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The modern point of view on the physics of the spin-glass state is considered. The physical
meaning of the phenomenon known as the “replica symmetry breaking” is discussed.

1. INTRODUCTION

The main idea of this review is to describe in simple
terms that new area of physics which is known by the title
“Spin-Glasses™. After almdyst twenty years of hard work
this area of human knowledge has been developed to con-
tain a lot of information about all kinds of quite remark-
able phenomena, both experimental and theoretical. At
present, a general qualitative picture of what is going on
there, seems to be getting more or less clear. Unfortu-
nately, this general understanding belongs only to a rela-
tively small circle of specialists. Even for many physicists
who were working on spin-glasses for years, the state of
affairs in this field remains to be just a mass of thousands of
contradictory experiments and dozens of doubtful theories
none of which has anything to do with experimental real-
ities. Even for many of those who know the main points of
the modern understanding of the physics of spin-glasses, it
remains to be just the result of some mysterious “magic”
which is known as “replica symmetry breaking scheme”
and which has no reliable justification in the “real” world
of theoretical physics.

In this review I am not going to describe the history of
the subject. I am not going to tell about all those brilliant
papers which were filling physics journals during years and
years and which eventually resulted in the modern under-
standing of the problem. For that reason the number of
“historical” references will be minimal. Such kind of a
topic is already described in numerous reviews and books,
and those who are interested in that side of the story may
refer to the book of Ref. 1 or to the review of Ref. 2.
However, the history and the result of the history are not
the same things, and it is mainly the resulting state of
affairs which I propose to describe in the present review.
On the other hand, it should be noted, that the physics of
the spin-glass state which will be considered here is not the
result of a theoretical derivation. It is rather the result of a
“logical jump” from more or less strict theoretical and
experimental facts to the thing which same to be called the
“real world.”

The point is that now the concept of the physics of the
spin-glass state can be formulated, in a sense, apart from
those artificial models for which it has been originally de-

455 Physics - Uspekhi 36 (6), June 1993

1063-7869/93/060455-31$10.00

rived. It appears to look so natural and aesthetically at-
tractive that it would be quite odd if there would be no
such thing in Nature. Moreover, now it is obvious that the
problem of spin-glass state has appeared to be much more
general than that of the original studies of the low temper-
ature properties of random magnets. It includes now the
whole spectrum of problems from that of the optimizations
in economy to biological systems. Therefore, it would be
more probable that it is the absence of the spin-glass phe-
nomena which might be an exception.

The review is structured in such a way that its different
parts are directed to different readers.

The First part, consisting of three Chapters, is a sort of
a detailed introduction combined with the conclusions. Al-
most without any sort of calculations, here it is explained
what the problem is, and the modern understanding of the
physics of the spin-glass state is formulated in general
terms. Besides, in Chapter 4, recent experiments on real
spin glasses are briefly described to demonstrate how this
bit of abstract physics can be really neasured. The reader
who is mainly interested in the qualitative results only, and
not in the process of their derivation, may restrict himself
to this First part only.

In the Second part of the review the “magic” of the
replica symmetry breaking scheme is demonstrated and the
physics behind it is discussed. This part contains the de-
tailed derivation of the physical picture of the spin-glass
state for the model of a spin-glass with long-range spin-spin
interactions. At the end of this part the physics behind the
replica symmetry breaking is discussed again, but here it is
done on a bit higher level than in the First part of the
review. The Second part is directed to readers who are
interested not only in the results, but also in the process of
their derivation.

The Concluding remarks are written mainly not to let
the reader, who has managed to read through the entire
review, get the feeling as if everything is perfectly clear. At
the present level of understanding, the problem of spin
glasses is, of course, not solved. Presumably, the most ad-
equate way to formulate the present state of affairs would
be to say that now the problem is (hopefully) correctly
Sormulated.
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PART 1

2. WHAT IS THE PROBLEM?
2.1. The model

There are many different statistical models of spin
glasses. One of the simplest and, on the other hand, a
rather general model is the one in terms of the classical
Ising spins, described by the Hamiltonian:

N

H= —% z J,'jO'iO'j.

[y
This system consists of N Ising spins {0} (i=1,2,...,N),
taking values =+ 1 which are placed at the vertices of some
lattice, numbered by the index i. The spin-spin interactions
J,; are random in their values and signs. The model itself is
defined by the choice of the distribution function P(J; ;) for
these spin-spin interactions. The simplest and, on the other
hand, a sufficiently realistic from the experimental point of
view distribution function is the one with nonzero interac-
tions for the nearest neighbors only and their probability
distribution being Gaussian and independent for all pairs
of the interacting spins:

(2.1

2
Jij

1 ;
P(J,-j) =W expl —gz .
The parameter J is the characteristic value of the spin-spin
interactions.

The motivation for the Hamiltonian (2.1) from the
point of view of the description of the realistic spin-glass
systems is well described in the review of Ref. 2. For the
moment, however, the concrete choice of the model is not
so important, since for now we are just going to realize on
a qualitative level what the problem is in general.

(2.2)

2.2. Frustrations

The main problem is due to the fact that the random
interactions J;; are quenched i.e. for any concrete sample
they are fixed. This results in the following phenomenon.
Consider three arbitrary interacting spins (Fig. 1). Let us
assume for simplicity, that all the interactions are equal in
their values and different only in signs.

2 Ir——2
= T

FIG. 1. The frustrations in a system of three spins. (a) The product of the
interactions along the triangle is positive. In this case there is no frustra-
tion in the system, and the ground state is not degenerate. (b) The frus-
trated triangle: the product of the interactions along the triangle is neg-
ative, and the ground state of the system is degenerate.
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Now, if the three interactions J;, J5; and J; have
happened all to be positive, or two of them have happened
to be negative while the third one is positive (these are the
cases when the product of the interactions along the trian-
gle is positive), then the ground state of such three spin
system will be unique (except for the global change of signs
of all the spins) (Fig. 1a).

However, if the product of the interactions along the
triangle has happened to be negative (one of the interac-
tions is negative, or all three interactions are negative),
then the ground state of such a system will be degenerate.
One may fix, e.g., the first spin to be “up,” then if one goes
along the triangle clockwise (in the case when all three
interactions are negative, Fig. 1b) the second spin must be
oriented “down,” while the orientation of the third spin
will happen to be undefined: according to J,; <0 it should
be oriented “up,” while according to J;; <0 it should be
oriented “down.”

One can easily check that a similar phenomenon takes
place in any closed spin chain, consisting of an arbitrary
number of spins, in which the product of the interactions
along the chain is negative. This phenomemon is called
frustration

An important point is that not any disorder appears to
be relevant for the thermodynamic properties of the sys-
tem. It is the frustrations, which are that relevant part of
the disorder, which essentially changes the behavior of the
system in comparison with the corresponding one without
disorder. In other words, if the disorder does not produce
frustrations, then it is not relevant for the basic properties
of the ground state of the system.

It might also happen that the disorder is just “ficti-
tious,” in a sense that it can be removed by a proper re-
definition of the variables of the system. A trivial example
is the Mattice magnet, which is also described by the
Hamiltonian (2.1), where the spin-spin interactions are
defined as follows: J;=££;, and the quenched £/s are
taking values +1 with equal probability. In such system
the interactions J;; are also random in signs, but after a
simple redefinition of the spin variables o,—c£;, an ordi-
nary ferromagnetic Ising model will be recovered. One can
easily check, that with such definition of the random inter-
actions, there are no frustrations in the system. The frus-
trations are that part of the disorder, which is not remov-
able by any transformation of the variables.

Now, in a multispin system one may draw a large num-
ber of all possible closed spin chains. In general, if the
spin-spin interactions are random in sign, then one could
expect that there could exist a lot of frustrations in the
system. This, in turn, would result in a tremendous degen-
eracy of the ground state, or, at least, it would produce a
large number of low-lying states with energies very close to
the ground state. (In the Ising spin glass described by the
Hamiltonian (2.1) with long-range interactions the total
number of such states seems to be of the order of exp(AN),
where A is some number smaller than log 2, while the total
number of states in the system is equal to
2V =exp[(log 2)N].)
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2.3. Selfaveraging

Note again that all the thermodynamics we are talking
about takes place for quenched random spin-spin interac-
tions. Therefore, strictly speaking, all the results we may
hope to get for the observable quantities for the given con-
crete system, must be expected to depend on the concrete
interaction matrix J;;, i.e. the result could be expected to
contain some N(N—1)/2 random parameters. Appar-
ently, results of such kind are more or less impossible to
calculate, and moreover, they are useless. Intuitively it is
clear, however, that the quantities which are usually called
observables, should depend on some general averaged
characteristics of the random interactions. This brings us
to the concept of selfaveraging.

The traditional way of speculating why the selfaverag-
ing phenomenon should be expected to take place, is the
following. The free energy of the system is known to be
proportional to the volume of the system, which in our
case is NV. Therefore, in the thermodynamic limit NV — oo
the main contribution to the free energy in such a macro-
scopic system must come from the volume, and not from
the boundary, which usually produces effects of the next
order in the small parameter 1/N.

Any macroscopic system could be divided again, into,
a macroscopic number of macroscopic subsystems. Then
the total free energy of the system would consist of the sum
of the free energies of the subsystems, plus the contribution
which comes from the interactions of the subsystems on
their boundaries. If all the interactions in the system are
short range (which occurs in any normal system), then the
contributions from the mutual interactions of the sub-
systems are just the boundary effects which vanish in the
thermodynamic limit. Therefore, the total free energy
could be represented as the sum of the macroscopic num-
ber of terms. Each of these terms would be a random
quenched quantity since it contains as parameters the ele-
ments of the random spin-spin interaction matrix. Next, in
accordance with the law of large numbers, the sum of
many random quantities can be represented as their aver-
age value, obtained from their statistical distribution, times
their number (all this is true, of course, only under certain
requirements on the characteristics of the statistical distri-
bution in the limit N— o). Therefore, the conclusion
which comes out from such speculations is that the free
energy of a macroscopic system must be selfaveraging over
the realizations of the random interactions in accordance
with their statistical distribution.

The free energy is known to be given by the logarithm
of the partition function. So, it looks as if the only thing
which should be performed for the calculation of the ob-
servable thermodynamics is to produce the averaging of
the logarithm of the partition function over the given dis-
tribution of random J;;’s simultaneously with the calcula-
tion of the partition function itself. It is quite clear that
such a program is not easy, but nevertheless, on the level of
this sort of speculation it looks as if this is just a technical
problem (well, presumably a very difficult one), but no
more than that.
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2.4. The ergodicity breaking

The above arguments are highly instructive for two
reasons. First, they show on a quite simple and qualitative
level what an ordinary physics of disordered systems might
be expected to look like. And second, because in general
for spin-glasses they are not applicable. What makes spin-
glasses to be such a special situation, will be discussed in
the next Chapter, but now let us consider a few general
points about statistical mechanics.

Everything would be quite simple if the free energy
were an analytic function of the temperature (and the
other parameters), or, in other words, if there would be no
phase transitions due to spontaneous breaking of some
kind of symmetry which exists in the system under consid-
eration.

Here is a simple example of how clear and formally
absolutely correct arguments lead to incorrect conclusions.
Consider an ordinary ferromagnetic Ising model. It is de-
scribed by the Hamiltonian (2.1) in which all the spin-spin
couplings are equal to some positive constant. Since the
Hamiltonian is invariant with respect to a global change of
the signs of all the spins of the system, any thermodynamic
quantity which is odd in spins must be identically equal to
zero. In particular, this must also be true for the quantity
which describes the general magnetization of the system.
For any finite NV these arguments are perfectly correct.
Formally they remain correct also in the limit N — oc.
However, what happens in this limit, is that the free energy
becomes a non-analytic function of the temperature at
some critical point T.. As a result, below T, spontaneous
symmetry breaking is known to occur, and a nonzero av-
erage magnetization appears. The formal argument, show-
ing why the above symmetry speculations appear to be not
correct, is to say that in the limit N — o the partition
function is formally divergent, and divergent quantities
very often might produce quite unexpected things. In terms
of physics, the phenomenon is qualitatively very simple:
below 7' the space of all the states of the system becomes
divided into two equal parts separated by an infinite (in the
limit N — « ) barrier. For that reason in the observable
thermodynamics only half of all the states contribute, and
these are the states which are on one side from the barrier.
And that is why in the observable thermodynamics the
average magnetization is nonzero.

In the actual calculations of the thermodynamics for
such systems, all the results are coming out quite automat-
ically both above and below T, and usually it is done
withought any reference to the semiphilosophical back-
ground described above. However, even in this simple sit-
uation it is useful to remember, that below T, not the entire
partition function is used in the calculations but only one
half of it, and it is this one half, which gives the observable
physics. This phenomenon is called the breakdown of er-
godicity and it is the property of any phase transition.

The example of the ferromagnetic system is very sim-
ple because we are able to guess right away what kind of
symmetry might be expected to be broken at low temper-
atures. We can easily guess that it is the symmetry with
respect to a general change of the magnetization, and
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knowing that we are able to conclude which part of all the
states of the system should be taken into account.

In spin glasses spontaneous symmetry breaking also
takes place. But it is much more difficult to tell right away,
which one. The main problem is that the symmetry which
might be broken is directly connected to the quenched dis-
order in the system. Moreover, what actually happens in
spin glasses is that spontaneous symmetry breaking takes
place not just at a certain 7', but it occurs at any temper-
ature below T,. In other words, below 7', a continuous
sequence of phase transitions of symmetry breaking takes
place, and correspondingly the free energy is nonanalytic
at any temperature below T'.. And it is this phenomenon,
which makes a spin-glass to be such a special thing.

Now, even at a qualitative level the situation in spin-
glasses looks highly non-trivial. Let us imagine, that some-
how we would be able to compute the total free energy,
averaged over the disorder. Then, what we would get, most
probably, would make no sense for observable physics. The
problem is that, to obtain observable physics we have to
calculate the partition function only within a certain part
of the space of states in accordance with what kind of
symmetry breaking takes place, while this concrete sym-
metry breaking, most probably, is directly connected with
the concrete realization of the quenched disorder. On the
other hand, the observable physics (at least to a certain
extent) must be selfaveraging.

2.5. The possible scenarios

The only fact which we have learned up to now about
spin glasses is that there could exist a lot of metastable
states (local minima of energy), and that the ground state
could be strongly degenerate.

Now, based on simple physical arguments let us try to
anticipate what types of low temperature behavior could be
expected to take place in such systems.

First. If the barriers separating local minima of the free
energy remain finite at low temperatures, then the thermo-
dynamic state of the system would correspond to a para-
magnetic state, although the time relaxations could appear
to be anomalously slow. In other words, the thermal aver-
ages of the magnetizations at each site could be expected to
be zero: {o;)=0 (the notation {...) means the thermal
average), and all the time correlation functions, such as
(o{(0)o(£)) could be expected to tend to zero (possibly,
more slowly than exponentially) at r— o as well.

