. A 
tree of asset values, S?, is built first and, unlike the European case, 
saved. We then evaluate VnM from the payoff function, and work back 
down the tree to find the value of the option. The only additional 
complication is that it is necessary to test to decide which of the two 
possible values (early exercise or retaining the option) is greater. This 
is the reason for storing the S? values as it allows us to implement this 
test efficiently. A pseudo-code that implements this algorithm is shown 
in Figure 10.7. The need to store the S; implies that the memory 
requirements vary quadratically with the number of time-steps, as does 
the execution time. 

In Figures 10.8 and 10.9 we give binomial approximations to an Amer- 
ican put with exercise price 10, current asset price 9, interest rate of 
r = 0.06, volatility of a = 0.3, for M = 16, M = 32, M = 64, M = 128 
and M = 256 time-steps. In Figure 10.8 we have used (10.9) and (10.10) 
to calculate u, u and p, and in Figure 10.9 we have used (10.12). 

10.6 Dividend Yields 

The binomial method can easily accommodate a constant dividend yield 
Do paid on the underlying. The effective risk-free growth rate of the 
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Binomial Method (u = 113) 

T M = 1 6  32 64 128 256 

0.25 1.1316 1.1240 1.1261 1.1253 1.1260 
0.50 1.2509 1.2598 1.2539 1.2553 1.2546 
0.75 1.3579 1.3568 1.3569 1.3555 1.3547 
1.00 1.4444 1.4332 1.4384 1.4342 1.4349 

Figure 10.8 Comparison of binomial values (with U = 110) for an American 
put with E = 10, S = 9, r = 0.06 and a = 0.3. Time to expiry, T, is measured 
in years. 

Binomial Method (p = $) 

T M = 1 6  32 64 128 256 

0.25 1.1311 1.1249 1.1266 1.1258 1.1260 
0.50 1.2526 1.2590 1.2553 1.2559 1.2553 
0.75 1.3609 1.3530 1.3573 1.3540 1.3541 
1.00 1.4473 1.4358 1.4369 1.4358 1.4354 

Figure 10.9 Comparison of binomial values (with p = 4) for an American put 
with E = 10, S = 9, r = 0.06 and (T = 0.3. Time to expiry, T ,  is measured in 
years. 

asset becomes r - Do rather than r ,  that  is, 

Therefore we replace T by T - Do in the  tree construction phase, when 

we calculate u, a and p. In this way, (10.9) and (10.10), for the  case 
U = 113, become 

A = ( e - ( ~ - ~ o ) 6 t  + e ( ~ - D o + ~ 2 ) 6 t  (10.18) 

and 
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Binomial Method (u = 110) Black- 
T Scholes M = 16 32 64 128 256 

0.25 2.1116 2.1138 2.1128 2.1111 2.1113 2.1117 
0.50 2.2820 2.2874 2.2856 2.2839 2.2818 2.2819 
0.75 2.4374 2.4479 2.4316 2.4381 2.4361 2.4380 
1.00 2.5752 2.5795 2.5806 2.5789 2.5771 2.5752 

Figure 10.10 Comparison of binomial method (with u = 110) and Black- 
Scholes values for a European call with E = 10, S = 12, r = 0.06, Do = 0.04 
and u = 0.3. Expiry time T is measured in years. 

and (10.12), for the case p = S, becomes 

The present value of an asset is still determined by discounting using 
the risk-free interest rate r,  so that (10.16) for European options and 
(10.17) for American options remain valid when calculating the expected 
present value of the option. Thus the only effect of continuous dividend 
yields is to modify the probability p and jump sizes u and D. Therefore, 
we can use the same codes as given above to value such options by simply 
modi@ing the parameters u, d and p according to (10.18), (10.19) and 
(10.20). This applies to both European and American style options. 

In Figures 10.10 and 10.11 we compare exact Black-Scholes values 
and binomial approximations to a European call with exercise price 10, 

current asset price 12, interest rate of r = 0.06, dividend yield Do = 0.03 

and volatility of a = 0.3, for M = 16, M = 32, M = 64, M = 128 and 
M = 256 time-steps. In Figure 10.10 we have used (10.18) and (10.19) 

to calculate u, á and p, and in Figure 10.11 we have used (10.20). 

Further Reading 

For details of the binomial method as a model of asset prices see Cox 
& Rubinstein (1985). 

Hull (1993) and Wilmott e t  al. (1993) discuss the binomial valuation 
of options on assets paying discrete dividends. 
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Black- Binomial Method (p = 4) 
T Scholes M = 16 32 64 128 256 

Figure 10.11 Comparison of binomial method (with p = 4) and Black-Scholes 
values for a European cal1 with E = 10, S = 12, r = 0.12, Do = 0.04 and 
o = 0.5. The time to expiry, T, is measured in years. 

Exercises 

1. Show that 

Lrn S'p(Sm, m6t; S', (m + 1) 6t 

J / w ( ~ ' ) 2 p ( ~ m ,  m6t; S', (m + 1) 6t) dS'= ( ~ ~ ) ~ e ( " ~ ~ ~ ) ~ ~ ,  

where p(S, t ;  S', t') is given by (10.3). (Hint: put S = ex and then 
complete the square in the exponent.) 

2. Show that the memory required to value a European option by the 
binomial model varies linearly with the number of time-steps, and that 
the execution time varies quadratically with the number of time-steps. 

3. Write a computer program to value a European option with an arbitrary 
payoff using a binomial method. Assume that the underiying asset pays 
a continuous dividend yield. 

4. Write a computer program to value an American option with an ar- 
b i t r a r ~  payoff using a binomial method. Assume that the underlying 
asset pays a continuous dividend yield. 

5 .  Show that the binomial method for European options, using (10.9) and 
(10.10), can be interpreted as  an explicit finite-difference method for 
the Black-Scholes equation. (Hint: let xñ = log S,".) 

6. Consider an option on a share that pays a discrete dividend yield of 
dyS(td) a t  time td. When the share goes ex-dividend, its value falls 
from S at t i  immediately before the dividend payment to (1 - dy)S 
a t  td+ immediately after. How could you modify the binomial method 
to deal with such an option? (Hint: the dividend yield affects only the 
tree construction phase of the binomial method.) 
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11 Exotic and Path-dependent 
Options 

11.1 Introduction 

If the simple derivatives that we have so far considered, which are almost 
al1 variations on vanilla European or American calls and puts, were the 
only derivative securities that needed to be modelled, this book would 
not be worth writing, nor would the subject have much mathematical in- 
terest. This part of the book is devoted to an introductory tour d'horizon 
of some of the huge variety of seemingly complex derivative instruments 
that have been created and are traded; each poses a challenge both to 
the mathematical modeller and to the people who trade and hedge them 
in practice. 

In this chapter we give an overview of some of the more common 
exotic and path-dependent options. In subsequent chapters we consider 
partial differential equation models for their valuation. In Chapter 13, 
in particular, we introduce a very simple but general framework for 
valuing many different path-dependent options. With this goal in mind, 
it is useful here to consider a classification of the varieties of exotic and 
path-dependent options. 

A path-dependent option is an option whose payoff at exercise 
or expiry depends, in some non-trivial way, on the past history of the 
underlying asset price as well as its spot price at exercise or expiry. 

We have already considered one type of path-dependent option in 
detail: the American option. This is clearly path-dependent since there 
is usually a finite probability of the option being exercised before expiry 
and thus ceasing to exist. This occurs if the asset price ever enters the 
range where it is optimal to exercise. In general, any option contract can 
specify either European or American exercise rights, and in this sense 
we can think of American early exercise rights as a feature of an option. 
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exist as an exchange-traded option; alternatively, one party may market 
and se11 the option to clients. For example, while a vanilla American 
call is path-dependent, it is not considered exotic, whereas a European 
binary option is not path-dependent but it is considered exotic. There 
are, of course, exotic options which are also path-dependent. 

The following is a list of some common exotic or path-dependent op- 
tions which can al1 be put into the same framework and valued quite 
easily (albeit numerically, if necessary): 

binaries; 
compounds; 
choosers; 
barriers; 
Asians; 
lookbacks. 

The first three of these are either not path-dependent at al1 or trivially 
so and we describe only the methodology behind their valuation. Barrier 
options, however, are discussed in detail in Chapter 12. The last two, 
Asians and lookbacks, are both crucially path-dependent (and from a 
mathematical point of view, particularly interesting); they each have a 
chapter to themselves, Chapters 14 and 15 respectively. 

This is by no means an exhaustive list of exotic options. The number 
of options is continuing to grow rapidly and now includes range forwards, 
ladders, exchange, two-colour rainbow and cliquet, among others. Some 
of these (for example, the rainbow and exchange) depend on the values 
of many underlying assets, rather than a single underlying asset. In this 
and the following four chapters we aim to address questions that are of 
fundamental importance in the modelling and analysis of exotic options 
rather than to catalogue solutions for the more esoteric options. Any 
such catalogue would in any case quickly become out of date. 

11.2 Compound Options: Options on Options 

A compound option may be described simply as an option on an 
option. We consider only the case where the underlying option is a 
vanilla put or call and the compound option can be described as a vanilla 
put or call on the underlying option. For simplicity we assume that both 
the compound option and the underlying option are both European. 
The extension to more complicated path-dependent or exotic features 
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for a compound option written on exotic or path-dependent underlying 
options is relatively straightforward. 

Since there are two types of vanilla options, calls and puts, we can 
construct four different classes of basic compound option: calls on calls, 
calls on puts and so forth. We now consider a particular case, a call-on- 
a-call. 

Let TI be the time at which we can, if we wish, exercise the compound 
call option and purchase the underlying vanilla call option for an amount 
El. This underlying call option may be exercised at time T2 for an 
amount E2 in return for an asset with price S. This a call-on-a-call, 
whilst superficially appearing complicated, may be valued very elegantly 
within the Black-Scholes framework we have met in earlier chapters. 

The time interval that we need to consider in order to value the com- 
pound option is divided into two parts. Working back from expiry at 
t = T2, we first find the value of the vanilla call option that we receive 
if we do, in fact, exercise the compound option at  time t = Ti. This 
underlying call option has exercise price E2 and expiry date T2. There 
is an explicit formula for its value; even if there were not, we could find 
the solution by numerical means (so we could consider an underlying 
American option, for example). Thus, at time TI, we can calculate the 
value of the underlying call option; let us call this C(S, TI). If, at time 
TI, the asset price is such that C(S, TI) > El then we would clearly ex- 
ercise our compound option and obtain the underlying call. If, however, 
at time TI the asset price is such that C(S,Tl) < El then we would 
not exercise the compound option. Thus the payoff for the compound 
option at time T1 is 

Because the compound option's value is governed only by the random 
walk of the underlying asset price S, it too must satisfy the Black- 
Scholes equation. The only difference from a vanilla option is in the final 
condition: we use (11.1) as the final data in solving for the compound 
option for t < TI. 

The method of solution is similar for calls on puts, puts on calls and 
puts on puts and, in principle, exotics on exotics. American features do 
not change this solution strategy in any way other than in introducing 
constraints. 
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11.3 Chooser Options 

Chooser options or as-you-like-it options are only slightly more 
complicated than compound options. Although they are, strictly speak- 
ing, path-dependent they can still be valued by solving the Black-Scholes 
equation. 

A regular chooser option gives its owner the right to purchase, for 
an amount El at time TI ,  either a call or a put with exercise price E2 
at time Tz.Thus a regular chooser algorithm is a 'call on a call or put.' 
More general structures can readily be imagined, and presents no serious 
difficulties. 

These options are valued in a manner similar to compound options. 
Again we assume that the options are al1 European. First we solve 
the underlying option problems; there are now two of these, one for 
the underlying call and one for the underlying put. We denote these 
solutions by C(S, t )  and P(S,  t )  respectively, and use them as the final 
data for the chooser option problem. Clearly, one will exercise the first 
option if either C(S, t )  > El or P(S,  t )  > El, and one will elect to 
purchase the more valuable of the two. The chooser option again satisfies 
the Black-Scholes equation with final data at time Tl given by 

The contract can be made much more general than this by having the 
underlying call and put with different exercise prices and expiry dates, 
or by allowing the right to se11 the vanilla put or call. Such a contract 
is called a complex chooser option. 

11.4 Barrier Options 

We devote the whole of Chapter 10 to barrier options and so we 
describe them only in outline here. These options are only weakly path- 
dependent in that they can be valued using only the current values of S 
and t ,  without the need for any variable to represent the path-dependent 
quantity; they therefore satisfy the Black-Scholes equation.' Barrier 
options differ from vanilla options in that part of the option contract is 
triggered if the asset price hits some barrier, S = X, say, at any time 

l We are only considering vanilla options with barrier features here. There is no 
reason why a barrier feature cannot be applied to any option, whether vanilla or 
exotic. The underlying principles are exactly the same, since the barrier features 
affect only the boundary conditions in a partial differential equation formulation. 
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prior to expiry. As well as being either calls or puts, barrier options are 
categorised as follows: 

up-and-in: the option expires worthless unless the barrier S = X is 
reached from below before expiry; 
down-and-in: the option expires worthless unless the barrier S = X 
is reached from above before expiry; 
up-and-out: the option expires worthless if the barrier S = X is 
reached from below before expiry; 
down-and-out: the option expires worthless zf the barrier S = X is 
reached from above before expiry. 

Some barrier options specify a rebate, usually a fixed amount paid to 
the holder if the barrier is reached in the case of out-barriers or not 
reached in the case of in-barriers. 

11.5 Asian Options 

Asian options are the first fully path-dependent exotic options that we 
consider. They have payoffs which depend on the history of the random 
walk of the asset price via some sort of average. One such option is the 
average strike call, whose payoff is the difference between the asset 
price at expiry and its average over some period prior to expiry if this 
difference is positive, and zero otherwise. 

Severa1 factors affect the definition of average. Among these are: 

The period of averaging. Over what period prior to expiry is the 
average taken? 
Arithmetic or geometric averaging. The average can be defined as the 
mean of the asset price (the arithmetic average) or the exponential of 
the mean of the logarithm of the asset price (the geometric average). 
Weighted or unweighted averaging. 1s the average simply the mean 
of asset prices over the averaging period or are some prices given a 
greater weighting in the average? We might, for example, choose to 
give a greater weighting to recent prices. 
Discrete or continuous sampling of the asset price. It is easier to take 
the mean of a small number of asset prices rather than the average 
over al1 realised asset prices. The average might, for example, be the 
mean of the closing asset prices at the end of every week before expiry 
instead of the average of the asset price measured every tick. 
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~if fe ient  choices lead to different values for options. This list covers 
most of those used in practice. 

When calculating the continuous mean of an asset price as it proceeds 
along its random walk we inevitably need to calculate time integrals of 
path-dependent quantities. We see in Chapter 13 that such integrals 
are of great importance when it comes to deriving a partial differential 
equation for the value of an option. The partial differential equation 
we find for the value of a continuously sampled Asian option contains 
one more term than the Black-Scholes equation. In contrast, when an 
average is measured from only a discrete sample of prices we find that 
the value of an option satisfies the Black-Scholes equation but now with 
jump conditions across the sampling dates. There is a very close analogy 
to  be drawn with the earlier discussion of discretely paid dividends. 
This matter is again addressed in Chapter 13. Whether averages are 
measured continuously or discretely, the option valuation problem is now 
three-dimensional; we must keep track of the asset price, time, and now 
also the path-dependent quantity, which for Asian options is a running 
average. 

In Chapter 13 we find a unifying framework for valuing many types 
of path-dependent optíon. Then we devote the whole of Chapter 14 to 
the analysis and valuation of Asian options in particular. 

11.6 Lookback Options 

A lookback option has a payoff that depends not only on the asset price 
at  expiry but also on the maximum or the minimum of the asset price 
over some period prior to expiry. Usually the payoffs are structurally 
very similar to those of vanilla options. For example, a put option may 
have payoff 

max(J - S, O) 

where J is a suitably defined maximum. As with Asian options we 
can distinguish between discrete and continuous sampling of the asset 
price to obtain the maximum. Lookback options are discussed fully in 
Chapter 15 . 

firther Reading 
Ingersoll (1987) discusses the partial differential equation approach to 
valuing some exotic options. 
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For a treatment of compound options see Geske (1979). For options 
contingent on two assets see Stulz (1982). 
The general framework for path-dependent options is discussed in 
Dewynne & Wilmott (1993a). 
Some options depend on the values of many underlying assets, rather 
than a single underlying asset; see Barrett, Moore & Wilmott (1992). 

e Babbs (1992) considers a binomial method for valuing lookback style 
options. 
Wilmott et al. (1993) describe the use of recursive binary trees to  
value path-dependent options. 
Information about practica1 issues, such as hedging of exotics, is given 
in the compilation of articles From Black-Scholes to Black Holes, pub- 
lished by Rislc magazine (1993). 

Exercises 

1. What is the put-cal1 parity result for compound options? 

2. One might approach the compound option by considering the underly- 
ing option as the asset on which the compound option depends. Why 
is this not a good idea from the point of view of valuation? 

3. It is possible to derive explicit formulz for European compound and 
chooser options. With CBs(S, Ti) as the value at time TI of a European 
call option with strike price EZ that expires on T2, write the payoff 
function for a cal1 on a call explicitly in terms of S. Sketch this payoff 
as a function of the underlying asset. Now use formula (5.16) to give 
an explicit expression for the value of the compound option. Simplify 
this expression using the function for the cumulative distribution of a 
bivariate normal distribution. 

4. Repeat the analysis of Exercise 3 for a chooser option. 

5 .  What happens to a chooser option if TI = Tz? 

6. The chooser option with El = O has a particularly simple value: what 
is it? 

7. In this book we see many options whose value depends on an asset 
path. Examples are the Asian option, whose payoff depends on an 
average, and the lookback, whose payoff depends on the maximum or 
minimum of the asset. Why might these payoffs be important to a 
client? Why would they want options with such characteristics? What 
other properties of an asset price random walk may be important for 



certain clients? Invent new types of option, having path-dependent 
payoffs, that might be commercially viable. 

8. Discuss how one could define and value an American compound option, 
that is, one where the underlying option could be bought at  any time 
between the initiation of the compound option, t = 0, and its expiry 
t = TI .  What happens if the underlying option is American and is 
exercised? 
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a For a treatment of compound options see Geske (1979). For options 
contingent on two assets see Stulz (1982). 

a The general framework for path-dependent options is discussed in 
Dewynne & Wilmott (1993a). 
Some options depend on the values of many underlying assets, rather 
than a single underlying asset; see Barrett, Moore & Wilmott (1992). 

a Babbs (1992) considers a binomial method for valuing lookback style 
options. 

a Wilmott et al. (1993) describe the use of recursive binary trees to 
value path-dependent options. 

a Information about practica1 issues, such as hedging of exotics, is given 
in the compilation of articles From Black-Scholes to Black Holes, pub- 
lished by Risk magazine (1993). 

Exercises 

1. What is the put-cal1 parity result for compound options? 

2. One might approach the compound option by considering the underly- 
ing option as the asset on which the compound option depends. Why 
is this not a good idea from the point of view of valuation? 

3. It is possible to derive explicit formulze for European compound and 
chooser options. With Css(S, Ti) as the value at time Tl of a European 
call option with strike price E2 that expires on TZ, write the payoff 
function for a cal1 on a call explicitly in terms of S. Sketch this payoff 
as a function of the underlying asset. Now use formula (5.16) to give 
an explicit expression for the value of the compound option. Simpli@ 
this expression using the function for the cumulative distribution of a 
bivariate normal distribution. 

