Lezione n. 10: Proprietà di \mathbb{R}^n –parte 2–

Lezione n. 10: Proprietà di \mathbb{R}^n –parte 2–

Luca Bisconti

Il presente contenuto è distanza resasi necessarie pe

Il contenuto ha una finali

Disclaimer

e alle esigenze di didattica a ffusione del virus COVID-19.

e viene rilasciato in uso agli le studentesse sotto licenza: Creative Commons BY-NC-ND

Attribuzione – Non commerciale – Non opere derivate

@ ⊕⊛ョ

Per l'attribuzione, l'autore del contenuto è: Luca Bisconti

Nel seguito la qualità delle scansioni non sarà sempre omogenea, in dipendenza dell'apparecchio usato per la loro realizzazione

Il presente contenuto è e alle esigenze di didattica a

distanza resasi necessarie pe

Il contenuto ha una finali

e alle esigenze di didattica a ffusione del virus COVID-19.

e viene rilasciato in uso agli le studentesse sotto licenza: Creative Commons BY-NC-ND

Attribuzione - Non commerciale - Non opere derivate

Per l'attribuzione, l'autore del contenuto è: Luca Bisconti

Defini Line

· Sie det. un insieme Asint. Un pout relle si ba l'trontiere per A se ogni sur intreno controne sie pouti l'A che del complemente AC DA.

Definitione

· Sie det. un insieme Asik². Un pouto p. e. 115² si ba di frontiere per A se ogni suo interno contiene sie pouto li A che del complementer Ac da A.

· L'insieme de poute la frontiere de A è della frontiere de A e si bonate on JA.

Defini Line

- · Sie det. un insieme Asist. Un pont pelst si ba di frontiere per A se ogni su interno antique sie ponto li A che del amplementer Ac do A.
- · L'insième dei poute la frontiere la A è della frontière la A e si bouste 6u dA.

Osserve i. ve

Come conseguente dirette delle definitione appear Lete, si he che l'insieme A e il suo complemetre A breno le stesse frontrese

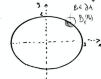
Defini Line

- · Sie date un insieme Asis. Un ponte pacific si ba l'frontiere per A se egui sue interne contiene sie ponte li A che del complementer Ac da A.
- · L'insieme dei poute la frontiere de A è della frontière de A e ni bouate 600 dA.
 Osserveione

Come consequente dirette delle definitione appene Lete, si he che l'insieme A e il suo complementre A brano le stesse frontiera

Esempi

• Date l'insieme $A = \left\{ (x_17) \in W^L : \frac{x^L}{3} + \frac{y^L}{4} \le 1 \right\}$. Albez le trontière di A = 1 l'ellisse de egretione $\frac{x^L}{3} + \frac{y^L}{4} = 1$. Come vitte in une tagli esemp: precedent, excle in quast carabbiamo:



Propriete do Mu

Defini Line

- · Sie dato un insieme Asis. Un ponto pae 15° si ba l'frantiere per A se egui suo interno contiene sia ponto li A che del complemente A° do A.
- · L'insieme dei poute la frontiere de A è della frontière de A e ri benate on DA.

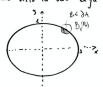
Osservezio ve

Come conseguente dirette delle definitione appene Lete, si he che l'insieme A e il suo complemetre A brono le stesse frontiera

Esempi

Date l'insieme A= {(x,y)∈VR^L: x^L + y^L ≤1}. Albre le trontière di A è l'ellisse de equerière x^L + y^L=1. Come viste in une degli escenti presolenti, encle in quest care.

؛ صديد نظماد



Communque si prende $r_0 \in \left\{ (x,y): \frac{x^4}{3} + \frac{y^4}{4} = 1 \right\}$ in againstorm $g_p(r_0)$ by r_0 (is some size that be $A \in A$.

Allow BA = ((x,7) = NL : x1 + 42 =1)

· Se l'insierne A è il segment la extremi P, e Pe :

Albe le frontier à A Ginciole con l'insiem Asters, ovvers A=1A

Sc l'insieme A è il segment L estremi P, e Pe :
 Albe le troutier b A Coincrole con l'insiem Astrop, ovvero A=3A

Definizione

Um sottoinsieme c s 18 "si dia chius se il suo complementore à aperts.

· Se l'insieme A è il segment le estremi P, e Pe :

Albe le frontier le A Coinciole con l'insiem Astroso,

overs A=14

Definizione

Un sottoinsieme c = 12 si La chives se il suo complementare à aperts.

osserve 2: ve

Si può provire chi un insienne à chiuso (=>) Contiene hulti i suoi punti le accumulatione.