Second. It could also happen that there exists a certain
spin state which would have its free energy much lower
than all the other local minima, so that at low enough
temperatures the system would “freeze” in this state. In
more concrete terms it would mean that the system under-
goes a phase transition, such that in the low temperature
phase the thermal averages of spin magnetizations at each
site {o;) would not be zero any more. In this “frozen” state
the values of the magnetizations {o;) will fluctuate in their
values and signs from site to site (since the state is disor-
dered), so that the parameter, which describes the magne-
tization of the system: m=1/NX,{o;) would be zero as in

458 Physics - Uspekhi 36 (6), June 1993

a paramagnetic state. However, the other order parameter
(usually called the Edwards—Anderson order parameter):*

1 2
=— o; 23
would be nonzero in this case.

In this situation the thermodynamics of the system
would essentially differ from that of both the paramagnetic
and the ferromagnetic state. The time relaxations could
also be anomalously slow, since in that region of the phase
space where the system is frozen, numerous local minima
of the free energy could exist, and correspondingly there
could exist a whole spectrum of the energy barriers sepa-
rating them.

Third. Something much more sophisticated. This is the
case, when there could exist a large number of states, in
which the system could get ““frozen” at low temperatures.

The first case could take place when there are strong
fluctuations in the system. This usually happens in low-
dimensional systems (such as the two dimensional Ising
model), or if the spin variables are continuous (as in the
Heisenberg model), which results in the existence of the
soft Goldstone modes, which could easily “melt” any
“freezing.”

It is more difficult to say when the second scenario
might take place. However, it is also quite reasonable to
expect that it is realizable in certain disordered statistical
systems. All the thermodynamics which would be observed
in this case is described in all details in the papers by Fisher
and Huse.’

The above first two cases will not be considered here.
The reason is not that it is something too simple, or that
there is something basically wrong in them, or that they
are hardly realizable in Nature. The reason is that, in a
sense, it is not interesting: these two scenarios do not imply
the existence of a new physics. They are not simple, but
they are routine.

The second scenario, in principle, corresponds to a new
type of phase transitions in magnetic systems. However, in
most general terms it is just a highly complicated version of
the ferromagnetic phase transition. In an ordinary ferro-
magnet the system is “freezing” in the ordered state with
all the spins pointing, say, “up,” while here it is “freezing”
in some other state, which is defined by the quenched spin-
spin interaction matrix. One could imagine that there ex-
ists some sort of a tricky transformation (depending on
Ji;’s) of the spin variables, such that in terms of the new
variables the “frozen” state becomes ordered. The other
metastable states which could exist near this ground state
could make the whole physics much more complicated in
comparison with both the paramagnetic state and the fer-
romagnetic one. However, on a qualitative level it is not
anything new. The point is that in all these situations the
region of the space of states where the system is being
localized is unique.

In what follows we are going to consider the third
scenario only, and it is this case in which qualitatively new
physics comes into play. The question whether it takes
place in Nature or not, remains open, although recent ex-
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periments (which will be discussed in Chapter 4) indicate
that presumably it is just this scenario, which Nature pre-
fers to realize in “everyday” life.

3. PHYSICS OF THE SPIN-GLASS STATE
3.1. The continuous sequence of phase transitions

In an ordinary phase transition from the paramagnetic
to the ferromagnetic state spontaneous symmetry breaking
takes place, so that below T the system could be in one of
the two states characterized by the order parameters:
{0, =+m, or {0;) = —m. The order parameter m goes to
zero as T — T .. These two “valleys” in the space of states
are separated by an infinite barrier, so that once trapped in
one of the valleys below T, the system could never go over
to the other one. This phenomenon is also called ergodicity
breaking. If the temperature is further decreased, no other
symmetry breaking takes place in an ordinary ferromag-
netic system.

In a spin-glass system there is also a certain critical
temperature 7., and above T, ergodicity is not broken, so
that the system is in the paramagnetic state. At T, a phase
transition of ergodicity breaking takes place, so that just
below T, the space of states is divided into many valleys
(their number goes to infinity in the thermodynamic
limit), separated by infinite barriers of free energy.

At some temperature T'=T,—8T each valley is char-
acterized by non-zero values of average spin magnetization
at each site (0,) ) (Wwhich, of course, fluctuate in sign and
magnitude from site to site). Here (...), denotes the ther-
mal average inside the valley number a. Note that, as we
have seen in the example of the ferromagnetic system, only
such “restricted” thermal averages make physical sense if
ergodicity is broken. The order parameter, which could
describe the degree of ““freezing” of the system inside the
valleys could be defined as follows:

q=l Z [(Ui>(a)]2' (3.1

N5
What usually happens, is that the value of g turns out to be
the same for all the valleys. As T—-T_, g—0.

The most important point is that at any further de-
crease of temperature in all the valleys new phase transi-
tions of ergodicity breaking occur, so that each valley is
divided into many new smaller ones separated by infinite
barriers of free energy (Fig. 2). The state of the system in
any of these new valleys is again characterized by the order
parameter (3.1), and its value grows as the temperature
decreases.

This process of fragmentation of the space of states
into smaller and smaller valleys goes on continuously with
the temperature decreasing down to zero temperature. It
means that at any temperature below 7', the system is in
the state of a phase transition of ergodicity breaking.

However, this is not all. The other point is that at any
temperature below 7. in each of the valleys there are also
many metastable states separated by finite free energy bar-
riers. There are barriers of any height, so that the spectrum
of the values of the barriers goes continuously up to infin-
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FIG. 2. The qualitative structure of the free energy landscape at different
temperatures.

ity. This results in the phenomenon that during any arbi-
trarily large but finite time real thermodynamic equilib-
rium inside the valleys is never achieved. On the other
hand, experiment shows that there exist certain thermody-
namic observables, such as specific heat, which behave as if
thermodynamic equilibrium is achieved: they do not de-
pend on time, and they are reproducible (which means
that they are the same in all the valleys). On the other
hand, other observables depend on time explicitly on any
time scale that is accessible experimentally at present.

For that reason the possibility to use the traditional
approaches of statistical mechanics for spin-glasses looks
rather puzzling: as if it could be used in a sense, but only
up to a certain extent, although it is not quite clear up to
what extent.

3.2. The order parameter

Anyway, keeping in mind all the above reservations
about the possibility to use traditional statistical mechanics
for spin glasses, let us try to define the physical order pa-
rameter, which would reflect all that complicated structure
of the space of states as fully as possible.

It is more or less clear that the order parameter (3.1)
defined inside one valley only, does not contain any infor-
mation about the other valleys, as well as it does not tell us
anything, about what is, so to say, the topology of these
valleys inside the phase space.

Consider the following series of imaginary experi-
ments. At some given temperature below T, starting from
an arbitrarily disordered spin state, we let the system relax
to thermal equilibrium. In each new experiment we start
from a new initial random spin state. In the result of each
such experiment we will obtain some “equilibrium” values
for the average spin magnetization at each site (o)),
where a denotes the number of the experiment. Since it is
expected that there are many valleys in phase space in
which the system could get trapped, these site magnetiza-
tions could be found to be different in different experi-
ments. “Equilibrium” is undersood here rather condition-
ally: it is simply assumed that site magnetizations are
quantities that attain their equilibrated values relatively
quickly.
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Let us assume that we have performed an infinite num-
ber of such experiments. Then, we can introduce the quan-
tity, which would describe to what extent the states which
have been obtained in different experiments are close to
each other:

N

Qaﬁ=x, ; (o) (){T) 8- (3.2)

Obviously |g,s| <1, and the maximum value of g4 is
achieved when the states in experiments a and 3 are the
same (in this case the overlap (3.2) coincides with that of
(3.1), which has been introduced for one valley only). One
can easily see, that the less correlated the two states are,
the smaller is their overlap value (3.2). If the two states
are not correlated at all, then their overlap (in the ther-
modynamic limit) is equal to zero. In this sense the over-
laps g,g define a sort of a metric in the space of states (the
quantity which is inverse to g,5 could be called the “dis-
tance” in the space of states).

Now, to describe the statistics of all possible overlaps
in the space of states one could introduce the probability
distribution function:

P(g)= 2 8(qup—q). (3.3)
afl

It is this function P(q) that could be considered as the
physical order parameter, and it is in terms of the function
P(g) that the spin-glass phase looks essentially different
from any other phase. Although in the procedure described
above this function has been introduced in a rather specu-
lative way, it will be shown in the second part of the re-
view, that it could be defined as the normal thermodynam-
ical quantity, and for a model with long range interactions
it can be calculated explicitly.

Possible types of the functions P(g) are shown in
Fig. 3. In a paramagnet there is only a single thermody-
namic state which is characterized by zero site magnetiza-
tions, and therefore the function P(q) is the §-function at
g=0 (Fig. 3a). In the ferromagnetic state bellow T, there
are two states characterized by the site magnetizations
+m, and therefore the function P(g) is the two
8-functions at g= +m?, and at g= —m?* (Fig. 3b). Obvi-
ously in the case of, so to say, “‘fake” spin glass (scenario
2 of section 2.5) the function P(q) looks the same as in the
ferromagnetic state.

In the true spin-glass state the function P(g) looks
essentially different (Fig. 3c). Here, between the two
6-functions at g= +¢,,,,(T) there is a continuous curve.
The g0, (T') is the maximum possible overlap which is the
“selfoverlap” (3.1). Since the number of the valleys in the
system is macroscopic and (for some reasons) their
selfoverlaps are all equal, the function P(g) has two
b-functions at g= +¢q,,,(7) (the symmetry of P(g) is due
to the fact that the Hamiltonian of the system is symmetric
with respect to the global change of the signs of all the
spins). The existence of the continuous curve on the inter-
val (0, £¢,,,,(T)) is the result of the continuous process of
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FIG. 3. The probability distribution function P(g): (a) in the paramag-
netic phase; (b) in the ferromagnetic phase; (c) in the spin-glass phase.

fragmentation of the valleys into smaller and smaller ones.
The hierarchy of the states which appears in this way just
can not be non-correlated.

3.3. Ultrametricity

It is more or less clear that according to the qualitative
picture of the spin-glass state described in section 3.1, a
sort of a hierarchical structure of the spin-glass states could
be expected to appear (Fig. 2): inside each valley there
exist many smaller ones, inside the smaller valleys there
exist many still smaller ones, and so on. It can be proved
that all this rather sophisticated stuff could be described in
terms of well-defined thermodynamical quantities.

In the previous section we have introduced the func-
tion P(q), which gives the probability to find two spin-
glass states which would have an overlap equal to g. Let us
introduce now a somewhat more complicated probability
distribution function P(q,.,g,,q;), which would give the
probability that three arbitrary spin-glass states would
have their paired overlaps simultaneously equal to ¢q;, ¢,
and g;:

P(41,92.93) = 2. 8(4up—1)8(qay—a2)8(gp,—a3).
b (3.4)

For the model of a spin glass with long range interac-
tions this function can also be calculated explicitly (this
will be done in Part 2 of this review), and the result may
look surprising at first. It can be shown that the function
P(q,,49,,93) is not equal to zero only if at least two of the
three overlaps are equal and their value is not bigger than
the third one. In other words, the function P(g,,9,,93) is
non-zero only in one of the three cases: ¢,=¢,<gq;, or
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FIG. 4. The hierarchical tree of the spin-glass states.

41=¢3<4;, OF g3=¢,<4q,. In all other cases P(q;,q,,93) is
identically equal to zero. It means that in the space of
spin-glass states there exist no triangles with all three sides
different. The spaces having such a metric property are
called ultrametric. In mathematics ultrametric structures
have been already known since the end of the last century,
and they came into physics only recently due to spin
glasses. Ultrametricity from the point of view of physics is
described in all detail in the review of Ref. 6.

The most simple illustration of ultrametric structures
can be made in terms of a hierarchical tree (Fig. 4). The
space of the spin-glass states is identified with the set of
endpoints of the tree. The metric in this space is defined in
such a way, that the overlap (the distance) between any
two states depends only on the number of generations to
their closest “ancestor” on the tree (as the number of gen-
erations increases, the value of the overlap decreases). One
can easily check (just playing with any choice of arbitrary
three points in the set), that the space defined in such a
way is ultrametric.

Actually, such a tree of states is not just an abstract
auxiliary illustration. It really corresponds to the hierar-
chical fragmentation of the space of states into valleys, as
has been described in section 2.5 (Fig. 2). For the vertical
axis in Fig. 4 the value of ¢ should be assigned, and then
for any given temperature 7' < T, the set of all the spin-
glass states which exist at this temperature would be ob-
tained at the crossection of the tree at the level
9=¢qm.x(T). The horizontal direction in this picture is the
infinite-dimensional space of states.

As the temperature is decreased to anew 7’ <7, each
of the states, which live on the level ¢,,,,(T) gives birth to
numerous ‘‘descendants,” which are the endpoints of the
tree at a new level ¢ (T')>qn(T). As T-0,
9max(T) — 1, and this is the “lowest” (most detailed) level
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of the tree at which one finds all possible states which
could exist in the spin-glass.

Correspondingly, as the temperature increases to some
value 7" > T, all the states having common ancestors at
the level g, (7" ) <g,,.x(T') merge together into these an-
cestors. As T'— T, ¢,.«(T)—0, and this is the level of the
(paramagnetic) ‘“grand-ancestor” of all the spin-glass
states.

Since the function q,,,,(7") is determined by the tem-
perature, it means that it is the temperature which
uniquely determines that level of the tree at which the
“horizontal” crossection should be made, and which, in
turn, defines all the spin-glass states existing at this tem-
perature. Everything which is below this level is “invisi-
ble,” and everything which is above this level is the “evo-
lution history” of the spin-glass states. Therefore it is the
temperature that determines the scale in the space of the
spin-glass states, in the sense that all the states which have
overlaps bigger than ¢.,,(7) are nondistinguishable. In
this sense one could also say that there exists a special sort
of scaling in the low-temperature spin-glass phase: chang-
ing the temperature one just changes the scale in the space
of states.

Although one could assume that such kind of structure
of the space of states is just a very special property of the
very artificial model of the spin glass (which is really very
far from the experimental realities), in fact rather general
arguments could be given which indicate that it is the ab-
sence of such kind of ultrametric structures that might be
something special in disordered frustrated systems.

