

Dipartimento di Energetica "Sergio Stecco"

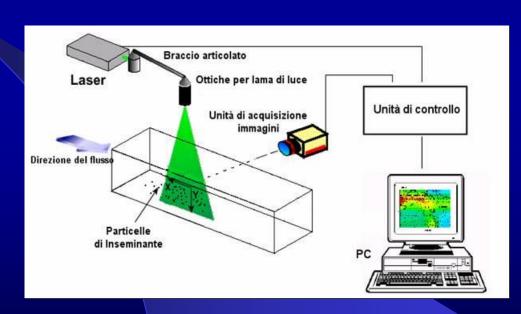
Presentazione del lavoro

- Obiettivi
- Funzionamento sistema PIV
- Prove effettuate
- Conclusioni e sviluppi futuri

Dipartimento di Energetica "Sergio Stecco"

Obiettivi

- Verifica dell'applicabilità del sistema PIV
 - Schiere reali
 - Condizioni di flusso reali
- Misura di dettaglio in zone di dimensioni contenute
- Test effettuato su cascade lineare (7 pale UHL)
- Zona di indagine: trailing edge


Dipartimento di Energetica "Sergio Stecco"

Sistema PIV

- Tecnica per lo studio bi-dimensionale non intrusivo dei campi di moto
 - Inseminante (seeding);
 - Sorgente di radiazione;
 - Ottiche per realizzazione lama di luce;
 - Sistema acquisizione immagini (telecamera);
 - Sistema elaborazione immagini;

Dipartimento di Energetica "Sergio Stecco"

Componenti sistema PIV - 1

PIV: misura indiretta della velocità

Misurazione velocità delle particelle, non del flusso

Seeding

- Riflettono energia laser della lama
- Bassa densità
- Piccole dimensioni
- Alto coefficiente di rifrazione
- Omogeneità particelle nel flusso
- Olio nebulizzato (d = 50÷500μm)

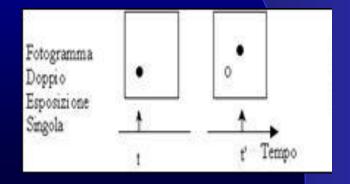
Dipartimento di Energetica "Sergio Stecco"

Componenti sistema PIV - 2

Sorgente di radiazione

- Sorgente allo stato solido (Nd:Yag)
- Doppia cavità
- Impulsi puntiformi (durata 5-10 ns)
- Elevata energia
- Luce monocromatica
- Presenza di ottiche per la generazione di una lama sottile

Dipartimento di Energetica "Sergio Stecco"



Componenti sistema PIV - 3

Acquisizione ed elaborazione immagini

- Acquisizione di coppie di immagini
- Necessità di correlare dimensioni immagine e dimensioni reali
- Algoritmi di cross-correlazione (statistici)
- Possibilità di elaborazione real-time
- Ricostruzione vettoriale del campo di velocità

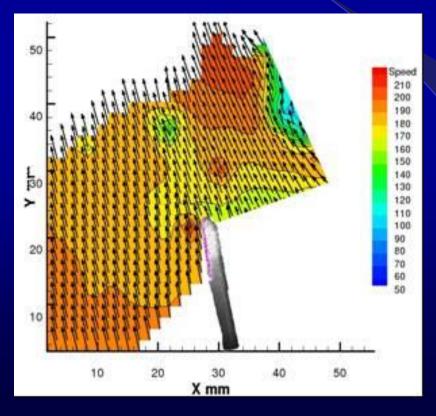
Dipartimento di Energetica "Sergio Stecco"

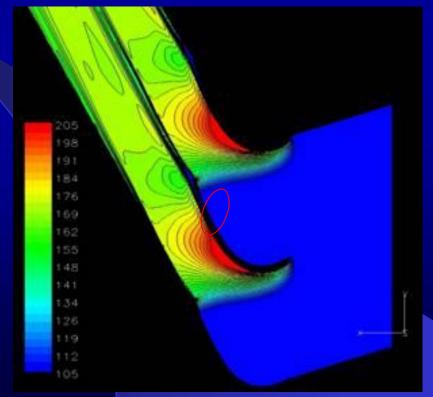
Componenti sistema PIV – 4

Calibrazione iniziale del sistema

- Determinazione densità di seeding da addurre
- Eliminazione di eventuali riflessi
- Messa a fuoco sul piano della lama
- Ortogonalità fra lama di luce e telecamera
- Settaggio parametri programma acquisizione