4. Repeat the analysis of Exercise 3 for a chooser option. 

5 .  What happens to a chooser option if TI = TZ? 

6. The chooser option with El = O has a particularly simple value: what 
is it? 

7. In this book we see many options whose value depends on an asset 
path. Examples are the Asian option, whose payoff depends on an 
average, and the lookback, whose payoff depends on the maximum or 
minimum of the asset. Why might these payoffs be important to a 
client? Why would they want options with such characteristics? What 
other properties of an asset price random walk may be important for 
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certain clients? Invent new types of option, having path-dependent 
payoffs, that might be commercially viable. 

8. Discuss how one could define and value an American compound option, 
that is, one where the underlying option could be bought a t  any time 
between the initiation of the compound option, t = O, and its expiry 
t = TI. What happens if the underlying option is American and is 
exercised? 



12 Barrier Options 

12.1 Introduction 
For our first in-depth discussion of a path-dependent option we consider 
a vanilla barrier option. As mentioned in the previous chapter, the four 
basic forms of these options are 'down-and-out7, 'down-and-in', 'up-and- 
out7 and 'up-and-in'. That is, the right to exercise either appears ('in7) 
or disappears ('out7) on some boundary in (S, t )  space, above ('up') or 
below ('down') the asset price a t  the time the option is created. An 
example is a European option whose value becomes zero if the asset 
price ever goes as low as S = X. If the payoff is otherwise the same 
as that for a call option then we call this product a European 'down- 
and-out' call. An 'up-and-out' has similar characteristics except that it 
becomes worthless if the asset price ever exceeds a prescribed amount. 
These options can be further complicated by making the position of the 
knockout boundary a function of time and by having a rebate if the 
barrier is crossed. In the latter case the holder of the option receives a 
specified amount Z if the barrier is crossed in the case of a 'down' option 
or never crossed in the case of an 'in' option; this can make the option 
more attractive to  potential purchasers. 

We discuss only European options in any detail and we find a number 
of explicit f o r m u l ~  for the values of various barrier options. The problem 
can be readily generalised to incorporate early exercise, although we 
must then find solutions numerically. In principle, barrier features may 
be applied to  any options. 



We first consider the case of a European style down-and-out cal1 option 
with payoff a t  expiry of max(S - E, O), provided that S never falls below 
X during the life of the option. If S ever reaches X then the option 
becomes worthless. This option has an explicit formula for its fair value. 
We consider in detail only the case where E > X. 

For as long as S is greater than X ,  the value of the option V(S, t )  
satisfies the Black-Scholes equation (3.9). As before, the final condition 
for this equation is 

V(S, T) = max(S - E, O). 

As S becomes large the likelihood of the barrier being activated becomes 
negligible and so assuming no dividends are paid 

So far, the problem is identical to that for a vanilla call. However, 
the valuation problem differs in that the second boundary condition is 
applied at  S = X rather than at  S = O. If S ever reaches X then the 
option is worthless; thus on the line S = X the value of the option is 
zero: 

V(X, t )  = 0. 

This completes the formulation of the problem; we now find the explicit 
solution. 

We use the change of variables first introduced in Section 5.3. That 
is, we let 

with a = -S(k - l ) ,  p = - i ( k  + 1)2 and Ic = r / i a 2 .  In these new 
variables the barrier transforms to 

and the barrier option problem becomes 

with 
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and 

u(xo, t) = 0. 

The last boundary condition is new and we deal with it by the method 
of images. 

We have severa1 times related the problem of valuing simple cal1 and 
put options to the flow of heat in an infinite bar. Boundary condition 
(12.4) is, however, imposed at  a finite value of x: the analogy is now 
with heat flow in a semi-infinite bar held at  zero temperature at  the 
point x = log(X/E). 

The flow of heat in a bar is unaffected by the coordinate system used, 
so equation (12.4) is invariant under translation, from x to x + xo, or 
reflection, from x to -s. Thus, if U ( X , T )  is a solution of (12.1), so 
are u(x + xo, T) and u(-x + xo, T) for any constant xo. In the method 
of images we solve a semi-infinite problem by first solving an infinite 
problem made up of two semi-infinite problems with equal and opposite 
initial temperature distributions: one half is hot, the other cold. The 
net effect is cancellation at  the join: the temperature there is guaranteed 
to be zero. 

We can apply this method to the barrier option problem. We re- 
flect the initial data about the point xo = log(X/E) (the 'join' of the 
two bars), a t  the same time changing its sign, thereby automatically 
satisfying (12.4). Thus, instead of solving (12.1)-(12.4) on the interval 
xo < x < m, we solve (12.1) for al1 x but subject to 

u(x, O) = uo(x) - u,, (2x0 - x), 

that is, 

for x > xo 
u(x,O) = 

In this way we guarantee that u(xO, 0) = 0. 
Suppose that 

C(S, t )  = ~ e ~ ~ + ~ ~ u ~  (x, T) (12.5) 

is the value of a vanilla option with the same exercise price and expiry 
date but with no barrier. Of course, this value is given by the Black- 
Scholes formula and we know that u ~ ( x , T )  is a solution of the heat 
equation. Thus, we have 

u1 (x, T) = e -QX-pr C(S, t ) lE .  



Next we write the solution to the barrier option value as 

V(S, t) = ~ e ~ ~ + ~ ~  (u1 (x, T) + U~(X,T) )  

where uz(x, T) is the solution of the problem with antisyrnmetric initial 
data. The solution of this problem can be found in terms of u1 by using 
the invariance of the equation (12.1) under translation and changes of 
sign. We must have 

since replacing x by 2xo-x is equivalent to replacing S by X 2 / s .  Finally, 
bringing al1 these together and writing the solution purely in terms of S 
and t ,  we have 

It is obvious that V(X, t) = O; it can also be verified that the equation 
and final condition are also satisfied. (The final condition is satisfied 
only for S > X ,  of course; for S < X the option is worthless.) 

This demonstrates the use of the method of images to find an explicit 
formula for a down-and-out call option. Other 'out' options can be 
valued similarly and are left as exercises. However, 'in' options must be 
treated slightly differently. 

An 'in' option expires worthless unless the asset price reaches the barrier 
before expiry. If the asset value crosses the line S = X at some time prior 
to expiry then the option becomes a vanilla option with the appropriate 
payoff. It is common for in-type barrier options to give a rebate, usually 
a fixed amount, if the barrier is not hit. This compensates the holder 
for the loss of the option. 

Let us now consider a down-and-in European call option. The option 
value V(S, t )  still satisfies the basic Black-Scholes equation (3.9), and 
al1 we have to do to pose the problem fully is to determine the correct 
final and boundary conditions. We use the notation C(S, t) to denote 
the European vanilla call with the same expiry date and exercise price 
as the barrier call. 
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Once the barrier has been crossed, the option is a vanilla call whose 
value is given by the Black-Scholes formula. Let us now consider the 
situation in which the barrier has yet to be crossed. 

The option is worthless as S + m. This is because the larger that 
S is, the less likely it is to fa11 through the barrier before expiry and 
activate the option. Thus one boundary condition is 

If S has been greater than X right up to  expiry then the option expires 
worthless. The final condition, for S > X ,  is thereforel 

Finally, should the asset price reach S = X a t  some time before expiry 
the option immediately turns into a vanilla call and must thus have the 
same value as this call. The second boundary condition is therefore 

V(X, t )  = C(X,  t).  

If S < X at  any point then the barrier has been crossed, the option is 
activated and the value of the option is exactly the same as a vanilla 
call. Thus, we have only to solve for the value in S > X .  This completes 
the formulation of the European down-and-in barrier call. 

In order to  solve the down-and-in explicitly we first write 

V(S, t )  = C(S, t )  - V(S, t) .  

Since the Black-Scholes equation and boundary conditions are linear we 
know that V must satisfy the Black-Scholes equation with final condition 

V(S, T )  = C(S, T) - V(S, T )  = C(S, T) = max(S - E, O); 

and boundary conditions 

V ( S , ~ ) = C ( S , ~ ) - V ( S , ~ ) ~ S - O = S ,  a s s - t m  
V(X, t)= C(X, t )  - V(X, t )  = C(X, t )  - C(X,  t) = 0. 

This is the problem for the down-and-out barrier option. In other words, 
in this case, a European 'in' plus a European 'out' equals a vanilla. This 
is obvious from a financia1 point of view, as the value of a portfolio 
consisting of one in-option and one out-option (with the same barrier, 
exercise price and expiry dates) is obviously equal to the value of a 
vanilla call (with the same exercise price and expiry dates). This is 

If the option contract specifies a rebate Z if the barrier is never crossed this 
becomes V ( S ,  T) = Z. 
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because only one of the two barrier options can be active a t  expiry and 
whichever it is, its value is the value of a vanilla call. 

The American versions of al1 the barrier options exist but do not in 
general have explicit f o rmul~ .  Nevertheless, their numerical solution is 

no harder than for vanilla options. 

Further Reading 

Rubinstein (1992) contains a catalogue and explicit formulz for a large 
number of barrier options. 

Exercises 

1. How is an 'out' boundary condition changed if an out-option pays a 
rebate of Z if the barrier is triggered? 

2. How is an 'in' final condition changed if a rebate of Z is paid if the 
barrier is never triggered? 

3. Find explicit formulz for al1 varieties of European barrier options 
(in/out, up/down, calllput) including a rebate. 

4. Describe the evolution of the delta hedge of written down-and-in and 
down-and-out barrier call options, considering separately the cases in 
which the barrier is and is not triggered. (Compare with Exercise 5 in 
Chapter 3.) 

5 .  The double knockout call or put option expires worthless if the asset 
price either rises to an upper barrier value X2 or falls to a lower barrier 
X1; otherwise its payoff is that of a vanilla call or put. What is its 
value? 

6. By seeking solutions of the Black-Scholes equation which are indepen- 
dent of time, show that there are 'perpetual' barrier options, i.e. ones 
whose values are independent of t .  These options have no expiry date 
(T = m). Find their explicit formulz and include a continuously paid 
constant dividend yield on the underlying. 

7. How would you value a barrier option that pays $1 if an asset price first 
rises to some given level Xo and then falls to another level X1 before a 
time T, and otherwise pays nothing? 
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8. If V(S, t )  satisfies the Black-Scholes equation, show that for any con- 
stants a and a, U(S, t )  = SaV(a/S, t )  satisfies 

What is special about the case a = 1 -r /$a2? Use this result to find the 
formulz for the values of the down-and-out option and the up-and-out 
option. 

9. The 'bouncing ball option' pays out if the asset price crosses a barrier 
three times, say, during the life of the option. This description, as it 
stands, is meaningless. Why? Define your own bouncing ball option, 
with a properly specified, and meaningful, payoff. How would you value 
your option? 

10. What changes would be necessary to the boundary and initial conditions 
for the explicit finite-difference method to value a down-and-out cal1 
option (with zero rebate)? What modifications would be needed to the 
pseudo-code in Figure 8.5? 

11. How could you modify the binomial methods described in Chapter 10 
to deal with barrier options? 



13 A Unifying Framework for 
Path-dependent Options 

13.1 Introduction 

When we come to analyse options that depend on a path-dependent 
quantity, such as an average of the asset price, the straightforward 
Black-Scholes approach, which has hitherto stood us in good stead, is 
inadequate. The reason is simply that, although there are many reali- 
sations of the asset price's random walk leading to the current value, in 
general any two of these give a different value for the path-dependent 
quantity. We are therefore led to the idea of introducing a third inde- 
pendent variable, in addition to S and t ,  whose r6le is to measure the 
relevant path-dependent quantity. This idea leads to a general frame- 
work within which we can handle such seemingly disparate options as 
Asian options (depending on an average of asset values) and lookback 
options (depending on the realised maximum or minimum of the asset 
price). In this chapter we introduce the framework; it is put into practice 
in Chapters 14 (Asian options) and 15 (lookbacks). 

To introduce the idea let us consider the form of the payoff for an 
average strike option. For the first part of this chapter we consider con- 
tinuously sampled quantities. That means that our average will depend 
on a time integral. In the case of the arithmetic-average strike cal1 
option we have a payoff of the form 

max ( S -  - ; lT ~ ( r )  dr) 

What does the integral term mean here, and why is an option with this 
kind of payoff called an average strike option? 

First, observe that the continuously measured arithmetic average of 
an asset price over the period O to T is simply the integral of the asset 
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price as a function of time, divided by the duration of the period, T (we 
see other forms of average later). Such a contract is called an average 
strike option because the r6le played by the strike or exercise price in a 
vanilla option is here taken by the average. 

13.2 Time Integrals of the Random Walk 
Motivated by the example above, let us consider a fairly general class of 
European options with payoff depending on S and on 

(13.1) 

where f is a given function of the variables S and t. The integral in 
(13.1) is over the path of S from the initiation of averaging a t  t = O to 
expiry at  t = T. For the average strike cal1 option, where the payoff at  
expiry is 

max ( S  - + lT S(T) dr, O) , 

we have f (S, t )  = S.  
We introduce the new variable 

Since the history of the asset price is independent of the current price, 
we may treat 1,  S and t as independent variables; different realisations 
of the random walk lead to different values of I. Observe that this 
definition (13.2) is simply (13.1) with the expiry date T replaced by t. 
Because the payoff depends on both I and S, we anticipate that the 
value of an exotic path-dependent option can be written as V(S, 1, t).  
That is, the option value is a function of three independent variables: 
time t,  the current asset price S and the history integral of the asset 
price I .  

We intend applying It6's lemma to V, and to do this we need to know 
the stochastic differential equation for I .  This is found quite easily by 
considering the change in I as t and S change by small amounts. Clearly, 

I ( t  + dt) = I + d I  = Ltdt f (S(T), 7) dr. 
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To O(dt) this can be written as 

I + d I  = f (S(T), T) d r  +, f (S(t),  t )  dt, 

so that 

1' 
d I  = f (S, t )  dt. (13.3) 

This is the stochastic differential equation for I; it so happens that there 
is no random component. We are now in a position to value any option 
that depends on S, t and I .  

First we apply It6's lemma to the function V(S, 1, t )  to show that 

a2 v ( asZ 
av av 

dV = OS-dX + 4a2s2- + pS- + - + f (S, 
d S  d S  d t  

(13.4) 
This is derived in exactly the same way as equation (3.3). Note that the 
new term, which is proportional to the rate of change of V with respect 
to 1 ,  does not introduce any new stochastic terms into the random walk 
followed by V. (Since d I  introduces no new source of risk, we anticipate 
that the option can be hedged using the underlying only.) 

Recalling that the option is European, we now set up the usual risk- 
free portfolio, consisting of one option and a short position with a num- 
ber A of the underlying. The delta is still equal to dV/aS, and we find 
that arbitrage considerations lead to 

dV dV d2 V dV - + f (S, t )= + fo2s2- + rs- - r V  = O. 
as2 as  (13.5) 

a t  
Observe that this equation is identical to the basic Black-Scholes equa- 

tion except that there is one extra term, the derivative of V with respect 
to I .  

As for al1 derivatives, we solve the equation with a final condition. At 
expiry we know the exact form of the payoff and hence the option value 
as a function of S and I .  We have 

where the function A is the known payoff function. In the case of the 
average strike cal1 we would take I = S(T) d~ and then 

A(S, 1, T )  = max(S - I /T ,  O). 
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Technical Point: Early Exercise. 
We can easily extend the analysis to American options. Suppose that we 
wish to  value an American version of the average strike option. In any 
such contract the payoff on early exercise must be specified in advance. 
Let us suppose that the early exercise payoff for this average strike cal1 
is 

max(S - I l t ,  O). 

This is a natural choice for this particular option, since it depends on 
the asset price average to  date, the running average. For some options, 
especially those depending on discretely measured path-dependent quan- 
tities, the payoff is not so obvious. Nevertheless, let us suppose that in 
our general framework the payoff takes the form 

where A is a function known in advance and specified in the option con- 
tract. 

As in Chapter 3 for American vanilla options, the American path- 
dependent option valuation problem is a simple modification of the Eu- 
ropean case. To this end, we introduce the partial differential operator 

This operator is a generalisation of the Black-Scholes operator. It mea- 
sures the difference between the rates of return on a risk-free delta-hedged 
portfolio and a bank deposit of equivalent value. As for the vanilla option 
case, the rate of return from a delta-hedged portfolio cannot exceed the 
rate of return from a bank deposit, but it need not equal it as there may 
be times when it is optimal to exercise the option early. Thus 

L E X ( ~ )  1 0. 

Arbitrage considerations show that we must always have 

V(S, 1, t) 2 A(S, 1, t). 

If the rate of return from the portfolio equals the rate of return from a 
bank deposit, LEX(V) = 0, then it is not optimal to exercise the option. 
This can be the case only if it is more valuable held or sold than exercised, 
V > A. If the rate of return from the portfolio is less than the return from 
a bank deposit,  LE,^ (V) < O, then it is optimal to exercise the option. 
This can be the case only if V = A (if V > A then it would be more 
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profitable to se11 the option, and we can never have V < A). Thus either 
CEx(V) = O and V - A > O or LEX(V) < O and V - A = O. Either way, 
we always have 

LEx(V) . (V  -A) = O .  

Thus the problem for the American version of our class of path-dependent 
exotic options can be written in linear complementarity form as 

with V and dV/dS continuous (assuming A is continuous) and with final 
condition 

V(S, 1, T) = A(S, 1, T). 

The condition that the delta, i.e. the derivative of V with respect to S, 
must always be continuous follows from the same arbitrage argument as 
earlier. This assumes, as stated above, that the payoff function A(S, 1, t )  
is continuous in S.  

13.3 Discrete Sampling 

We hinted earlier that when path-dependent quantities are measured us- 
ing a finite sample of asset prices we no longer have a partial differential 
equation with a new derivative with respect to a new variable. Instead, 
we simply solve the basic Black-Scholes equation with jump conditions 
across the sampling dates, much as when the asset pays discrete div- 
idends. We must still solve in three dimensions as above but we can 
treat the extra path-dependent quantity merely as a parameter in the 
problem. 

The best way to introduce the basic idea is to consider a simple case 
(it is covered in detail in Chapter 14). Consider an Asian option with a 
payoff that depends on a discretely measured arithmetic average of the 
realised asset prices, i.e. it depends on 

Here the ti are the N sampling dates. It  would then be sensible to 
assume that the value of the option depends on I where 
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and where j ( t )  is the largest integer such that tj(t) 5 t. Thus 
V = V(S, 1, t). There is an obvious analogy between the representa- 
tion of a continuous sampling as an integrul and discrete sampling as a 
sum. 

In Chapter 6 we demonstrated how to allow for discretely paid div- 
idends in the (continuous) Black-Scholes model. The analysis of that 
chapter showed how a simple financia1 argument led to  jump conditions 
a t  the dividend date. The same analysis is possible when path-dependent 
quantities are sampled discretely and again results in a jump condition. 

In the case of the average strike cal1 with the definition (13.7) for 
the running sum, we find that, across a sampling date ti, the sum is 
updated from I before the sampling date to  a new value just after. This 
new value is just the sum of the old value and the value of S a t  the date 
ti. In other words, I is updated across a sampling date by the simple 
rule 

new value of I = old value of I + S. 

We now ask the question: 

Does the value of the option jump across the sampling date? 