Consider a disordered system which just by its con-
struction due to numerous frustrations contains a macro-
scopic number of local minima of the free energy. Let us
assume then (and this is the crucial assumption) that the
local minima states are sufficiently “strong” to collapse
into closed valleys which would factorize the space of
states into many pieces at low temperatures. Then, the
most natural way of such fragmentation of the phase space
would be that which has been described in section 3.1: first
the space is separated into most uncorrelated (distant)
parts, then, as the temperature decreases, these valleys are
separated into smaller and slightly correlated ones, and so
on. In fact this is nothing else, but the random branching
process which goes on in infinite-dimensional space (the
space of the states in the thermodynamic limit N — « be-
comes infinite-dimensional). The ultrametricity in this sit-
uation appears automatically whatever the concrete prop-
erties of the random branching process are. The point is
that in any random branching process in the infinite-
dimensional space, any two branches once separated never
come close again. Therefore, the ultrametric hierarchy of
states described above could be a rather general property of
random systems (note that even disordered social systems
are well known always to form strict hierarchies).

The results of recent experiments that have been made
on real spin-glass materials also indicate in favor of this
assumption.
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4. EXPERIMENTS

In this Chapter we will consider recent experiments
which have been done on real spin-glasses. The idea of
these experiments was to check to what extent the quali-
tative picture of the spin-glass state described above, is
valid in the real world. The main problem, as usual, is that
the concepts and quantities which are very convenient in
the theoretical speculations are very far from the experi-
mental realities, and it is a matter of true experimental art
to construct convincing experimental procedures which
would be able to confirm (or reject) a theoretical scheme.

A series of such brilliant experiments has been per-
formed by M. Ocio, J. Hammann, F. Lefloch and E. Vin-
cent (Saclay), and M. Lederman and R. Orbach
(UCLA)

Most of these experiments have been done on crystals
of CdCr, ;Iny5S,. The magnetic disorder there is due to the
competition of the ferromagnetic nearest neighbor interac-
tions and the antiferromagnetic higher order neighbor in-
teractions. This spin-glass has already been systematically
studied some time ago,® and its spin-glass phase transition
point T=16.7 K is well established. Some of the measure-
ments have also been performed on the metallic spin
glasses of the type’ AgMn and the results obtained were
qualitatively the same. It indicates that presumably the
qualitative physical phenomena observed, do not depend
very much on the concrete realization of the spin-glass
~ system.

4.1. Aging

The phenomenon of aging in spin glasses is already
known since some years ago.'’ It is not directly connected
with the hierarchy of the spin-glass states, but it explicitly
demonstrates the absence of true thermodynamic equilib-
rium in spin glasses.

The procedure of the experiments is the following. The
sample is cooled down into the spin-glass state in the pres-
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ence of a weak uniform magnetic field 4. Then at a con-
stant temperature T < T it is kept in the same magnetic
field during some time #,,. Then the magnetic field is
switched off, and measurements of the relaxation of the
thermoremanent magnetization (TRM) is performed. The
results of these measurements for different values of ¢, is
shown in Fig. 5 (note, that the values of ¢, are quite mac-
roscopic: they are minutes, hours, days).

The first thing these plots show is that the observed
relaxation is slow and non-exponential (that is why the
results are shown on a logarithmic scale). More important,
however, is that the relaxation appears to be a non-steady-
state one: the processes which take place in the system after
switching off the field depend on the time ¢, when this
occurred. The spin-glass becomes stiffer with time: the big-
ger is t,, the slower is the relaxation. Therefore, any ex-
periment of this kind depends on two time scales: the ob-
servation time #, and the time which has passed after the
system came into the spin-glass state, the “aging” time ¢,,.
It is also important to note that at all experimentally ac-
cessible time scales there are no signs of reaching thermal
equilibrium, which would take place if the relaxation
curves would approach a certain limiting curve corre-
sponding to f,= co.

Note also that it is not the magnetic field itself, which
might be thought to be responsible for the observed phe-
nomnenon. The magnetic field here is just the instrument
which makes it possible to observe the phenomenon. One
could also perform the “mirror” experiment: the system is
cooled down into the spin-glass state in zero magnetic field,
then it is kept at a constant temperature 7 <7, during
some time 7, and after that the magnetic field is switched
on and the relaxation of the magnetization is measured.
Again, the results of the measurements essentially depend
on t,,. Moreover, for any value of ¢, the curves obtained in
these two kinds of experiments turn out to be symmetric: if
one plots the value of the sum of the magnetic moments
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obtained in these “mirror” experiments as a function of
time, one finds that it is a time-independent constant
(Fig. 6).

4.2. Temperature cycles and the hierarchy of states

Now we consider two types of experiments which were
specially designed to observe the effects which might ap-
pear due to the existence of a hierarchical tree of the spin-
glass states and a continuous hierarchy of phase transitions
in the low temperature phase.

In the experiments of the first type, the sample is
cooled down in a weak magnetic field into the spin-glass
phase, and then it is kept at constant temperature 7 < T,
during some time f, . After that the temperature is

changed down to T—AT (where the value of AT is
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small), and the sample is kept at this temperature during
some time 7, . Then the temperature is changed up to the
original value T again, and the sample is kept at this con-
stant temperature during some time Ly, - After that the

magnetic field is switched off and the relaxation of the
magnetization is measured. The results for different values
of AT are shown in Fig. 7.

The main result of these measurements is the follow-
ing. It is clear from the plots of Fig. 7 that if the value of
the temperature step AT is not too small, then all the
relaxation curves obtained appear to be identical to those
in the ordinary aging experiments (Sec. 4.1) with the wait-
ing time ¢, = ta, + tw,- This means that as regards the pro-

cess of equilibration at temperature 7, the system has ef-
fectively appeared to be completely frozen during the

FIG. 7. The relaxation behavior of the
magnetization in the aging experiments
with the cooling temperature cycles.
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entire time f, when it was kept at the temperature
T—AT.

In the experiments of the second type, again, the sam-
ple is cooled down into the spin-glass phase in the presence
of a weak magnetic field, and then it is kept at a constant
temperature 7 < 7', during some time tw, - After that, for a

relatively short time interval the sample is heated up to
T+ AT (where the value of AT is small), then it is cooled
down again to the temperature 7 and it is kept at this
constant temperature during some time ly,- After that, the

magnetic field is switched off and the relaxation of the
magnetization is measured. The results for different values
of AT are shown in Fig. 8.

What happens in this case is that if the value of the
temperature step AT is not too small, then all the relax-
ation curves obtained turn out to be identical to those in
the ordinary aging experiments (Sec. 4.1) with the waiting
time ¢, = ¢, . This means that even slight heating is enough

to wipe out all the aging which has been “achieved” at the
temperature T during all the preceding time, and to start
the aging process all over again. (Note that the tempera-
ture T+ AT is still essentially below 7..)

Such a quite asymmetric response of the system with
respect to the considered temperature cycles of cooling and
heating fits well into the qualitative physical picture of a
continuous hierarchy of phase transitions and the tree of
the spin-glass states.

The qualitative interpretation of the results described
above is the following. The process of aging which is as-
sumed to be a very slow drift down to the true thermal
equilibrium, is imagined as a process of jumping over
higher and higher energy barriers as time goes on. After
the waiting time ¢, the system covers a certain part of
phase space, which could be characterized by the maxi-
mum energy barriers of the order of A, ~T log(¢,/7)
(here 7 is some characteristic microscopic time). It is as-
sumed that to any scale in the space of states there corre-
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sponds a certain characteristic scale of the energy barriers.

The results of the experiments with the temperature
cycles of cooling could be interpreted as follows. During
the time period ¢, when the system has been kept at the

temperature T, it covers a certain restricted part of the
phase space inside one of the valleys existing at this tem-
perature. After cooling down to the temperature 7 —AT
this part of the phase space is divided into several smaller
valleys separated by infinite barriers. Correspondingly,
each of the metastable states inside the valley, which were
separated by finite barriers, are divided into many new
ones. The barriers separating the states become higher, and
some of them become infinite (that is why the valley is
divided into many smaller valleys). Then, during the time
tw, the system begins to occupy these new states remaining

locked in by infinite barriers in some part of the phase
space which is smaller than it was before, at the tempera-
ture 7. Therefore, whatever time has passed at the tem-
perature 7 —AT the system could occupy only those
states, which are descendants of the states already occupied
at the temperature 7', and not more. Note that all these
effects are just a direct consequence of the phase transition
which occurred in the system due to cooling from the tem-
perature T to the temperature 7 —AT. Then, after heating
back to the temperature 7 all these descendant states
merge together into their ancestors, and all the aging
which has been achieved at the temperature T—AT is
wiped out. After that, the process of aging at the temper-
ature 7 would continue again, as if there were no time
interval which the system spent at the temperature
T—AT.

In experiments with the temperature cycles of heating
the effects to be expected are different. The states occupied
by the system during the time ¢, at the temperature 7,
after heating to the temperature 7+ AT would merge to-
gether into a much smaller number of their ancestor states.
If AT is taken to be such that g(T+AT) <gq’, where g(T)
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is the selfoverlap of the states at the temperature 7" and ¢’
is the selfoverlap of the common ancestor of the states
occupied during time interval #,, , then after the heating all

the occupied states would merge into their common ances-
tor state. Within this limited part of the phase space it
would effectively look as if a paramagnetic phase transition
occurred. Therefore, all the aging which has been achieved
at the temperature 7 would be wiped out, and after cooling
back to the temperature T the process of aging would start
again from the very beginning.

In simple terms the results of the considered experi-
ments could be summarized as follows. If the spin-glass
system is aging at some tempetature 7 < T, then any tem-
porary heating would eliminate all the aging achieved,
while any temporary cooling for any time period, just post-
pones the aging processes at this temperature.

4.3. The temperature dependence of the energy barriers

The scheme of the above experiments could be slightly
changed so that it would make it possible to estimate the
temperature dependence of the (finite) free energy barrier
heights.

The experiments have been done on the metallic spin
glasses AgMn (7,=10.4 K). The scheme of the experi-
ments is the following. First, the spin glass ages in a weak
magnetic field during the waiting time ¢, at some temper-
ature 7—AT. Then the sample is quickly heated to the
temperature 7, and simultaneously the magnetic field is
switched off. After that, measurements of the relaxation of
the magnetization are done.

The results are shown in Fig. 9. These plots clearly
show, that if the value of AT is not too small, the relax-
ation curves obtained are practically identical with those in
the ordinary aging experiments (Sec. 4.1) at the same tem-
perature T but with some other waiting time T <¢,,.
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This phenomenon is also well explained in terms of the
hierarchical structure of the spin-glass states if we accept
the idea that the barrier heights themselves essentially de-
pend on the temperature. The free energy barriers at the
temperature 7 — AT must be higher than those at the tem-
perature 7. In other words, the region of phase space oc-
cupied by the system at the temperature 7T —AT is
bounded by barriers which are lower at the temperature 7.
Correspondingly, the time needed to occupy this part of
the phase space at the temperature T is smaller than that at
the temperature T —AT.

What is most important, is the fact that the relaxation
curves obtained during long observation times become
practically identical. Note, that at the moment when the
measurements are starting, the value of the temperature
and the magnetic field in both cases are the same. If the
value of tﬁvﬂ is chosen correctly, then the relaxation curves
also become the same. It means that the region of phase
space occupied by the system by the time of the beginning
of the measurements in both cases must be the same.

This region is characterized by the maximum barriers
overcome by the system during aging at the temperature 7'

teﬂ'
AT =T log(—:—) (4.1)
and correspondingly, during aging at the temperature
T—AT:
t

A(T—Att,)=(T—AT) log(:w). (4.2)

Since the relaxation processes both after aging at T
during the time interval ¢,, and after aging at 7— AT dur-
ing the time interval 2T are the same, the initial state of the
system must also be the same. Therefore, one can conclude

that A(T—AT) and A(T) are the heights of the same
barrier at different temperatures.
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FIG. 10. The dependence (obtained from the data of Fig. 9) of the values
of the free energy barriers at temperature T on their values at temperature
T—AT.

On the basis of this conclusion and using the experi-
mental plots of Fig. 9, one can get the dependence of the
value of dA/3T on A at the given temperature. In Fig. 10
the dependence of A(T—AT) on A(T) is shown for T=9
K, 9.5 K and 10 K and a fixed value AT =20 mK. These
plots demonstrate that within experimental error the de-
pendences obtained at different T coincide. In Fig. 11 the
corresponding dependence of the value of dA/JT on A is
shown. Within experimental error dA/dT depends only on
the value of A and does not depend directly on the tem-
perature. The dashed line in Fig. 11 is the power law ap-
proximation to the experimental data:

dA

—=~aA®% a=29%10"".

7= (4.3)
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FIG. 11. The dependence of the growth rate of the barriers, dA/dT, on
the values of these barriers A.
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Integrating this equation, one gets:
T—-T*
T,

—1/5
;. T>T*

A(T)z[ (4.4)

The temperature T%* is the integration constant, which, in
fact, labels the barrier under consideration. Each barrier
can be characterized by the limiting temperature 7* at
which this particular barrier becomes infinite.

In conclusion, the experiments considered in this
Chapter clearly demonstrate the existence of the aging phe-
nomena in the spin-glass phase over the whole range of
temperatures below 7', and at all observable time scales.
The experiments demonstrate also the existence of the
whole spectrum of the free energy barrier heights up to
infinity, at any temperature below 7.. What is more im-
portant, however, is that the measurements show that the
barrier heights strongly depend on the temperature and at
any T <T, there are certain barriers which become infi-
nite. This is a clear indication of the existence of the er-
godicity breaking phase transition at any 7 < T... It is this
phenomenon, that results in the continuous process of frag-
mentation of phase space into ever smaller valleys as the
temperature decreases. In these terms the critical temper-
ature T, is just the maximum possible value of T*.

PART 2

In the subsequent three Chapters the formal calcula-
tions for the special model of spin-glass with long range
interactions will be performed. Parisi replica symmetry
breaking scheme will be considered in detail. As a result,
the physical picture of the spin-glass phase discussed in the
first part of the review will be obtained.

5. THE REPLICA METHOD
5.1. The model

The Sherrington and Kirkpatric (SK) model of a
spin-glass'! is described by the Ising Hamiltonian:

N

i<j

(5.1

The spin-spin interactions J;; in this system are the random
quenched variables which are independent for any pair of
sites (/,7), and which are described by the Gaussian dis-

tribution:
\/F SN
ZT exp| — T .

According to the above definitions, each spin can interact
with any other spin of the system. For that reason no
concept of space structure (dimensionality, type of the lat-
tice, nearest neighbors etc.) exists in this model. The space
here is just the set of NV sites in which the Ising spins are
placed, and all these spins, in a sense, could be considered
as nearest neighbors. One could also interpret the SK
model as that of the lattice spin system in an infinite-(in
the limit N - o ) dimensional space.

i<j
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According to the probability distribution (5.2) one
gets:

1
(=0 i 5 (5.3)

where ((...)) means averaging over the realizations of the
random J,;’s:

()= fDJP[J](...)