Dipartimento di Energetica "Sergio Stecco"



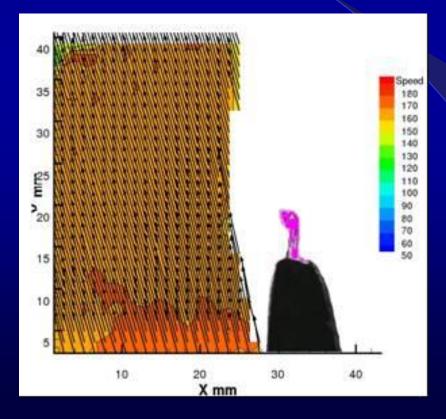


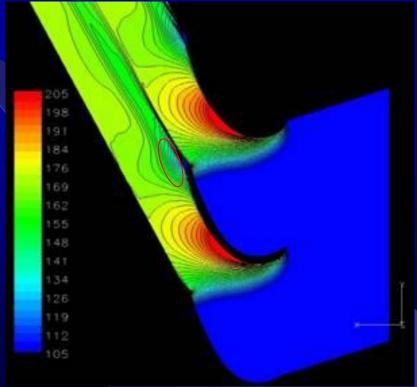
Prove eseguite – Analisi al mid-span

MID-SPAN		
Wa	6,846	kg/m ³
S200	100,9	kPa
S400	96,36	kPa
S1200	91,34	kPa
S1250	84,77	kPa
Pt 1250	100,86	kPa

TEORICHE		
P _{0ref}	100,175	kPa
T _{0ref}	302,536	K
R_{gas}	287	kJ/kgK
γ	1,4	kPa
ch _{ref}	51,716908	mm

Dipartimento di Energetica "Sergio Stecco"



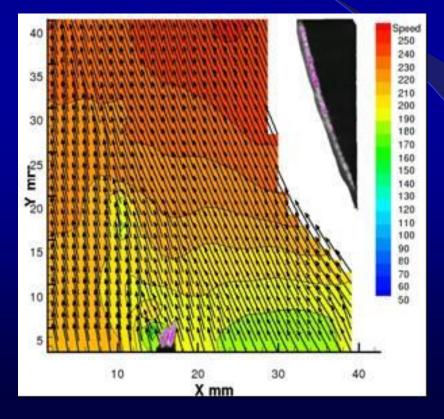


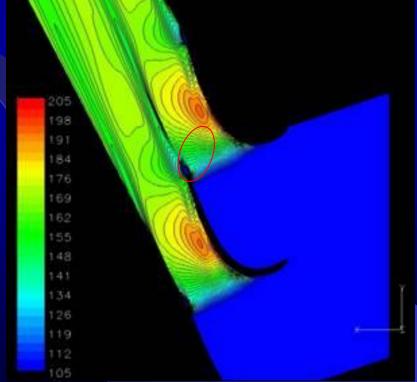
Prove eseguite – Analisi a 15 mm da hub

15 mm da HUB		
Wa	6,775	kg/m ³
S200	100,16	kPa
S400	95,71	kPa
S1200	90,898	kPa
S1250	84,6	kPa
Pt 1250	100,175	kPa

TEORICHE		
P _{0ref}	100,175	kPa
T_{Oref}	302,536	K
R _{gas}	287	kJ/kgK
γ	1,4	kPa
ch _{ref}	51,716908	mm

Dipartimento di Energetica "Sergio Stecco"





Prove eseguite – Analisi all'hub

HUB		
Wa	6,929	kg/m ³
S200	100,812	kPa
S400	96,86	kPa
S1200	90,88	kPa
S1250	84,04	kPa
Pt 1250	100,828	kPa

TEORICHE		
P _{0ref}	100,175	kPa
T _{0ref}	302,536	K
R_{gas}	287	kJ/kgK
γ	1,4	kPa
ch _{ref}	51,716908	mm

Dipartimento di Energetica "Sergio Stecco"

Conclusioni

- Esecuzione di prove di dettaglio in zone di dimensioni contenute
- Verifica applicabilità metodologia PIV
- Indicazioni sulla futura messa a punto del sistema (strumentazione ed accessi ottici)
- Individuazione dei problemi limitanti l'accuratezza delle misure
- Buona concordanza con i risultati CFD al midspan e a 15 mm dall'hub
- Necessità di approfondimento dell'analisi all'hub.

Dipartimento di Energetica "Sergio Stecco"

Indagine sperimentale preliminare per l'applicazione della metodologia PIV