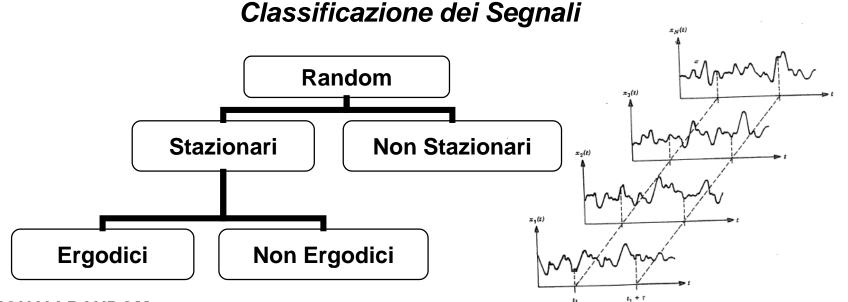


- Classificazione dei segnali
- Serie e trasformata di Fourier
- > FFT, DFT
- Aliasing, leakage Windowing, filtering
- Conversione A/D



Classificazione dei Segnali

SEGNALI DETERMINISTICI:

Segnali che possono essere descritti mediante una relazione matematica E' possibile rilevare il segnale mediante un esperimento che, ripetuto più volte, dà risultati identici a meno degli errori di misura.

SEGNALI RANDOM:

Figure 1.10 Ensemble of time-history records defining a random process.

Non è possibile esprimere l'andamento della grandezza nel tempo mediante funzioni matematiche. Non è possibile progettare un esperimento che riproduca risultati identici se ripetuto più volte STAZIONARI:

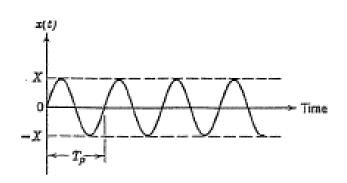
Le grandezze media $\,$ e autocorrelazione valutate su $\,$ N osservazioni del segnale all'istante $\,$ t $_{i}$ non variano al $\,$ variare di $\,$ t $_{i}$

ERGODICI:

Le grandezze media e autocorrelazione valutate su una singola osservazione del segnale sono uguali per tutte le osservazioni del segnale

Classificazione dei segnali

SEGNALI PERIODICI:


> Sinusoidali

$$x(t) = X \sin(2\pi f t + \theta)$$

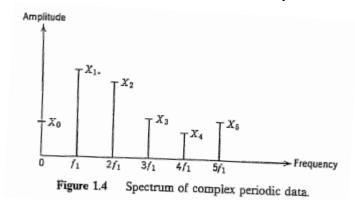
X:ampiezza

f:frequenza

 θ : fase

Periodici Complessi

$$x(t) = x(t + nT_p) n = 1,2,3,...$$


$$x(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos 2\pi n f_1 t + b_n \sin 2\pi n f_1 t)$$

 $f_1 = \frac{1}{T_s}$ Frequenza fondamentale

$$a_n = \frac{2}{T_p} \int_0^{T_p} x(t) \cos 2\pi n f_1 t dt$$
 $n = 0, 1, 2, ...$

$$b_n = \frac{2}{T_n} \int_0^{T_p} x(t) \sin 2\pi n f_1 t \, dt \qquad n = 1, 2, 3, \dots$$

Un segnale periodico, di periodo Tp, può essere espresso come una serie di funzioni armoniche semplici

Classificazione dei segnali

Segnali Quasi Periodici

$$x(t) = \sum_{n=1}^{\infty} X_n \sin(2\pi f_n t + \theta_n)$$

Se le frequenze delle armoniche che compongono il segnale sono numeri razionali si ottiene un segnale periodico

Segnali Transitori

$$X(f) = \int_{-\infty}^{+\infty} x(t)e^{-j2\pi ft}dt$$

Non si può più rappresentare il contenuto in frequenza del segnale come una somma di frequenze discrete ma si deve passare a una rappresentazione continua: X(f) = 0

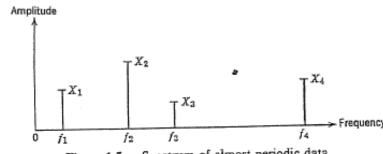
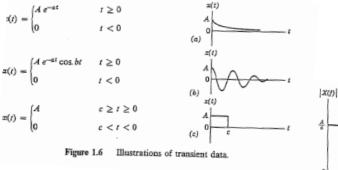
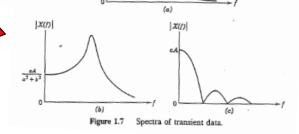
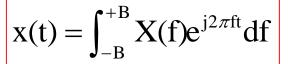




Figure 1.5 Spectrum of almost-periodic data.