_ + o d.]u i
_i]:Ij f_w —\Tmexp{—,]ijN} ()

(5.4)

One could easily check that due to the normalization
of the order of 1/N for the average square value of the J;;’s
(5.3), the average energy of the system estimated using the
Hamiltonian (5.1) appears to be of the order of ¥, as it
should be in any adequately defined physical system.

It is clear, however, that microscopic structure of the
model defined above is highly unphysical. Nevertheless,
this model has two big advantages: first, it is exactly solv-
able, and second, the results obtained from that solution
appear to be quite non-trivial and on a qualitative level
they could be easily generalized for a “normal” random
physical system. Therefore, if it would be discovered (e.g.
in experiments) that real spin-glasses demonstrate that
special sort of the physical properties described in the first
part of the review, then it is not so important, in a sense,
what was that original artificial model, which has initiated
the correct result. One could argue then, that such physics
of the spin-glass state is a sort of a big universality class,
which covers a wide spectrum of the disordered statistical
systems, including even such an exotic one as the SK
model.

As for the SK model itself, the reason why it is exactly
solvable is very simple: in the infinite-dimensional space
the mean field theory is exact.

5.2. The replicas

Formally, the replicas are introduced as follows. The
physical (selfaveraging) free energy of the quenched ran-
dom system is known to be obtained by averaging over the
randomness of the logarithm of the partition function:

1
FE<<FJ)>=—E,<<IHZJ>> (5.5)
where the partition function
Z,= X exp{—BH[0]} (5.6)

o4

should be calculated for fixed random J;;’s. To perform this
procedure of averaging the following trick is invented. Let
us consider the integer power n of the partition function
(5.6). That would be the partition function of the » non-
interacting identical replicas of the original system (i.e.

having identical fixed spin-spin couplings J;;):
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n N
B z z J;jafaj .

a=1 i<j

(5.7)

=13 Jor

Here the subscript a labels the replicas. Let us introduce
the quantity:

1

F,,:—Eln Z, (5.8)
where
Z,={{ZM. (5.9)

Now, if a formal limit n—0 would be taken in the expres-
sion (5.8), then the original expression for the physical
free energy (5.5) would be recovered:

1
limF,= —-
n—0 5 B
So that, the scheme of the replica method is the fol-

lowing. First one calculates the quantity F, for integer n.
Then, the analytic continuation of the obtained function of
the parameter n should be made for an arbitrary non-
integer n. After that the limit »—0 has to be taken.

Although this procedure may look rather doubtful at
first, actually it appears to be not that crazy. Of course, in
general no one was able to prove yet that the replica
method must give the correct results. And nevertheless,
there are several arguments in favor of the replica method:

First, if the free energy appears to be an analytic func-
tion of the temperature and the other parameters (so that
it can be represented as a series in powers of [3), which
usually takes place in the high temperature phase, then the
replica method can be easily proved to be correct in a strict
sense. Well, of course, in the spin-glass phase the free en-
ergy function is far from being an analytic one.

Second, in all cases, when the calculations could be
performed by some other method, the results of the replica
method are confirmed.

Third, (which is presumably most important) I would
argue that the replica method is not just a formal trick, but
actually it is a physically sensible procedure. In general
terms I would say, that if in the disordered system there
are numerous alternatives for the ground state, which are
essentially defined by the quenched disorder and which
produce the ergodicity breaking, then in the calculations of
the thermodynamics while summing over all these alterna-
tives one is inevitably forced, in a sense, to take the same
system (with the same realization of the disorder) many
times. As for the limit n—0, it will be demonstrated later
on that, in terms of the Parisi replica symmetry breaking
scheme, it corresponds, in a sense, to the limit n— o,
which is quite natural, since the number of the alternative
states in the thermodynamic limit of the SK model is infi-
nite.

Actually, the replica formalism could be introduced in
a purely physical way.!? Let us consider a general spin
system described by some Hamiltonian H[J;o)], which de-
pends on the spin variables {o;} and the spin-spin interac-
tions J,-j (for the moment, the concrete form of the Hamil-

((InZy))=F. (5.10)
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tonian is not important). If the interactions J;; are
quenched, the free energy of the system would depend on
the concrete realization of the J;/’s:

1

FlJ]= B

log Z[J] (5.11)

where

Z[J]= 2 exp(—BH[J;o])

24

(5.12)

is the partition function.

Now, let us assume that the spin-spin interactions are
not perfectly quenched, so that they can also change their
values, but the characteristic time scale of their changes is
much larger than the time scale on which the spin degrees
of freedom reach thermal equilibrium. In this case the free
energy (5.11) would still make sense, and it would become
the energy function (the Hamiltonian) for the J;;’s degrees
of freedom.

Besides, the space in which the interactions J;; take on
their values should be specified separately. The J;;’s could
be variables, taking on values +J,, or they could be the
continuous variables taking on values in some restricted
interval, or something else. In the quenched case this space
of J;;’s is defined by some statistical distribution function
P{J]. In the case of partial annealing this function P{J] has
the meaning of an internal potential for the J;;’s, which
restricts the space of their values.

Let us assume now, that the spin and the interaction
degrees of freedom are not thermally equilibrated, so that
the interaction degrees of freedom have their own temper-
ature 7', which is different from that of the spin degrees of
freedom T. In this case for the total partition function of
the system one gets:

F= f DJP[J ]exp(—B'F[J])

= f DJP[J]exp(% log Z[J])

— JDJP[J](Z[J])" (5.13)

where n=T/T’. Correspondingly, the total free energy of
the system would be:

F ==Tlog{{{(Z[J])"))} (5.14)
where
ZIDN = JDJP[J](Z[J])"- (5.15)

This way we have arrived at the replica formalism, in
which the “number of replicas” n=T/T" is a finite param-
eter.

To obtain the physical (selfaveraging) free energy in
the replica approach in the case of quenched random J;;’s
one takes the limit #—0. From the point of view of partial
annealing considered above, this situation corresponds to
the limit of the infinite temperature 7’ in the subsystem of
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Ji/’s. This is natural in a sense that in this case the ther-
modynamics of the spin degrees of freedom produces no
effect on the distribution of the spin-spin interactions.

In the case that the spin and the interaction degrees of
freedom are thermally equilibrated 7' =T (n=1), and we
arrive at the trivial case of the totally annealed disorder
whatever is the difference of the characteristic time scales
of the J;’s and the spins. This is also natural because the
thermodynamic description formally corresponds to infi-
nite times, and the characteristic time scales of the dynam-
ics of the internal degrees of freedom are becoming to be of
no importance.

If n~0 and n=~1, we arrive at the situation which
could be called partial annealing, and which is the inter-
mediate case between quenched disorder and annealed dis-
order.

5.3. Calculation of the free energy

To calculate the replica free energy F,, according to
Eqgs. (5.8) and (5.9), one has to calculate the annealed
average of the n-replica partition function:

n N 1
Z,= 2 fDJU exp{B > ZJ,.,a;'a;’._5 > J,?jN]

a=1 i<j i<j

(5.16)

(here and everywhere in what follows all kinds of pre-
exponential factors are omitted). Integration over the J;/’s
gives:

BZ N n 2
z,,=§ exp|oy ;, ( gl a;.'a‘;) I (5.17)
or
1 BZN n 1 N 2
— —R2 - _ a b
Zn—é expl4BN”+ 2~ (N;Oioi) .
(5.18)

The summation over the sites in the above equation can be
linearized by introducing the replica matrix Q,,;:

n ZN n
7= 11  [d0u) 3 ewfimn-2Y 5 3

a<b

n N
+B Y X Quoiall.

a<b i

(5.19)

The parameters @, have in fact a rather clear physical
interpretation. According to the above equation, the equi-
librium values of the matrix elements Q,, are defined by
the equations 6Z,/6Q,,=0, which give:

1 N
Qo= & (ofo). (5.20)

Since the expression in the exponent of Eq. (5.19) is
linear in the spatial summation, the total partition function

factorizes into independent site partition functions:
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2N n
—32Nn—37 2

d 1
z-11 ( fanb)exp :

a<b
N
X H 2;, exp[32 Z Q.4070; ” (5.21)
or
B n
z,= 11 i ( fan,,)exp{—B Nn——— Eb -

+ N log

2 exp(62 )y Qaboagjb)”. (5.22)

o, a<b

This equation can be represented as folows:

Z,= fDQ exp(—BnNf[0]) (5.23)
where
f101= § o

~Bn log

2e XP(32 > Qabo,,a,,)]. (5.24)

a<b

So that now all the problems are transfered into the replica
space.

In the thermodynamic limit in the leading order in ¥
the integral for the partition function (5 23) is determined
by the saddle point of the function f [Q]

(—172)

exp(—BnN f[Q*]) (5.25)

2
Z,~ =

og

where Q‘ is the matrix which corresponds to the minimum

of the function f, and which is defined by the saddle-point
equation:

8f
=0. 2

50, 0 (5.26)
According to the general scheme of the replica method, the
quantity f[Q*] would be the density of the free energy of
the system. In the case that the ground state solution
would turn out to be not unique, then the free energy
would be given by the sum over all the solutions.

At this stage it seems as if to solve the problem, one
only has to calculate the expression for the replica free
energy (5.24) as a function of Q, then one has to solve the
saddle-point equations (5.26) to obtain Q‘ and the corre-
sponding value for fIQ‘] and finally to take the limit
n—0. Unfortunately, the problem is that in general this
procedu{e can not be carried out, since for an arbitrary
matrix Q the expression (5.24) can not be calculated. Note
also, that the limit 70 is a somewhat special point, and
one has to be careful about what sort of solutions of Eqgs.
(5.26) should be taken into account. The point is that for
n <1 the contributions to the physical free energy come
from the maxima and not from the minima of the replica
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free energy (5.24). The reson is that at n< 1 the number of
independent parameters in the matrix Q is becoming neg-
ative, and turns everything upside down (we will see this a
bit later).

Therefore, the following procedure of solving the prob-
lem is proposed. First, one has simply to guess the correct
form of the matrix Q‘ which would depend on some finite
number of parameters, and after that these parameters
should be obtained from the saddle-point equations (5.26).
This way one would be able to find the extremum inside
some subspace of the space of all the matrices Q If it
would be possible to prove then, that the Hessian 8 f/50?
in this extremum point is positively defined, then it would
mean that the true extremum is found.

5.4. The replica-symmetric solution

Since all the replicas in our system are equivalent, one
could naively guess that the adequate form of the matrix
O* is such that all its elements are equal:

Q.,=gq; for all as=b. (5.27)

Such an ansatz is called the replica symmetric (RS) ap-
proximation. Actually, this is just the hypothesis that there
exists only one ground state in the system.

All the calculations in the RS approximation are sim-
ple. For the replica free energy (5.24) one gets:

B n(n—1)
_ 1 2 2

1 1 |
-B—nIOg( % expliﬁz( ;Ua) Q—EBZ'HIH

(5.28)

or

1 +o dz
f(q)=—%B+%ﬁq+%(n—I)BqZ—B—nlog[ f_w N

xexp
(122 H( > exp{Boa,/Ez}) . (5.29)
a=1\ o,=+1
In the limit # -0 one obtains:
)_ s | 5 lJ‘+w dz
f(g)=—B(1—q) ~5)_. E
X exp( —1 2)In(2 cosh(B Jgz)). (5.30)

The saddle-point equation for the function f(g) with re-
spect to g gives:

+o dz 1
= _ 72 2
q f‘ ) E exp( 57 )tanh (B+gz).

One can easily see that for 7> 1 the only solution of
this equation is g=0. For T <1 there is a nontrivial solu-
tion g540:

if (1—-T)

(5.31)

=71<&]1, then g(7)=7;
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if T—-0, then ¢—1.

According to Eq. (5.20), the obtained solution g(T') is
the physical order parameter:

| N
9=% ;<a,.>2. (5.32)
The fact that ¢ is not equal to zero in the low temperature
phase means that the spins of the system are frozen in some
random state. Since there is only one solution for ¢(T),
such a disordered ground state is unique. Producing some
more calculations one could easily obtain the results for all
the observable thermodynamical quantities, such as the
specific heat, the susceptibility, the entropy etc. Therefore,
in terms of the considered replica symmetric ansatz a com-
plete solution of the problem could be easily obtained.

All that would be very fine, if it were correct. Actually
it is not. One of the simplest ways to see that there is
something wrong with the obtained solution is to calculate
the entropy. One could easily discover then, that at low
enough temperatures the entropy becomes negative! (For
T =0 the entropy S= —1/27~—0.17).

The detailed calculations of the Hessian 8 f/z‘SQ2 for
the obtained RS solution demonstrate the reason for that
paradox: this solution turns out to be unstable
(det (8%f/6Q%) <0) in the entire low temperature region
T <1 (Ref. 13). It means that the true solution is some-
where beyond the replica-symmetric subspace of the ma-
trices Q.

6. THE REPLICA SYMMETRY BREAKING

The strategy of finding the true solution for the replica
matrix @ in the limit n -0 is called the Parisi replica sym-
metry breaking (RSB) scheme.

First, let us guess some other trial structure (not rep-
lica symmetric) for the matrix Q, and within this new
subspace let us calculate the extremum for the replica free
energy f. After that, one should calculate the Hessian
5 f/(SQ2 and check the stability of the obtained solution.
Since the RS solution has turned out to be not satisfactory,
we should try with some other structure which would con-
tain more parameters.

Actually, the situation appears to be much more so-
phisticated since (as we will see later) no ansatz which
contains a finite number of parameters could provide a
sAtable solution. Nevertheless, trying different structures for
@, and calculating the eigenvalues of the Hessian, one at
least is able to judge which ansatz could be better (so to
say, which is less unstable). Such a procedure could Roint
the correct *‘direction” in the space of the matrices Q to-
ward the true solution.

The Parisi RSB scheme is an infinite sequence of an-
satzes which step by step approximate the true solution
better and better. Then this true solution can be formulated
and adequately described in terms of continuous functions
as the limit of a certain sequence. Moreover, in this limit
one is able to prove the stability of the obtained solution
(actually the stability appears to be marginal: the most
negative eigenvalue of the Hessian turns to zero), and it is
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FIG. 12. The structure of the matrix Q,, at the one-step replica symmetry
breaking.

also possible to define simple physical quantities which
make it possible to demonstrate what is the physics behind
the obtained solution.

Consider now, how step by step, the solution is approx-
imated. Note, however, that at the present stage trying to
understand right away “why is it so?,” might not be the
best idea. A bit later, after passing through all these formal
constructions, the feeling that this is just the most natural
construction, comes automatically.

