
Laboratory of
computational physics
part 1: classical physics

Franco Bagnoli

Topics of the course (part 1):
Integration	of	differential	equations	(RK	and	Verlet).	
Application	to	the	harmonic	oscillator	and	the	pendulum.
Molecular	dynamics	of	a	Lennard-Jones	gas.	Measurement	of	
physical	quantities.
Bifurcations	and	chaos:	the	logistic	map.	Lorenz's	system.
Lyapunov	exponents	in	maps	and	continuous	systems.	
Attractors
Stochastic	systems:	random	walk.	Probability	distribution.	
Diffusion.
Percolation:	Markov	processes.	Connection	with	the	mean	field.
Monte	Carlo	method.	The	Ising model.	Phase	transitions,	
fluctuations.
Disordered	systems,	spin	glasses,	neural	networks	(outline).

Tools
C+gnuplot
Matlab or	Octave
elements	of	shell	(bash),	unix file	system,	common	
unix commands.

Prerequisites:
algebra	(vector,	matrices)
calculus	(functions,	derivatives,	partial	derivatives,	
gradient,	etc.)	
basic	knowledge	of	the	C	language

Editor
nano (minimal	editor);	vi	(powerful	but	complex)
emacs	(powerful	but	weird)
mc	(if	installed:	file	manager	and	editor)
ne	(nice	editor)
or	geany
(also	on	
windows,	
macosx)	

Installation
Linux:	use	the	package	manager	to	install	gnuplot-x11,	
gcc (probably	already	present)	and	geany (or	
code::blocks)

MacOSX:	install	Apple's Xcode Developer	Tools	and	
macports (or	homebrew),	then from	the	package	
manager	install gnuplot-wx or	gnuplot-X11	(port
install ….)	and	geany

Windows:	install Cygwin and	from	the	package	
manager	install xinit,	gnuplot,	gcc-g++	and	geany (or	
code::blocks)

https://developer.apple.com/technologies/tools/

Why all this stuff?
Unix	(linux)	separates	where	programs	run	from	where	the	
output	is	sent,	though	a	protocol	(X11)	that	runs	on	
Internet.	So	it	is	quite	easy	to	visualize	the
output	on	another	pc,	but	one	has	to	
understand	the	serve/client	architecture.	
The	pc	with	the	screen	is	called	the	
X11	server,	and	the	pc	that	runs	the	
program	(yout terminal)	is	the	client.	So	you	have	to	run	
the	server	program	(in	linux is	the	default,	in	MacOSX it	is	
called	Xquartz,	on	windows	it	is	started	with	"startxwin")	
and	tell	the	client	where	the	server	is.	
So	the	first	step	is	
startxwin & (so	that	it	goes	in	background)

Why all this stuff?
Then	one	has	to	specify	the	DISPLAY	variable
export DISPLAY=<server>:<graphical card>.<screen>

In	many	case	it	is	just	
export	DISPLAY=:0		(or	:1)

after	that,	one	can	launch	a	graphical	application,	for	
instance	xterm (or	gnuplot>	plot	sin(x)).
WINDOWS:	cygwin installs	a	unix-compliant	filesystem,	
and	maps	the	C:	drive	on	/cygdrive/c.	One	can	"go"	to	the	
standard	documents	directory	with
cd /cygdrive/c/Users/<franco>/Documents

or	make	a	link
ln –s /cygdrive/c/Users/<franco>/Documents/mydir .

The compilation phase

source (text)

source (text):
hello.c

source with expanded
#directives

assembly code:
hello.s

Compiler
cc –S hello.c

Preprocessor
cc –E hello.c

object code hello.o
without external functions

Assembly
cc –c hello.c

executable code:
hello (or a.out)

linker
cc –c hello.c

-o hello
-l<libraries>

Useful unix commands
ls:	list	files

ls	–l	(long	listing)

sorted	by	date

UNIX flags

r = read
w = write
x = execute (or change dir, for dirs}

u/g/o: user/group/others

<- this is executable

<- this is executable

to change flags:
chmod o-r <file> : others cannot read
chmod +x <file> : file becomes executable (useful only if file is a script or a dir)
chmod o–x <dir> : others cannot list dir (default)

<- this is executable

<- this is executable

Useful unix commands
pwd (print	working	directory)

type	content	of	a	file
less hello.s

commands of less:

h: help
arrows (or j,k) scroll
/pattern search for the pattern
1G go to beginning (line 1)
xG go to line x
0G go to end
q exit

Useful unix commands
pwd (print	working	directory)

type	content	of	a	file:		cat hello.s
with control: less hello.s

commands of more:

h: help
arrows (or j,k) scroll
/pattern search for the pattern
1G go to beginning (line 1)
xG go to line x
0G go to end
q exit