The answer to  this question is, as for the case of discrete dividend pay- 
ments, both yes and no, depending on the way that the option value is 
viewed in relation to the underlying. It  is certainly true that V(S, 1, t) 
need not be continuous forfixed S and I as t varies. In that sense, there 
is indeed a jump in V, and the answer to the question is 'yes'. How- 
ever, in the course of any realisation of the asset price in which al1 of 
S ,  I and t vary, the option price does not change discontinuously, and 
the answer is 'no'. This latter statement is a simple consequence of the 
absence of arbitrage opportunities: if the value of an option jumped dis- 
continuously across a known sampling date it would present an obvious 
arbitrage opportunity. 

These two, apparently contradictory, statements can be reconciled 
once it is recognised that across a sampling date the discretely sampled 
average changes discontinuously because I is measured discretely. The 
discontinuity of I and the continuity of V(S(t), I ( t ) ,  t )  for any realisation 
of the random walk forces V(S, I , t )  (viewed as a function of t with S 
and I fixed) to  change discontinuously across sampling dates. 

We introduce the notation Ii to  denote the value of the running sum 
I for ti < t < ti+l, and Si for the value of S at the sampling date ti. 
Thus, Ii represents the (constant) value of I for the period immediately 
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after a sample taken at  ti until the next sample is taken a t  ti+i. We 
may therefore write the updating rule as 

so I is updated at  time ti by adding to it the value of S at  that time. 
Since Ii is constant for the period t+ (just after a sample is taken) to ti+, 
(immediately before the next sample), it is effectively a parameter in the 
value of the option during this time, in the same way that the exercise 
price is a parameter in the value of a vanilla option, or the dividend 
rate is when dividends are paid discretely. During this period, the only 
random variable that is changing is S and the option price must therefore 
satisfy the basic Black-Scholes equation during this time. From (13.8) 
it is clear that I is discontinuous at  ti as we noted above. However, since 
the realised option price is continuous across ti we have 

where Ii-l is the value of I immediately before sampling and Ii is the 
value immediately after sampling. Of course, for each realisation S is 
continuous and takes the same value immediately before and immedi- 
ately after sampling. Using (13.8), (13.9) can be written as 

Since Ii- does not change from t,'_ to t; we can drop its suíñx i - 1 in 
(13.10) with no possibility of confusion and arrive at the jump condition 

This is the jump condition for the discretely sampled arithmetic Asian 
option. Notice that in (13.9) we think of S and I arising from a realisa- 
tion of the random walk (so that they vary in time) and in (13.11) we 
think of them as fixed. Notice also that it is implicit in (13.11) that we 
solve backwards in time, from t? to  t i .  

This derivation can be applied to any option which depends on a 
discretely updated parameter. For example, if the option depends on an 
I determined by a general equation of the form 

(where the functions wi are known in advance) the jump condition is 
simply 

V(S, 1 ,  t:) = V (S, w*(S, 1) ,  t') . 
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In particular, for the discretely sampled geometric average where the 
relevant running sum is 

I = log S(ti) 

we find that 

V(S, 1,  t;) = V (S, I + log S, t+) . 

Another simple and important example is the lookback option, of 
which more in Chapter 15, where the maximum is updated with the 
rule 

Ii = m a ~ ( I ~ - ~ ,  S). 

This leads to the jump condition 

V(S, 1,  t;) = V (S, max(I, S), t+) . 

We can see that, although the particular definition of the discrete 
average affects the details of the jump conditions across sampling dates, 
it does not affect the general procedure for solution. This is because 
the path-dependent quantity, 1 ,  is updated discretely and is therefore 
constant between sampling dates. The partial differential equation for 
the option value between sampling dates is just the basic Black-Scholes 
equation with I treated as a parameter. Thus the strategy for valuing 
any path-dependent option with discrete sampling is as follows: 

e Starting from the expiry date, where the option value is known (equal 
to the payoff), and working backwards in time, solve 

between sampling dates, using the value of the option immediately 
before the next sampling date as final data. This gives the value of 
the option until immediately after the present sampling date. 
Then apply the appropriate jump condition across the current sam- 
pling date to deduce the option value immediately before the present 
sampling date. 

e Repeat this process as necessary to arrive at  the current value of the 
option. 
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Exercises 
1. Use Dirac. delta functions in the definition of the path-dependent quan- 

tity to bring together the mathematical derivation of the partial dif- 
ferential equation for exotic options and the financia1 derivation of the 
jump conditions for discrete sampling. 

2. In exercise 7 of Chapter 11 you were asked to invent new types of 
path-dependent option. Can your options be put into the framework 
presented in this chapter? If so, how? 



14 Asian Options: Options on 
Averages 

14.1 Introduction 

A typical example of an Asian option is a contract giving the holder 
the right to  buy an asset for its average price over some prescribed 
period. Such a product is of obvious appeal to  a company which must 
buy a commodity a t  a fixed time each year, yet has to  se11 it regularly 
throughout the year. In this case the underlying asset is the commodity. 
The same type of option is also used in foreign exchange markets by 
companies that have continuous sales in one currency but must purchase 
raw materials in a different currency and a t  a fixed date. Here, the 
underlying is the exchange rate. These options allow investors to insure 
against losses from adverse movements in an underlying asset without 
the need for continuous rehedging. 

In this chapter we derive differential equations for the value of sev- 
eral Asian options. The common feature is that the exercise price is 
always some form of average of the price of the underlying over some 
period prior to exercise. The exercise price may depend on geometric 
or arithmetic averages, which may be measured either continuously or 
discretely. As well as deriving the equations we examine severa1 prob- 
lems in more detail, in particular the continuously sampled arithmetic 
average strike option with either European or American exercise fea- 
tures, and the European geometric average strike with either continuous 
or discrete sampling. In general Asian options depend on three inde- 
pendent variables (see Chapter 13), but we find that these particular 
options permit similarity reductions where the value of the option is in 
each reduced to  a function of two variables. This enables us to  derive 
explicit solutions for options depending on geometric averages. (These 
are not the only similarity solutions derivable for Asian options. Many 
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Figure 14.1 An asset price random walk, its continuously measured arithmetic 
running average and a discrete arithmetic running average. 

other types of Asian option can be simplified and solved in this way, and 
these are left as exercises for the reader.) 

More details about the analytical and numerical valuation of Asian 
options can be found in Option Pricing. 

14.2 Continuously Sampled Averages 

14.2.1 Arithmetic Avemging 

Figure 14.1 shows a realisation of the random walk followed by an asset 
together with two versions of its running arithmetic average. One is the 
continuous arithmetic running average defined above, which is initiated 
at  the start of the graph; the figure also shows the discrete version of 
this average, which is discussed later in this chapter. 

The basic model for valuing Asian options is discussed in Chapter 13, 
and the general form of the partial differential equation governing the 
option value is equation (13.5). In particular, for an option depending 
on the continuously sampled arithmetic average 



Figure 14.2 An asset price random walk, its continuous geometric running 
average and a discrete geometric running average. 

we introduce the variable 
t 

I = S(T) dr. (14.1) 

Following the analysis of Section 13.2, the partid differential equation 
for the vaiue of such an option is 

This follows as (14.1) is simply (13.1) with f (S, 7) = S and (14.2) is, 
accordingly, (13.5) with the same substitution. 

14.2.2 Geometric Averaging 

Figure 14.2 shows a realisation of an asset price random walk with the 
continuous and discrete versions of its geometric running average. 

The continuously sampled geometric average1 is defined to be 

exp (+ log S(T) dr) ; 

l Strictly speaking, we should make S dimensionless in this formula; however, the 
additive constant that arises from the units of S always cancels out. We can think 
of S as dimensionless in the  units of currency under consideration. 
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it is the limit as n -+ oo of the discrete geometric average 

When this determines the payoff of the option, we define 

I = log S(T) d r  

and, following again the analysis of Section 13.2, the partial differential 
equation for the value of the option is 

14.3 Similarity Reductions 
The value of an Asian option depends on three variables S ,  I and t.  This 
is true whether the quantity I is measured arithmetically or geometri- 
cally, continuously or discretely. Typically the value of these options 
must be calculated numerically. In cases where the option valuation 
problem is genuinely in three dimensions any computer program will be 
much slower than that for a vanilla option, due to the extra dimension. 
This cannot be avoided. However, some options have a particular math- 
ematical structure that permits a reduction in the dimensionality of the 
problem by use of a similarity variable; we discuss two such options in 
detail in the following sections. We saw in Chapter 5 how a problem in 
two dimensions could be reduced to a problem in only one dimension 
because of the structure of the differential equation and its boundary 
and initial conditions. In the case of the arithmetically sampled Asian 
option we can reduce the problem from three to two dimensions when 
the following condition holds: 

the payoff has the form SaF( I /S ,  t )  for some constant a: (usually equal 
to O or 1) and some function F .  

If this condition holds we only need to find solutions of a two-dimensional 
problem. In fact, for continuous averaging, we find that V = SaH(R,  t ) ,  
where R = I / S ,  and 
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with payoff 

H ( R , T )  = F(R) .  

This problem in two variables is a lot less pleasant than the analogous 
Black-Scholes problem. Although it has a solution in terms of an infinite 
sum of confluent hypergeometric functions, it is usually more practica1 
to  solve the partial differential equation numerically than to  evaluate 
the infinite sum. For an American style option, the similarity reduction 
V = SQ H ( R ,  t ) ,  R = I/S reduces the Black-Scholes inequality to  (14.4), 
but with inequality rather than equality, i.e. with a 5 replacing the = 

sign. 

14.4 The Continuously Sampled Average Strike Option 
For our main example of an Asian option we examine in depth the 
average strike option, where the payoff at expiry is 

max (S - 4 iT dT7 o )  , 

in which I is the running average evaluated a t  expiry, for a call. For a 
put the payoff is 

rnax (+ LT ~ ( í - )  dT - S, 0  , ) 
but we give details only for the call. 

If we want to value the American version, we must first decide on the 
payoff for early exercise; the average up to  expiry is not known before 
expiry. The natural choice for the call is 

rnax (S - f JII s(T) dr7  O )  ; 

this payoff depends on the running average from time O to t, and agrees 
with the payoff a t  expiry. 

We can write the running payoff for the call option as 

S rnax (1 - & Jal ~ ( r )  dr,  O )  , 

which is consistent with the change of variables 
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that we introduced above. The payoffs for early exercise and a t  expiry 
may then be written respectively as 

(Note that, written in terms of R,  the payoff for the call option looks 
more like that of a put; if we had used SII for the similarity variable it 
would have looked more like a call.) In view of the forms of the payoff 
functions above and the discussion in the previous section, we are led to 
postulate that the option value takes the form 

V ( S ,  R, t )  = SH(R,  t ) ,  with R = I / S ;  

in this case a = 1. We find that 

If the option is European we have strict equality in (14.7). If it is 
American we may have inequality in (14.7) but the constraint 

H(R ,  t )  2 A(R, t )  = max (1 - Rl t ,  O) (14.8) 

must be satisfied. Moreover, if the option price ever meets the early 
exercise payoff it must do so smoothly. That is, the function H(R , t )  
and its first R-derivative must be continuous everywhere. 

Technical Point: Boundary Conditions for t h e  European Op- 
tion. 
For the European option we must impose boundary conditions both at 
R = O and as R --+ m. The boundary condition as R -, m is simple. 
Since S is bounded for finite t ,  the only way that R can tend to infinity 
is for S to tend to zero. In this case the option will not be exercised, and 
SO 

H(m, t) = 0. 

To determine the boundary condition at R = O we need to take a close 
look at the behaviour of R when it is small. From (14.6) we find that R 
satisfies the stochastic differential equation 

Now recall the discussion of the boundary condition at S = O for the 
vanilla option. This followed, since if ever S is zero then it remains zero 
for al1 time; the payoff is known with certainty. This, however, is not the 
case for the random walk in R. Put R = O in the above and we find that 
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d R  = dt > O ,  so the variable R immediately moves away from R = O into 
R > O. Thus, even if R = O now, there is no reason why it should remain 
zero until expiry. Therefore we no longer know the value of the option 
when R = O with certainty. Al1 we know is that the value of the option 
must be finite. 

We can use the condition that the option value is finite at  R = O to 
deduce a boundary condition there from the differential equation. First, 
note that for R small the term R d H / d R  is negligible compared with 
d H / d R .  We can thus ignore this term (in fact, this is independent of 
whether H is finite or not). We may also ignore the R2a2H/dR2  term 
as R -+ O for the following reason. Suppose that R 2 a 2 H / a R 2  tends to a 
nonzero limit as R + O ;  we can assume without loss of generality that 

d2  H  
lim R2- = O(1). 
R-O dR2 

For small R we would then have 

which may easily be integrated to show that H = O(1og R )  as R -, 0. 
This is, of course, inconsistent with H being finite. Thus we conclude 
that only the terms d H / d t  and d H / d R  can contribute near R = O. In 
other words 

This is the second boundary condition.' 

The equation (14.7), with a final condition and boundary conditions 
a t  R = O and R = m, are sufficient t o  determine the value of a Eu- 
ropean option uniquely. As mentioned above, i t  is possible to  write 
down an exact analytic expression for the  problem as an infinite sum of 
confluent hypergeometric functions. We do not give this exact solution 
because the  confluent hypergeometric function is not a widely known 
function, the solution is represented in terms of an  infinite sum and be- 
cause, from a practica1 point of view, i t  is quicker to  obtain values by 

Other balances are possible near R = 0, for example 

This, and other balances, either are inconsistent with the equation (i.e. ignored 
terrns are, in fact, not small), or lead to exponentially large option prices. The 
latter are financially unrealistic. 
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Figure 14.3 The European average strike call option: H versus R with u = 0.4 
and r = 0.1 at three months before expiry; there has already been three 
months' averaging. 

applying numerical methods directly to the partial differential equation. 
In Figure 14.3 we see H against R a t  three months before expiry and 
with three months' averaging completed; a = 0.4 and r = 0.1. 

In the case of an American option, we have to solve the partial dif- 
ferential inequality (14.7) subject to the constraint (14.8), the final con- 
dition and the condition that H -+ O as R -+ m. We cannot do this 
analytically and we must find the solution numerically. 

14.4.1  Put-cal1 Parity for the European Average Strike 

The payoff a t  expiry for a portfolio of one European average strike call 
held long and one put held short is 

Whether R is greater or less than T a t  expiry, this payoff is simply 
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The value of this portfolio is identical to one consisting of one asset and 
a financia1 product whose payoff is 

In order to value this product we seek a solution of the average strike 
equation of the form 

and with a ( T )  = O and b (T )  = -1 /T;  such a solution would have 
the required payoff of - R S / T .  Substituting (14.10) into (14.7) and 
satis&ing the boundary conditions, we find that 

We conclude that 

where C and P are the values of the European arithmetic average strike 
call and put. This is put-cal1 parity for the European average strike 
option. 

14.5 Average Rate Options 

The typical average rate option is very similar to the average strike op- 
tion in that the payoff depends on a suitably defined average of the asset 
price. The difference is in the structural form of the payoff. Whereas 
the average strike is the same as a vanilla option except that the exercise 
price is replaced by the average, the average rate has the sarne payoff as 
the vanilla but with the asset price replaced by the average. That is, an 
arithmetic average rate call option has payoff given by 

at  expiry. Such options are usually more difficult to value than average 
strike options because, as a rule, they do not admit similarity reductions: 
typically, it is not possible to reduce the number of independent variables 
from three to two. Generally, therefore, such problems must be solved 
numerically. However, when the average is measured geometrically, it is 
possible to reduce the problem to one in two variables and we now show 
how to find explicit formul~.  
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14.5.1 Geometric Averaging and Continuous Sampling 

There are explicit solutions for the value of average rate options when the 
average is measured geometrically. This is because the logarithm of the 
asset price follows a random walk with variance which is independent of 
the asset price. There is also an intimate link between sums of logarithms 
and the geometric average. 

The explicit formule exist only for European options. Let us therefore 
consider a European average rate option with payoff at expiry given by 

Observe that the payoff is here only a function of I and not of S;  this 
makes an explicit solution possible. 

When the geometric average is sampled continuously, I is given by 

I = lo iog S ( r )  d r  

and, recalling the analysis in Section 13.2, for a European option we 
must solve 

If the payoff is a function of I only, we can seek a solution of the form 
F(y, t),  where now 

I + ( T - t ) l o g S  
Y =  T 

With this independent variable the differential equation becomes a para- 
bolic partial differential equation with coefficients that are independent 
of y and, moreover, the log term is eliminated: 

(We leave the derivation of this equation as an exercise.) 
The coefficients of (14.12) are independent of y but are, however, 

functions of time, t .  Therefore, what remains after the log terms are 
removed from (14.11) is almost the Black-Scholes equation, under a 
logarithmic transformation with time-dependent volatility and interest 
rate and with a nonzero, time-dependent dividend yield. 

In Section 6.5 we saw that the Black-Scholes formule need only very 
simple modifications to yield explicit formule for time varying volatil- 
ity, interest rate and dividend yield. For options with more complicated 
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payoffs than calls or puts it is still possible to solve the constant coef- 
ficient partial differential equation by taking advantage of the general 
solution of the Black-Scholes equation with arbitrary final condition as 
given in equation (5.16) of Section 5.5. 

Explicit formulz may be found, and the following rules, the derivation 
of which is left as an exercise, show how to convert an explicit Black- 
Scholes formula for a vanilla option to an explicit formula for a geometric 
average rate option: 

a Take the Black-Scholes formula for a vanilla option having the same 
payoff as the Asian, but in terms of S instead of e'lT; for example 

max(S - E,  O) instead of max(e'lT - E, O). 

Cal1 this Vss(S, t ;  r, a). (In the example above, Vss(S, t ;  r, a )  is the 
formula for an option with payoff max(S - E, O), i.e. a European call.) 

a Wherever a2 appears in the formula for Vss, replace it by 

Thus, if a is constant, the effective volatility is a2 (T  - t ) 2 / 3 ~ 2  
a Wherever r appears in the formula, replace it by 

When r and u are constant, the effective interest rate is thus 
(+a2 - r ) (T  - t)/2T. 
Multiply the resulting formula by 

exp (- 1' (r - r - ia2)) d.) . 

When r and a are constant this factor is 

a Replace S by e'IT~(T-t)lT 

The above discussion centred on the solution of the European contin- 
uously sampled average rate option. The same idea can be applied to 
the discrete sampling case, when again explicit f o r m u l ~  can be derived. 
We leave this as an exercise for the reader. 
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14.6 Discretely Sampled Averages 

In practice it can be difficult to calculate the average of an asset price 
from its complete time series: prices can change every 30 seconds or so, 
with the occasional misquotation of prices. Thus, it is more common in 
an option contract to specify that the average is to be calculated from a 
small subset of the complete time series for the asset price, for example 
the average over the daily or weekly closing prices. 

We have already modelled the continuous average as an integral, con- 
sistently with the assumption that asset and option values are time- 
continuous quantities. By a discrete average we mean the sum, rather 
than the integral, of a finite number of values of the asset during the 
life of the option. Such a definition of average is easily included within 
the framework of our model. The discrete sampling of averages bears 
close similarities with the discrete payment of dividends. In particular, 
both give rise to jump conditions across payment/sampling dates. These 
ideas have al1 been discussed before in Chapter 13; here we recall the 
basic methodology and results. 