6.1. The one-step replica symmetry breaking

At the first step it is “natural” to divide all n replicas
into n/m groups with m replicas in each one (until now it
is assumed, of course, that both m and n/m are integers).
Then, the trial matrix Q is defined as follows: Qop=a, if
the replicas a and b belong to the same group, and Q,,=¢,
if the replicas @ and b belong to different groups. The di-
agonal elements are, of course, zeros. In a compact form
such a structure could be written as follows:

o))
o it 1))

where /(x) is the integer valued function, which is equal to
the smallest integer bigger or equal to x. The qualitative
structure of this matrix is shown in Fig. 12.

In this ansatz we have three parameters: g,,9, and m,
and these parameters have to be defined from the corre-
sponding saddle-point equations.

Now, using the explicit form of the matrix Q, for the
replica free energy (5.24) one gets:

Qup= (6.1)

. B < 1 .
f101=—B+5. 2 Qy—p, log Z(IQ)  (62)
where
Z([0h=2 exp(B2 Eb Qabaaab). (6.3)

a

Simple calculations give:
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2

qo( > aa) +(q1—q)

" 1
z Qabaaab = i

a<b

X g( > ack)z—

k=1 = 1

(6.4)

Here k numbers the replica blocks and ¢, numbers the
replicas inside the blocks. After the Gaussian transforma-
tion in Z[Q] for each of the squares in the above equation,
one gets:

Z[ql,qo,m]
dz z ”ﬁ" J dyx

_J \/21quexp(_2‘]0) k=0( 27(q1—g0)

oo~z Zowof:S e

+ nf}’k( > ack)

k=0 Cp= 1

(6.5)

I 2
—53 ngy;.
The summation over the spins gives:

dz z
Z[q1,90,m] = f Porae CXP(—Q%)
dy »
X [ f v2m(g1—q0) exp{ —2(‘]1—‘]0)]

n/m 1
X ZCoshB(z—{-y)l ] exp(iﬂznql).

(6.6)
For the second term in Eq. (6.2) one obtains:

S @=

T, |gim(m— D] P
2n a<h m m

=§ [4i(m—1) +g5(n—~m)]. (6.7)
Now the limit #—0 has to be taken. Originally m has
been defined as an integer in the interval 1<m<n. The
formal analytic continuation turns this interval into
0<m<1, where m in no longer an integer. It should be
noted here that since there is no reliable mathematical
background for the replica method anyway, I am not going
to waste time and words to produce some sort of respected
formal justification for it here. My purpose now, is just to
tell what this method is, and how this method works. So
I’m telling: in the RSB scheme the parameter m originally
introduced as an integer in the interval 1<m<n, turns into
a non-integer in the interval O<m<1 in the limit #-0.
Nothing in this world is perfect and the replica formal-
ism is not an exception. One should just rely, as much as
possible, on common sense, while the main support for all
that formal scheme is that after all the rules of the game
have once been fixed, whenever the method is applied to
any other concrete system, it produces reasonable results
(which quite often could be verified in some other ways).
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An ideal absence of any logical jumps can lead only to
triviality. This is not the case in the RSB scheme.

Thus, taking the limit » -0 in Egs. (6.6) and (6.7) for
the free energy of Eq. (6.2) one gets:

f((h ’qO’m)

—iBl+mgi+(1—m)gi—2g,) —— f

V2
ex (_i),n f_dy_
Pl 729 V27 (g1—4o)
2
Y m
XCXp(—m)(COShB(Z—{-}')) —In 2.
(6.8)

One can easily check that in the cases m=0and m=1
the replica symmetric solution is recovered (section 5.4)
with g=¢, and g=gq, respectively.

Note now another essential point. Actually, in the rep-
lica formalism one is looking for the maxima and not for
the minima of the free energy. The formal reason is that in
the limit #—-0 the number of components of the order
parameter Q becomes negative. For example, in the case of
the one-step RSB each line of the matrix Q contains (m
—1) <0 components which are equal to ¢, and (n—m) —
—m <0 components which are equal to g,. This phenom-
enon can also be easily demonstrated for the case when the
free energy contains only the term 8/nZ,.,Q;, and con-
tains no interaction terms (which is the case in the high
temperature limit):

WA

a<b

lim | = —m)qi+mgl. (6.9)

n—0

B
5[(1

It is obvious that for 0<m<1 the “correct extremum” in
which the Hessian is positive, is the maximum and not the
minimum with respect to g, and ¢, .

To get the saddle point equations for the case under
consideration one has simply to differentiate Eq. (6.8) with
respect to qg, g, amd m. We omit this simple exercise. The
result of the numerical solution of these saddle point equa-
tions is the following:

1) In the low-temperature phase T <1 the function f
has indeed a maximum at a certain point: 0<m(T)<I;
0<go(T)<1; 0£q(T)<1 (both for T—1 and T -0 one
gets m(T) -0).

2) Although the entropy at low temperatures still be-
comes negative, this negative value appears to be much
smaller than that of the replica-symmetric solution: S(7T
=0)~ —0.01 (while for the RS solution S(7=0)~
—-0.17)

3) The most negative eigenvalue of the Hessian near
T, .isequalto —c(T — TC)2/9 (¢ is some positive number),
while for the RS solution it is equal to —c(T—TC)Z. So
that, in a sense, the instability is reduced by a factor 9.

The conclusion is that, although the considered one-
step RSB solution has also turned out to be not perfect, it
is a much better approximation to the true solution than
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FIG. 13. Classification of the replicas into blocks at the two-step replica
symmetry breaking.

the RS one. Therefore one could try to move further and
further in the chosen “direction” in the replica space.

6.2. The full scale replica symmetry breaking scheme

Let us try to generalize the structure of the matrix Q
considered in the previous section to more steps of the
replica symmetry breaking. Introduce a series of integers
m; (i=1,2,..,k+1) such that my=n, m, ;=1 and all
my/m;, would be integers. Next, let us divide n replicas
into n/m,; groups such that each group would consist of m,
replicas; divide each group of m;, replicas into m,/m, sub-
groups so that each group would consist of m, replicas;
and so on (Fig. 13). We define all non-diagonal elements
of the matrix Q as follows:

a b
)=1(7)
m; g m;i

where {g,} is a set of (k+1) parameters (k=1 corre-
sponds to the one-step RSB case considered in the previous
section).

This definition of the matrix elements could also be
represented using the hierarchical tree shown in Fig. 14:
the element Q,, is equal to that g, corresponding to the
level i of the tree in the “vertical” direction, at which the
lines outgoing from the points @ and b meet.

Explicitely the matrix Q for the case k=2 is shown in
Fig. 15.

Now we have to calculate the free energy, Eqgs. (6.2)
and (6.3), which would depend on (k+1) parameters g,
and k parameters m;. After that, the limit n— 0 should be
taken. The parameters m; have been defined such that
1<m; ;<m<n. Just as in the case of the one-step RSB
these conditions turn into 0<m,<m;_ ;<1 in the limit n 0.
Finally, the parameters q; and m, have to be defined from
the saddle-point equations:

Qab=‘h91( (6.10)

FIG. 14. The definition scheme for the matrix elements @, at the two-
step replica symmetry breaking.
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FIG. 15. The explicit form of the matrix @,, at the two-step replica
symmetry breaking.

af of
3%0=" =0 (6.11)

The explicit calculations of the free energy are similar
to those of the one-step RSB. After somewhat painful al-
gebra the result obtained is the following:

S1G0:q15-0qi3my My, my ]

1 {1 é ( \2 ] 1 dz,
= m.. 1—m.)g*— -
4B + ! i+1 RLE G m J‘ ;277"]0

Zg)l J’ dz
X "2 "{ P(qi—d0)

(
|
[

7 dz,
_2(111—‘]0))[-[ V2m(g,—q))

% dz,
—2(112—111))]"'[.[ :}217(%—‘]/(—1)

Z
XeXp(_Z(Qk—Qk—O)

k myymy_/my  ymy/myymy/my
X(Z coshB( Ezk)) ] ] ] ]

i=0

Xexp

(6.12)

Unfortunately, it is hardly possible to obtain solutions
of the corresponding saddle-point equations for an arbi-
trary k (for k=3 the numerical solution for the zero tem-
perature entropy gives the result S(7=0) ~ —0.003).

Now to obtain the exact solution of the problem the
limit k- o should be taken. Therefore, in this RSB
scheme the limit n -0 is achieved, in a sense, via the limit
n— oo. Actually, this trick is not something extraordinary:
in terms of p-adic numbers (which might be the most suit-
able language for the structures considered here) this sort
of transition is quite natural.
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In the limit k— « instead of the infinite set of param-
eters g; as an order parameter it is convenient to introduce
the function q(x), defined as follows:

g(x)=gq;, for m<x<m;, . (6.13)

In these terms the free energy becomes a functional of the
function ¢g(x), and the problem is to find the maximum of
this functional with respect to the function g(x):

8f

—=0. 6.14
Og(x) 0 (6.14)

This is the saddle-point equation for the order parameter
function ¢(x). Unfortunately, the solution of this equation
for an arbitrary temperature T <1 could be found only
numerically. Nevertheless, near 7. all the calculations
could be performed analytically which makes it possible to
obtain the function g(x) explicitly, and to get a qualitative
understanding of what is going on as the temperature
changes. We will consider this useful exercise in the next
Chapter, but first I shall try to answer the inevitable ques-
tion: “What does all this mean?”

However, before turning to this hard question, I would
like to conclude this formal Chapter with the following
interesting mathematical interpretation of the problem un-
der consideration. It can be shown (see Refs. 14, 15) that
the functional f{g(x)] (in the presence of an external mag-
netic field 4#) could be represented in a compact form as
follows:

1 1
fla(x)]= —%B[1+ fo dxg?(x) —2q(1)]—[—3A[q(x)]
(6.15)

where

+ o dz 22 0: h)
(6.16)

and the function g(x,y) is obtained from the following
nonlinear differential equation:

dg(x; y)  1dg(x) [dg(x; »)  (Ig(x »)\?
x 2 & ar X\ T
(6.17)
with the boundary condition:
g(1; y)=In[2 cosh(By)]. (6.18)

If the function g(x) is a monotonic one (which can be
proved to be the case), then the inverse function x(g) can
be defined, and the saddle-point equations §f/8g(x)=0
could be written in the compact form:

g= fdymz(q; ») (6.19)

where the function m(g; y)=0dg/dy is obtained from the
equation

Im(g y) 1

Fm(q; y) am(q; y)
dq 2[

3 +2x(g)m(q; y) »
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(6.20)

Thereby the problem can be formally reduced simply
to that of solving a nonlinear differential equation. Of
course, in practice it does not help much (due to the uni-
versal non-decreasing troubles law). Nevertheless, some
people might happen to feel a bit more comfortable if they
know about such a compact mathematical formulation of
the problem.

7. PHYSICS OF REPLICA SYMMETRY BREAKING

Let us forget about replicas for a while, but let us keep
in mind that according to the studies of the previous Chap-
ter there are numerous ground state solutions in the low
temperature RSB state. This fact is a direct consequence of
the symmetry of the replica free energy with respect to
permutations of replicas in the matrix Q: if there is one
RSB solution for the matrix Q, then any other matrix ob-
tained via permutations of the replica indices in this matrix
will also be a solution.

In this Chapter physical quantities will be introduced
to describe what is the physics behind that rather formal
RSB structure of the spin-glass state considered in the pre-
vious Chapter.

7.1. Pure states

Consider first a simple ferromagnetic system. It is well
known that if the temperature falls below a certain T,
spontaneous symmetry breaking takes place in the system,
so that at each site nonzero spin magnetizations (o;) = +m
appear. Nevertheless, in any finite system (before the ther-
modynamic limit ¥ — « is taken) all the thermal averages
{0, are identically equal to zero, since due to the symme-
try of the Hamiltonian with respect to the global change of
the signs of all the spins the states with the magnetizations
+m and —m give equal contribution to the partition func-
tion. In the thermodynamic limit, however, these two
states become separated by an infinite barrier. Therefore, if
the system happened to be in one of these states, it will
never be able (during any finite time) to go over into the
other one. In this sense, the observable state is not a Gibbs
one (which is obtained by summing over all the states in
the partition function), but one of two such states with
nonzero site magnetizations. To distinguish them from the
Gibbs state they could be called “pure” states.

The pure states could also be characterized by the
property that all the connected correlation functions such
as (0.0;).= <0,aj>—<o,-><aj>, become zero at large dis-
tances in these states. Note here that in the model with
long-range interactions all the sites, in a sense, could be
considered to be at large distances from each other.

The obtained solutions with replica symmetry breaking
indicate that in the low temperature spin-glass state very
many pure states could exist in the thermodynamic limit
N — . These states are nothing else but the solutions of
the saddle-point equations for the free energy, which are
just a bit more sophisticated traditional mean field equa-
tions for a system with disorder.

Therefore, the Gibbs state of the spin glass could be
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considered as the result of the summation over all the pure
states weighted according to their energies. For example,
the thermodynamic average of the site magnetizations
could be represented as follows:

> wm?.
a

Here the a’s label the pure states and the w, are their
statistical weights which formally could be written as

(0))=m;= (7.1)

we=exp(—F,) (7.2)

where F is the free energy of the pure state number a.

The representation of the thermodynamic state as a
linear combination of the pure states in which all the in-
tensive quantities have vanishing long-distance fluctua-
tions, is actually, a central point in the exact definition of
the concept of spontaneous symmetry breaking in statisti-
cal mechanics.

In the same way the two-point correlation function can
be represented as the linear combination

(0102> = Z wa<0102>a (7.3)
a

where (0,0,),=(0,).{03) s the two-point correlation

function in the pure state number . Similar expressions

could be written for any many-point correlation functions.

7.2. The physical order parameter

One could ask now, how can the pure states be distin-
guished one from another. To answer this question it is
natural to introduce the concept of “distance” in the space
of states. The distance between the states a@ and 3 could be
defined, for example, as follows:

Z (m®—mP)? (7.4)

aB N
where m{=(o;), and m? =(0;)g. One could also define
the overlap between the two states which, in a sense, is the
quantity complementary to the distance:

Qaﬁz% 2 mimf. (15)
i
It is obvious that 0<|g,g5|<1

To describe the statistics of the overlaps between all
the pairs of pure states it is natural to introduce the prob-
ability distribution function:

Pyq)= 2 wawpd(gap—q) (7.6)
aB
Note, that the function P,(q) could depend on the concrete
realization of the quenched interactions J;;. The probabil-
ity distribution function averaged over the disorder is de-
fined as follows:
P(g)=({Psq))). (1.7)
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The function P(q) gives the probability to find two pure
states having the mutual overlap equal to g, provided that
these states are taken with the probability of their ap-
pearence in the statistical ensemble.

It is easy to understand that in a ferromagnet the func-
tion P(q) is just one &-peak at g=0 at the temperatures
T>T,, and in the low-temperature phase it is the sum of
the two 8-peaks at g= +m* (Fig. 3).

