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Franco Bagnoli and Raúl Rechtman

Abstract We explore some aspects of phase transitions in cellular automata. We
start recalling the standard formulation of the Monte Carlo approach for a discrete
system. We then formulate the cellular automaton problem using simple models,
and illustrate different types of possible phase transitions: density phase transi-
tions of first and second order, damage spreading, dilution of deterministic rules,
asynchronism-induced transitions, synchronization phenomena, chaotic phase tran-
sitions and the influence of the topology.

1 Introduction: Monte Carlo simulations

The main results of statistical mechanics is that of expressing the probability distri-
bution of a statistical ensemble in terms of its constraints. Just to be concrete, let us
consider a discrete system that can be described by N Boolean variables xi ∈ {0,1},
i = 1, . . . ,N located in sites connected by a graph defined by an adjacency matrix
ai j = 1 if i is connected to j and zero otherwise. A configuration of the system is
expressed as x = (x1,x2, . . . ,xN).

Let us denote by E(x) is energy of such a configuration, and with P(x) the prob-
ability of observing it.

The simplest way of deriving the equilibrium probability distribution is that fol-
lowing the principle of maximum entropy. One has to maximize the entropy

S =−∑
x

P(x) log(P(x))
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Fig. 1 Monte Carlo neighbourhood (2 cells plus the same-cell link).

with the given constraints. In the so-called “canonical ensemble” (a system in con-
tact with a heat bath that keeps the temperature constant), the average energy

U = ∑
x

E(x)P(x)

is kept constant by the heat bath. It is straightforward to derive the probability dis-
tribution P(x),

P(x) =
1
Z

exp(−βE(x))

where β corresponds to inverse temperature and Z the normalization constant (par-
tition function). In principle this solves the problem of computing the average value
〈A〉 of an observable A(x),

〈A〉= ∑
x

A(x)P(x).

The problem is that in general the number of configurations is huge, and therefore
a brute-force evaluation of this sum is not feasible.

The Monte-Carlo technique allows one to compute the time-average A of the
observable over a fictitious trajectory x(t)

A =
1
T

T

∑
t=0

A(x(t)).

The trajectory is obtained by defining the conditional probability M(x|y) of getting
x ≡ x(t + 1) given y ≡ x(t) (i.e., defining a Markov chain), as a function of the
difference in energy of x and y. Clearly, speaking of numeric simulations, we refer
to finite chains.

The main requirement is that the Markov chain has to be ergodic, i.e., each state
can be reached from any other state in a finite number of steps (not being trivially
periodic), and that the iteration of the procedure leads to a unique probability distri-
bution.

Considering now the stochastic sampling, this property assures that a long
enough trajectory visits all states a number of times proportional to the asymptotic
distribution.
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Fig. 2 Phase transition for
the Ising model in 2D with
nearest neighbour interac-
tions. Average magnetization
|〈m〉| and variance as a func-
tion of the rescaled coupling
J for H = 0. Size 40× 40,
T = 4000, transient 4 ·104.
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We shall now consider the temporal evolution of the probability distribution, de-
noted as P(x, t). We have

P(x, t +1) = ∑
y

M(x|y)P(y, t),

or, in vectorial terms
P(t +1) = MP(t).

M(x|y) is in general decomposed into a series of N stochastic “local” moves
that occur with probability τ(xi|Yi), which is the probability of getting xi given its
neighbourhood Yi = {y j : ai j = 1}. One can visualize the Monte Carlo procedure as
the evolution of a time-space graph, in which the connections are such that (i, t +1)
is connected to ( j, t) if ai j = 1, and in any case a cell at time t + 1 is connected to
the cell in the same location at time t (see Fig. 1). Each Monte Carlo time step is
decomposed in N microscopic steps, in which just one random site is updated, and
the others are copied (xi(t +1) = xi(t)).

The actual trajectory is computed by drawing, for each site i and time t, uniformly
distributed random numbers ri(t) and computing Boolean quantities like [ri(t) <
τ(xi|Yi)], where [·] = 1 if · is true and zero otherwise. If one thinks of extracting all
the random numbers before the simulation, the trajectories are deterministic over
the random field ri(t).