Se l'insieme A è il segment le estremi P, e Pe :
 Albe le frontiere le A Coincrole con l'insiem Astrop, ovvers A=1A

Definizione

Un sottoinsieme c = 12 si La chivis se il suo complementore à aperts.

osserr 2:, re

S: può propre che un insiene à chius (=>) Contiene helli i suoi ponti le accumulatione.

Defini xoue

Deto As 18th le chiusure L'A (denotate Gu Á) à l'insience Ā = AU dA.
L'insience Ā è un chius in 18th e, entir è il più piccob chiuso contenente A

. Si può provare che un insieme è chiuso (=> esso Ginciole con la sue chiusora.)

Inoltre su può prave che le chiusur de un insieme (ouver A=AUSA) si officua
eggiungenob 201 A tuti i sui punt di eccumulatione.

. Si può provere che un insieme è chiuso (ou con le sue chiusore.

Inoltre su può provere che le chiusure de un insieme (ouver Ā=AUJA) si officue
eggiourgeorb 201 A tuti i suri pont di eccumulatione.

OSSErvisone

Si he ch $dA = \overline{A} \wedge \overline{A^{c}}$, Love A^{c} denote it complemented to A in R^{c} (si vicrole ch $A \subseteq R^{c}$)

Un insieme e il sos complementos benus le stesse frontice · Si può provere che un insieme à chius (=> esso Ginciole con la sue chiusur.

Inoltre su può provere che la chiusur de un insieme (Ouver Á=AUIA) si officure
aggiungement 201 A tutti i suri pourt di accomolorione.

OSSErvisone

Esempi

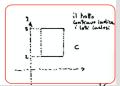
· Si può propere de un insieme è chiuso (=> esso Coinciole con le sue chiusure. Inoltre su por prove de le chiusur de un insieure (ouver Á=AUZA) si officure eggiourgenols 201 A totti i soni pouti di eccomolotione.

OSSEVAZIONE

il soo complementa hames le stesse frontèce

Esempi

- · C = { (x,4) = 12 : x2 + y2 < 1 } 2 chivs.
- · C = { (x,1) Elfi? :0=2x+y+1 } 2 un insiema chiuso.
- · C = \ (x,1) = || x : 1 < x < s , 2 & y & 5 \ mon è ne chius ne sport :



Si può provere che un insieme è chiuso (=> esso Ginciole con le sue chiuson.
 Inoltre so può pravere che le chiusure de un insieme (ouver Ā=AUJA) si officue eggiungacolo 201 A tuti i suri ponti di eccumulatione.

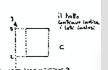
OSSErvazione

Si he ch dA = A n Ac, Love Ac Leuste il complementere do A in Mu (si vicrole ch A s Mu)

il sos complementos benus le stesse troutère

Esempi

- · C = { (x,4) & RL : x + y + & 1 } & chivs.
- · C = { (x,t) e | ft : 2x+y+1 } 2 un insiema chiuso.
- · (c = 112 è sie chiuso de apart.



Esempio

L'insieure $A = \{(x_1y) \in \mathbb{R}^k : 1 \in x^k + y^k < 4\}$ Mon à me 2pth (i pout (a,1) e \mathbb{R}^k tel cle x e $y^k = 1$, apperleugen and A me usu some intervi)

me chione (infelt i pout (x, y) e \mathbb{R}^2 tel cle $x^k + y^k = 4$ mon apperleugen and A me

Som Li accomolorisme per A)

Ezempio

L'insieur A = { (x,y) \in (k' : 16 x2+y2<4}

Mou à me 2pth (i pout (a,y) = 1/k' tali de x2+y2=1, apperleugen and A me non intervi)

me chion (infelt i pout (x,y) = 1/k² tali de x2+y2=4 mon appertanyon and A me

Som Li accomolotione per A)

Erombio

L'insieur A = } (xiy) e 1K" : 1 & x"+ y" < 4}

Mon è ne aport (i pouti (x,y)e 182 teli de x++y+=4 mon appartenyon and A me non tom intervi)

mé chione (indelhi i pouti (x,y)e 182 teli de x++y+=4 mon appartenyon and A me

Sono Li accomolorisme per A)

Abbiamo che: 3A= {(x,y) & K': x2+y2=1} U } (47) C K': x2+y2+45

e inoltre : Ā = A U dA = { (x,4) Elk2 : 16x2+72 64}.