In a spin-glass which could have many pure states at
low temperatures, the function P(q) could turn out to be
not that trivial. Moreover, since the statistical weights w,
strongly fluctuate depending on the realizations of the J,;’s
(which is due to the long-range structure of the spin-spin
interactions) the function could also strongly fluctuate de-
pending on the J;;’s.

It is the function P(g) which is the physical order
parameter and it is in terms of this order parameter that
the nontrivial nature of the spin-glass state could be un-
derstood. The non-trivial structure of this function (which
as will be shown below, can be calculated in terms of the
replica method) demonstrates that the properties of the
spin-glass state are essentially different from those of the
traditional magnets. If, for example, a disordered system
exibits only two “frozen” low-temperature ground states
(which differ by the global change of the signs of the
spins), then the function P(q) in this system will be the
same as in a ferromagnet, i.e. it will be just the sum of two
6-functions. Therefore, although originally defined as a
random one, this system, in a sense, belongs to the “class”
of “normal” magnets and not to the spin glasses. One
could say that in terms of the function P(q) the phase
transition into the low-temperature phase in the “normal”
magnets is characterized by one (or, may be, several) bi-
furcation of one 8-function in P(g) (at T>T,) into two
(or, may be, several) §-functions (at 7 < T,).

The probability distribution function P(q) is a much
more general concept than ordinary order parameters
which usually describe the phase transitions. The fact that
it is a_function is just a realization of the phenomenon that
for the description of the spin-glass phase one needs an
infinite number of order parameters.

7.3. The order parameter P(q) and the replicas

Consider now how the order parameter function P(q)
can be calculated in terms of the replica method.
Consider the following series of correlation functions:

“) z (g;)?

(2) =— z (011012>2
i

(7.8)

q.(lk) IVE z <011 1)

Il ’k

Using the representation of the Gibbs averages in terms of
the pure states for the correlation functions (7.8) one gets:
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1 1
_ azﬁwawﬁ(j—v §<a,-,>,,<a,-l>ﬁ) (j—v g <ai2>a<af2>,s)

= S wp(ang)’= f dgPADE

o= [ dapsard (1.9)
For the derivation of the result (7.9) one uses the fact that
the connected correlation functions in the pure states van-
ish in the limit N — . For example, for the two-point
correlation function the dlfference (0.0)a— (0 (0}
must be of the order of N8 where §>0, so that

lim NzZ((ao, <a,->a<a,->a)2]=0 (7.10)

N-w

From Eqgs. (7.8) and (7.9) one can easily get the re-
sults for the corresponding correlation functions averaged
over the disorder:

q“’s<<qﬁ”>>=<<(<a,~>2>>>=quP(q)q

(7.11)
H=(aN =, a)) = [ daP)g*

where i,5£0,5~...551 .

The principal point in the above considerations is that
the function P(q) originally defined to describe the pure
states, can be calculated (at least theoretically) from the
multipoint correlation functions in the Gibbs states. It
makes it possible to avoid that delicate point, that each
particular pure state is not quite well defined.

Let us calculate now the multipoint correlation func-
tions in terms of the replicas. Thereby the connection of
the formal RSB scheme with the physical order parameter
will be established.

According to the definition of the probability distribu-
tion function P(g) (7.6), it can be represented in terms of
the Gibbs average for the two identical systems as follows:

1
PAq) =5 S > exp(—BH[o])

1
XCXp(—BH[s])é(N Z a,-s,-—q); (7.12)

P(q)=((Py(q)))-
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This expression gives the relative number of pairs of the
thermodynamically relevant states having their overlap
equal to ¢g. Accordingly, one can get the representation for
the spin correlation moments (7.8). For q(” one gets:

o=((5 X 3 Capexn(~pHto)-pHIsD ) )

—lim( H Z)(Uf’af)em(

n—0

-8B H[o"]) (7.13)

a=1

=lim({({o?
n—0
Here a and b are two fixed different replicas (the summa-
tion over the rest (n—2) replicas in Eq. (7.13) gives the
factor Z"~2 which turns into Z~2 in the limit n—0).
In a similar way one gets:

o))  (bs%c).

g? =lim((({ofofalol))));  (ii7~in;a5#b)
n-0

q(k)
=1lm((({o} . ‘1‘“0?/()))); (i Fiya5b).
n—-0

(7.14)

In calculations of the previous Chapter it has been
demonstrated that the free energy of the model under con-
sideration factorizes into the independent site replica free
energies. Therefore, the result (7.14) for ¢'® can be rep-
resented as follows:

& —Hm[{{((of0?)))) |*=lim[Q,]* (7.15)
n—-0 n—-0
where (see Sec. 5.3)
Qup={(({0%a?)))) (7.16)

is the replica matrix introduced in the previous Chapter
which defines the structure of the spin-glass state, and
which is obtained from the saddle point equation for the
replica free energy.

Since in the RSB solution the matrix elements of Q,,
are not all equal, in evaluating the thermodynamic average
one has to sum over all the saddle point solutions for the
matrix Q,,. All such solutions are obtained by doing the
permutations of rows and columns in one of the solutions
for this matrix. The summation over all the permutatations
(in this particular case is just a summation over the sub-
scripts @ and b. Therefore, the correct result for the cor-

relator ¢'¥’ should be written as follows:
¢® =lim ——— ¥ [Qa]" (7.17)
n_,() ( ) a<b

where 2/n(n—1) is the normalization factor which is
equal to the inverse number of different pairs of replica
indices.

The results (7.17) and (7.11) demonstrate that the
RSB solution for the matrix Q,, considered in the previous
Chapter makes it possible to calculate (at least in princi-
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ple) the order parameter distribution function P(g) which
has been introduced originally by purely physical qualita-
tive considerations without any replicas. From these two
equations one gets the following explicit expression for the
function P(q):

Y 8(Qu—9)- (7.18)

( —1) ;<5

Let us calculate this function for the concrete RSB
solution considered in the previous Chapter. According to
the Parisi RSB scheme with k& steps of replica symmetry
breaking (Sec. 6.2) one gets:

P(q)= 11m

llmn S [Qw)=— 2 (miy1—m))q.. (7.19)
n-0'" ab
In the continuous limit at k— o« one obtains:
1
lim — Z [Qab]l—"f dxg'(x). (7.20)
ns0’ ab 0

So that for the correlator q("), Eq. (7.17), one gets:

1
g = f dxg*(x).
0

If the function ¢(x) is a monotonic one, then one can
introduce the inverse function x(q), and the result (7.21)
can be rewritten as follows:

(7.21)

g = f dg =4 d"(") 3 (7.22)
On the other hand, according to Eq. (7.11):
o L‘ dgP(9)" (7.23)
So that, one gets:
P(g)= &9 (7.24)

dg

This is that key result, which defines the connection be-
tween the physical order parameter function P(q) and the
formal RSB solution, the function g(x). The above result
could also be represented in the integral form:

q

x(g)= L dg' P(q") (7.25)
which gives the answer to the question, what is the mean-
ing of the function g(x). The answer is simple: the function
x(q) inverse to g(x) gives the probability to find a pair of
pure states which would have an overlap not bigger than q.

Now, to understand at least at the qualitative level
what is the structure of the function P(q) in the spin-glass
phase, it would be very useful to obtain the RSB solution
for g(x) explicitly near the critical temperature 7.

7.4. Replica symmetry breaking solution near 7T,

Near the critical temperature 7.=1 the solution for
the function g(x) can be obtained analytically. Near the
point of the phase transition the order parameter g(x)
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could be expected to be small in 7= (1—1T,) €1, and there-
fore one can produce an expansion in powers of the matrix
Q. for the replica free energy (5.24):

b5 @

2” a<b
1 n
—=—log| 2 exp| F 3 Quo,0s | |- (7.26)
ﬁn [ a<b
The expansion of the above expression in powers of Q,, is

straightforward. The result of the expansion up to the
fourth order is:

f101=

1

f101=lim ~ 0 & %

n—-O

1 Ay 1 A3
[—ETTr(Q) —5Tr(0)’~

+— > QL0 —Tr(Q)

a,b,c

(7.27)

Here in all the terms, but the first one, one takes T'=1.

Detailed studies of the stability of the replica symmet-
ric solution show that it is the term 2,07, which makes
the RS solution unstable below 7., and it is this term
which is responsible for the replica symmetry breaking.
This indicates that for the RSB solution near T, the last
two terms of the fourth order in (7.27) should be expected
to be of higher order in 7 than all the previous terms.
Therefore, to obtain the solution most easily we just ne-
glect these last two terms, and then using the explicit form
of the obtained solution for g(x) we can easily check that
these neglected terms are of a higher order in 7.

According to the general scheme of replica symmetry
breaking (Sec. 6.2) one easily gets:

dxg'(x)
(7.28)

lim — z [Qab] = 2 (m m,+l)q,_"_ J:

n—.On ab

1 ~ 1
lim = Tr(Q)*= f dx
n 0

n-0

¢ (%) +3(x) f: dyqz(y)].

(7.29)
For the free energy one obtains:
1 11!
flax)]1=3 f T4 (x) — —xq 3(x)
0
X 1
—q(x)f0 dyqz(y)+g g (x)|. (7.30)

Variation of this expression with respect to the function
q(x) gives the following saddle-point equation:

1 X
2rq(x)—xq2(x)—2q(x)f dya(y)— fo G ()

+1g’(x)=0. (7.31)

The solution of this equation is simple. Taking the deriva-
tive of Eq. (7.31) with respect to x one gets:

1
q'(x)|27—2xq(x)—2 f dyg(y) +24*(x) l =0.

(7.32)
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This equation results in the following:

1
zr_zxq(x)_zf dyg(p) +2g2(x) =0

X

(7.33)

or

g’ (x)=0. (7.34)

The last equation means that g(x)=const which corre-
sponds to the replica symmetric solution which should not
be considered. Consider Eq. (7.33). Taking the derivative
with respect to x once again, one gets:

g(x)=3x. (7.35)

Assuming that the function g(x) is a continuous one,
the following general solution for the saddle-point equation
(7.31) is given by

4o, O<x<'x0
1

g(x)=15% Xo<X<X) (7.36)
g1, x<x<1
where
xX1=2qy; Xo=24p. (7.37)

Substituting this solution into the original saddle-point
equation at the points x=x; and x=x; one gets:

Qo[27—24,+ 2431 4 ¢p=0,

(7.38)
g1[27—2g1+2471 —§ g5 =0.
The solution of these equations is:
90=0,
g1=7+0(). (7.39)

Now one can easily check even without any calcula-
tions that the last two terms of the fourth order in Eq.
(7.27) are of a higher order in 7. Since they contain addi-
tional summations over the replicas, in the limit 7 -0 this
results in an additional integration over x (or to an addi-
tional power of x). According to the structure of the ob-
tained RSB solution (7.36), (7.37) and (7.39) this results
in an additional power of 7.

Note that the obtained RSB solution could be easily
generalized for the case of a nonzero external magnetic
field (see e.g., Ref. 1). If the value of the field 4 is small
then in the leading order in 7 and 4 the value of ¢, and the
form of the function ¢(x) in the interval x, <x <x, do not
change, while gy~3/4h** and xo~3/2h*". Therefore, if
the value of the field reaches

ho(r) = (1) (7.40)
(when x,=x; and gy=¢q,) then the solution for g(x) be-
comes replica symmetric. The equation for the line 4.(7)
(which is usually called the de Almeida-Thouless (AT)
line [13]) could be obtained for a whole range of temper-
atures and the magnetic fields. It can be shown that for
h>h(T) the replica symmetric solution is stable.
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Using the obtained result for the function ¢(x) and Eq.
(7.24) for the distribution function P(gq), one gets:

P(q) =x06(qg—q0) +x,6(qg—q,) +p(q) (7.41)

where p(q) is the smooth function in the interval g;<g<gq;,.
In the considered case 7«1, p(g)=2.

The result (7.41) shows that for the overlaps of pairs
of the pure states taken at random in accordance with their
thermodynamic weights, one finds:

1) there exists a finite probability x, that these states
will turn out to be the same state, in which case their
overlap will turn out to be the maximum possible one equal
to ¢qy;

2) there exists a finite probability x, (in the case of a
nonzero magnetic field) that these states will turn out to be
the most “distant” from each other, in which case their
overlap will be the minimum possible one equal to gg;

3) there exists a finite probability 1—xy—x; of the
intermediate situation. If one takes a small interval (q,q
+68¢q) near some number g such that g,<g<gq,, then there
exists a finite probability p(q)8q that one finds a pair of
pure states having an overlap in this interval.

Although it is very difficult to calculate the functions
g(x) and P(q) analytically for arbitrary values of the tem-
perature and the magnetic field, their qualitative behavior
remains more or less the same as in the case considered
above. The only difference is that the form of the functions
g(x) and P(q) in the intervals x,<x<x, and gy<g<gq; are
not as trivial as those near 7', and the dependences of x,
X1, go and ¢, on the temperature and the magnetic field are
much more complicated.

The qualitative behavior of the functions g(x) and
P(q) for different values of the temperature and the mag-
netic field is shown in Fig. 16.

8. ULTRAMETRICITY

The obtained RSB solutions for the functions g(x) and
P(g) show that the structure of the space of pure states in
the spin-glass phase is highly non-trivial. Unfortunately the
function P(q) is not enough to understand what this struc-
ture is. To get an insight of the topology of the space of
pure states one needs to know the higher order correlation
properties of the overlaps of the states. Such calculations
will be done in this Chapter.

8.1. The formal proof of uitrametricity of pure states

Let us consider the distribution function P(q,,q,,q93)
which would describe the joint statistics of the overlaps of
arbitrary three pure states. By definition this function gives
the probability that arbitrary three pure states ,  and ¥
would have their mutual overlaps ¢z, ¢4, and gg, to be
equal correspondingly to ¢, ¢, and ¢;:

P(q),q2,93) = < < % Wawpw, S(g1—qqp)
afy

xa(qz—qay)a(qs—qu)ﬂ. (8.1)
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FIG. 16. The qualitative behavior of the functions ¢g(x) and P(g): (a) in
zero external magnetic field and for (1~ T)<«1; (b) forO<A<A(T) and
(1-T)<1; (c) for h=0 and T«1.

The calculations of this function in terms of the replica
symmetry breaking scheme are quite similar to those for
the function P(g) (Sec. 7.3). In terms of the replica matrix
Q.. the result obtained is similar to that of (7.18):

Plavga)=Im G -2

X 2 8(Qus—q1)8(Quc—2)8(Qp—33).
az=b+#c

(8.2)

The crucial property of this function which will be
derived below is in the following. For the RSB solution this
function is identically equal to zero if all three overlaps ¢,,
g, and g; are different, and it is not equal to zero only if at
least two of the three overlaps are equal and their value is
not bigger than the third one.