We first recall the jump condition for an Asian option with discrete 
arithmetic averaging; this derivation is easily generalised to Asian op- 
tions with more complicated discrete averaging, for example discrete 
geometric averaging. 

The discretely sampled arithmetic running sum may be defined as 

where ti are the sampling dates and j( t)  is the largest integer such that 
tj(t) < t. In terms of I and j(t), the discretely sampled arithmetic 
average is I/ j (t) . 

Across a sampling date this running sum is necessarily discontinuous. 
It is updated from a value I before the sampling to the new value given 
by I + S. Since the realised option value must be continuous across the 
sampling date we find that for the discretely sampled arithmetic average 
strike option, 

V ( S ,  I ,  t;) = V ( S ,  I + S, t:). (14.13) 

Likewise, for the discretely sampled geometric average where the running 
sum is 

j(t) 

I = log S(ti) 
i = l  
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the jump condition is 

V(S, 1,  t;) = V(S, I + log S, t'). 

Because the path-dependent quantity, 1, is updated discretely and 
is therefore constant between sampling dates, the partial differential 
equation for the option value between sampling dates is just the basic 
Black-Scholes equation with I treated as a parameter. Thus the strategy 
for valuing any Asian option is as follows: 

e Working backwards from expiry, solve 

between sampling dates. 
e Then apply the appropriate jump condition across the current sam- 

pling date to deduce the option value immediately before the present 
sampling date. 

e Repeat this process as necessary to arrive at  the current value of the 
option. 

Further Reading 

e More details about the partial differential equation approach to the 
valuation of Asian options can be found in Option Pricing. 
Some exact solutions can be found in Boyle (1991) and, for geometric 
averaging, in Rubinstein (1992). 
Ingersoll (1987) presents the partial differential equation formulation 
of some average strike options and demonstrates the similarity reduc- 
tion. 

e For other methods of evaluating Asian options see Geman & Yor 
(1992). 

e The application of the numerical Monte Carlo method is described by 
Kemna & Vorst (1990). 
More examples of the methods described here can be found in Dewynne 
& Wilmott (1993 c, d). 

e For an approximate valuation of arithmetic Asian options see Levy 
(1990), who replaces the density function for the distribution of the 
average by a lognormal function. 
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Exercises 

1. Find formulze for the value of some perpetua1 options, i.e. having no 
time dependence. These are very simple similarity solutions. 

2. Repeat the analysis of the European continuously sampled geometric 
average rate option when the average is measured discretely. Derive 
explicit formulze for the value of such options. 

3. We have seen the equation satisfied by the European continuously sam- 
pled arithmetic average rate cal1 option. In special circumstances it can 
be known with certainty before expiry that the option will expire in the 
money. What are these circumstances? Find an explicit formula for the 
value of the option in this case. 

Extend this idea to other types of Asian option, and derive further 
formulze. 

4. What is the partial differential equation for the value of an option that 
depends on 

Consider this Asian option with different payoffs. Determine whether 
similarity reductions are posible for your examples. Look for simple 
explicit formulze. 

5. The average strike foreign exchange option has the payoff 

where S is an exchange rate. What is the partial differential equa- 
tion satisfied by this option? (Remember the interest payments on the 
foreign currency.) 1s there a similarity reduction? 

6. Recall the jump conditions for the discretely sampled arithmetic average 
strike option. In this case the option price has a similarity reduction of 
the form V(S, 1, t)  = SH(I/S,  t). Write the jump conditions in terms 
of H(R, t), where R = I /S.  

7. Find similarity variables for the discretely and continuously sampled 
geometric Asian options. What form must the payoff function take? 



15 Lookback Options: Options 
on the Maxirnirn or Minirnurn 

15.1 Introduction 

A lookback option is a derivative product whose payoff depends on the . 
maximum or minimum realised asset price over the life of the option. For 
example, a lookback put has a payoff at expiry that is the difference 
between the maximum realised price and the spot price at  expiry. This 
may be written as 

max( J - S, O) 

where J is the maximum realised price of the asset: 

J = max S(T). 
o<r<t 

As for the Asian options considered in the previous chapter, the maxi- 
mum or minimum realised asset price may be measured continuously or, 
more commonly, discretely. 

Such options give the holder an extremely advantageous payoff. Using 
lookback options, one can construct a product enabling the investor 
to buy a t  the low and se11 at  the high. They are therefore relatively 
expensive. 

We continue in the spirit of the analysis in Chapters 13 and 14. The 
general framework established in those chapters is sufficiently robust 
to include both European and American exercise features and contin- 
uous and discrete sampling; we now apply this framework to lookback 
options. As in the previous chapter we find that European lookbacks 
lead to partial differential equations with final and boundary conditions, 
whereas for American lookbacks we obtain a partial differential inequal- 
ity subject to a constraint and, consequently, a linear complementarity 
problem. With discrete sampling we find that, as before, jump con- 
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' ditions apply across sampling dates. In general the option value is a 

function of the three variables S, J and t, but we also find that if the 
payoff has a certain form then the problem admits a similarity reduction 
to two independent variables. When a similarity reduction can be found 
the option value may, in some cases, be determined explicitly. Even if 
the solution cannot be found explicitly, the similarity reduction allows 
more efficient numerical solution. 

As in the examples in Chapter 14 on Asian options we consider, 
amongst others, the lookback strike and the lookback rate, in both call 
and put varieties. If J is the sampled maximum, the lookback strike 
put option has a payoff similar to a vanilla put but with J replacing the 
exercise price E, i.e. the payoff is 

(This option admits a similarity reduction in the variables SIJ and t.) 
Similarly, the lookback ra te  put has payoff similar to the vanilla put 
but with J replacing S, i.e. 

V(S, J, T) = max(E - J, O), 

where E is prescribed. (This option does not admit a similarity reduction 
and must be solved in three dimensions.) 

We continue to work in the general framework introduced in Chap- 
ter 13 and then consider some special cases. At the end of the chapter we 
consider two perpetua1 options which depend on the maximum realised 
asset price, the 'Russian' and the 'stop-loss'. Both of these have simple 
exact solutions. 

We concentrate on valuing a put option. The equivalent call option 
depends on the realised minimum of the asset price 

J = min S(r)  
o<r<t  

but is otherwise similar to the put option, and we leave the details of its 
valuation as an exercise. 

15.2 Continuous Sampling of the Maximum 

In this section we consider a put option that depends on the maximum 
value of the asset where the maximum is measured continuously, as il- 
lustrated in Figure 15.1. Observe that, when the maximum is updated 
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Figure 15.1. An example of continuous measurement of the maximum. 

continuously, the asset price is necessarily less than or equal to the max- 
imum: 

O < S < J .  

Since the lookback put is a path-dependent option, its value P is not 
simply a function of S and t ,  as is the case for a simple option. If the 
independent variable J is the maximum realised asset value over the life 
of the option, P also depends on J since it depends on J at expiry. Thus 

P = P ( S ,  J ,  t ) .  

It may not be immediately obvious how our general exotic option 
framework, for which the path-dependent quantity has been defined as 
an integral, can accommodate the lookback case. This is not as difficult 
as might be supposed. Let us define 

t 

In = (S(r))" dr.  (15.1) 

Now if we introduce 

Jn = ( l n ) l I n  

this places the lookback option in our general setting. Why is this so? 
The strategy is to consider an option whose value depends on Jn and 
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then take the limit as n + m. As n tends to infinity, we have1 

J = lim Jn = max S(T), 
n + w  O í ~ s t  

and the relevance to lookback options is clear. (Similarly as n + -col 
Jn -+ min S(T).) 

O < T < ~  
Now we derive the stochastic differential equation satisfied by J,; the 

argument exactly parallels that given in Chapter 13 for the general case. 
In the time t to t + dt, Jn changes by an amount dJn given by 

From this and (2.1) we see that 

l dt. d J  " - n (~"),-l 

Thus Jn is a deterministic variable, as there are no random terms in 
(15.2). We need (15.2) to apply Ito's lemma to P. 

As we have done many times before we construct a hedged portfolio 
consisting of one option and a number -A of the underlying asset: 

In the time from t to t + dt the value of this portfolio changes by an 
amount dll given by 

dn = d P -  AdS. 

Choosing 

and using Ito's lemma to expand dP, remembering that P depends on 
the three variables S ,  Jn and t,  we find that 

' At this point it is important to  note that S(T)  is a continuous realisation of the 
random walk (2.1). If S(T)  in this integral is not continuous the result need not 
follow. We have not previously had cause to discuss the continuity of realisations 
of (2.1), and it is not obvious that we can make the assumption that S(T)  is 
continuous. A full discussion of the matter of continuous realisations is outside 
the scope of this text, and we refer the reader to  a text on stochastic calculus (for 
example, one of those cited in Chapter 2). The basic result is that we can assume 
the continuity without loss of generality. 
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When the option is American there may be times when it is optimal 
to  exercise the option before expiry. We can only insist that the return 
is a t  most that to  be received from a risk-free account, thus 

dIi  5 r I i  dt = r P - S- dt. ( E) 
In the case of a European option we have equality in (15.4). Bringing 
together (15.3) and (15.4) we arrive a t  

We now take the limit n -, m. Since S 5 maxS  = J, in this limit 
the coefficient of dV/aJn tends to zero. Thus in this limit the partial 
differential inequality becomes 

This is simply the usual Black-Scholes inequality; for a European option 
it is the Black-Scholes equation. The independent variable J appears as 
a parameter only in this equation, but it also features in the boundary 
and final conditions. 

The final condition for the equation is simply the payoff at expiry. 
The lookback put has 

P(S ,  J, T) = max( J - S, O). (15.7) 

This is the final condition regardless of whether the option is European 
or American or whether the sampling is continuous or discrete. 

When the maximum is sampled continuously it is impossible for the 
asset price ever to exceed the sampled maximum; thus S 5 J. Therefore 
the problem is posed only on the region O 5 S 5 J .  

It is interesting to note that because S 5 J, the lookback put with 
a continuously sampled maximum is, in a sense, not an option: with 
probability one, it will be exercised. (The only case where it may not be 
exercised is in the unlikely event that the maximum realised asset value 
occurs a t  expiry.) 

15.2.1 The European Case 

When the option is European, arbitragers can hold both sides of the 
Black-Scholes portfolio, and so the inequality in (1 5.6) becomes equality. 
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We have a final condition from (15.7), and boundary conditions are 
applied a t  S = O and S = J. 

If S is zero then it can never become greater than zero. The payoff 
at  time T is known with certainty to be J. Hence the interest-rate 
discounted present value of the option is 

The remaining boundary condition comes from considering the be- 
haviour of the random walk close to the boundary S = J. Suppose that, 
a t  some time prior to expiry, S is close to its maximum realised so far, 
i.e. S is close to J. It can be shown that the probability that the current 
value of the maximum is still the maximum at  expiry is zero. Since the 
present value of the maximum is not the final maximum, the value of 
the option must be insensitive to small changes in J. The remaining 
boundary condition is therefore 

These final and boundary conditions give a unique value for the option. 
The solution for the lookback put is 

where 

and 
1 2  k = r / ? a  

This formula can be derived by an extension of the method of images, 
and we hint at  how this can be done later in this chapter. 
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15.2.2 The American Lookback Put 
When early exercise is a possibility, the exercise price of the option 
must be specified for times prior to expiry. The natural specification for 
a lookback put is 

A(S,  J, t) = max(J - S, O). 

When the option is American the possibility of early exercise means that 
we have inequality in (15.6). There may be times at  which it is optimal 
to exercise the option as well as times when it should be held. For the 
lookback put we see that if S is less than some critica1 value Sf (J ,  t )  
then it is, in fact, optimal to exercise. 

Arbitrage considerations show that the value of the option must satisfy 
the constraint 

P(S,  J, t)  2 A(S, J, t), (15.10) 

since this is the payoff for early exercise. Further, al1 of P, dP/dS and 
d P / a J  must be continuous. 

The final condition (15.7) is satisfied at t = T and, should the bound- 
aries at  S = O and/or S = J ever lie in the hold region, the boundary 
conditions at S = 0, (15.8), and/or at S = J, (15.9), must also be 
satisfied. 

For times before expiry t < T, S = O cannot lie in the hold region. 
This follows from (15.8) and (15.10); if S = O does lie in the hold region 
t hen 

P(0, J, t) = < A(0, J, t) = J, 

contrary to (15.10). Thus there must be an optimal exercise boundary 
SS (J, t)  separating an early exercise region where S < SS (J, t) from a 
hold region where S > Sf (J, t). 

We can write this problem in linear complementarity form (and there- 
by eliminate explicit reference to Sf (J ,  t ) )  as follows. Define the linear 
operator LBS by 

this is, of course, the basic Black-Scholes operator. The American look- 
back put problem can be written as 

LBs(P) 5 O and (P - A(S, ~ , t ) )  2 O, (15.11) 

together with 

LBs(P) . ( P  - A) = O, (15.12) 
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and the final condition 

with the boundary condition 

Ó'P 
-(J, J )  = O .  aJ 

The problem is to be solved only for O  5 S 5 J; al1 of P ,  Ó'P/aS and 
d P / d J  must be continuous. 

15.3 Discrete Sampling of the Maximum 

Most commercial lookback contracts are based on a discretely measured 
maximum or minimum. This is for two reasons. The first reason is con- 
tractual; it is easier to measure the maximum of a small set of values, al1 
of which can be guaranteed to be 'real' prices at  which the underlying has 
traded. The second reason is that by decreasing the frequency at which 
the maximum is measured, some contracts become cheaper and therefore 
more appealing. Figure 15.2 shows an example of discrete measurement 
of the maximum. The ticks on the horizontal time axis represent the 
times at which the maximum is sampled. As we can see, the asset price 
can now exceed the sampled maximum if it does so between sampling 
dates. With J still denoting the maximum, albeit sampled discretely, 
it is no longer true that S must always be less than J. This is a very 
important difference between the continuously and discretely sampled 
cases: the domain on which the problem is posed is quite different. The 
payoff for the lookback put is still max(J- S, O) but there now arises the 
possibility that the option will not be exercised; it will not be exercised 
at  expiry if S > J. 

When the maximum is sampled discretely we still obtain the Black- 
Scholes equation or inequality in S and t ,  with J entering only as a 
parameter. Across the sampling dates there is a jump condition. The 
financia1 argument for the jump condition is similar to that used in 
Chapter 6 for discrete dividends and in Chapters 13 and 14. Arbitrage 
considerations show that the realised value of the option cannot be dis- 
c o n t i n u o ~ ~ .  Thus P(S,  J ,  t )  must be c o n t i n u o ~ ~  as S, J and t vary along 
any given realisation. Across a sampling date the discretely sampled 
maximum is updated according to the rule 

Ji = max(Ji-1, S) ,  
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Figure 15.2 A schematic diagram of the discretely measured maximum. The 
ticks on the time axis are the sampling dates; J does not change between these 
dates. 

where Ji is the value of J just after sampling at  time ti. Note that J 
then remains constant until immediately after ti+l. Continuity of the 
realised put option price may be stated as 

P(s,, ~ , - ~ , t ; )  = p ( s i ,  ~ ~ , t + ) ,  

where as before Si is the value of S at time ti. Writing J for J( t i - i ) ,  
this is equivalent to the jump condition 

P(S,  J ,  t:) = P (S, max(J, S) ,  t:) 

in a Black-Scholes framework where S and J are considered independent 
variables. 

15.4 Similarity Reductions 

The formulation of the problem has so far used the 'primitive variables' 
S, J ,  t .  In this section we show how to recast some lookback problems 
in terms of only two variables; we thus seek similarity reductions and 
solutions. The lookback option model presented so far is very general in 
that it permits an arbitrary payoff (at expiry or earlier) A(S, J , t ) .  

If we make some restrictions on the class of payoff structures that are 
admissible, we may take the analysis further and find classes of lookbacks 
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that depend on only time and a single state variable. The restriction 
that we make is 

the payoff has the form A(S, J, t )  = JA(S/J, t). 

The lookback put has payoff 

and therefore satisfies this requirement. 
With this restriction we may find a solution of the form 

where 

[ = S/ J. 

In the following we describe only the European option; the modification 
for an American option is simple and left as an exercise. 

With these definitions for W and [ we find that the partial differential 
equation for W(<, t )  is 

and the boundary condition at  S = O becomes 

W(O, t )  = 

The final condition for a lookback put becomes 

W([, T) = max(1 - [, 0). 

When the maximum is measured continuously, the boundary condition 
at  S = J becomes a boundary condition at  [ = 1 and is 

If the maximum is measured discretely, the boundary condition as 
S -+ cm becomes a boundary condition as [ 4 cm, and is 

The jump condition across sampling dates becomes 

W(<, t;) = max(<, 1) W (min(<, l ) , t$)  . 
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Figure 15.3 American lookback put values for T = 0.1, o = 0.2, T = 1.0. Cases 
A, B and C correspond to sampling at different times (see text for details). 
Case O corresponds to no sampling; this is the simple put with exercise price 
1.0. 

Recall the exercise at  the end of Chapter 12 in which it was demon- 
strated that if V(S, t )  satisfies the Black-Scholes equation then U(S, t) = 
SaV(a/S, t )  satisfies a similar partial differential equation. In particular, 
for the choice 

1 2  a = 1 - r / p  

it is easily shown that U satisfies the Black-Scholes equation. This 
obsewation, together with the above similarity reduction, make it rela- 
tively straightforward to find the explicit formulze for the lookback put. 
This is left as an exercise for the reader. 

15.5 Some Numerical Examples 

We do not describe numerical methods for exotic options in this book; 
they are covered in Option Pricing. For the benefit of readers who would 
like to extend the methods we do describe, in this section we give some 
numerical results for simple lookback puts. The numerical methods used 
to generate them are described in Option Pricing. 

In Figures 15.3 and 15.4 we see comparisons between American and 
European option prices using different sets of sampling times. In each 
case the values shown are at  one year before expiry with zero dividend 
yield, r = 0.1 and a = 0.2. Figure 15.3 shows option values for the 
American option and Figure 15.4 for the equivalent European option. 

There are three examples of the sampling of the maximum and one 
simple vanilla put problem for comparison. The latter is Case O; this 
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Figure 15.4 European lookback put values for r = 0.1, a = 0.2, T = 1.0. Cases 
A, B and C correspond to sampling at different times (see text for details). 
Case O corresponds to no sampling; this is the simple put with exercise price 
1.0. 

is exactly equivalent to  a vanilla put option with unit exercise price. 
Otherwise we have 

Case A: sampling a t  times 0.5, 1.5, 2.5, . . .10.5, 11.5 months; 

Case B: sampling a t  times 1.5, 3.5, 5.5, 7.5, 9.5, 11.5 months; 

Case C: sampling a t  times 3.5, 7.5, 11.5 months. 

The tables should be read as follows. Suppose the value of an Ameri- 
can lookback put option with discrete sampling under sampling strategy 
B is required. Recall that the value of the option is given by 

P = JW(S / J ,  t ) .  

If we want the value of the option at one year to expiry when the asset 
price is 180 and the current maximum is 200 then we must look along 
the row J = S / J  = 180/200 = 0.9. The value of the option is then 
200 x 0.120 = 24. 