Analisi nel Dominio della Frequenza

Le condizioni che deve verificare x(t) perché esista la sua trasformata sono complicate, una condizione sufficiente è

$$\int_{-\infty}^{+\infty} |x(t)|^2 dt < \infty$$


Operativamente il segnale viene osservato per un tempo FINITO, questo assicura l'esistenza della trasformata (finita) di Fourier e comporta la risoluzione in una BANDA FINITA di frequenze

$$\lim_{T\to\infty}\frac{1}{2T}\int_{-T}^{+T}\left|x(t)\right|^2dt<\infty$$

$$X(f) = \int_0^T x(t)e^{-j2\pi ft}dt$$

Trasformata di Fourier

Antirasformata di Fourier

Se si assume* che:

- il segnale x(t) sia non nullo nell'intervallo [0,T] e nullo per ogni altro t
- che il suo spettro sia contenuto nel range di frequenze [-B,+B]

X(n/T) definisce completamente x(t)

x(n/2B) definisce completamente X(f)

Deve essere nota x(t) agli istanti temporali spaziati di 1/2B, allora il numero sufficiente alla descrizione di X(f) in [-B,+B] è: N=2BT

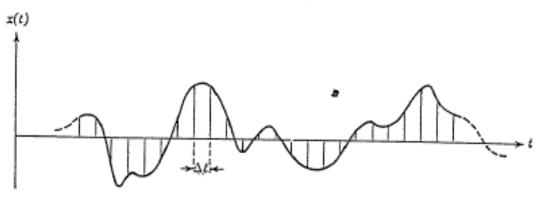


Figure 10.5 Sampling of a continuous record.

$$T_{acq} = N\Delta t$$

$$\Delta t = \frac{1}{2B}$$

$$fs \ge 2f_{\text{max}}$$

$$fs = \frac{1}{\Delta t}$$

$$f_{Nyquist} = \frac{1}{2\Delta t} = \frac{fs}{2}$$

Teorema di Nyquist-Shannon (del campionamento):

Dato un segnale con larghezza di banda finita e nota, la frequenza minima di campionamento deve essere uguale almeno al doppio della massima frequenza di banda del segnale

Trasformata Discreta di Fourier

$$X(f) = \int_{-\infty}^{+\infty} x(t)e^{-j2\pi ft}dt$$

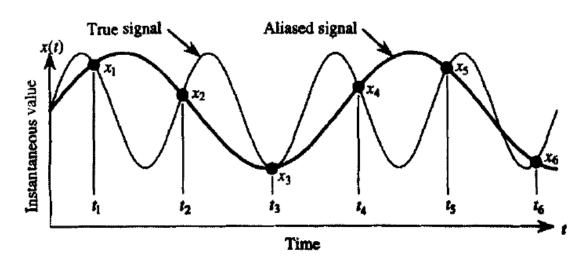
La trasformata su un dominio infinito generalmente non esiste, nella pratica si considera il segnale in un intervallo di tempo finito [0,T], x(t) è considerato periodico di periodo T

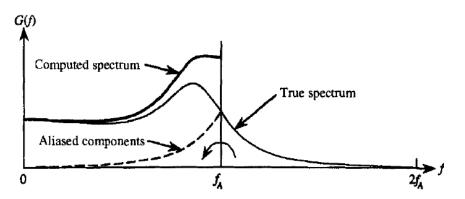
$$X(f,T) = \Delta t \sum_{n=0}^{n=N-1} x_n e^{-j2\pi f n \Delta t}$$

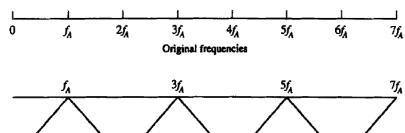
Trasformata discreta di Fourier, DFT

$$x_n = x(n\Delta t)$$
 $n = 0,1,2,3,...,N-1$
 $f_k = \frac{k}{T} = \frac{k}{N\Delta t}$ $k = 0,1,2,...,N-1$

$$X_k = \sum_{n=0}^{n=N-1} x_n e^{-j\frac{2\pi kn}{N}}$$


- Richiede N² operazioni dispendiose in termini di tempo di calcolo
- Vari algoritmi per incrementare efficienza di calcolo→FFT, più veloce per N=2^p


$$X(k) = X^*(N-k)$$


$$2f_{Nyquist} \pm f$$
; $4f_{Nyquist} \pm f$;...; $2nf_{Nyquist} \pm f$

 Le componenti a frequenza superiore a f_{Nyquist} danno lo stesso contributo di frequenze più basse, possono essere interpretate come frequenze negative ("Folding"→Aliasing)

Trasformata Discreta di Fourier

 $4f_A$

 $2f_A$

 $6f_{\Lambda}$

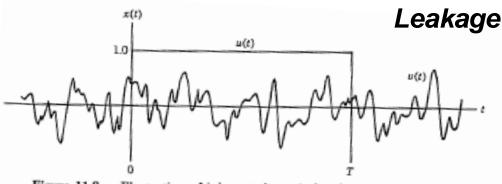


Figure 11.8 Illustration of inherent time window in spectral analysis.