Escapio

L'insieme $A = \{ (x, y) \in \mathbb{R}^2 : o \in x^2 + y^2 \in I \}$ non é apert (riché i pouto $(x, y) \in \mathbb{R}^2$ til: \mathcal{L} $\chi^2 + y^2 \in I$ some in A me non some intermi) me chius $((0, 0) \notin A)$ me à un pouto to eccomotoire $(x, y) \in \mathbb{R}^2$ til: \mathcal{L} $(x, y) \in \mathbb{R}^2$ til: \mathcal{L}

Esempio

L'insieure A = } (x17) e 1kt : 1 & x2+y2< 4}

Mon à me 2pt (i pout (a1) e 1kt tal cle x2+y2=1, apperlegue ad A me non intervi)

mé chion (indelli i pouti (x,y)e x² tali de x'+y'=4 mon eppertugen ad A me

Sow Li eccumulatione per A)

Escupio

L'insieme A: $\{(x,y) \in \mathbb{R}^L : o \in x^{2}, y^L \in \mathbb{R}^L \}$ non $\in 2\mathbb{R}^{n}$ $\{(y_i)_i \in X^L \in$

Esempis

L'insieme
$$A = \{(x,\eta) \in \mathbb{N}^L : (x-c)^L + (y-1)^L < 1\}$$
 à un insieme limitate. Esso infatti à l'interna la Gute (2,1) e voggio 1 (interna steric la (2,1)) est à Gute most per essempre melle palle chiose $B_k^L(y,0) = \{(x,\eta) \in \mathbb{N}^L : x^L + y^L < L^L\}$. Osserviano che A à apeste

Esempis

L'insieme $A = \{(x, \eta) \in \mathbb{N}^L : (x - c)^L + (y - 1)^L < 1\}$ à un insieme limitali. Esse infahi à l'infarm la Guta (21) e vaggis 1 (infarm sperie la (211)) est à Guta mult per essurps melle palle chiuse $B_k(y, 0) = \{(x, \eta) \in \mathbb{N}^L : (x + y^L < 14)\}$. Osserviane cla A à apestre $A = \{(x, \eta) \in \mathbb{N}^L : (x - c)^L + (y - t)^L \le t\}$ e insiltre $A = \{(x, \eta) \in \mathbb{N}^L : (x - c)^L + (y - t)^L \le t\}$

Esempis

L'insieme
$$A = \{(x_1q) \in \mathbb{N}^L : (x-c)^L + (y-1)^L < 1\}$$
 è un insieme limitati. Esse infalti è l'interna la Guta (211) e voggie d'interna steric la (211) est è Gute molt per escurpe melle palle chiuse $\overline{B_k^L(q_0)} = \{(x_1q) \in \mathbb{N}^L : x^L + y^L < 14\}$. Osserviame che A è apeste e si la che $A = \{(x_1q) \in \mathbb{N}^L : (x-c)^L + (y-1)^L = 1\}$

$$e insiltre A = \{(x_1q) \in \mathbb{N}^L : (x-c)^L + (y-1)^L \le 1\}$$

Esempis

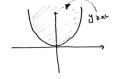
Sie
$$A = \{(x,y) \in (\mathbb{R}^L : xy>0\}$$
 è un insienne aport. Si he che $A = \{(x,y) : x=0 \text{ of } y=0\}$

$$A = A \cup A = \{(x,y) \in (\mathbb{R}^L : xy>0\}$$

$$Inolfre A è un insienne : (limiteth.)$$

$$(uon limiteth)$$

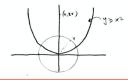
Esempi.



Escupi.

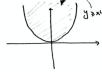
A= {(x,7) & 11th : y > xt { & un insieme mon limitals: Inhalt press on qualongue 1>0, allow

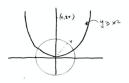
Inhibit press on qualunque r>0, allow to he de $(0,cr) \in A$ non à contant in $\overline{B_r((0,0))}$



Esempi.

 $A = \frac{1}{2}(x,y) \in \mathbb{N}^{L}$: $y > x^{L}$ & un insteme non limitah: Inhalti press on qualonque r > 0, allow the the che (0,cr) $\in A$ Non à Contacub in $B_{r}(0,0)$

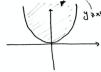


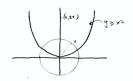


osservismo de A à chiusa e dA. {(x17) : y=x1.} Inoltre A.Ā.

Esempi.