Observe that the option price decreases as the number of samples 
decreases (from A to  C).  This is financially obvious, since the fewer 
samples the lower the final payoff is likely to  be. Decreasing the fre- 
quency of measurement of the maximum decreases their cost. This may 
be important, since one of the commercial criticisms of lookback options 
is that they are too expensive. Also note that the option price reaches 
a minimum close to  J = 1. The option delta can become positive, since 
it is beneficia1 for the holder of the option if the asset price rises just 
before a sampling date and then falls. As expected, American prices are 
everywhere greater than European. 
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15.6 Two 'Perpetua1 Options' 

We have seen one explicit formula for a simple lookback put, and in 
the exercise at the end of this chapter we make suggestions for finding 
more. In this section we find two more explicit formul~,  for a 'Russian' 
option and a 'stop-loss' option. Both of these lookback options share the 
property that they are perpetual options, i.e. they do not have an expiry 
date but rather an infinite time horizon. (Another perpetual option was 
the perpetual barrier option, an exercise in Chapter 10.) 

15.6.1 Russian Options 

A Russian option is a perpetual American option, which, at any time 
chosen by the holder, pays out the maximum realised asset price up to 
that date. We consider only the continuously sampled maximum case, 
as it is unlikely that a tractable explicit solution exists if the sampling 
is discrete. To make the problem interesting we assume that there is 
a continuously paid constant dividend yield, as discussed in Chapter 6; 
without dividends the problem is trivial. 

As the time horizon is infinite we may take the option value to be 
independent of time: V = V(S, J ) .  (With discrete sampling at periodic 
intervals the solution would be periodic.) As before, let J be the max- 
imum realised value of the asset price. When it is optimal to hold and 
the option exists, we solve the time-independent Black-Scholes equation 

(note the dividend term) with the boundary condition 

The solution must also satisfy 

since the option is American and the right-hand side of this inequality 
is the early exercise payoff. There must be a free boundary, since this 
option is pointless if it is never exercised, and both V and dV/aS must 
be continuous there. 

Let us seek a solution in the form 



15.6 Two 'Perpetua1 Options ' 249 

where 6 = S/ J. Then we have 

1 2 2  
20 Wrr + (r - Do)tWr - rW = 0, (15.15) 

where ' denotes d / q .  Suppose that the free boundary is at e = Jo. The 
boundary conditions become 

and 

W = 1 and W' = O  at E = E o  

The general solution of (15.15) is found by trying W = constant x Ea 
for constant a. This yields a quadratic equation for a, whose roots are 

The solution to the boundary value problem is then easiiy found to be 

where the free boundary conditions give 

a + ( l -  a - )  l/("- -a+) 
Eo = ( a- (1 - a + )  

When the dividend yield is zero, i.e. Do = 0, the problem does not have 
a solution. It is, clearly, never optimal to hold such an option when the 
underlying does not pay dividends. 

15.6.2 The Stop-loss Option 

A stop-loss option may be thought of as a perpetua1 barrier lookback 
with a rebate that is a fixed proportion of the maximum realised value 
of the asset price. Thus, if S reaches a maximum value J and then falls 
back to X J ,  where X < 1, the option pays the owner S (which at that 
time is equal to XJ). It has an obvious use to lock in a good proportion 
of a profit while relieving the owner of the uncertainty of guessing when 
the maximum is reached. Note that the option is not triggered until the 
fa11 occurs. 

Since the option pays the owner the amount S when S reaches XJ, we 
have 

V(XJ, J )  = XJ. (15.17) 
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We again write V = JW(<) where, as before, J = S / J .  The differential 
equation is again (15.15), while (15.17) becomes 

and the remaining boundary condition is 

W - W ' = O  at  < = l .  

The solution is 

<"+ (1 - a - )  - y- (1 - a + )  
W = X  xff+ (1 - a - )  - xff- (1 - a + )  ' 

where a* are given by (15.16). When Do = O the solution is 

w = c  
irrespective of A,  i.e. V = S: the option is equivalent to the underlying. 

F'urther Reading 

More details about the valuation of lookback options can be found in 
Option Pricing. 
Lookback options were first described in the academic literature by 
Goldman, Sosin & Gatto (1979), who presented an explicit formula 
for a European option where the maximum is measured continuously 
throughout the life of the option. 
Some more explicit solutions are given by Conze & Viswanathan 
(1991). 
More numerical results can be found in Dewynne & Wilmott (1993b). 
Russian options are described by Duffie & Harrison (1992). 
The stop-loss option when the maximum is measured discretely is 
covered in Fitt, Wilmott & Dewynne (1994). 

Exercises 
1. Derive the explicit formula for the value of a European lookback put. 

2. Find explicit formul~ in the following cases, al1 with continuous sam- 
pling of the maxirnum or minimum: 

(a) lookback call, with payoff max(S - J,O), where J is the asset 
price minimum; 
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(b) lookback calls and puts with constant dividend yield; 
(c) lookback calls and puts with time varying volatility, interest rate 

and dividend yield. 

3. There is no reason why sarnpling dates rnust be evenly spaced. How do 
you expect lookback option prices to be affected by the structure of the 
sampling? 



16 Options with Transaction 
costs 

16.1 Introduction 

We have derived the Black-Scholes partial differential equation for sim- 
ple option prices, we have discussed the general theory behind the dif- 
fusion equation and, in the 1 s t  few chapters, we have generalised the 
Black-Scholes model to exotic options. We continue this generalisa- 
tion with a model that incorporates the effects of transaction costs on a 
hedged portfolio. We describe the model only for vanilla options but it 
can easily be modified for exotic options. 

16.2 Discrete Hedging 

Discrete hedging One of the key assumptions of the Black-Scholes anal- 
ysis is that the portfolio is rehedged continuously: we take the limit 
dt 4 O. If the costs associated with rehedging (e.g. bid-offer spread 
on the underlying) are independent of the timescale of rehedging then 
the infinite number of transactions needed to maintain a hedged posi- 
tion until expiry may lead to infinite total transaction costs. Since the 
Black-Scholes analysis is based on a hedged portfolio, the consequences 
of significant costs associated with rehedging are important. Different 
people have different levels of transaction costs; as a general rule there 
are economies of scale, so that the larger the trader's book, the less sig- 
nificant are his costs. Thus, contrary to the basic Black-Scholes model, 
we may expect that there is no unique option value. Instead, the value 
of the option depends on the investor. 

Leland has proposed a very simple modification to the Black-Scholes 
model for vanilla calls and puts, which can be extended to portfolios of 
options, that introduces discrete revision of the portfolio and transaction 
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costs. In the main his assumptions are those mentioned in Chapter 3 
for the Black-Scholes model with the following exceptions: 

The portfolio is revised every b t  where now S t  is a non-infinitesimal 
fixed time-step; note that we do not take 6 t  -, O. For example, the 
portfolio may be rehedged every day at  9:00 a.m. 

e The random walk is given in discrete time by 

where 4 is drawn from a standardised normal distribution. 
e Transaction costs in buying or selling the asset are proportional to 

the monetary value of the transaction. Thus if u shares are bought 
(u > O) or sold (u < O) at a price S ,  then the transaction costs are 
K(vIS, where rc is a constant depending on the individual investor. A 
more complex cost structure can be incorporated into the model with 
only a smail arnount of effort (see the Exercises at the end of this 
chapter). 

e The hedged portfolio has an expected return equal to that from a bank 
deposit . 

We now derive a model for portfolios of European options incorporat- 
ing transaction costs. We can follow the Black-Scholes analysis up to 
equation (3.6), but in equation (3.7) we must allow for the cost of the 
transaction. If Il denotes the value of the hedged portfolio and S I I  the 
change in the portfolio over the time-step S t ,  then we must subtract the 
cost of any transaction from the right-hand side of the equation for 6II. 

After a time-step the change in the value of the hedged portfolio is 
t hen 

Here we have subtracted off the transaction costs (which are always 
positive, hence the modulus sign, 1 . 1 ,  above). Since we have not gone 
to the limit S t  = O we cannot replace the square of the random variable 
q5 by its expected value, 1. Other than these differences the equation is 
the same as in Chapter 3. 
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Let us follow the same hedging strategy as before and choose 
A = aV/dS. The number of assets held is therefore 

where this has been evaluated at time t and asset value S. After a 
time-step St and rehedging, the number of assets we hold becomes 

dV 
-(S + SS, t + St). 
d S  

This is evaluated at the new time and asset price. On subtracting the 
former from the latter we find the number of assets we have traded to 
maintain a hedged position. This is 

We can apply Taylor's theorem to expand the first term on the right- 
hand side for small SS and 6t: 

Since SS = a~q5& + O(&), the dominant term is that which is pro- 
portional to SS; this term is O(&?) whereas the other terms are O(&). 
We find that to leading order the number of assets bought (sold) is 

Thus the expected transaction cost in a time-step is 

(The factor J2/;; comes from calculating the expected value of 141 using 
(2.3).) With our choice of A and with (16.2) as the expected transaction 
cost, we can calculate the expected change in the value of our portfolio 
from (16.1): 

Observe that, except for the modulus sign, the new term above, which 
is proportional to the transaction costs, is of the same form as the second 
S derivative that has appeared before. 
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If we assume that the holder of the option expects to make as much 
from his portfolio as if he had put the money in the bank, then we can 
replace the &[6II] in (16.3) with r ( V  - S a V / a S )  6t  as before to yield an 
equation for the value of the option: 

The financia1 interpretation of the term that is not present in the usual 
Black-Scholes equation is clear if we recall the comments in the section 
on hedging. The second derivative of the option price with respect to 
the asset price is the gamma, I' = a 2 v / d S 2 .  This is a measure of the 
degree of mishedging of the hedged portfolio, bearing in mind that the 
time-step is not infinitesimally small. The leading order component of 
randomness has been eliminated - this is delta-hedging - leaving behind 
a small component proportional to the gamma. Thus the gamma is 
related to the amount of rehedging that takes place in the next time 
interval and hence to the expected transaction costs. 

The equation - which is a nonlinear parabolic partial differential equa- 
tion, one of the few such in finance - is also valid for a portfolio of 
derivative products. This is the only time in this book that we notice 
any difference between single options and a portfolio of options. In the 
presence of transaction costs the value of a portfolio which is the sum 
of individual options is not the same as the sum of the values of the in- 
dividual components. Thus it is to be expected that (16.4) is nonlinear. 
We can best see this by taking a very extreme case. 

Suppose we have positions in two cal1 options with the same exercise 
price and the same expiry date and on the same underlying asset. How- 
ever, one of these is held long and the other short. Our net position is 
therefore zero. Our book of options is so large that we do not notice the 
cancellation effect of the two opposite positions and so decide to hedge 
each of them separately. Because of transaction costs we lose money at 
each rehedge on both options. At expiry we have a negative net balance, 
since the two payoffs cancel out but the costs remain. This contrasts 
greatly with our net balance at expiry if we realise that our positions 
are opposite. In the latter case we never rehedge, which leaves us with 
no transaction costs and a net balance of zero at  expiry. 

We give numerical results for a portfolio of options below. First, 
however, we consider the effect of costs on a single option held long. We 
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know t hat 

for a single call or put held long in the absence of transaction costs, as 
can be shown by differentiating (3.17) and (3.18). Let us postulate that 
this is true for a single call or put when transaction costs are present. 
We thus drop the modulus sign from (16.4) for the moment. With the 
notation 

the equation for the value of the option is identical to the Black-Scholes 
value with the exception that the actual variance a2 is replaced by the 
modified variance e2. Thus our assumption that d2v/ds2 > O is true 
for a single vanilla option even in the presence of transaction costs. This 
is one way of valuing a long position on an option with transaction costs. 

For a short option position we change al1 the signs in the above analysis 
with the exception of the transaction cost term, which must always be 
a drain on the portfolio. We then find that the option is valued using 
the new variance 

The results (16.5) and (16.6) show that a long position in a single call 
or put has an apparent volatility that is less than the actual volatility. 
This is because when the asset price rises the owner of the option must 
se11 some assets to remain delta-hedged; however, the effect of the bid- 
offer spread on the underlying is to reduce the price at  which the asset 
is sold and so the effective increase in the asset price is less than the 
actual increase. The converse is true for a short option position. 

Staying with a single call or put, we can get some idea of the total 
transaction costs associated with the above strategy by examining the 
difference between the value of an option with the modified variance and 
that with the usual variance; that is, the difference between the value 
of the option taking into account the costs and the Black-Scholes value. 
Thus consider 

with the obvious notation. Expanding this expression for small n we 
find that it becomes 
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Since we know the formula for a European call option we find the 
expected spread to be 

where N(di) has its usual meaning. 
Perhaps the most important quantity that appears in this model is 

If K » 1 then the transaction costs term swamps the basic variance. 
This implies that costs are too high and that the chosen 6 t  is too small. 
The portfolio is being rehedged too often.' 

If K « 1 then the costs term affects only the basic variance marginally. 
This implies very low transaction costs. Hence 6t  is too large, and it 
should be decreased to minimise risk. The portfolio is being rehedged 
too seldom. 

16.3 Portfolios of Options 

We now consider the valuation of portfolios of options. For a general 
portfolio of options, the gamma, d2v/dS2, is not of one sign. In this 
case we cannot drop the modulus sign. Since the problem is nonlinear 
we must in general solve equation (16.4) numerically, except in some 
very special cases, such as the vanilla option mentioned above, where 
the gamma does not change sign. The numerical solution is most eas- 
ily achieved by an obvious generalisation of the explicit finite-difference 
method of Section 8.4 and exercise 9 of Chapter 8. The implicit methods 
of Chapter 8 can be used, but they require the solution of systems of non- 
linear equations and this reduces their efficiency and relative advantage 
over the explicit method. 

In Figures 16.1 and 16.2 we show the value of a long bullish vertical 
spread (one long call with E = 45 and one short call with E = 55) 
and the delta at six months before expiry for the two cases, with and 
without transaction costs. The volatility is 0.4 and the interest rate 
0.1. The bold curve shows the values in the presence of transaction 

' If the transaction costs are very large or the portfolio is rehedged very often, then 
it is possible to have n > 2 ~ s .  If this is the case then the diffusion equation 
has a negative coefficient fo; a long option position and is thus ill-posed. This 
is because, although the asset price may have risen, its effective value due to  the 
addition of the costs will have actually dropped. 
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Figure 16.1 The value of a bullish vertical spread with (bold) and without 
transaction costs. The payoff is also shown. 

Figure 16.2 The delta for a bullish vertical spread prior to and a t  expiry with 
(bold) and without transaction costs. 
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Figure 16.3 The value of a butterfly spread with (bold) and without transac- 
tion costs. 

costs and the other curve in the absence of transaction costs. In this 
example K = 0.25. The latter is simply the Black-Scholes value for the 
combination of the two options. The bold line approaches the other line 
as the transaction costs decrease. 

In Figures 16.3 and 16.4 we show the value of a long butterfly spread 
and its delta, before and at expiry. In this example the portfolio contains 
one long call with E = 45, two short calls with E = 55 and another long 
call with E = 65. The results are with one month until expiry for the two 
cases, with and without transaction costs. The volatility, the interest 
rate and K are as in the previous example. 

Further Reading 

Al1 the material of this chapter is based on the model of Leland (1985) 
as extended to portfolios of options by Hoggard, Whalley & Wilmott 
(1994). 
Boyle & Emanuel (1980) explain some of the problems associated with 
the discrete rehedging of an option portfolio. 
Gemmill (1992) gives an example taken from practice of the effect of 
transaction costs on a hedged portfolio. 
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Figure 16.4 The delta for a butterfly spread with (bold) and without trans- 
action costs. 

m Whalley & Wilmott (1993) discuss various hedging strategies and de- 
rive more nonlinear equations using ideas similar to those in this chap  
ter. 

m For alternative approaches involving 'optimal strategies' see Hodges 
& Neuberger (1989), Davis & Norman (1990) and Davis, Panas & 
Zariphopoulou (1993), and the asymptotic analyses of Whalley & 
Wilmott (1993, 1994a,b) for small levels of transaction costs. 
Dewynne, Whalley & Wilmott (1994) discuss the pricing of exotic 
options in the presence of costs. 

Exercises 

1. Generalise the analysis of this chapter to include transaction costs which 
have three components: a fixed cost at each transaction, a cost propor- 
tional to the number of assets traded and a cost proportional to the 
value of the assets traded (only the last is included in our analysis 
here). 

2. Continuing with the theme of a more general cost structure, show that 
under this general cost structure option prices can become negative. 
1s this financially reasonable? In the light of this, can the model be 
improved? 
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3. When the option's garnma a2V/aS2 is of one sign it is simple to  adjust 
the volatility to accommodate transaction costs. In other cases it is 
much harder to  find explicit solutions. Consider instead, therefore, the 
simpler nonlinear diffusion equation 

Solve this equation for al1 x with the initial data 

4. If K = ~ / a &  is small then it is posible to  solve (16.4) by iteration. 
What effect does this have on the nonlinear equation? 

5. Suppose you hold a portfolio of options al1 expiring a t  time T .  This 
portfolio has value V(S, t )  satisfying (16.4) with payoff V(S, T )  a t  ex- 
piry. The opportunity arises to issue a new contract having payoff A(S) 
a t  time T .  Find the equation satisfied by the marginal value of the 
new option, assuming that this new contract has only a small value 
compared with the initial portfolio. 





Part four 
Interest Rate Derivative Products 





17 Interest Rate Models and 
Derivative Products 

17.1 Introduction 

One of the biggest assumptions we have so far made in this book is that 
interest rates are constant or, at least, known functions of time. In reality 
this is far from the case. Although the effects of interest rate changes on 
traded-option prices are relatively small, because of their short lifetime, 
many other securities that are also influenced by interest rates have much 
longer duration. Their analysis in the presence of unpredictable interest 
rates is of crucial practica1 importance. In the final part of this book, we 
give a brief introduction to pure interest rate derivative products, and 
then to products depending on both interest rates and an underlying 
asset. 

We begin in this chapter with the subject of bond pricing. We do 
this first under the assumption of a deterministic interest rate. This 
simplification allows us to discuss the effect of coupons on the prices of 
bonds and the appearance of the yield curve, which we define shortly. 
Later in the chapter we relax the assumption of deterministic interest 
rates and present a model which allows the short-term interest rate, the 
spot rate, to  follow a random walk. This leads to a parabolic partial 
differential equation for the prices of bonds and to models for bond 
options and many other interest rate derivative products. 

17.2 Basics of Bond Pricing 

A bond is a contract, paid for up-front, that yields a known amount on 
a known date in the future, the maturityl date, t = T. The bond may 
also pay a known cash dividend (the coupon) at fixed times during 

l Convention has it that bonds 'mature' while options 'expire'. 
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the life of the contract. If there is no coupon the bond is known as 
a zero-coupon bond. Bonds may be issued by both governments or 
companies. The main purpose of a bond issue is the raising of capital, 
and the up-front premium can be thought of as a loan to the government 
or the company. 

The problem of valuing a bond can be illustrated by the question 

a How much should 1 pay now to get a guaranteed $1 in 10 years' time? 

As with option models we aim to find the fair value of the contract. 
In this example the life-span of the bond is 10 years, in contrast to a 
typical equity option's life-span of nine months or less. For this reason 
the modelling of any time-dependent process must be more accurate 
when pricing bonds. It is not true, for instance, that interest rates 
remain constant for 10-year periods nor are they known in advance over 
such a period. However, we begin this chapter with the simplest model 
for a bond using the assumption that r is a known function of time. 
Having established a theoretical framework, we then introduce a model 
for stochastic interest rate movements. 