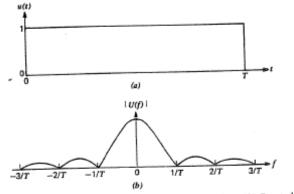
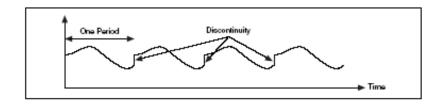
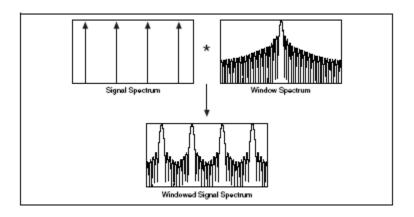
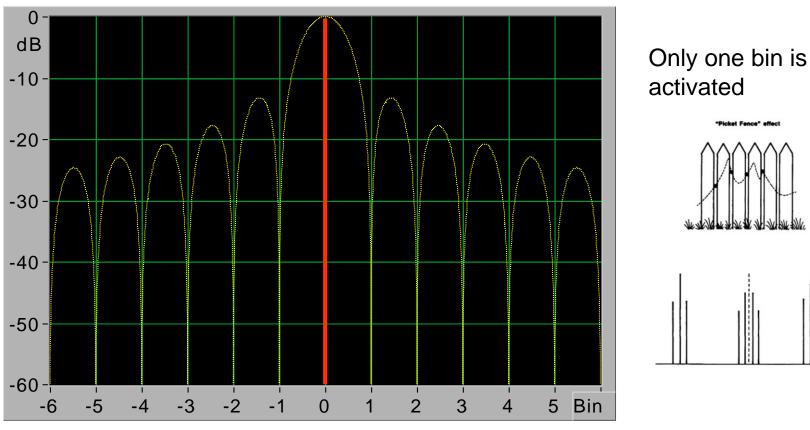
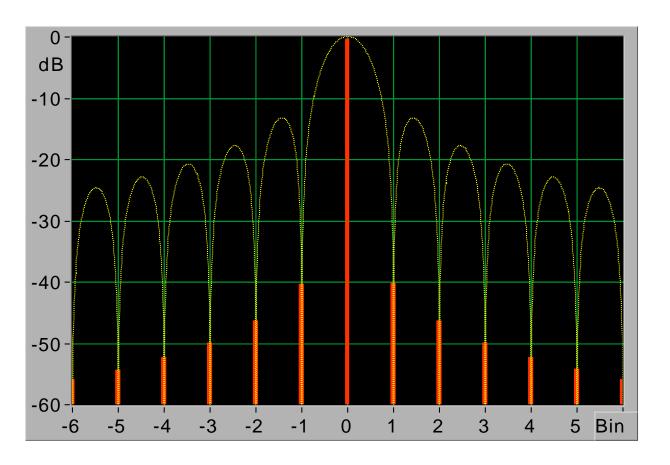




Figure 11.9 Rectangular analysis window. (a) Time window. (b) Spectral window.

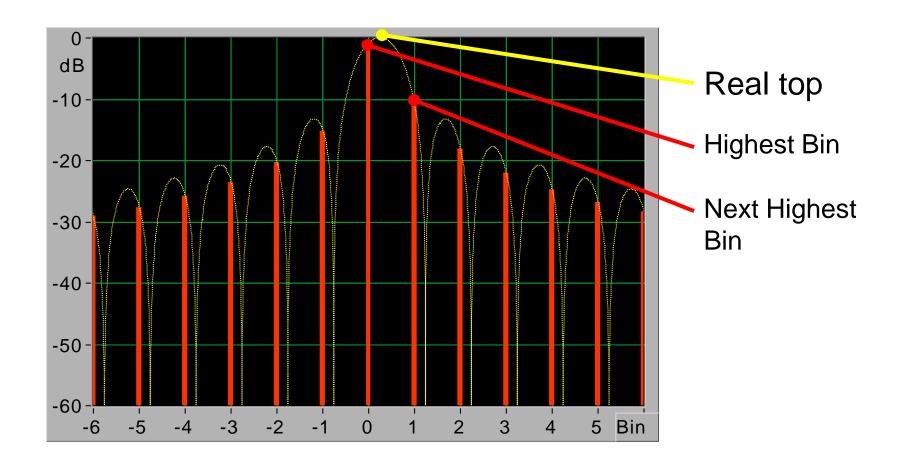
$$u(t) = \begin{cases} 1 & 0 \le t \le T \\ 0 & \text{altrimentifold} \end{cases}$$
$$x(t) = u(t)v(t)$$


