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Evidence for a New Phase in the Domany-Kinzel Cellular Automaton
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We consider a generalized version (including anisotropy) of the stochastic one-dimensional cellular
automaton studied by Domany and Kinzel. It recovers Wolfram-like deterministic cellular automata as
particular cases. The phase diagram presents three (and not two, as previously suggested) phases which
were detected through the numerical study of both the order parameter and the sensitivity to initial con-
ditions. The various universality classes are exhibited as well.

PACS numbers: 87.10.+e, 02.50.+s, 89.80.+h

Cellular automata (CA) are totally discrete dynamical
systems (discrete space, discrete time, and discrete num-
ber of states) which find general applications in physics,
chemistry, biology, computer science, etc. ' With each
site (noted i) is associated a variable cr; which can be in

k different states cr; =0, 1, . . . , k —1. The dynamics is
defined, at each time step, by rules depending on the
values at a previous time of [o;j associated with a given
number of r arbitrary sites (called inputs). Usually one
considers regular lattices and the inputs refer to the sites
on the local neighborhood only. The local rules of a CA
may be probabilistic or deterministic and the sites are
simultaneously updated. Thus we recognize the Glauber
dynamics, for example, as a special case of a CA. How-
ever, in the more general context of CA, the dynamics is
not restricted to the usual Boltzmann weight and de-
tailed balance. Therefore, CA do not necessarily evolve
towards equilibrium. Thus they can model chemical re-
actions, crystal growth models, turbulence, biological
problems, or other nonlinear processes far from thermal
equilibrium.

Although d-dimensional probabilistic CA (PCA) de-
scribe processes far from equilibrium, they can be
mapped onto (d+ 1)-dimensional statistical-mechanics
models. The corresponding spin model is, in general,
anisotropic involving multispin interactions and fields,
with coupling constants calculated from the parameters
(conditional probabilities) specifying the evolution rule
of the PCA. In contrast to equilibrium dynamics even
one-dimensional PCA exhibits continuous phase transi-
tions with universal critical exponents and scaling laws.

In this paper we study, by Monte Carlo simulation,
the phase diagram and criticality of a generalization of
the one-dimensional PCA considered by Domany and
Kinzel. This PCA contains, as a special case, the prob-
lem of directed percolation in two dimensions; further-
more, this PCA has been useful for understanding ca-
talysis in chemical reactions. Specifically our system
consists of a one-dimensional chain of N lattice sites
(i =1,2, . . . , N), with periodic boundary conditions.
Each site has two possible states o.; =0, 1. The state of

the system at time t is specified by the [cr;(t)]. At
the next time step, the state of a given site is o;(t+1)
=0 or 1 according to the conditional probabilities
[P(cr; ~(t), o;(t)/o;(t+ I))], namely, P(0, 1/1)—:pl,
P(1, 1/1)—:p2, P(1,0/1)=p3 [P(0,0/1) =0 because we
consider only legal rules, since this probability acts as an
external field conjugated with the order parameter].
Naturally P(o; ~, cr;/0) =1 P(cr; , 1o/—I ). We extend
the PCA considered by Kinzel by allowing pi&p3. In
the simulations, we used, for each (pl, pz, p3) and each
N, a quite large number (typically up to 50) of random
starting configurations where all states were equally
probable. Depending on the value of (pl, p2, p3) the
t ee asymptotic state is homogeneous (with all sites 0;
frozen phase) or has a finite fraction of interchanging
sites with value 1. This phase transition is continuous
and characterized by universal critical exponents.

We define an order parameter M as the t ~ frac-
tion of sites with value 1. In Fig. 1(a) we show the criti-
cal surface separating the frozen from the nonfrozen re-
gion [the case pl =p3 is shown in Fig. 1(b)]. For the
p~ =p3 case our results are consistent with those ob-
tained by Kinzel using transfer-matrix and finite-size
scaling methods. We can see that the present Monte
Carlo simulations indicate that the ordered state is dense
enough to support a transition far from the deterministic
limit p2=0, p~ =p3=1. We also calculate the order-
parameter critical exponent P [M=(pi —pi, )~]. For
p~ =p3, we find P=0.25+ 0.02, to be compared with
Kinzel's value 0.273~0.002 (our error bar of 0.02 has
been adopted in order to satisfactorily cover all types of
fluctuations in all the cases we have run in the comput-
er). Our Monte Carlo simulations support the hy-
pothesis of universality, i.e., the same critical exponent
describes the critical properties along the entire phase
boundary in Fig. 1(b), except the terminal points. For
the anisotropic case (p|Ap3) we obtain (for the first
time as far as we know) a different universality class,
characterized by P=0.5+ 0.02.