17.2.1 Bond Pricing with Known Interest Rates 

We continue to use the notation V to represent the value of the contract, 
in this case a bond. If the interest rate r(t) and coupon payment K(t)  are 
known functions of time, the bond price is also a function of time only: 
V = V(t). (The bond price is, of course, also a function of maturity date 
T,  but we suppress that dependence except when it is important.) If 
this bond pays the owner Z at time t = T then we know that V(T) = 2. 
We now derive an equation for the value of the bond at a time before 
maturity, t < T. 

Suppose we hold one bond. The change in the value of that bond in 
a time-step dt (from t to t + dt) is 

dV 
- dt. 
dt 

If during this period we have received a coupon payment of K(t)  dt, 
which may be either in the form of continuous or discrete payments or 
a combination, our holdings including cash change by an amount 

($ + ~ ( t ) )  dt. 
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Arbitrage considerations again lead us to equate this with the return 
from a bank deposit receiving interest at a rate r(t). Thus we conclude 
that 

the right-hand side is the return we would have received had we con- 
verted our bond into cash at time t. The solution of this ordinary dif- 
ferential equation is easily found with the help of the integrating factor 

e - St r (7 )dr  to be 

the arbitrary constant of integration has been chosen to ensure that 
V(T) = 2. Note that a positive coupon payment increases the value of 
the bond at  time t.  

Now suppose that there are zero-coupon bonds of al1 possible maturity 
dates, that is, there are bonds with K(t )  = O. Still supposing that the 
interest rate is deterministic, we have 

from (17.2) with K = O (we have now made the dependence on T ex- 
plicit). If the bond prices are quoted today, at  time t,  for al1 values of 
the maturity date T then we know the left-hand side of (17.3) for al1 
values of T. Thus 

- lT .(,) d~ = 10g (v(t; T)/Z) . (17.4) 

If V(t; T) is differentiable with respect to T,  then differentiating (17.4) 
we have 

If the market prices of the zero-coupon bonds genuinely reflect a known, 
deterministic interest rate then that interest rate at  future dates is given 
from the bond prices by (17.5). Since the interest rate r is positive we 
must have 

Thus the longer a bond has to live, the less it is now worth; this result 
is financially clear. 
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17.2.2 Discretely Paid Coupons 

Equation (17.8) allows for the payment of a coupon. But what if the 
coupon is paid discretely, as it is in practice, for example, every six 
months? We can arrive at this result by a financia1 argument that will 
be useful later. Since the holder of the bond receives K, at  time t,, 
there must be a jump in the value of the bond across the coupon date 
(if not, there is an obvious arbitrage opportunity). That is, the value 
before and after this date differs by K,: 

V(tc) = V(t:) + K,. 

This will be recognised as a jump condition. This time the realised 
bond price is not continuous. After all, there is a discrete payment at  
the coupon date. This jump condition will still apply when we come to 
consider stochastic interest rates. 

A more mathematical approach is to write K(t) as the sum of delta 
functions, one for each coupon payment. Suppose, for simplicity, that 
there is just one payment of K, at time t, < T. We then have 

We can substitute the delta function into (17.2) to get 

17.3 The Yield Curve 

Despite al1 our assumptions to the contrary, interest rates are not de- 
terministic. For short-dated derivative products such as options the 
errors associated with assuming a deterministic, or even constant, rate 
are small, typically 2%. In dealing with products with a longer lifespan 
we must address the problem of random interest rates. The first step is 
to decide on a suitable measure for future values of interest rates, one 
that enables traders to communicate effectively about the same quantity. 
In the previous section we have seen a definition, (17.5), that gives an 
interest rate from bond price data but this relies on bond prices being 
differentiable with respect to the maturity date. 

The yield curve is another measure of future values of interest rates. 
With the value of zero-coupon bonds V(t; T) taken from real data, define 
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Figure 17.1. Typical yield curves: increasing, decreasing and humped. 

where t is the current time. The yield curve is the plot of Y against 
time to maturity T - t. The dependence of the yield curve on the time 
to maturity is called the term structure of interest rates. This 
definition for Y has advantages over the measure (17.5), since 

bond prices, V( t ;  T),  do not have to be differentiable; 
a continuous distribution of bonds with al1 maturities is not required. 

Y has the same dimensions as interest rates, i.e. inverse time. The two 
measures of future interest rates, (17.5) and (17.7), are the same when 
interest rates are constant. 

It is observed from market data that yield curves typically come in 
three distinct shapes, each associated with different economic conditions: 

increasing - this is the most common form for the yield curve. Future 
interest rates are higher than the short-term rate, since it should be 
more rewarding to tie money up for a long time than for a short time; 
decreasing - this is typical of periods when the short rate is high but 
expected to fall; 
humped - again the short rate is expected to fall. 

These are al1 illustrated in Figure 17.1. 
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17.4 Stochastic Interest Rates 
In view of our uncertainty about the future course of the interest rate, 
it is natural to model it as a random variable. For the rest of this 
chapter we assume that this is the case. To be technically correct we 
should specify that r is the interest rate received by the shortest possible 
deposit. If one is willing to tie money up for a long period of time then 
usually one gets a higher overall rate to offset the risk that the short 
rate will rise rapidly. (This would give an upward sloping yield curve.) 
The interest rate for the shortest possible deposit is commonly called 
the spot rate. 

The subject of modelling interest rates is still in its infancy and we 
do not have the space here to discuss it in any depth. For these reasons 
we simply quote a fairly general interest rate model which, for reasons 
we mention below, has become popular. 

In the same way that we proposed a model for the asset price as a 
lognormal random walk let us suppose that the interest rate r is governed 
by a stochastic differential equation of the form 

dr = w(r,  t )  dX + u(r,  t )  d t .  (17.8) 

The functional forms of w(r, t )  and u(r,  t )  determine the behaviour of 
the spot rate r .  We use this random walk to derive a partial differential 
equation for the price of a bond in a way similar to our derivation of the 
Black-Scholes equation. Later we choose functional forms for u and w 
that give a reasonable model for the spot rate. 

17.5 The Bond Pricing Equation 

When interest rates follow the stochastic differential equation (17.8) a 
bond has a price of the form V ( r ,  t ) ;  the dependence on T will be made 
explicit only when necessary. 

Pricing a bond is technically harder than pricing an option, since 
there is no underlying asset with which to hedge: one cannot go out and 
'buy' an interest rate of 5%. In this situation the only alternative is to 
hedge with bonds of different maturity dates. For this reason we set up 
a portfolio containing two bonds with different maturities, Ti and T2. 
The bond with maturity TI has price VI and the bond with maturity T2 
has price V2. We hold one of the former and a number -A of the latter. 
Thus 

II = Vl - AV2. (17.9) 
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The change in this portfolio in a time dt is 

where we have applied It6's lemma to functions of r and t. 
From (17.10) we see that the choice 

eliminates the random component in dll. We then have 

= r (v1 - 212 v2) dt, 

= rIIdt 
where we have used arbitrage arguments to set the return on the portfolio 
equal to the risk-free rate, the spot rate. 

Gathering together al1 VI terms on the left-hand side and al1 V2 terms 
on the right-hand side we find that 

This is one equation in two unknowns. However, the left-hand side is a 
function of Ti but not T2, and the right-hand side is a function of T2 
but not Ti. The only way for this to be possible is for both sides to be 
independent of the maturity date. Thus, dropping the subscript from 
v ,  

for some function a(r, t). In view of later developments it is convenient 
to write 

a(., t )  = w(r, t)X(r, t )  - u(r, t); 

for given w(r, t) (not identically zero) and u(r, t) this is always possible. 
The function X(r, t) is as yet unspecified. 

The zero-coupon bond pricing equation is therefore 
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In order to solve (17.11) uniquely we must pose one final and two 
boundary conditions. The final condition corresponds to the payoff on 
maturity and so 

V(r, T) = 2. 

Boundary conditions depend on the form of u(r, t) and w(r, t )  and are 
discussed later for a special model. 

It is a simple matter to incorporate coupon payments into the model. 
The result is 

where K is the coupon payment and may be a function of r and t. We 
leave the demonstration of this as an exercise for the reader. 

When this coupon is paid discretely we can write K(t)  as a sum of - 

delta functions. F'rom the mathematical and financia1 arguments of Sec- 
tion 17.2.2 we find that if there is a discrete payment of Kc at time tc 
then V(r, t )  must satisfy the jump condition 

17.5.1 The Market Price of Risk 

We can now give an elegant interpretation of the hitherto mysterious 
function X(r, t). Instead of holding the hedged portfolio that we con- 
structed above, suppose that we hold just one bond with maturity date 
T. In a time-step dt this bond changes in value by 

F'rom (17.11) this may be written as 

The presence of dX in (17.12) shows that this is not a riskless portfolio. 
The right-hand side may be interpreted as the excess return above the 
risk-free rate for accepting a certain leve1 of risk. In return for taking 
the extra risk the portfolio profits by an extra X dt per unit of extra risk, 
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dX. For this reason the function X is often called the marke t  pr ice of 
risk. 
-- 

Technical Point: The Market  Price of Risk for Assets. 
In Chapter 3 we derived the Black-Scholes equation by constructing a 
portfolio with one option and a number -A of the underlying asset. 
Suppose that instead we were to follow the ana.lysis above with a portfolio 
of two options with different maturity dates (or different exercise prices, 
for that matter), so that 

As above, we find that 

this-is simply (17.11) with S instead of r ,  pS instead of u, As instead of 
X and OS instead of w. Now recall that hedging options is easier than 
hedging bonds because of the existence of a tradable underlying asset. 
In other.words, V = S must itself be a solution of (17.13). Substituting 
V = S into (17.13) we find that 

this is the market price of risk for assets. Now putting As = (p - T)/U 
into (17.13) we arrive at 

this is the Black-Scholes equation, which contains no reference to p or 

As. 

17.6 Solutions of the Bond Pricing Equation 
Experience shows that the coefficients in (17.8) must have a more com- 
plicated form than the rather simple coefficients in the basic random 
walk for asset prices that we have used so far. Compensating for this 
is the fact that in the yield curve we have some detailed information 
about the behaviour of r, and it is important to be able to  use this data 
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effectively. The solution of the 'inverse problem', namely to derive the 
random walk from the yield curve, is much easier if we have explicit for- 
m u l ~  that relate bond prices to interest rates. Thus, we consider only 
certain special functional forms for w and u, which can be shown to be 
the most general such forms compatible with a particularly tractable 
class of solutions of the bond pricing equation. 

We assume that w and u have the form 

The functions a ,  0, y, 77 and X that appear in (17.14) and (17.15) are 
functions of time. They are at our disposal to fit the data as well as possi- 
ble; note, though, that the special form of (17.14) and (17.15) means that 
X(r, t) does not appear explicitly in the bond-pricing equation (17.11). 
By suitably restricting these time-dependent functions, we can ensure 
that the random walk (17.8) for r has the following economically plsu- 
sible properties: 

e We can avoid negative interest rates: the spot rate can be bounded 
below by a positive number if we insist that a(t)  > O and P 2 O. The 
lower bound is then P/a.  (In the special case a(t) = O we must take 
P(t) < O.) Note that r can still go to infinity, albeit with probability 
zero. 

e We can make the spot rate mean reverting. For large (small) r the 
interest rate will tend to decrease (increase) towards the mean, which 
may be a function of time. 

In addition, we require that if r reaches its lower bound O l a ,  it there- 
after increases. This requirement can be shown to force 

and it is discussed further below. 
There are many interest rate models, associated with the names of 

their inventors. The stochastic differential equation (17.8) incorporates 
the models of 

e Vasicek ( a  = O, no time dependence in the parameters); 
e Cox, Ingersoll & Ross (P = O ,  no time dependence in the parameters); 
e Hull & White (either a = O or P = O but al1 parameters time- 

dependent). 
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Thus we arrive at (17.14) and (17.15) as the choices for u and w. 
We omit the details, but the substitution of (17.14) and (17.15) into 

(17.18) and (17.19) and equating powers of r yields the following equa- 
tions for A and B :  

d A - = q ( t ) ~  + ;p(t)g2 
dt 

(17.20) 

and 

In order to satisfy the final data that V(T,  T) = Z we must have 

A(t ;  T )  = O and B ( t ;  T )  = O .  

17.6.1 Analysis for Constant Pammeters 

The solution for arbitrary a ,  P, y and q is found by integra'ting the 
two ordinary differential equations (17.20) and (17.21). Generally this 
cannot be done explicitly, but a simple case is when a ,  P, y and q are 
al1 constant. In this case it is found that 

2 
- A  = alCf2 log(a - B )  + ($2 - ; P ) b l o g ( ( ~  + b)/b) + ~ B B  - alCf2 loga, 
a 

and 

where 

and 

$1 = Jm' and $2 = rl + aB/2 
a + b  ' 

When al1 four of the parameters are constant it is obvious that both 
A and B are functions of only the one variable r = T - t ;  this would not 
necessarily be the case if any of the parameters were time-dependent. 
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A wide variety of yield curves can be predicted by the model, including 
increasing, decreasing and humped. As T --+ cm, 

and the yield curve Y has long-term behaviour given by 

Thus for constant and fixed parameters the model leads to a fixed long- 
term interest rate, independent of the spot rate. 

17.6.2 Fitting the Parameters 

The general stochastic process developed in this chapter involves four 
time-dependent parameters, a ,  P, y and v. If these parameters are 
assumed to be constant then explicit forms for A, B and hence bond 
prices are easily obtained. 

However, it is reasonable to conjecture that the market's expectations 
about future interest rates are time-varying. This time dependence may, 
for example, arise from the cyclical nature of the economy. We now give 
an overview of a possible approach to incorporating one time-dependent 
parameter in the general model while the other three parameters are 
kept constant. When introducing time-dependent parameters, careful 
consideration must be given to what information is available from, and 
relevant to, the market. 

The methodology of this section is as follows. We insist that a, P and 
y are constant and allow 77 to be a function of time. We see that this 
gives sufficient freedom to fit the market yield curve exactly. 

The first step is to determine a and P. There is sufficient information 
in historic data to find these if we know the lower bound for interest rates 
and the volatility of the spot rate. Having determined a and we then 
go on to find y. This is found by considering the correlation between 
the spot rate and the slope of the yield curve. Finally, the function q(t) 
is chosen to fit the full yield curve exactly. This involves the solution of 
an integral equation. 

Bounding T Below 

Suppose that we are interested in valuing a 10-year bond. It is possible 
that an investor has a view about the likely lower bound for interest rates 
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over the next 10 years. Alternatively, it may be reasonable to postulate 
that a lower bound for interest rates over this period is similar to the 
smallest value achieved in the past 10 years. This is analogous to using 
the historic volatility over a period comparable to the life of the option 
as a volatility measure in option pricing. In any event, let us suppose 
that a lower bound has been decided on. In this case the quantity ,Ola 
is 'known'. 

The Spot Rate Volatility 

The spot rate volatility is simply 

Again, this is easy to estimate, if it is assumed not to be time-dependent. 
Thus from the historic lower bound and the current volatility we have 
sufficient information to estimate both a and B. 

The Volatility of the Yield Cuwe Slope 

It is easy to solve (17.20) and (17.21) by Taylor series for values of t 
close to T.  Such an analysis shows that the yield curve Y, which is now 
given by 

can be approximated for times close to maturity by 

We can see from this that the slope of the yield curve at the short end 
(i.e. at T = t )  is given by 

Note that this model predicts that this slope depends on the spot rate 
itself. 

If the spot rate is indeed mean-reverting, which is the case if y ( t )  is 
positive, an increase in the spot rate r leads to a decrease in the slope 
(17.24): if the spot rate increases, the yield curve flattens. Moreover, 
as the spot rate follows a random walk, so does the slope of the short 



17.6 Solutions of the Bond Pricing Equation 2 79 

rate. Since the two are linked by the deterministic equation (17.24), 
these changes are perfectly correlated: 

ds = -;y dr. 

An examination of the data for r and s gives y as minus twice the 
covariance of ds and dr divided by the variance of dr. It may happen that 
the data give a negative value for y, so that the spot rate random walk 
and the local yield curve slope random walk are positively correlated: if 
the spot rate drops then the yield curve steepens. This is indicative of 
a spot rate which is not mean-reverting. 

The Whole Yield Curve 

So far we have fitted the constant parameters a,  B and y in a simple 
and practica1 manner. We now come to choose q(t) so as to fit the term 
structure in the market exactly. We see that this leads to an integral 
equation for q(t) which must be solved numerically except in simple 
cases. 

We can integrate (17.20) explicitly to find that 

where B ( T  - t )  is given by (17.23) with the obvious notation; it is only 
a function of T - t. This expression is known exactly except for the final 
integral term involving q(t). 

Suppose that we wish to fit the yield curve once only, at time t*. 
At this time the spot rate is r*, the yield curve, which is known from 
market data, is Y*(T) and the four parameters in the model are denoted 
by a*, B*, y* and q*. We are using asterisks to denote the values of the 
parameters and data at the point in time t*. 

If we now substitute the known yield curve into (17.25) we find that 
q*(t) satisfies the integral equation 

l: q*(s)B(T-S) ds = Br*-Y*(T-t*)-;B* B~(T-S)  ds. (17.26) 1: 
This must be solved for t* I T < a. Once the solution of this equation 
has been found we know al1 of a*, P,  y* and q*(t). Substitution of 
these into (17.23) gives the expression for B and then into (17.25) gives 
A:The price of any bond is then given by 
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It is possible to solve (17.26) exactly by taking Laplace transforms, 
since the equation is of Volterra type with a convolution kernel. Unfor- 
tunately, B does not have a simple transform and thus this method is 
impractical. Fortunately, the integral equation is not difficult to solve 
numerically, but we do not discuss this any further here. 

We have fitted the yield curve exactly at time t*. In so doing we have 
found the three constant parameters a, P and y and the time-dependent 
parameter q. The model is only strictly valid if, when we come to refit 
these parameters at a later date, they remain the same. This is unlikely 
to be the case and is because the basic rnodel (17.8) has been chosen for 
its analytic properties and not on the basis of any economic modelling. 
This is a weakness of many currently popular models. 

17.7 The Extended Vasicek Model of Hull & White 

In the Vasicek (1977) model as extended to include time-dependent pa- 
rameters by Hull & White (1990), a( t )  = O and < O. Although Hull 
& White advocate a very sophisticated choice of P(t), y(t) and q(t) 
(al1 time-dependent) to fit spot rate volatility, yield curve volatility for 
al1 maturities etc., we allow only q to be time-dependent as suggested 
above. 

In this model a = 0, and we assume that P* and y* have been deter- 
mined at time t*. In this case B(T - t) simplifies to 

and the integral equation for q* becomes 

Here F* is a known function of T,  given by the right-hand side of (17.26), 
which in particular depends on integrals of B and the current state of the 
yield curve. For this integral equation to have a solution we must have 
F(0) = O. That this is indeed the case can be seen from the right-hand 
side of (17.26). 

Although (17.27) may be solved by Laplace transform methods as 
suggested above, it is particularly easy to solve by differentiating the 
equation twice with respect to T.  After the first differentiation we have 
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where ' denotes d/dT. The second differentiation gives 

q*(T) - T* J*T q*(s)e-'*(~-')ds = F*ll(T). 

We can eliminate the integrals between these two expressions to find 
that 

q*(T) = Fa"(T) + y*F*'(T). 

The expression for q*(T) is 

P* $*(TI = -Y*II(T) - ~ * Y * / ( T )  - P*(T - t*) - - (1 - e- 
2T* 2'-(T-t*)) . 