$$X(f) = \int_{-\infty}^{+\infty} U(\alpha)V(f - \alpha)d\alpha$$

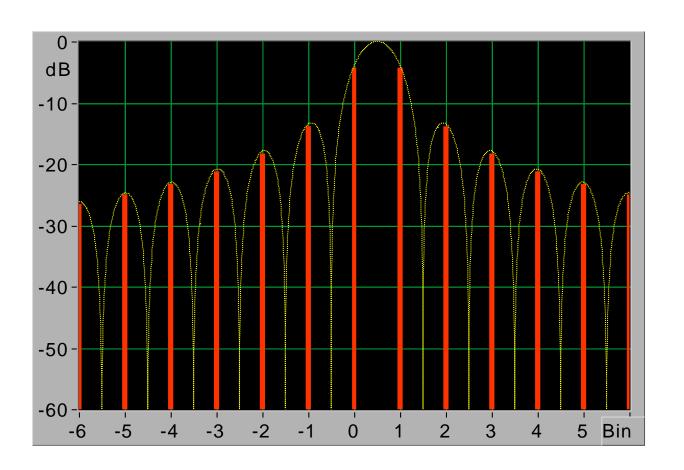
Non si ha Leakage quando $T_{acq}=mT_p$, perché a $f_k=k/mT_p$ si ha U=0.


Input Frequency Hits Exactly a Bin

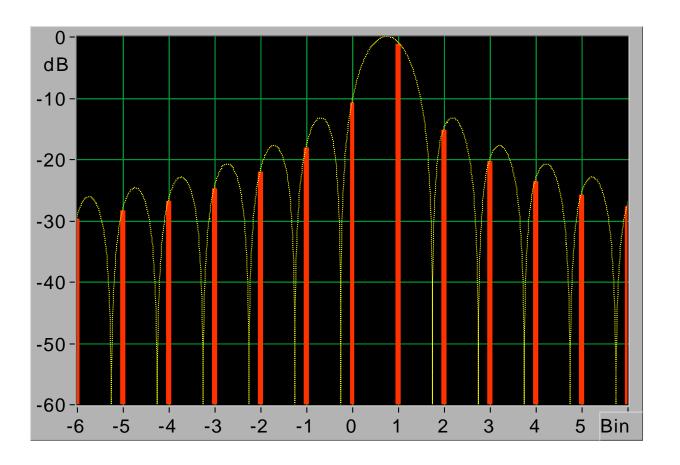
Picket Fence Effect: avviene quando la frequenza del segnale non coincide con una delle frequenze discrete (*frequency bin*) risolte dalla **DFT**, si hanno errori in ampiezza e sul valore della frequenza del tono.


Input Frequency is +0.01 Bin "off"

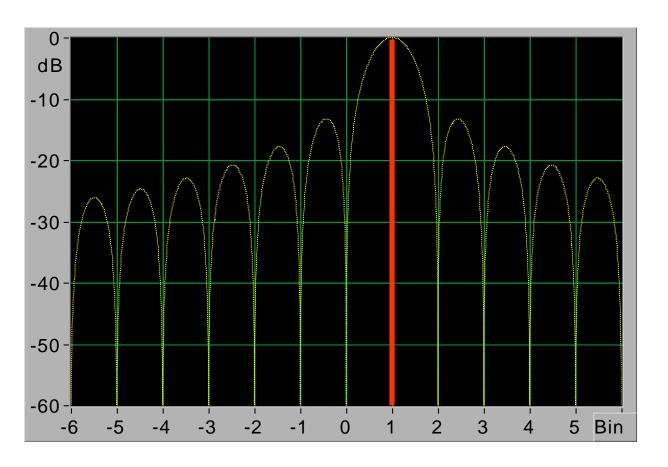
More bins are activated



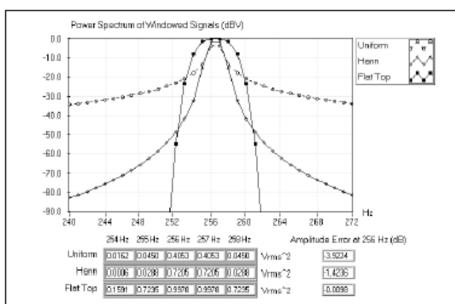
Input Frequency is +0.25 Bin "off"


Input Frequency is +0.50 Bin "off"

Highest sidelobes

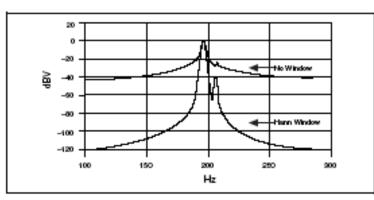
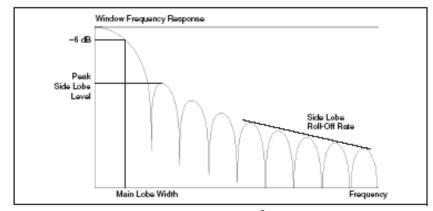