Let us perform these simple calculations. In terms of
the Fourier transform of the function P(q,,4,,93):

g1y y3) = f dq,dq,dq3P(q:,92,93)
Xexp(igy, +iqy, +igyys) (8.3)
Eq. (8.2) becomes:
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1
gypyy) =lim ey

n-0

X 2

asb+c

exp(iQuuV +iQuy2 +iQpy3)

=lim

lim ) Tr[A(y))A(y)A(y3)]

(8.4)

where

exp(iQuu);

a=£b
Aab(y)= 0: a=b .

(8.5)

Let us substitute now the RSB solution for the matrix Q,,
into Eq. (8.4). According to the general RSB scheme the
matrix Q,, turns into the function g(x) in the limit n-0.
One can easily prove that in this limit the replica matrix
A, (y) turns into the function 4(x;y):

A(x; y) =exp(ig(x)y). (8.6)

Simple calculations (see also Eq. 7.29) give:

_ 1 .
113; 2D (=2 Tr[A(y))A(y)A(y3)]

1 1
=zfod"

+A(x; ») f: dzA(z; y,)A(z; y3)

xA(x; y)A(x; y)A(x; y3)

+ A p) fo dzA4(z; y)A(z y)

A% p3) f:dzA(z; YA ) |. (8.7)

Accordingly, for the function P(q,, g;, ¢3)
P(q1.92,93) = de1dY2dY£(Y1, Y25 ¥3)

Xexp(—iqu —igy,—iqyys) (8.8)

one gets:

x6(g(x) —q1)6(g(x) —q,)

1 1
P(g1,92,.93) =5 fo dx
X6(g(x)—gq3)+6(q(x)—qy)

% fo"dza(q(z)—qz)a(q(n—qs)

+5(q(x)—q2)f:dza(q(z)—ql)
X 8(q(z) —q3) +6(q(x) —q3)

X fo " dz8(q(2) —g1)8(9(2) —2).
(8.9)
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FIG. 17. The ultrametric tree of the spin-glass states.

Replacing integration over x by integration over ¢ and
taking into account that dx(q)/dg=P(q) one finally ob-
tains the following result:

P(4,,42,q3) =3 P(41)x(41)8(q;— 4:) (g, —q5)
+%P(Ql)P(92)9(41—42)5(92_93)
+%P(Qz)P(%)9(42—43)5(43—91)

+3 P(q3)P(q)0(93—41)8(q,—q2)-
(8.10)

One can easily see from this equation that the property of
the function P(q,,q,,q;) Which has been stated above: it is
not equal to zero only if at least two of the three overlaps
are equal and their value is not bigger than the third one.
Note that the result (8.10) is just a direct consequence of
the block-like hierarchical structure of the replica matrix
Q. and nothing else.

Now we have arrived to the concept of the ultrametric-
ity. A space is said to be ultrametric if its metric has the
property that for any three points a, b and ¢ of this space
the following inequality is satisfied:

dab<max(dacs dbc)' (811)
This property is essentially different from the triangle ine-
quality of the “ordinary™ spaces:

dp<d,+dy.. (8.12)

One of the simplest ways to describe ultrametric space
is in terms of the hierarchical tree (Fig. 17). The ultramet-
ric space is associated with the set of the endpoints of the
tree. The distance between any two points of this space is
defined such that it depends only on the number of “gen-
erations” in the “‘vertical” direction to that level of the tree
at which these two points have a common ancestor. One
can easily check that with this definition of the distance the
set of the endpoints of the tree is ultrametric.

A detailed description of ultrametric spaces (rather
from the point of view of physics than pure mathematics)
the reader could find in the excellent review of Ref. 6. Here
we are going to concentrate mainly on general qualitative
properties of ultrametricity which are directly connected
with the physics of the spin-glass state.
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8.2. The tree of states

Now, keeping in mind that the space of the states of
the spin-glass has a tree-like structure, let us try to con-
struct this kind of a space in more general terms. It may
help to understand what kinds of degrees of freedom are
involved in such structures in general. Later on the con-
crete parameters of the tree of states which describes the
considered spin-glass model will be specified.

Consider the following discrete stochastic process
which is assumed to take place independently at each site i
of the lattice.

1. At the first step one generates with the probability
Py(y)n, random numbers y* (a,=1,2,...,n;), which be-
long to the interval [—1,+1].

2. At the second step for each of the numbers y*! one
generates with the conditional probability P, (y*!|y)n, ran-
dom numbers y*1°2 (a,=1,2,...,n,), belonging to the same
interval [—1,+1].

3. At the third step, again, for each of the numbers
y*1%2 one generates with the conditional probability
P,(y*192| y)ny random numbers y*192%3 (a;=1,2,...,n4), be-
longing to the same interval [—1,+1].

Continue this process up to the Lth step. As a result
one gets the hierarchical tree of n;n,..n; numbers in the
interval [—1,+ 1] which are described by the set of prob-
ability functions

Pl_l(yal...(u—lIyal..-a/) (I=1.2,..,L). (8.13)

This stochastic (Markov) process takes place indepen-
dently at each site of the lattice. Then, for each set of the
obtained numbers at each site / define the corresponding
spin state as follows:

0_(:11 maL:Sign(yal ...(IL) .

i i

(8.14)

As a result of the above construction one obtains the
set of n n,...n; spin states which are labeled by «a,...a;
which are a sort of hierarchical “‘addresses” of the states.
The ““address” of a specific state describes its genealogical
“history.” Looking at the *“addresses” of two arbitrary
states one can immediately tell to what extent these states
are close in their genealogy: the longer the coinciding ini-
tial part of their “addresses,” the closer ‘“relatives” they
are.

Simple probabilistic arguments show that the overlap
between any two spin states depends only on the degree of
their “relationship,” i.e., the number of generations which
separates them from the closest common ancestor. Con-
sider two spin states which have the following “addresses:”

a0y Oy Ay O

and

ayay...aB BB

The two ‘““addresses” begin to differ starting from the gen-
eration number /. Since the stochastic processes generating
the states have been defined to be independent at each site,
for the overlap between these two states
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al-"aﬂl+l-~aL__i z ay..a@ ey ay.aB By
q = i o,
a-afpy B N 5

I

(8.15)
in the thermodynamic limit N — « one gets:

R e Sy )
aj-afy By

+1
=f 1 dy;..dy Po(y)) Py (31 | y2) - Py | ¥)

+1
X[f 1 dyr 1y P D P B [ Vi 2)

2

XPp_1(yr1|yr)sign(yy) | =q;. (8.16)

Therefore, the overlap depends only on the number / of the
level of the tree at which the two states were separated in
their genealogical history, and does not depend on the con-
crete “‘addresses” of these states. One can easily see that it
automatically means that the considered set of the states is
ultrametric.

Note, that this is a general property of the considered
stochastic evolution process, and it remains true for any
choice of the probability distribution functions (8.13)
which describe the concrete tree of states. A general reason
for that is very simple. The considered procedure of con-
struction of the tree is by definition the random branching
process which takes place in the infinite-dimensional (in
the limit N - oc) space. It is clear that in the infinite-
dimensional space the branches once separated never
comes close again. Therefore, it is of no surprise that ult-
rametricity is just a routine property which is observed in
Nature very often. The examples are the space of biological
species, the hierarchical state structures of disordered hu-
man societies, etc.

Consider the above hierarchical tree of states in greater
detail. The equations for the overlaps between the states
(8.15) and (8.16) could be formulated also in terms of the
so-called ancestor states m®! %

1 N
a=% 2 (mfien? (8.17)

where the site magnetizations at the level / of the tree are
defined as follows:

ay..ay aj..agy | --.ay _ ay..ay
m "= (o, + Y, ap=miy;t ).
(8.18)

Here <“')<a/+1-~-aL) denotes averaging over all the descen-
dant states (branches) of the tree outgoing from the
branch a,...a; at the level number /. By definition:

+1
m(yt = f 1 Ay dy P Yy ) Pryy

X1 yie2) P (yr_1|yr)sign(yr).
(8.19)

This equation for the function m;(y) could also be written
in the following recurrent form:
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+1
myy)= f ] dy'Py (yly Ymu(y') (8.20)

where

+1
P,,,(y|y')=f TR T T

XPr o Bip1|Yigd) - Pe 1 (p_1|¥").
(8.21)

Therefore, all the concrete properties of the tree of
states, and in particular the values of the overlaps {g,}, are
fully determined by the set of the probability functions
(8.13) or (8.21). To describe a concrete spin-glass system
all these functions have to be calculated, or at least con-
crete algorithms for their calculations must be specified. In
particular, this can be done for the SK model of spin glass.
Unfortunately, the actual calculations for this model are
rather painful and cumbersome. The reader interested in
the details may refer to the original papers of Refs. 16 and
17, while here I shall present only the results.

The ultrametric tree of states which describes the spin-
glass phase of the SK model is defined by the random
branching process discussed above in which the continuous
limit LZ— oc must be taken. In this limit instead of the
integers / which define just the discrete level of the hierar-
chy it is more convenient to describe the tree in terms of
the selfoverlaps {g,} of the ancestor states of the corre-
sponding hierarchical level. In the limit L — oo the discrete
parameters {g;} turn into the continuous variable 0<g<]1.
Note also that in the limit N — o all the branching ratios
n, of the tree also diverge at each level.

Instead of the functions (8.13) which are essentially
discrete, in the continuous limit it is more natural to de-
scribe the tree in terms of the functions (8.21) which de-
fine the evolution of the tree from a level g to another level
q'. It can be proved (and this proof requires considerable
effort) that in the continuous limit these functions are de-
fined by the nonlinear equation of diffusion in “time” g:

J P 1 & p J
~ P25 +x(g)my(y) a_yP (8.22)
with the initial condition:
lim P, (y|y") =8(y—y"). (8.23)

q9-q

Here x(g) is the inverse function to that of g(x) which is
given by the RSB solution (Chap. 6), and the function
mq(y) is the continuous limit of the discrete function
(8.20) which defines the distribution of the site magneti-
zations in the ancestor states at the level g of the tree. Note
that this function (which has a clear physical meaning)
coincides with the function mq( y) introduced strictly for-
mally in Chap. 6 (Egs. (6.19), (6.20)) for the interpreta-
tion of the replica symmetry breaking solution in terms of
nonlinear differential equations. To prove that, one can
easily deduce from Eqgs. (8.20) and (8.22) that the func-
tion m,(y) satisfies the equation:
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a 182 a
~3 my(p) =5@7 my(y) +x(g)my(y) 3 mgy(y)

(8.24)
which coincides with Eq. (6.20).

8.3. Summary

Now, to see the complete picture, let us assemble in
order all the facts obtained for the spin-glass model with
long range interactions.

1) Going through the formal replica calculations of the
free energy (Chap. 6) one could represent it in terms of the
functional F[Q] which depends on the 7 X 7 replica matrix
Q. In the thermodynamic limit the main contribution to
the free energy comes from the matrices Q* which corre-
spond to the extrema of this functional, and the physical
free energy (as well as any other physical quantity) is
obtained in the limit n—0. In this limit the extrema ma-
trices Q"‘ are defined by the infinite set of parameters which
could be described in terms of the continuous function
g(x) within the interval O<x<1. Formally, this function
could be calculated for any temperature in the low-
temperature region, and near the phase transition point it
can be obtained explicitly (Fig. 16).

2) On the other hand, in terms of pure physical spec-
ulations (Chap. 7) one could define as the order parameter
the probability distribution function P(g) which gives the
probability to find a pair of the pure (spin-glass) states
having the mutual overlap equal to ¢. Following the same
replica symmetry breaking scheme one can show that the
function ¢g(x) uniquely defines the distribution function
P(g): P(q) =dx(q)/dq, where x(q) is the inverse function
to g(x). The obtained replica symmetry breaking solution
for ¢(x) and correspondingly for P(q) shows that in the
low-temperature spin-glass state in a certain (depending on
the temperature) interval of values of ¢ there exists a con-
tinuous spectrum of overlaps among the pure states.

3) Next, one can introduce the joint distribution func-
tion P(q;,4,,9;) which gives the probability that an arbi-
trary set of three pure states would have their mutual pair
overlaps equal to g, ¢,, and ¢;. Following the same replica
symmetry breaking scheme this function can be calculated
to show that the space of the pure states of a spin-glass has
an ultrametric topology.

4) To describe this space of spin-glass states one can
construct the ultrametric space in general terms. It is ob-
tained as the result of the random branching process which
is defined by a set of probability functions. For the concrete
model under consideration these functions could be for-
mally calculated (more precisely, one can obtain the non-
linear evolution equations which define these functions).
This way one can see that the structure of the space of the
spin-glass states can be described in terms of the hierarchi-
cal tree which appears as the result of the random branch-
ing process in the space of states.

As the result of all these calculations the following
physical picture of the spin-glass phase is obtained.

Just below T, the space of states is divided into nu-
merous pure states (valleys). These states are described by
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the average site magnetizations m;. The configurations of
m;'s are different in different states. However, the value of
the selfoverlaps:

N
g(T)= 2 m? (8.25)
appears to be the same in all the states. The value of ¢ is
Jjust seme function of temperature (near 7', it can be cal-
culated explicitly).

Besides, the mutual pair overlaps of the pure states
appear to cover continuously the whole interval
0<q‘1ﬁ<q(T). (In the presence of an external magnetic
field A this interval starts not from zero, but from some
finite value: qo(h,T)<q‘1/3<ql(h,T), where gy(h,T) -0 for
h—0.) The distribution of the values of ¢°” is described by
some probability function P(q) which depends on the tem-
perature (and the magnetic field). The structure of the
space of these spin-glass states is described by the ultra-
metric hierarchical tree discussed above.

If the temperature is slightly decreased
T-T'=T—68T, each of the pure states is divided into
numerous new ones which could be called the descendant
states. These states are characterized by a new value of the
selfoverlap g(T') > q(T'). Correspondingly, the interval of
the mutual pair overlaps of the states is getting longer:
0<gP<q(T").

At a further decrease of the temperature each of the
pure states is (continuously) divided into new and new
descendant pure states. This branching process which goes
on down to zero temperature (¢(7—0)—1) is fully de-
scribed by the evolution equation (8.22). This tree of states
has the property of self-similarity (scaling), and at any
given temperature the natural scale in the space of states is
given by the value ¢(T').

On the other hand, if the temperature is increasing, the
opposite process of merging of the families of pure states
goes on. Therefore, over the entire temperature interval
0<T<T, a continuous sequence of phase transitions takes
place.

9. SOME FANTASIES
9.1. Scaling in the space of states

Consider now the qualitative physical picture of the
spin-glass phase from the point of view of its possible gen-
eralization to more realistic spin-glass systems with finite-
range interactions.