In order to understand better the nature of the non-
frozen phase far from the deterministic corner p 1
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FIG. 2. The parameter + for diAerent values of the initial
damage probability p, for P(11/1) =0.15 and P(10/1)
=P(01/1) =0.90. The lines are guides to the eye. r is the
time (after arrival to equilibrium) over which + was averaged.
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we show 0 as a function of the initia1 damage p for
different system sizes and evolution times. From these
data we see that a fraction p=50% is quite convenient
for reliable simulations. If the damage spreads through
the entire PCA the automaton is sensitive to the initial
conditions (chaotic phase). Damage spreading is a
powerful tool which has been used to study dynamical
phase transitions in Ising and Q2R models, spin
glasses, deterministic cellular automata, and other spin
models such as the axial next-nearest-neighbor Ising and
the XY models. Recently, Coniglio et al. ' showed an
interesting exact relation between damage spreading and

FIG. l. (a) Phase diagram of the generalized Domany-
Kinzel PCA. The solid lines belong to the critical surface
separating the frozen (M=O and + =0) and active (MAO and
%=0) phases. The dashed lines belong to the boundary be-
tween the active and chaotic (MAO and +NO) phases. (b)
P(10/1) =P(01/I) phase diagram. The data correspond to
simulations with N=3200 sites; transients of 10000 (3000)
time steps were used for the frozen-active (active-chaotic)
phase transitions. The damage was averaged over another
3000 time steps.
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=p3=1 and p2=0 (rule 90 in Wolfran's notation), we
have studied how damage spreads throughout this PCA.
To do this, we first simulate the automaton until it at-
tains equilibrium. Then we make a replica of the system
where we create an "initial damage" by flipping random-
ly a fraction p of the sites. As t evolves, the initial dam-
age spreads through a damaged region where the sites in
the two systems have diAerent values. This damage is
measured by a normalized Hamming distance + defined
as the fraction of sites in the replica system that diAer
from their counterparts in the original system. In Fig. 2
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FIG. 3. The damage spread parameter %' as a function of
the probabilities. The data correspond to 3200 sites, transient
until equilibrium of 2000 time steps, and damage evolution for
another 3000 times steps.
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thermodynamical properties.
To calculate + we average over a period which is at

least as long as the size of the chain. The parameter +
vanishes continuously (see Fig. 3) on a critical surface
(different from that associated with M) which also is in-
dicated in Fig. 1 [this surface, which we denote by
(pl„p2„p3, ), has been established by extrapolating the
results corresponding to increasingly large CA sizes; in

Fig. 2 we present typical values of N and p which
guarantee that the N ~ limit has practically been at-
tained]. In the neighborhood of the deterministic point
(pl, p2, p3) =(1,0,0) the damage does not die out, but it
moves over the whole lattice. However, it remains small
and vanishes in the thermodynamic limit N ~. As a
function of (pi, pq, p3) e vanishes according to the power
law +=(p2, —p2)", with p =0.37 ~0.10 for the isotrop-
ic case (excepting possibly for the terminal points); the
error bar 0.10 has been adopted similarly to the error bar
of P. We have not checked but it would not be surpris-
ing if p were diferent for p~ &p3.

In summary, we studied the phase diagram of the an-
isotropic Domany-Kinzel-like stochastic one-dimensional
cellular automaton. In addition to the two known phases
(frozen and active, i.e. , an attractor which presents re-
spectively a Axed-point structure and extremely long cy-
cles) detected by studying the behavior of the order pa-
rameter M, we found a third phase (chaotic; Me0 and
+%0) related to the spread of damage (more precisely,
presenting simultaneously extremely long cycles and
sensitivity to the initial conditions). The critical surfaces
where M and + vanish are diff'erent except on the p2 =0

plane where they appear to share one and the same criti-
cal line.
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