Input Frequency is +0.75 Bin "off"

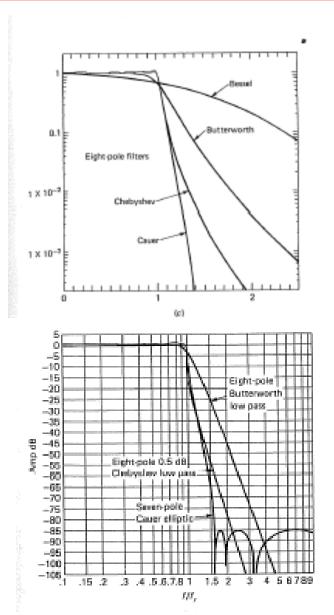
The Side lobe levels decrease

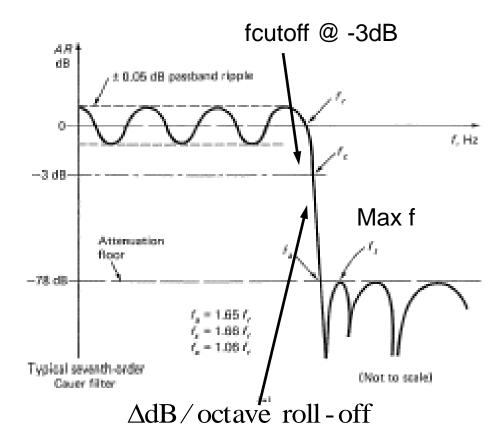

Input Frequency is +1.00 Bin "off"

Only one bin is activated

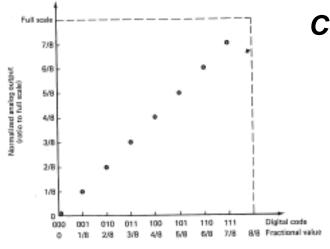
Windowing

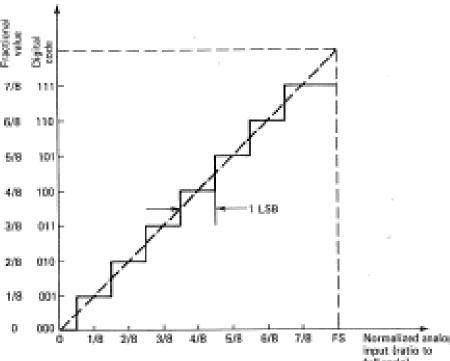




Figure 5-4. Spectral Leakage Obscuring Adjacent Frequency Components

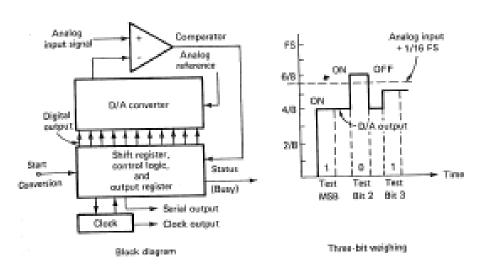

			•				
Smoothing Window	-3 dB Main Lobe Width (bins)	-6 dB Main Lobe Width (bins)	Maximum Side Lobe Level (dB)	Side Lobe Roll-Off Rate (dB/decade)			
Uniform (none)	0.88	1.21	-13	20			
Hanning	1.44	2.00	-32	60			
Hamming	1.30	1.81	-43	20			
Blackman-Harris	1.62	2.27	-71	20			
Exact Blackman	1.61	2.25	-67	20			
Blackman	1.64	2.30	-58	60			
Flat Top	2.94	3.56	-44	20			

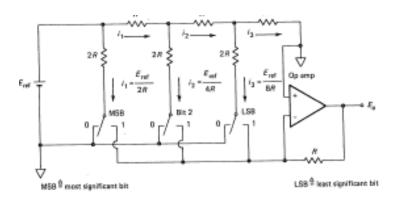
- Main Lobe, main lobe width: compromesso tra abilità nel distinguere due frequenze vicine vs. accuratezza in ampiezza (Leakage).
- Side Lobes: leakage del segnale in frequenze adiacenti




Filtri

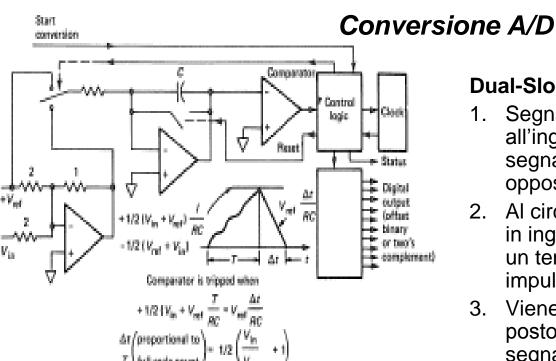
- Frequenza di cut-off
- Pendenza di Roll-Off
- Passband Ripple
- Linearità di fase
- Attenuation Floor