Let us assume that on a qualitative level the tree-like
hierarchical structure of the spin-glass states remains valid
also in spin-glass systems with finite-range interactions.
There are only two relevant arguments in favor of this
assumption: recent experiments on real spin glasses (Chap.
4) and aesthetic attractiveness of such kind of a structure.
The problem then is in the following: is it possible to con-
struct a physical theory of spin-glasses based on this as-
sumption, which would make it possible to make calcula-
tions of real observable thermodynamics, to make
explanations of actual experiments, to make predictions for
concrete spin-glass systems, etc.? In other words, is it pos-
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sible, instead of drawing abstract trees and presenting
hand-waving-arguments, to construct a real science? This
question remains open.

A possible approach could be the following. According
to what we have seen in the previous Chapters, at a given
temperature 7 below T, the spin-glass system remains in
one of the pure states, which in terms of the hierarchical
tree corresponds to one of the “ancestor” states at the level
(scale) g(T) of the tree. All these states could be obtained
in the horizontal cross section of the tree at the level g(T').
In a real experiment the system once trapped in one of
these states (valleys) is not able to go over to other states,
since they are separated by infinite free energy barriers.
Therefore, the real physics observed in the actual experi-
ment must be defined only by this particular limited part of
the phase space. Correspondingly, to calculate the actual
oservable physics one has to limit the summations (in the
partition function) to this particular part of the space of
states. Most probably, the result of such calculations has to
be independent of the concrete valley, since results of the
experiments were demonstrated to be reproducible. In this
sense, the statistical properties of the valleys must be equiv-
alent.

How could the actual calculations be done? According
to what we have assumed, inside the valley at a given tem-
perature a whole “mini-tree” of states is hidden (this tree
could be developed by lowering the temperature down to
zero). Therefore, one could assume that it is these states
which give the leading contribution to the thermodynamics
inside the valley. In other words, in the calculation of the
limited (corresponding to one valley) partition function
one could restrict the summation by taking into account
only the descendant states belonging to the “mini-tree.”

Actually, all the above speculations are just an attempt
to formulate the intuitive guess for the traditional and prin-
cipal problem of statistical mechanics: what are the rele-
vant degrees of freedom in the system under consideration.
In the case that these degrees of freedom are guessed cor-
rectly, all the remaining problems are just technical. Note,
that in any nontrivial statistical mechanical problem one
never takes into account all the degrees of freedom.

Thus, in the approach under consideration, it is as-
sumed that the leading contribution to the observable ther-
modynamics at a given temperature I comes from the
states of the ultrametric tree descending down from the
level g(T). In other words, it is assumed that all the rele-
vant degrees of freedom of the spin glass could be classified
in terms of the hierarchical tree. At the level of the present
“semi-philosophical” discussion, however, it is difficult to
conclude, whether this assumption is correct or not. Let us
see what could come out of it.

To make things more simple, consider the discrete ver-
sion of the hierarchical tree (Sec. 8.2). Then, the free en-
€18y faja,..a, Of the pure state at the level /(T) (corre-
sponding to the scale g,=¢(7)) could be represented as
follows:
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exp( _.Bfala2 ...a,)

= 2

A1 1422 L

exp(—pBH[o% @ +1-9L]), 9.1

Obviously, the most natural way of performing such
kind of summation is the iteration prosess, i.e., the sum-
mation step by step going from one (lower) level of the
tree to the next (higher) one. This procedure could also be
called as a sort of renormalization group in the space of
states. Summing over the families of the states at the level
L one gets a new effective (renormalized) Hamiltonian
depending on the states of the level L— 1. Next, one sums
over the families of states at the level L—1 and gets a new
renormalized Hamiltonian corresponding to the level
L —2, and so on. At some intermediate level k (I<k<L)
this one-step transition could be represented as follows:

exp(—BH[m™1%-%])

= Y exp(—BH [m*1-%%1]),

Qg4

(9.2)

If the corresponding change of scale in the space of
states is assumed to be small: 5g=g,,;—g, <1 then the
changes of the parameters of the Hamiltonian after this
one-step transition must also be small in 8¢. As a result one
might be able to derive a sort of evolution equations for the
parameters of the Hamiltonian and to obtain their depen-
dence on scale in the space of states.

In the traditional renormalization group approach one
performs the summation over the “fast” degrees of free-
dom corresponding to a small spatial scale, and gets a new
Hamiltonian with the renormalized parameters corre-
sponding to a larger spatial scale. Then, looking at the
asymptotic behavior of the renormalized Hamiltonian at
large scales, one could see what the thermodynamic state
of the system is. Usually, the result essentially depends on
the dimensionality of the space, the temperature and the
other parameters involved. In the framework of this pro-
cedure one could also calculate the observable thermody-
namical quantities.

The idea of the present approach is similar to that of
the traditional renormalization group, and the only differ-
ence is that the scaling is assumed to take place not in real
space (apparently, it doesn’t exist there), but in the space
of states. In reality, however, the situation in spin glasses
appears to be much more sophisticated. Actual calcula-

‘tions show that the renormalized spin-glass Hamiltonian

appears to be dependent on an infinite number of parame-
ters, and all these parameters (as well as the original pa-
rameters J;;) are random quenched quantities. Unfortu-
nately these calculations are rather cumbersome and the
results obtained could not be clearly interpreted yet (for
details see Ref. 18)

Nevertheless, in some cases certain concrete conclu-
stons can be derived from this approach. First of all, if the
temperature is higher than a certain critical temperature
T,, then all the effective (renormalized) interactions in the
Hamiltonian can be proved to tend to zero in the limit of
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the largest scale ¢—0 (note, that here the microscopic
scale corresponds to g=1, and the macroscopic one corre-
sponds to ¢=0). It indicates that in this case the system is
in the paramagnetic state. On the other hand, if 7<7T,,
then a certain characteristic scale ¢(7) >0 comes into
play, such that as ¢g—¢(7) some parameters of the renor-
malized Hamiltonian diverge. Presumably, this indicates
that at the scale g(7T") the states become “frozen.” In any
case the renormalization procedure can not go beyond the
scale g(T'), and it is just that situation which was assumed
to take place based on a general qualitative picture of the
spin-glass phase. The quantity calculated in this way must
be interpreted as the free energy of the pure states at the
temperature 7. Besides, the dependence of the character-
istic values of the effective renormalized interactions on the
scale in the interval g(T") <g< 1 could be interpreted as the
dependence of the finite free energy barriers (separating
the metastable states inside the valley) on the scale in
phase space and, correspondingly, on the temperature
(Sec. 4.3).

It should be stressed here that the states we are dealing
with in this renormalization group approach are not the
states which are obtained from direct free energy calcula-
tions of the SK model. In the SK model at a given tem-
perature one calculates the ultrametric tree of states which
is defined at scales 0<q<q(T). Here instead, one deals
with the states at scales ¢(7) <g¢<l, and the idea is to
obtain the pure states at the scale ¢(7") summing over the
states starting from the microscale at g=1 and approach-
ing the scale ¢(7T") from “below.”

Unfortunately, this renormalization group scheme is
still far from providing reliable algorithms of calculations
of the observable physics. And for that reason it is difficult
to conclude at the present stage to what extent the physical
assumptions involved in it are correct. It is not impossible,
of course, that the technical problems which block the ac-
tual calculation are not technical at all, but rather real
ones. Then it would mean that new physical ideas are
needed.

9.2. Phenomenological dynamics

To conclude this Chapter, consider a purely phenom-
enological approach which could qualitatively illustrate the
relaxation processes in the spin-glass phase.'

Assume that in the low temperature spin-glass phase
the free energy landscape is of the type shown in Fig. 2: big
wells contain a lot of smaller ones, each of the smaller wells
contains many even smaller ones, and so on. Such kind of
landscape could be characterized by the typical value of
the potential barrier A(q) separating the wells (the states)
at the scale ¢. Assuming that this potential relief has the
scaling property (which is a quite natural property of all
such fractal-like structures), the dependence of the typical
value of the potential barrier on the scale could be assumed
to be of the following simple scaling form:

A(g)=Ao(g—q(T))™" (g>q(T); v>0). (9.3)
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Here q(T) (according to a general spin-glass philosophy)
is the value of the selfoverlap of the pure states at the
temperature 7', which, on the other hand, is the character-
istic scale (scale of the valleys) at which the barriers sep-
arating the states become infinite. Note also, that this type
of scaling is in agreement with the qualitative results ob-
tained in experiments (Sec. 4.3).

Consider now what kind of relaxation properties could
be derived from the above representation. The characteris-
tic time needed to overcome the barrier A is

A
T(A) ~7g exp(—) (9.4)
T
where 7, is some microscopic time. Then, the spectrum of
the relaxation times inside one valley can be represented as
follows:

7(q) ~ 7o exp(BA(g—¢q(T)) ). (9.5)
For the relaxation of, e.g., the order parameter
1
9N =5 2 (@(0)ai(n) (9.6)
one can easily derive the following simple estimate:
1 t
1)~ d exp| ———. (9.7)
q(1) Jq(T) q4q P( T(q))
Using (9.5), one gets:
1 t
q(t) ~ f dg exp|In(q) ——
q(T) To
XCXP(—/J’Ao(q—q(T))_V)]- (9.8)

In the limit of large times ¢» 7, the saddle-point estimate
gives the following result:

BAo
In(t/70)

/v

q(t) ~q(T)+ (9.9)

Therefore at large times the order parameter approaches
its equilibrium value g( T') logarithmically slowly. It is ob-
vious, that the relaxation behavior of other observable
quantities would be of the same type.

In the framework of such kind of phenomenology two
possible scenarios of transition into the spin-glass phase
could be considered. The first, and the most natural one, is
that the spin-glass structure “‘grows” from inside the para-
magnetic phase when the temperature approaches T, from
above. Near T, at T > T, the energy barriers grow to some
large but finite value A  as the scale of the phase space
increases. This situation can be described in the way sim-
ilar to Eq. (9.3):

Ars 1 (@) =080(¢+q(T) ™5 (v'>0). (9.10)
Here ¢(T) is a sort of disorder parameter which defines
the limiting value of the energy barriers:

A, =Ay(g(T))™". (9.11)
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The exponent v’ at T> T, could in principle be different
from that of vat T < T,. Correspondingly, the spectrum of
the relaxation times will be limited in this case, and the
maximum relaxation time will be:

(9.12)

As a result, the slow logarithmic relaxation of the order
parameter

To~Toexp(BA,).

/v

—g(T) (9.13)

90~ i 7r0)
would take place only within the limited time interval:
To€t €T, . At the largest times r»7_ the relaxation must
become of the ordinary exponential type:

t
q(t)~exp(—1_—). (9.14)

As the temperature T approaches T, from above the
disorder parameter ¢(T) must go to zero. Assuming scal-
ing behavior (which is typical for all second-order phase
transitions) one could expect that

T a

q(T)~ (T - 1)

4

(9.15)

for (T/T.—1) <1, where a>0 is some critical exponent.
Correspondingly, for the maximum energy barrier and for
the maximum relaxation time one gets:

T —a/v'
Am(T)~A0(——1) = w, (9.16)

T,

T, (T)~T1yexp

T —a/Vv
BAO(—T——I) l—>oo. (9.17)

4

However, the other scenario of the spin-glass phase
transition could also be assumed, in which it is the para-
magnetic phase which “grows” from the spin-glass one as
the temperature approaches the glass transition tempera-
ture T'p from below. In this scenario, as T — Tg, the values
of the barriers decrease at any given scale g, although the
spectrum of the barriers remains divergent as g—¢(T)
anyway. This situation could be modeled by the ansatz
(9.3) in which the exponent v—0 as T—»ng

T 8
v(T—»Tg)~(l—7,-) (9.18)

8
where 8> 0. Note that there are no reasons to assume that
the spin-glass order parameter ¢(7") and the exponent v
turn to zero at the same temperature. For that reason two
critical temperatures are introduced: one is T, at which
g(T) turns to zero, and the other one is Tg at which the
exponent v turns to zero.

If T < Tg, then, as the temperature increases, the
spin-glass order parameter turns to zero first, and it is T,
which would be the point of the phase transition into the
paramagnetic phase in the usual thermodynamic sense
(g40 at T<T, and ¢=0 at T>T_). Nevertheless, al-
though in the temperature interval T.<T <T, the spin-
glass order parameter is zero, the exponent v is still non-
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zero, and therefore the relaxation properties of the system
in this temperature interval would not be paramagnetic.

The relaxation behavior of the order parameter in this
case can be easily estimated from the integral (9.8) in
which one has to take ¢(7T)=0, r»7, and v€1. As the
temperature T, is approached from below the relaxation
would be paramagnetic ~ exp( —/7,) only at times which
are not very large: 7€ t €7 (T). The saddle-point esti-
mate of the integral in Eq. (9.8) gives:

1 T
‘1""(T)~;~(1—7:)_15 (9.19)

g

so that 7™*(T) > o as T-T,. However, at the largest
times t»7*(T) the relaxation becomes logarithmically
slow (spin-glass-like):

g(t) ~[In(ve)] 7. (9.20)
As T—T,, the times at which this type of the relaxation
could be observed are shifting to infinity.

10. CONCLUDING REMARKS

The physics of the spin-glass state discussed in the
present review is just an attempt to give a rather qualitative
(and as simple as possible) description of a new area of
statistical mechanics which deals with systems in which
quenched disorder is the dominant factor. As for the real
spin-glass materials, this qualitative physics is still hypo-
thetical rather than well-grounded.

It should be stressed that the phenomenon of the spin-
glass state appears to be a quite general one. At present it
is observed in all sorts of systems, which are very far from
the original magnets with random interactions. In partic-
ular, it appears to be the crucial point for statistical mod-
eling of biological evolution, for statistical memory models
(neural networks), and for optimization problems, etc.
(Presumably, the problem of 1/f-noise is also connected
with some sort of spin-glass effects). Unfortunately, al-
though the original problem of spin glasses has successfully
developed into an entire branched tree of problems (this
phenomenon seems to be its intrinsic property), a general
understanding of the physics of the spin-glass state is still
far from being complete.

The problem is that if the physics of the spin-glass state
claims to be really a new physics (which it really does), it
must be adequately formulated. It must be something more
than just drawing branching trees and fractal landscapes in
infinite-dimensional spaces. It must be a system of selfcon-
sistent algorithms which would make it possible, at least in
principle, to calculate observable quantities and to make
predictions. Then it will become a science. Until now, how-
ever, it is just a little bit above the level of the so-called
“descriptive zoology.” For the time being it is not so bad,
of course, but this situation can not be called satisfactory
either.
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DThis term seems to be quite adequate in its meaning, since the triangle
discussed above might as well be interpreted as the famous love triangle.
In addition, the existence of frustrations in spin glasses destroys any
hope, as we will see later, for finding a simple solution of the problem.
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