(17.28) 
F'rom this expression we can now find the function A(t; T)  using (17.20). 
We leave this simple task as an exercise for the reader. 

17.8 Bond Options 

The theoretical model for the spot rate presented above allows us to 
value contingent claims such as bond options. A bond option is identi- 
cal to an equity option except that the underlying asset is a bond. Both 
European and American versions exist. 

As a simple example, we derive the differential equation satisfied by a 
call option, with exercise price E and expiry date T, on a zero-coupon 
bond with maturity date TE 2 T. Before finding the value of the option 
to buy a bond we must find the value of the bond itself. 

Let us write VB(r, t;  TE) for the value of the bond. Thus, VE satisfies 

with 

VB(~ ,  TB, TB) = 

and suitable boundary conditions. Now write CB(r, t )  for the value of 
the call option on this bond. Since CB also depends on the random 
variable r, it too must satisfy equation (17.29). The only difference is 
that the final value for the option is 

CB (r, T)  = max(V~ (r ,  t; TB) - E, O). 

This idea can readily be generalised, as we now see. 
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17.9 Other Interest Rate Products 

There is a large, and ever-growing, number of different interest rate 
derivative products. We do not have the space to include any but the 
most common. However, the following examples show the way in which 
many such products can be incorporated into the same partial differen- 
tia1 equation framework. 

17.9.1 Swaps 

An interest rate swap is an agreement between two parties to exchange 
the interest rate payments on a certain amount, the principal, for a 
certain length of time. One party pays the other a fixed rate of interest 
in return for a variable interest rate payment. For example, A pays 9% 
of $1,000,000 p.a. to B and B pays r of the same amount to A. This 
agreement is to last for three years, say. We now value such swaps in 
general. 

Suppose that A pays the interest on an amount Z to B at a fixed 
rate r* and B pays interest to A at the floating rate T. These payments 
continue until time T. Let us denote the value of this swap to A by 
ZV(r, t )  . 

We can accommodate this product into our interest rate framework 
by observing that in a time-step dt A receives ( r  - r*)Zdt. If we think 
of this payment as being similar to a coupon payment on a simple bond 
then we find that 

with final data 

V(r, T) = 0. 

Note that r can be greater or less than r*  and so V(r,t) need not be 
positive. Indeed, a swap is not necessarily an asset but can be a liability 
depending on, for example, the current state of the yield curve. 

1 7.9.2 Caps and Floors 

A cap  is a loan at the floating interest rate but with the proviso that the 
interest rate charged is guaranteed not to exceed a specified value, the 
cap, which we denote by r*. The loan of Z is to be paid back at time 
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T. We readily find that the value of the capped loan, ZV(r, t), satisfies 

dV a2 V - + S w 2 -  
dV + (u - Xw)- - TV + min(r, r*) = 0, (17.30) 

dt dr2 ar 
with 

V(r,T) = l. 

A floor is similar to a cap except that the interest rate does not go 
below r* . To value this contract simply replace min(r, T*) by max(r, r*) 
in (17.30). 

17.9.3 Swaptions, Captions and Floortions 

Having valued swaps, caps and floors it is easy to value options on these 
instruments: swaptions, captions and floortions. Suppose that our 
swap (cap or floor) which expires at  time Ts has value Vs (r, t )  for t 5 Ts. 
An option to buy this swap (a cal1 swaption) for an amount E at time 
T < Ts has value V(T, t)  where 

with 

V(T, T)  = max (Vs(r, T) - E, O) . 
Thus we solve for the value of the swap itself first, and then use this value 
as the final data for the value of the swaption. Captions and floortions 
are treated similarly. 

F'urther Reading 
We have given only a brief account of the rapidly developing subject 
of interest rate modelling. The interested reader will find many more 
details in the original papers listed below. 

See the original papers by Dothan (1978), Vasicek (1977), Cox, In- 
gersoll & Ross (1985), Ho & Lee (1986) and Black, Derman & Toy 
(1990). For details of the general model see the papers by by Pear- 
son & Sun (1989), Duffie (1992), Klugman (1992) and Klugman & 
Wilmott (1993). 
A more sophisticated choice of time-dependent parameters is described 
by Hull & White (1990). 
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e Klugman & Wilmott (1993) solve the integral equation asymptotically 
for small a. Baker (1977) gives details of numerical treatments for 

integral equations. 
e See Hull (1993) for details of other interest rate products and their 

uses in practice. 

Exercises 

1. From expression (17.28) find the function A(t; T )  using (17.20). 

2. Verify the local analysis of the bond pricing equation near r = @/a. 

3. Suppose that a bond pays a coupon K ( r ,  t ) .  Show that the bond pricing 
equation is modified to 

4. In practice a swap contract entails the exchange of interest payments 
at discrete times, usually every quarter. How does this affect the swap 
pricing partial differential equation? 

5. Consider a swap having one discrete exchange of payments at time T 
only. This contract satisfies 

with 

V ( r , T )  = r - r * .  

The final condition represents an exchange of fixed and floating pay- 
ments. Find explicit solutions to this problem for each of the interest 
rate models we have described here. 

6. Find the Taylor series expansion of the zero-coupon bond about the 
maturity date for the case 

7. Perform a Taylor series expansion of the swap with a single exchange 
around the time of this exchange. 

8. It is common market practice to use the Black-Scholes formulze to value 
options on bonds. What are the advantages and disadvantages of such 
an approach? 
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9. Suppose that an interest rate derivative has the payoff at t = T 

Draw this function. On the same graph sketch the value of the contract 
at various times up to expiry. What is the behaviour of the contract for 
large r? 

10. Collect time-series data for the spot rate and the yield curve, either 
from back issues of newspapers or by writing to a bank. Using this 
data, plot a scatter diagram of the yield curve slope at the short end 
against the spot rate. Common models for the spot rate have the slope 
and spot rate related by (17.24). 1s this borne out by your results? 

11. Another interest rate model (Cox, Ingersoll & Ross 1990) has 

and 

w = br3I2. 

Write down the zero-coupon bond pricing equation. Does this equation 
have any special properties? 
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18.1 Introduction 

In this final chapter, we bring together the models for asset prices and 
interest rates, in order to model securities that depend on both. For sim- 
plicity, we concentrate on the valuation of convertible bonds, although 
the ideas can easily be applied elsewhere. With the assumption of deter- 
ministic interest rates, these bonds are very similar to American vanilla 
options. We first illustrate the ideas with constant interest rates and, at  
the end of the chapter, we briefly bring together convertible bonds and 
stochastic interest rates in a two-factor model. 

18.2 Convertible Bonds 

A convertible bond has many of the same characteristics as an ordi- 
nary bond but with the additional feature that the bond may, at any 
time of the owner's choosing, be exchanged for a specified asset. This 
exchange is called conversion. The convertible bond on an underlying 
asset (with price S) returns Z, say, at time T unless at  some previous 
time the owner has converted the bond into n of the underlying asset.' 
The bond may also pay a coupon to the holder. 

Since the bond price depends on the value of that asset we have 

the contract value now depends on an asset price. It also depends on the 
time to maturity, but we usually suppress this dependence. Repeating 

l We have implicitly assumed that the number of assets controlled by al1 the existing 
convertible bonds is small and that conversion does not aífect the value of the 
issuing company. For further details see the Technical Point below. 
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the Black-Scholes analysis, with a portfolio consisting of one convertible 
bond and -A assets, we find that the change in the value of the portfolio 
is 

where we have included a coupon payment of K(S, t)  dt on the bond. 
As before, we choose 

to eliminate risk from this portfolio. 
The return on this risk-free portfolio is at most that from a bank 

deposit and so 

for the bond price. This inequality is recognised as the basic Black- 
Scholes inequality but with the addition of the coupon payment term. 
The final condition is 

V(S, T) = Z. 

Recalling that the bond may be converted into n assets we have the 
constraint 

V 2 nS. 

In addition to this constraint, we require the continuity of V and dV/dS. 
Thus the convertible bond is similar to an American option problem. 

It is interesting to note that the final data itself does not satisfy the 
pricing constraint. Thus, although the value at maturity may be Z the 
value just before is 

Boundary conditions are 

and 
V(O, t )  = z ~ - ~ ( ~ - ~ ) ;  

this last condition assumes (as can be verified a posteriori) that it is not 
optimal to exercise when S = 0. 

This problem is as easy to solve numerically as an American option 
problem. It can be shown that an increase in D (respectively K )  makes 
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Figure 18.1 The value of a convertible bond with constant interest rate. See 
text for details. 

early exercise more (less) likely. When K = D = O the constraint comes 
into play only at  expiry and the convertible bond can be valued explicitly 
as a combination of cash and a European call option. In Figures 18.1 
and 18.2 are shown the values of convertible bonds with Z = 1, n = 1, 
r = 0.1, = 0.25 and with one year before maturity. In both cases there 
are no coupon payments. In Figure 18.1 there is no dividend paid on 
the underlying but in Figure 18.2 we have Do = 0.05. Thus in the latter 
case there is a free boundary: for sufficiently large S the bond should 
be converted. 

Sometimes the bond may be converted only during specified periods. 
This is called in termi t ten t  conversion. If this is the case then the 
constraint needs to be satisfied only during these times; at  other times 
the contract is European. 

18.2.1 Cal1 and Put Features 
The convertible bond permits the holder to swap the bond for a cer- 
tain number of the underlying asset at  any time of his choosing. Some 
bonds also have a call feature, which gives the company the right to 
purchase back the bond at any time (or during specified periods) for 
a fixed sum. Thus the bond with a call feature is worth less than the 
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Figure 18.2 The value of a convertible bond with constant interest rate and a 
dividend paid on the underlying. See text for details. 

bond without, since it cedes a right to the company. Such a call feature 
is easily modelled. 

Suppose that the bond can be repurchased by the company for an 
amount Mi. The elimination of arbitrage opportunities leads to 

V(S, t)  5 Mi. 

Thus we must solve a constrained problem in which our bond price 
is bounded below by n S  and above by Mi. (If n S  > Mi, the bond 
should have been either converted or called, so it should not exist.) 
Again, V and dV/dS must be continuous. As with the intermittent 
conversion feature it is also simple to incorporate the intermittent call 
feature, according to which the company can repurchase the bond only 
during certain time periods. 

Some convertible bonds incorporate a put feature. This is a further 
right belonging to the owner of the bond. It allows the holder to return 
the bond to the issuing company for an amount Mz, say. Now we must 
impose the constraint 

V(S,t) 2 M2. 

This feature increases the value of the bond. 
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18.3 Convertible Bonds with Random Interest Rate 

When interest rates are stochastic, a convertible bond has a value of the 
form 

V = V(S, r, t ) ,  

with the dependence on T suppressed. The value of the convertible bond 
is now a function of both S and r as independent variables (previously, 
r was just a parameter). 

We assume that the asset price is governed by the standard model 

dS = aS dXi + p S  dt, (18.1) 

and the interest rate by 

dr = w(r, t) dX2 + u(r, t )  dt. (18.2) 

Since we are only modelling the bond, and do not intend to find explicit 
solutions, we allow u and w to be any functions of r and t. Observe that 
in (18.1) and (18.2) the Wiener processes have been given subscripts. 
This is because we are allowing S and r to be governed by two different 
random variables; this is a two-factor model. Thus, although dX1 
and dX2 are both drawn from normal distributions with zero mean and 
variance dt, they are not necessarily the same random variable. They 
may, however, be correlated and we assume that 

E [dX1 dX2] = p dt, 

with -1 5 p(r, S, t )  5 1. We can still think of (18.1) and (18.2) as recipes 
for generating random walks for S and'r, but now at each time-step we 
must draw two random numbers. 

This is our first (and only) experience in this book of a two-factor 
model, in which there are two sources of risk and hence two independent 
asset-like variables in addition to t. In order to manipulate V(S, r, t )  we 
need to know how It6's lemma applies to functions of two random vari- 
ables. As might be expected, the usual Taylor series expansion together 
with a few rules of thumb result in the correct expression for the small 
change in any function of both S and r (see Exercise 5 of Chapter 2). 

These rules of thumb are: 

dX? = dt; 
dX,2 = dt; 
dX1 dX2 = p dt. 
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18.3 Convertible Bonds with Random Interest Rate 
When interest rates are stochastic, a convertible bond has a value of the 
form 

V = V(S, r, t), 

with the dependence on T suppressed. The value of the convertible bond 
is now a function of both S and r as  independent variables (previously, 
r was just a parameter). 

We assume that the asset price is governed by the standard model 

dS = US dX1 + p S  dt, (18.1) 

and the interest rate by 

dr = w(r, t) dX2 + u(r, t) dt. (18.2) 

Since we are only modelling the bond, and do not intend to find explicit 
solutions, we allow u and w to be any functions of r and t. Observe that 
in (18.1) and (18.2) the Wiener processes have been given subscripts. 
This is because we are allowing S and r to be governed by two different 
random variables; this is a two-factor model. Thus, although dX1 
and dX2 are both drawn from normal distributions with zero mean and 
variance dt, they are not necessarily the same random variable. They 
may, however, be correlated and we assume that 

E [dX1 dX2] = p dt, 

with -1 < p(r, S, t )  < 1. We can stiil think of (18.1) and (18.2) as recipes 
for generating random walks for S and'r, but now at  each time-step we 
must draw two random numbers. 

This is our first (and only) experience in this book of a two-factor 
model, in which there are two sources of risk and hence two independent 
asset-like variables in addition to t. In order to manipulate V(S, r, t )  we 
need to know how It6's lemma applies to functions of two random vari- 
ables. As might be expected, the usual Taylor series expansion together 
with a few rules of thumb result in the correct expression for the small 
change in any function of both S and r (see Exercise 5 of Chapter 2). 

These rules of thumb are: 

dXS = dt; 
dX2 = dt; 
dX1 dX2 = p dt. 
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18.3 Convertible Bonds with Random Interest Rate 

When interest rates are stochastic, a convertible bond has a value of the 
form 

V = V(S, r, t), 

with the dependence on T suppressed. The value of the convertible bond 
is now a function of both S and r as independent variables (previously, 
r was just a parameter). 

We assume that the asset price is governed by the standard model 

dS = aS dX1 + pS dt, (18.1) 

and the interest rate by 

dr = w(r, t) dX2 + u(r, t) dt. (18.2) 

Since we are only modelling the bond, and do not intend to find explicit 
solutions, we allow u and w to be any functions of r and t. Observe that 
in (18.1) and (18.2) the Wiener processes have been given subscripts. 
This is because we are allowing S and r to be governed by two different 
random variables; this is a two-factor model. Thus, although dXl 
and dX2 are both drawn from normal distributions with zero mean and 
variance dt, they are not necessarily the same random variable. They 
may, however, be correlated and we assume that 

E[dX1 dX2] = p dt, 

with -1 5 p(r, S, t )  5 1. We can still think of (18.1) and (18.2) as recipes 
for generating random walks for S and .r, but now at  each time-step we 
must draw two random numbers. 

This is our first (and only) experience in this book of a two-factor 
model, in which there are two sources of risk and hence two independent 
asset-like variables in addition to t. In order to manipulate V(S, r, t)  we 
need to know how It6's lemma applies to functions of two random vari- 
ables. As might be expected, the usual Taylor series expansion together 
with a few rules of thumb result in the correct expression for the small 
change in any function of both S and r (see Exercise 5 of Chapter 2). 

These rules of thumb are: 

dXS = dt; 
dx; = dt; 
dX1 dX2 = p dt. 
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Applying Taylor's theorem to V ( S  + d S ,  r + dr ,  t + d t )  we find that 

To leading order, 

d s 2  = a 2 s 2 d x ?  = a 2 s 2 d t ,  

and 

d S d r  = a S w  d X 1  d X 2  = p a S w  dt .  

Thus It6's lemma for the two random variables governed by (18.1) and 
(18.2) becomes 

d V  d V  d V  
d V  = -dt+ - d S +  -dr 

d t  8s d r  
d 2  V + - a2s2- d 2  V + 2puSw- 

d S d r  + tu2%) dt .  2 ( as2 

Now we come to the pricing of the convertible bond. Let us construct 
a portfolio consisting of one bond with maturity Ti, -A2 bonds with 
maturity date T2 and -Ai o£ the underlying asset. Thus 

The analysis is much as before; the choice 

and 

eliminates risk from the portfolio. Terms involving TI and T2 may be 
grouped together separately to find that, dropping the subscripts, 

d 2  V - + -  d 2 V  + 2paSw- 
d t  2 d S d r  d r2  

d V  d V  + r S -  d S  + (u  - wX)- d r  - rV = O ,  

where again X(r,  S, t )  is the market price of interest rate risk. 



292 Convertible Bonds 

This is the convertible bond pricing equation. Note that it contains 
the known interest rate problem (u = O = w, i.e. Black-Scholes) and 
the simple bond problem (d/dS = O) as special cases. More generally, 
when the underlying asset pays dividends and the bond pays a coupon 
we have 

The final condition and American constraints are exactly as before; 
there is one constraint each for the convertibility feature and the call 
feature. Since this is a diffusion equation with two 'space-like' state 
variables S and r - that is, there are second derivatives of V with respect 
to each of S and r, as well as a cross-term - we need to  impose boundary 
conditions on the limits of the (S , r )  space. In other words, we must 
prescribe V(O,r,t) and V(oo,r,t)  for al1 t ,  V(S ,w , t )  for al1 S and t 
and a second boundary condition on a k e d  r boundary, again for al1 S 
and t.  Some of these boundary conditions are obvious and others, less 
obviously, are a result of insisting that V remain finite. For example, 
for a convertible bond with no call feature we have 

V(0, r, t)  is given by the solution of the simple bond problem (no con- 
vertibility and stochastic interest rates); 

and the last boundary condition, to be applied on the lower r boundary, 
is equivalent to boundedness of V. 

Technical Point: The Issue of New Shares. 
We have assumed in this chapter that the existence of convertible bonds 
does not affect the market worth of the company. In reality, the conver- 
sion of the bond into n shares requires the company to issue n new shares. 
This contrasts with options for which the exercise leaves the number of 
shares unchanged. We do not include any of the details here; however, if 
we let S be the worth of the company's assets, without the bond obliga- 
tion, and N be the number of shares before conversion, we arrive at the 
following problem. 
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Figure 18.3 The value of a convertible bond versus company's assets, allowing 
for dilution on issue of new shares. 

The convertible bond pricing equation (with known or stochastic in- 
terest rate) is solved with the constraints 

and 

V(S, T) = Z. 

Constraint (18.4) bounds the bond price below by its value on conversion, 
and constraint (18.5) allows the company to declare bankruptcy if the 
bond becomes too valuable. The factor N/(n + N) is known as the 
dilution. A typical convertible bond value is shown in Figure 18.3. In 
this example we have Z = 1, T = 0.1, a = 0.25, Do = 0.05, there is one 
year to maturity and the dilution factor is 0.5. In the limit n/N + O this 
model is identical to the one considered above. 

Note that the total worth of the company is S - V and the share price 
is thus (S  - V ) / N  and not S. 
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Further Reading 
For details of the effect of the issue of new shares on the value of 

convertible bonds see Brennan & Schwartz (1977), Cox & Rubinstein 
(1985) and Gemmill (1992). 

Exercises 
1. Assuming that interest rates are constant, find an explicit formula for 

the value of a convertible bond with zero coupon and zero dividend on 
the underlying and generalise this result to include a coupon payment. 