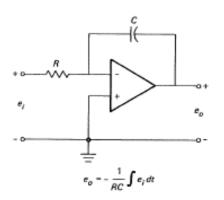



Conversione A/D

- La risoluzione fissa un numero di livelli in cui viene diviso il fondo scala. Conversione a n bit→2ⁿ livelli di quantizzazione
- Risoluzione: V_{FS}/ 2ⁿ
- Fondo scala definito dal range entro il quale si prevede che il segnale sia presente
- Ogni livello è associato a uno specifico codice binario
- Incertezza della quantizzazione: ±1/2LSB

Conversione A/D




R-2R DAC

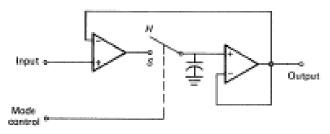
ADC per approssimazioni successive

- Start conversion dà in uscita il codice corrispondente a MSB (che corrisponde a ½ Vref)
- 2. Segnale viene convertito D/A
- 3. La logica in base all'uscita del comparatore opera come segue:
 - 1. Se Vin>MSB→MSB on
 - 2. Se Vin<MSB→MSB off
- 4. Viene attivato il bit successivo e si ripete il procedimento fino a LSB
- 5. La linea di stato segnala che nel registro di output è presente un valore valido

Dual-Slope A/D converter

- 1. Segnale **Vin** viene presentato all'ingresso del circuito sommatore, un segnale di riferimento di polarità opposta **Vref** all'altro ingresso
- Al circuito integratore viene presentato in ingresso l'uscita dal sommatore per un tempo T, un contatore conta gli impulsi di clock che trascorrono
- Viene commutato lo switch e viene posto all'ingresso del sommatore il segnale di riferimento, il contatore viene azzerato
- Il contatore conta gli impulsi di clock che trascorrono nel tempo Δt dalla commutazione dello switch fino a che l'uscita dell'integratore attraversa lo zero.
- 5. Il numero binario di intervalli di clock nel tempo Δt è la conversione digitale del segnale in ingresso

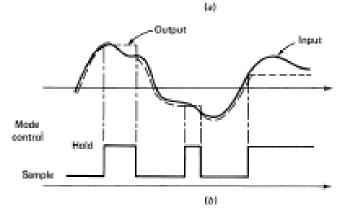
Conversione A/D

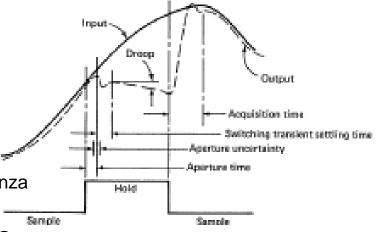

ADC per approssimazioni succesive:

- Tempi di conversione da 3 a 30μs (Full scale input)
- se segnale subisce variazioni "veloci" occorre SH amplifier
- Possono essere bipolari (Range DAC)

ADC dual slope:

- Parametri quali tempo di clock e capacità del condensatore non influiscono sulla conversione perché hanno lo stesso effetto sulle rampe di salita e di discesa
- L'integrazione rende insensibile l'uscita alle variazioni del segnale ad alta frequenza e durante il tempo di integrazione
- Cortocicrcuitando l'ingresso prima di ogni ciclo di conversione è possibile azzerare zero-drift, questo però rallenta la conversione
- Tipicamente hanno una velocità di conversione più bassa dei precedenti




Conversione A/D

Sample & Hold Amplifier

- ➤ E' necessario quando si hanno segnali che hanno rapide variazioni nel tempo
- Viene inserito a monte del sistema di conversione A/D
- Due operazioni in sequenza:
 - ⇒ **S**: Tracking mode (sampling)
 - ⇒ **H**. Hold

- Aperture Time: Δt tra comando di sample e reale apertura dello switch [ns]
- Aperture Uncertainity: incertezza della durata di apertura [ns]
- Switching Transient Settling Time: Δt entro il quale lo switch si assesta (% sul valore in ingresso)
- Voltage Droop: il valore decade nel tempo con una certa pendenza [μV/s]
- Acquisition Time: tempo per il passaggio da H a S (tipico: 5 μs @ ±0,01% del segnale, Fonte:Doebelin)

Conversione A/D

ERRORI

- Errore di quantizzazione:
 errore commesso nel passaggio dalla rappresentazione continua a quella
 discreta con numero finito di cifre del valore del dato
 - ⇒ Espresso come errore RMS vale 0,29LSB
 - ⇒ Può essere considerato come del rumore in ingresso sovrapposto al segnale, si ottiene un valore per SNR espresso in dB
- Aperture error: dovuto al tempo finito impiegato per effettuare il campionamento (ordine della decina di ns o inferiore), può essere affetto da un certo valore di incertezza