Useful unix commands
redirect	(concatenate):	cat hello.s > hello-copy.s
(copies	file,	destroying	hello-copy.s if	present,	one	can	use	also	cp
hello.s hello-copy.s)
appending:	cat hello.s >> hello-copy.s
pipe:	cat hello.s | cat > hello-copy.s
(useless	in	this	case)
rename	(move):	mv <file> <dest>
pipe	+	screen:	cat hello.s | tee hello-1.s
removing	files:	rm hello-1.s
destroying:	rm –r <dir>
changing	dir: cd <dir> (back	1	level:	cd ..)
echo:	echo 3 4 => 3 4 (like	cat,	but	does	not	interpret	
arguments	as	filenames)

Unix commands
When	you	type	a	command	in	a	terminal	the	shell	
(generally	bash)	does:	
1. expands	wildcards	(ls *.c -> ls hello.c

numbers.c)	unless	they	are	in	single	quote	or	
escaped:	
ls '*c' or ls *.c => ls: *.c: No such
file or directory

2. expands shell variables like $PATH:
echo $PATH =>
/opt/local/bin:/opt/local/sbin:/usr/loc
al/bin:/usr/bin:/bin:/usr/sbin:/sbin:/L
ibrary/TeX/texbin:/opt/X11/bin

3. parses	the	arguments	(divides	them	on	whitespaces,	if	
not	escaped	and	if	not	between	quotes	(see	below)

Unix commands
4. if	it	is	an	internal	command	(like	"ls")	executes	it	

(there	are	shell	like	busybox where	most	of	
commands	are	internal)

5. otherwise	search	<command>	in	the	directories	
listed	in	the	environmental	variable	$PATH	(unless	
the	full	path	is	specified)

6. it	also	looks	if	the	file	is	text	it	is	executable	and	
begins	with	#!<shellpath>	is	passes	it	to	shellpath
(so	if	the	file	starts	with	#!/bin/bash	and	has	list	of	
commands	for	bash,	it	is	executed	by	the	shell	– a	
script).	Otherwise	executes	the	command

7. the	current	directory	(.)	generally	is	NOT	in	the	
path	(for	security	reason)

Bash scripts
Bash	has	a	rich	script	language,	for	instance

where	i is	a	variable.	You	can	set	variables	using	"="
myvar=hello.c (or	myvar="hello.c")
echo	$myvar =>	hello.c (also	echo	${myvar})
and	you	can	take/cut/replace	pieces	of	vars
${myvar:3}	=>	lo.c ${myvar:3:2}	=>	lo
${myvar%.c}	=>	hello	(also	${myvar%.*)
${myvar#hello.}	=>	c	(also	${myvar#*.})
ecc.	ecc.	

Useful unix commands
For	instance:	compile	all	.c	files	in	a	dir

the	same	as	a	script	(remember	to	chmod +x	compile.sh)

streamhandle
In	unix files	and	stream	are	almost	the	same	
programs	take	input	from	STDIN	(/dev/stdin),	outputs	to	STDOUT	
(/dev/stdout)	and	send	error	to	STDERR	(/dev/stderr)
One	can	redirect	STDIN	with	"<"	es.	
cat	<	hello.c (the	same	as	cat	hello.c)
STDOUT	with	">"	
STDERR	with	"2>"
redirecting	STDOUT	to	STDERR
./program	>&2	(it	means	send	STDOUT	(>)	to	address	of	descriptor	2	
(stderr)
redirecting	STDERR	to	STDOUT
./program	2>&1		
for	redirecting	both	to	the	same	file
./program	>	file	2>&1	(first	assign	stdout to	file,	then	copy	stderr)

Processes
kill	a	process	in	foreground	:	<control-c>
stop	a	process	<control-z>
list	all	processes:	ps
list	user	process:	jobs
kill	a	process:	kill <PID> or	kill %1 (first	stopped	
one)
start	a	process	in	background:	./program &
bring	a	background	process	in	foreground:	fg (fg %2)

put	a	stopped	process	in	background:	bg
If	you	want	to	leave	the	process	in	background	also	when	
disconnecting	the	terminal,	use	nohup

Commandline arguments
Write	a	program	that	sums	numbers	on	commandline

Commandline arguments
Write	a	program	that	sums	numbers	on	commandline

suppressing	errors

gnuplotting
let's	write	a	program	that	lists	the	first	100	numbers	and	
its	square	(call	it	numers.c)

compile	with	cc numbers.c –o numbers

redirect	the	output	to	a	file	with
./numbers > numbers.dat

the	"./"	is	necessary	

notice that main() is a
function returning an int
(zero usually).

gnuplotting
Now	plot	the	data	with	gnuplot
gnuplot 'numbers.dat'

gnuplotting
but	one	can	avoid	the	file	numbers.dat
gnuplot>	plot	"<./numbers	100"

gnuplotting
one	can	also	open	(and	send	commands)	to	gnuplot
from	the	program	(useful	for	continuously	changing	
data)

gnuplotting