A. \((x,7) \in (x) \); \(y \rightarrow x) \(\





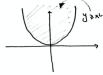
osservano de A à chiusa e dA. ((K17): y=x1)
Inoltre A=Ā.

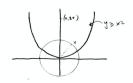
Definizione

On instead $D = M^2$ Si doc Connesso se non established due instead A_1, A_2 , non vost; entranti chius: (o ecutembi exerti) disgiunti e tel. CL $D = (A_1 \cap D) \cup (A_2 \cap D)$

Escupi.

A = $\frac{1}{2}(x,7) \in \mathbb{N}^2$: $\frac{1}{2} \times x^2$ \(\text{e' un insteme non limitaln: Inhalti press on qualonque r>o, ellow to be the (0,1cr) \(\text{A} \) \(\text{Non \(\text{a} \) (\text{Containstall} \) \\ \\ \text{in } \(\text{B}_{\(\text{C}(0,0) \)} \)





osservano de A à chiusa e dA. ((K17): y=x1)
Inoltre A=Ā.

Definizione

On instance D = KL S: due Connesso se non establic direction $D = (A, ND) \cup (A_2, ND)$

· Un insieme sport A & 18th is We connesso se A <u>mon</u> à l'unione Is le innieme sporti, entanti non voti a lisjienti.

. Un insieme chiusocè connesso sa c <u>non</u> à l'unione do due insieme entrembi dusi, non vuotir e disgrouti.

- · Un insieme chiusocè comesso sa c non à l'unione di due insieme entrembi dusi; non vustir a lèsquati.
- . In hoi tivemente un insieme Commesso à ver insieme format la un sob pesto.

- . Un insieme chiusocè connesso sa c non à l'unione do due insieme entrembi dursi, non vustir a disgrant.
- . Intoitivemente un insieme Connesso à ver insieme formats la un sol petto.

Esempia

L'insieme

A = \((x,4) \in (x) \cdot \cdot x^2 + y^2 < 1 , x^2 + y^2 > 4 \)

e inoltre A mon à un insieme Gunesse.

a i permet

dalla parti

interna ad

Carchir più picida

o dalla parto e strema ad

Carchir piò ganda

- · Um insieme chiusocè connesso se C non à l'unione du due insienne autrembi dusi non vost. e disgionti.
- . Intoitivemente un insieme Connesso à ver insieme format la un sob pette.

Esempia

l'insieme A = {(x,4) e 0x4 : x2+44 <1 , x4+44 >4 }) à on insieme apert, mon limitete

e inoltre A mon à un insieme Gunesso.

- . Un insieme chiuso Cè comesso se C non à l'unione do due insieme entrembi donsi, non vustir e disgrant.
- . Intoitivemente un insieme Connesse à ver insieme format la un 106 petto.

Esempio

l'insierne A = {(x,4) e qx : x2+qx <1, x4+qx >4 } à on insierne spert, non limitete e inoltre A mon à un insierne Genresse.

Succession in K":

Una beconstone (Pulse M" à une application du essocia
hope

ool opin mem il punt lue M" (M m) Mek")

- . Un insieme chiusocè comesso sa c non à l'unione do due insieme entrembi dussi, non vustir a disgrant.
- . Intoitivemente un insieme Connesse à ver insieme formate la un sob petto.

Esempia

l'insieme A = {(x,4) e gx : x2+42 < 1, x2+42 > 4 } à on insieme expert, non limitete e inoltre A mon à un insieme Gamesso.

```
· Una becession in m.

ool opin' mein il punto Pie pq (M→ Me qu).

Si oli a ch {Pu q converge e P ∈ Vq (sidente: Pi→ P per M→+m)

Se y ∈ >> 3 N = N≥> €. (. per M > N ⇒) || Pu - P || < ε

Pm = (xm11 - - 1 xm1 ) P= (x11 - . , xm) ⇒ || ∑ (xn1i - xi) t
```

- . Un insieme chiuso Cè connesso sa C non à l'unione do due insieme entrembi dussimente du la classique de discontinue de la squati.
- . Intritivemente un insieme Connesse à ver insieme format la un 106 petto.

Esempia

L'insieme $A = \frac{1}{2}(x,q) \in \mathfrak{R}^{L}$: $x^{L}+q^{L}<1$, $x^{L}+q^{L}>4$ à on insieme opert, non limitete e inoltre A mon à un insieme Gamesso.

```
So we so \exists N = N_2 > 0 for M > 0 \Rightarrow M > 0
```