Progetto di massima di un sistema di acquisizione

- Dati:
 - ⇒ SNR>80dB richiesto
 - \Rightarrow f_{max}=2000Hz dalla natura del segnale.
- ➤ Si può fissare f_{cutoff} del filtro antialiasing uguale a fmax o di un 20-30% inferiore per compensare il roll-off finito del filtro
- $rac{1}{2}$ f_s=2x2000Hz=4000Hz min.
- ➤ Determinazione SNR del convertitore A/D: $SNR_{A/D}=20log(1/(1/2^n))=80dB \rightarrow 2^n=10^4 \rightarrow n=14bit min.$
 - ⇒ [in alternativa SNR_{A/D}=20log(2ⁿ/0.29) con RMS error]
- Determinazione SNR del filtro: Si fissa attenuation floor pari a 1/2LSB→ il rapporto tra attenuation floor e segnale (unitario) in ingresso è 20log(1/2x1/2ⁿ/1)=-20log(2)-20log(2ⁿ)=-86dB, si noti che in valore assoluto è uguale a sommare 20log(2) a SNR_{A/D}

Conversione A/D

WaveBook/516A Front Panel

Note: /516 & /512A Front Panels also have this appearance.

WaveBook/5164 Rear Panel

Note: The /512A Rear Panel also has this appearance. The /516 Rear Panel has a Printer Pass-Thru Port instead of two SYNC Ports.

WaveBook/516E Front Panel

WaveBook/516E Rear Panel

Tempo di conversione A/D

WaveBook Product Co	omparison	
Analog Input	/512A	/516, /516A, /516E
A/D resolution	12-bit	16-bit
A/D speed	1 MHz	1 MHz
Sample rate	1 μs/channel	1 μs/channel
Ranges Unipolar (Note 2)	0 to +10V, 0 to +4V, 0 to +2V (Note 2)	0 to +10V, 0 to +4V, 0 to +2V (Note 2)
Bipolar	±10V, ±5V, ±2V, ±1V	±10V, ±5V, ±2V, ±1V
A/D accuracy	±0.03 % FS	±0.012% FS

Sample Rate Nominale, effettiva: f_{Max}/N° canali in acquisizione

Conversione A/D

WBK12A and WBK13A - Specifications

WBK12A, Programmable Low-Pass Filter Card WBK13A, Programmable Low-Pass Filter Card With

Number of Channels: 8

Connector: Internal to WaveBook/512A, /516, /516A, /516E, and WBK10A (two 36-pin sockets mate with 36-pin connectors)

Programmable Gain Amplifier Ranges: ×1, 2, 5, 10, 20, 50, and 100 Switched Capacitor Filter Cutoff Frequencies Range:

400 Hz to 100 kHz

Number of Cutoff Frequencies: 1024 Filter Grouping: 4 channels each in 2 programmable

Low-Pass Filter: Software selectable, 8-pole

Low-Pass Filter Type: Software selectable, elliptic or linear phase

Low-Pass Filter Frequency Cutoff Range:

100 kHz, 75 kHz, 60 kHz...400 Hz, bypass defined as Fc = 300 kHz/N where N = 3 to 750 Anti-Alias Frequencies: determined by software control

For WaveBook/516 Series see the table on page 4 of this document module. Offset: ±1 LSB max (for WaveBook/512A)

Aperture Uncertainty: /5 ps max Voltage Droop: 1 mV/ms max (0.01 mV/ms typ)

THD: -65 dB (-70 dB typ) (for WaveBook/512A) Number of Cutoff Frequencies Simultaneously Set two, one for each 4-channel bank of inputs Weight: 0.14 kg (0.3 lb)

Software Selectable Cutoff Frequencies							
Octave (kHz)	Number of Cutoff Frequencies						
0.400 to 0.780	512						
0.780 to 1.570	256						
1.57 to 3.15	128						
3.15 to 6.3	64						
6.3 to 12.5	32						
12.5 to 25	16						
25 to 50	8						
50 to 100	5						

Input Voltage Ranges: Before a scan sequence begins, the input voltage ranges can be programmed via software.							
The ranges can be expanded as follows:							
Unipolar: Unipolar applies to WBK 10A only.							
0 to +10 V							
0 to +5 V							
0 to ±2 V							
0 to ±1 V							
0 to +0 5 V							
0 to +0.2 V							
0 to +0.1 V							
Bipolar: Bipolar applies to WaveBook/518, /518A, /518E, /512A, and WBK10A							
-10 to +10 V							
-5 to +5 V							
-2 to +2 V							
-1 to +1 V							
-0.5 to +0.5 V							
-0.2 to +0.2 V							
-0.1 to +0.1 V							
05 to + .05 V This range applies to WBK 10A only.							