2. Perform a local analysis of the same kind as those in Chapter 7 to find 
the position of the free boundary close to maturity. Allow for both 
a dividend payment on the underlying and a coupon payment on the 
bond. 

3. For an arbitrary interest rate model (18.3) must be solved numerically 
in three dimensions. Are there any special interest rate models that 
allow a similarity reduction to two dimensions? Do explicit f o rmul~  
exist for the value of the convertible bond? 
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Chapter 1 

1. Since the holder of one share just before a one-for-one split will hold 
two just after, and since the value and future prospects of the company 
are unaffected by what is only a nominal change, the stock price must 
be halved on the introduction of the new shares. The exercise prices of 
options are therefore also al1 halved, as are their values. 
2. S - D; see Chapter 6. 
3. Yes. One reason is that options provide insurance, and the larger 
the volatility the more the need for insurance against an unfavourable 
outcome from a position in the stock, and consequently the greater the 
expense. On the other side of the coin, when the volatility is high, the 
asset price is more likely to be high or low when the option expires. High 
prices make calls more valuable, low prices favour puts. We show these 
results in more detail later (see Chapter 5). 

Chapter 2 

1. Use equation (2.7). 
3. Use the cumulative distribution function and the fact that for any 
s > 0, prob[S < S] = prob[log S < logs]; then differentiate to find the 
density function of S. 
4. Use the general version of ItG's lemma given on page 27 to find a 
differential equation for f (G). 
5. As with a function of a single variable, use Taylor's theorem with the 
additional 'rules' 

d X f  4 dt and dXi d X j  -. pij dt . 
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Chapter 3 

4. Remember that N(-m) = O and N(oo) = 1. 
5. The A is the slope of the graphs of the option values. Consider a 
written call and a realisation that rises, with S > E at expiry. The 
option is exercised and the writer must deliver the asset, receiving E 
in return. This money, together with the initial premium (allowing 
for interest rates), exactly balances the cost of the initial hedge and 
subsequent purchases of the asset (some of which are at a price below 
the final value of S). The other cases are similar. 
6. (a) The equation is linear and homogeneous, so try powers of S. (b) 
This separation of variables gives 

since the left-hand side is a function of t only, and the right-hand side 
is a function of S only, both must be equal to  a constant. The two 
resulting ordinary differential equations are easy to solve (see part (a) 
for B (S)). 
7. (a) Long one share and short one call cannot make a loss. (b) Buy one 
share and write one call. At expiry this portfolio is worth at most E ,  so 
now it is worth at most the present value of E. (c) If the first inequality 
is not true, buy the call with exercise El and write the other. If the 
second is not true, write the call with exercise El and buy the other. 
The greatest possible loss at expiry is less than the result of investing 
the profit from the initial transaction until expiry (Do you see how to 
sharpen this result slightly?) (d) If the result is not true, buy the longer 
dated call and write the other. 
8. Assume the option will be exercised. The writer can deliver the asset 
at exercise by buying it now. How much will this strategy cost? 
9. The portfolio is II = C - AS. If dS = $1, C = 101 - 100 = 1 at 
expiry and dC = (1 - C), while if dS = -1, C = O at expiry and so 
dC = -C. Thus for an up move dn= 1 - C - A and for a down move 
d l l  = O - C + A. The choice A = 4 gives dll = O (since r = 0) and 
C = 4 (i.e. 50é). Notice that p does not feature in the solution. The 
reader should now repeat the calculation for the cash-or-nothing option. 

Chapter 4 

2. Write u(x, O) = a, sin nx, where a, is given by the usual Fourier 
integral. Then u(z, 7) = C i  a , e ~ ~ ~ '  sin nx respectively; the + sign in 
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the exponent, corresponding to the backward equation, almost always 
gives finite-time divergence in the series. 

Chapter 5 

l. Try U(X, T) = f ( x / f i ) ;  you need f (-m) = O and f (m) = 1 to fit the 
boundary and initial conditions. Note that the derivative of the initial 
data for u is the delta function. 
2. Since v ( 0 , ~ )  = u ( 0 , ~ )  and v(0, T) = -u(O, T), v(0, T) = O. NOW write 
the solution for v(x, T) as an integral from -m to m, split the range 
of integration into two, from -m to O and O to m ,  and change variable 
in the former. The second term in the integral can also be found by 
replacing x by -x in the diffusion equation, a change of variable that 
leaves it invariant. 
3. (a) Try solutions of the form rQ f ( x l f i )  to find that a = z .  (b) Try 

~f (xlJ; 1. 
4. The first part is an extension of the argument on page 77. For the 
second, try a change of variables 7 = F(T)  to get to the heat equation. 
Then use the usual Black-Scholes formul~.  
9. For a call, 

r = aa/as = ~' (d , ) /a~- ;  

from the Black-Scholes equation, which gives 

The cal1 vega and rho are 

The corresponding results for puts can most easily be obtained from 
put-cal1 parity. 
11. It6's lemma gives 

(E as  @,) dt. dC = -dS + - + ;ff2s2- as2 
The Black-Scholes equation can be used to simplify the second term. 
12. Use equation (5.7). 
13. Write down the Black-Scholes equations for the two calls. In the 
equation for Cl, rewrite a1 in the form al - a 2  + a 2 ,  and subtract the 
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equation for C2 from the result. Now relate Cl - C2 to u(x, r )  of the 
question, with al1 terms involving only Cl becoming f (x, 7). 
15. Note that X(E  - S)  + X(S - E )  = 1. 
17. Integrate (2.10) from E to oo (replace S by the integration variable 
S', and So by S). 
18. It is sufficient to synthesise the payoff A(S). This gives 

Differentiating twice, f (S) = A1'(S). This may also be found by writing 
max(S - E, O) = ( S  - E)X(S - E)  and noting that the first S-derivative 
of this is X ( S  - E )  and so the second is 6(S - E); we have used the 
result that ( S  - E)6(S - E)  = O. When A(S) = max(S - E, O), A1'(S) = 
6(S - E) ,  corresponding to one call with exercise price E. The case 
A(S) = S should really be written A(S) = max(S,O), and so the syn- 
thesizing portfolio is just S (which is of course a call with exercise price 
zero!). For the binary call we get, in a similar way, f (S) = A1(S). 
19. We can write C = EF(S/E) for some function F (in fact it is given 
by the Black-Scholes formulz). Then 

and since dC/dS = F1(S/E), SdCldS = C - EdCldE. Similarly, 
S2d2C/ds2 = E2dC/dE2; substitution into the Black-Scholes equation 
gives the result. 
20. Can there be two risk-free assets with different rates of return? 

Chapter 6 

1. Solve the Black-Scholes equation for C - P (with dividends) using 
the final data C - P = S - E. 
2. A = e-Do(T-t)~(dlo). 
3. Follow the procedure of Chapter 5. The transformations for S and t 
are as before, and 

V(S, t )  = Ee-+(k'-l)x-(+(k'-1)2+k)~u(2, T), 

where k = r / i a 2 ,  also as before, and k' = ( r  - D ~ ) / ! ~ U ~ .  There are now 
three dimensionless parameters: k, k1 and ! j a 2 ~ .  The payoff for a call 
iS maX(e+(k'+l)~ - ,$(k'-l)z, 0). 

4. As S -t m, C N ~ e - ~ ~ ( ~ - ~ ) ,  which for large enough S is certainly 
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below the payoff if Do > O. (This asymptotic behaviour can be seen 
by balancing the first order and undifferentiated terms in the Black- 
Scholes equation.) For the second part, take the term DOS aC/aS  onto 
the other side of the equation and note that it is positive. 
5. Follow the argument in the text. The put is more valuable with 
dividends, because they decrease the value of the stock. 
6. Follow the argument in the text but over two stages. 
7. S must fa11 by an amount D, so V(S, t i )  = V(S - D, t;). What 
would happen if S = 1 and D = 1.20? A situation such as this might 
arise if S fe11 suddenly between the announcement of a dividend and the 
date it is paid. 
8. The party who is short the contract receives Z at initiation, so need 
only borrow S - Z at a cost of ( S  - ~ ) e ' ( ~ - ~ ) ,  which is therefore the 
forward price in this case. 
9. Since F = ~ e ' ( ~ - ~ ) ,  

Where did we use Iti3's lemma in the above? 
11. Follow the procedure for an option on such an asset. 
12. Work out the payoff and decompose the contract into options. 
13. The third term in equations (6.15) and (6.16) have r(t) replaced by 
r(t) - D(t), as does the integrand in the expression for a( t ) .  

Chapter 7 

1. Let the instalment option have value V(S, t),  and 11 = V - AS be 
the usual Black-Scholes portfolio (from the point of view of the holder 
of the option). When we work out dn,  we must subtract L dt to account 
for the instalment payment before equating the result to r l ldt .  Since 
the option should always have a positive value (if not, the holder just 
stops paying the instalments and the option lapses), we impose V 2 O. 
Where V > O, it satisfies LBSV = L, SO in linear complementarity form 
we have 

V .  (CBSV - L) = O, V 2 O, CBsV 2 0, 

and V and aV/dS are continuous. For a cal1 there is just one free 
boundary, and V = O for values of S below this. 
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2. The first inequality says the put must be above its payoff. For the 
second, consider the portfolio C - S + ~ e - ~ ( ~ - ~ )  (long a call, short a 
share, with a bank deposit that will equai E at expiry). If we exercise the 
option at any time before expiry, paying E and receiving S, the result is 
negative. But at expiry the portfolio has zero value if S 2 E and positive 
value if S < E. It is therefore not optimal to exercise the option before 
expiry, since by waiting we can obtain a better outcome. Therefore the 
American call (without dividends) has the same value as its European 
counterpart, while the American put is more valuable than the European 
put. The second part of the second inequality follows immediately from 
this statement and put-cal1 parity for European options. The first part 
follows by considering C - P + E - S. The call will never be exercised. 
If the put is exercised early the result is positive, while if the portfolio 
is left to expiry it is worthless. (Note that we have ignored the effect of 
interest rates here.) 
3. By symmetry we need only find one free boundary, say x = xf > 0. 
For x > xf ,  the equation of the string is that of the straight line joining 
(x f ,  S - xf ) to (1,O). The slope of this line, -($ - x )/(l - x ), must 
be equal to that of the obstacle at the free boundary, -xf. This soon 
gives xf = 1 - 1 / a .  
4. Expanding for small A, 

By taking X very small, we see that the coefficient of X must be positive. 
5. Use equations (7.19) and (7.20). 
6. Choose X(x) = then w(x, T) satisfies the diffusion equa- 
tion for -m < x < O with initial data w(x,O) = and with 
w(0, T )  = O. Solve by images (see the discussion in Chapter 12) to get 

Going back into financia1 variables, we get 

where di is as usual and 

log (S/E) - ( r  + + u 2 ) ( ~  - t )  
d4 = 

u J F 3  
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7. For any American option with payoff A(S), 

V 2 A, CssV 5 O, (V - A) CssV = O. 

8. With J = z/&, u*(() satisfies (u*)" + $J(u*)' = O, with u*(O) = 1, 
u*(JO) = O, (u*)'(JO) = -Se0. The solution with the first two of these 
boundary conditions is 

and the third boundary condition gives the transcendental equation. 
9. The working is almost identical to that of Exercise 8. 

Chapter 8 

4. Write the algorithm as unf1 = (1 - 2a)un + c r ( ~ n + ~  + un-,). This 
requires 2N multiplications and/or divisions per time-step. 
5. The e n  satisfy (8.10) because it is linear. Direct substitution of the 
suggested form leads to 

sin(n + l)w - 2sinnw +sin(n - l)w 
X = l + f f  

sin nw 

Now use the identity sin(A + B) + sin(A - B) = 2 sinA cos B to obtain 
the given expression. If a > we see that for some values of w we will 
have ( A (  > 1, in which case le:( + oo a s  m -, m. This is instability. 
7. The only change is to the payoff function. 
9. The method is explicit because we solve the Black-Scholes equation 
backward in time. We start with the payoff and calculate Vnm from 
V?+' and vS1.  To see the sort of stability problems that could arise, 
regard 6t as given and consider what happens to b, as n -+ m. 
14. Write 
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then eliminate the Dn and En. Let L and U be the lower triangular 
and upper triangular matrices on the right-hand side of this equation. 
Write L and U in terms of A,, B, , Cn and Fn, then solve the systems 
Lqm = vm+' by forward substitution and U V m  = qm by backward 
substitution. 
15. Starting with a guess VzlO, Jacobi is 

Gauss-Seidel is 

vnm,k+i - 1 
- - (vc+i - A vm.*+l - 

Bn n n-i c n  ~2:) 
and SOR is 

18. Average the explicit method described in Exercise 9 and the implicit 
method described in Exercise 13; this gives the Crank-Nicolson method. 
The LU decomposition solution is essentially the same as described in 
Exercise 14, with minor modifications to the values of A,, Bn and C, 
as well as the right-hand side of the system of equations. Similarly, the 
Jacobi, Gauss-Seidel and SOR methods are essentially the same as those 
of Exercise 15 with adjustments to the values of A,, Bn and Cn. 
19. The explicit method is 

u;+' = (1 - 4a)uG + a (uZ1 j + uE1 j + + 
and is stable for O < a i i. The fully implicit method is 

(1 + 4a)ug - a ( u z l  + u:' + + u;-1) = U(-' ,J 

and the Crank-Nicolson method is 

(1 + 2a)u; - ;a (u?' + u r l  + + u;-1) 
= (1 - 2a)uz-' + $a (u;;: + u:;; + U;T~ + U$-i) . 
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The latter two are stable for al1 a > O. The values at  the boundary of 
the grid are given from 

UN+ = u k ( j  6 y , m 6 ~ ) ,  UN- = m h ) ,  

uTN+ = uL(i 62, mbr) ,  uTN- = uYm(i 62, m&). 

Chapter 9 

2. The explicit finite-difference inequalities become 

The finite-difference linear complementarity form can be written as 

Applying the SOR algorithm with the identity matrix 1 gives the stated 
algorithm. 
3. This is essentially the same as the Crank-Nicolson formulation de- 
scribed in the text. 
4. This is essentially the same as the Crank-Nicolson formulation de- 
scribed in the text; replace ;a by a and Zr by u:. 
5. See Exercise 9 of the previous chapter to obtain the explicit finite- 
difference inequality, and then Exercise 1 of this chapter to see how to 
solve the approximate linear complementarity problem. The only change 
necessary for an American cash-or-nothing cal1 would be a change in the 
payoff for early exercise and/or exercise at  expiry. 
5. See Exercises 13 and 15 of the previous chapter. The linear comple- 
mentarity formulation follows as it does in the text. 
7. This is 

Chapter 11 

1. What is the final value of the portfolio that is long a call-on-a-cal1 
and short a put-on-a-call? 
2. It is not easy to compute the random walk for C in terns of C itself 
rather than in terms of S. 
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3. The answer is 

where 

a* = 
log(S/Sl) + (r f $ u 2 ) ( ~ l  - t) 

u Jm 9 

and M(a, b; p) is the cumulative distribution function of the bivariate 
normal distribution with correlation coefficient p; lastly Si is the value 
of S at which Css(S,Tl) = El. Might it not be easier to value this 
product numerically? 
5. What is the payoff? 
6. Use put-cal1 parity to substitute for the put in terms of the call. The 
result is a package of vanilla options. 

Chapter 12 

1. The out boundary condition becomes V(X, t )  = 2. 
2. The in final condition becomes V(S, T)  = 2. 
4. For the down-and-out call, the delta is positive for S > X and zero 
for S 5 X.  For the down-and-in call, the delta is negative for S > X 
(so this option looks more like a put) and switches to a positive value, 
the delta for a vanilla call, at S = X .  If the asset reaches the barrier, 
the cost of the hedge for the underlying call is financed by short selling 
as S decreases to X ,  as well as by the premium. 
5. Expand the final value in a Fourier series (after transforming to the 
diffusion equation). See Exercise 2 of Chapter 4. 
6. Solve the ordinary differential equation 

for V(S), with the appropriate boundary conditions at the barrier and 
at S = O or as S -> CG (whichever is a.ppropriate). 
7. Ask the question: what contract do 1 receive if the asset reaches the 
first barrier? Then use that as a boundary condition on that barrier. 
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9. It is a property of random walks that if they reach a certain level 
they will cross that level infinitely often. This is a result of the scaling 
of the Wiener process with the square root of time. A better definition 
of a bouncing ball option would specify time periods, say of one week's 
duration, and if the random walk reaches the barrier in that period it 
counts only as  one hit. 

Chapter 13 

1. The discrete running sum can be represented by 

N 

S(r )  6(r - ti) dr. 
a= 1 

This puts discrete sampling into our general framework with 

f (S, t )  = S 6(t - ti). 

Use this in the partial differential equation and consider what happens 
across a sampling date. 
2. Do not be over-ambitious in inventing new options! 

Chapter 14 

3. Look for a solution that is linear in S and I .  
4. See the next chapter. 
5. Look for a solution of the form V(S, 1, t) = H(R, t) with an appro- 
priate definition of 1, and with R as in the text. 

Chapter 15 

1. See page 245. 
2. Al1 of these options have similarity solutions. In each case they 
have the form V(S, J ,  t )  = JH(J, t ) ,  where E = S/ J. This reduces the 
dimensionality of the problem. The equation for H(5 , t )  is simply the 
Black-Scholes equation, with H(J, T) given by the payoff function and, 
o n ( =  1, 
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Chapter 16 

1. Take costs of the form 

Now subtract the expected value of this from the value of the hedged 
portfolio. 
2. As an example, take K Z  = ~g = O with ~1 > O. Find an explicit 
solution of the resulting equation. What constraint could you impose to 
improve this hedging strategy? What would this mean in practice? 
3. Look for a similarity solution of the form 

u(x, t )  = t - l / ' h (x /d ) .  

There will be a different solution for J x / f i (  < Jo and lx/fi l  > Jo for 
some unknown Jo. Use smoothness conditions to find Jo. 
4. Write V ( S ,  t )  = Vo(S, t )  + KV1 (S,  t )  + . . .. Find equations for Vo and 
VI separately. 
5. Let the value of the initial portfolio plus the new contract be V ( S ,  t )+ 
V(S , t ) .  Find the equation and final condition satisfied by V ( S , ~ )  to 
leading order. 

Chapter 17 

4. Introduce Dirac delta functions into the equation by writing the 
exchange of payments in the form 

(r - r*) x 6 ( t  - t i) .  

Show by both mathematical and financia1 arguments that this leads to 
jump conditions. 
5. Look for a solution of the swap equation of the form 

(A(t;  T )  + C(t; ~ ) r ) e - ' ~ ( ~ ; ~ ) .  

6. Write 

V(r ,  t ;  T )  = a(r) + b(r)(T - t )  + c(r)(T - t )2  + . . . ; 
find a, b and c. 
7. As for Exercise 6 but with different final data. 
8. This approach assumes that bond prices follow a lognormal random 
walk. This may be a tolerable assumption in the short term and has 
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the advantage that there are simple formulz for common options. In 
the long term, however, since the bond price is known at  maturity, the 
lognormal random walk assumption is clearly a poor one. 
11. Look for a similarity solution. 

Chapter 18 

1. Assume that the bond is a European option with payoff max(nS, Z). 
Write this in terms of cash plus a vanilla cal1 option and show that the 
constraint V 2 nS is always satisfied. 
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