Programmable Gain Amplifier Gain Ranges: ×1, 2, 5, 10, 20, 50, 100

Specifications - WaveBook/516, /516A, /516E, and WBK10A

Analog Specifications

For either a stand alone WaveBook, or for a WBK10A with a WaveBook

Channel Capacity:

WaveBook/516E: 8 built-in voltage channels, expandable up to 72 channels via WBK options. In addition, WaveBook/616E can accommodate up to 3 WaveBook/616A, /612A, or WBK40 options, in any combination. Each added on WaveBook can be expanded up to 72 channels. The maximum WBK41 capacity is 224 TIC channels, 4 analog output channels, 272 digital. I/O channels, and 6 counter/timer channels.

WaveBook/516 and /516A: 8 differential, expandable up to 72 differential

BNC Input Connectors: Center conductor is Channel Hi, outer conductor is Channel Low

Input Voltage Ranges (DC Specifications)

	Standard Unit			With WBK11A (Note 3)		With WBK12A/13A (Note 3)				
Voltage Range	Accuracy (Note 2) One Year, 18-28°C		Input Noise LSB rms Accuracy (Note 2) DC-500KHz One Year, 18-28°C (typical)		Input Noise LSB rms DC-500KHz (typical)	Accuracy (Note 2) One Year, 18-28°C		Input Noise LSB rms (typical)		
	± % reading	± % range		± % reading	± % range		± % reading	± % range	1KHz Filter	Filter Bypass
0 to +10V	.012%	.008%	2	.012%	.008%	2	.012%	.008%	2.2	2.2
0 to +5V (10A) 0 to +4V (516)	.012%	.009%	2	.012%	.009%	2	.012%	.009%	2.2	2.2
0 to +2V	.012%	.012%	3	.012%	.012%	3	.012%	.012%	2.2	3
0 to +1V (10A only)	.012%	.018%	3	.012%	.018%	3	.012%	.018%	2.2	3
0 to +.5V				.018%	.033%	6	.018%	.033%	2.2	6
0 to +.2V				.018%	.08%	8	.018%	.08%	2.2	12
0 to +.1V				.018%	.16%	15	.018%	.16%	2.2	20
-10 to +10V	.012%	.008%	2	.012%	.008%	2	.012%	.008%	2.2	2.2
-5 to +5V	.012%	.008%	2	.012%	.008%	2	.012%	.008%	2.2	2.2
-2 to +2V	.012%	.009%	2	.012%	.009%	2	.012%	.009%	2.2	3
-1 to +1V	.018%	.012%	3	.018%	.012%	3	.018%	.012%	2.2	3.3
5 to +.5V (10A only)	.018%	.018%	5	.018%	.018%	6	.018%	.018%	2.2	6
2 to +.2V	1			.018%	.033%	8	.018%	.033%	2.2	12
1 to +.1V				.018%	.08%	15	.018%	.08%	2.2	20
05 to +.05V (10A only)			ential input scan	.018%	.16%	26	.018%	.16%	4	40

2. Accuracy specification is exclusive of noise.

Unipolar ranges are not available for WaveBook/516, /516A, or /516E when a WBK11A, WBK12A, or WBK13A option is installed. Unipolar ranges are available with WBK10A and any option.

System Performance: one year, 18-28°C unless otherwise noted

Differential Nonlinearity: ±2 LSB max

Total Harmonic Distortion (10Hz-20KHz): -84dB typical

Signal to Noise and Distortion (SINAD, 10Hz-20KHz): -74dB typical

Temperature Coefficient of Accuracy (0-18 and 28-50°C):

With PGA and WBK11A: ± (.002% + 0.6 LSB)/°C typical, -10 to +10V range With WBK12A/13A: ± (.002% + 1 LSB)/°C typical, -10 to +10V range

Input Resistance: $5M\Omega$ (single ended); $10M\Omega$ (differential), in parallel with 30pF

Bias Current: <400 nA (0 to 35°C)

Common Mode Rejection: >70dB minimum; >80dB typical; DC-20KHz

Input Bandwidth: DC to 500KHz

Hostile Channel-to-channel Crosstalk (5Vrms input signal, DC-100KHz): -88dB typical Over-Voltage Protection: ±35 V relative to analog common

Note: Specifications are subject to change without notice.

Bibliografia

- E.O. Doebelin "Measurement Systems application and design" McGraw Hill (par. 10.3 e par. 10.12)
- J.S. Bendat, A.G. Piersol "RANDOM DATA Analysis and Measurement Procedures", John Wiley & Sons
- National Instruments LabView Analysis Concepts
- B&K Technical Review n°4 1987, Windows to FFT Analysis part II