1.1 An example: the Ising model

Let us illustrate these concepts with the Ising model. Given the coupling J and
the magnetic field H, the energy E(s) of a spin configuration s = (s1,s2, . . . ,sN)
(si = 2xi−1 =±1) is given by
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E(x) =−J ∑
i, j

ai jsis j−H ∑
i

si. (1)

The Ising probability distribution is

P(s) =
1
Z

exp

(
−β

(
J ∑

i, j
ai jsis j +H ∑

i
si

))
, (2)

and we can absorb the inverse temperature β in the parameters J and H (control
parameters).

The magnetization m is defined as

m = m(J,H) = ∑
s

(
P(s)

1
N ∑

i
si

)
.

It constitutes a suitable observable for this problem, as also its variance. From On-
sager solution in 2D and zero magnetic field [21], we should observe a phase tran-
sition at Jc ' 0.44, with a transition from m = 0 to m 6= 0 and the divergence of its
variance, see Fig. 2 for a numerical simulation.

There are many possible recipes for the Monte Carlo implementation, the one
that we examine is the heat bath dynamics, for which the probability that spin i
takes value s′i is

τ(s′i|Si) =
exp(si(H + J ∑ j ai js j)

exp(β si(H + J ∑ j ai js j))+ exp(−si(H + J ∑ j ai js j))

=
1

1+ exp(−2si(H + J ∑ j ai js j))
. (3)

In practice, each element of the Markov matrix is M(s′|s) = τ(s′i|Si), all other
spins remaining the same.

1.2 Equilibrium phase transitions

There is a vast literature about phase transition in equilibrium statistical physics. We
want here just recall some properties that can be useful for extending the concept
to arbitrary systems, not necessarily in equilibrium, and therefore we only refer to
Monte Carlo investigations.

Phase transitions are characterized by a change of the value of some observable,
say the magnetization m(J,H), in correspondence of a precise value of a control pa-
rameter. In practice we can say that the dynamics of the system changes its structure
in correspondence of a phase transition, for instance the phase space may effectively
break in two zones that do not communicate at all. This is equivalent to say that the
system is no more ergodic, and we speak of ergodicity breaking.
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If we consider the point of view of deterministic trajectories over a random field,
the phase transition can be seen as a bifurcation from a single to multiple attractors.

However, we have a kind of contradiction here: we chose the Monte Carlo dy-
namics to be ergodic, so how can ergodicity breaking occur? Actually, this breaking
only manifests itself in a limit procedure: for a finite system (finite N), and long
enough time, all the phase space is visited (it is finite), and therefore the average
of observables takes a unique value. However, near the phase transition, the observ-
ables (say, the magnetization in the Ising model) maintain the same value for very
long periods, with occasional switches from one extreme to another. So, while its
average value has a certain value (say, zero), one never observes such value! The
time that the system spends on one phase become longer as we approach the critical
value of the control parameter and (exponentially) as we increase the system size.

If we take first the limit of infinite system size and then that of infinite time, we
observe the ergodicity breaking. In practice, it is sufficient to use a large enough
system. In the language of stochastic trajectories, there are two low-energy valley
separated by a high (energy) and/or large (entropy) barrier. in order to connect the
two valleys, a path should climb the separating saddle, and the associated probabil-
ity becomes smaller and smaller with the system size, in the vicinity of the phase
transition and above.

In the language of Markov processes, we always have an irreducible transition
matrix (since the dynamics is ergodic), but in the previous limit the time-product of
matrices (denoted as M) effectively breaks in two (or more) sub-matrices, that do
not communicate

M =

(
M1 ε

ε M2

)
N→∞−−−→

(
M1 0
0 M2

)
,

where the ε denote the paths that connects the two valleys. The asymptotic distri-
bution Peq(x) is proportional to the eigenvector of M with eigenvalue 1. At phase
transition this eigenvalue becomes degenerate and we have two or more asymptotic
distributions, with different “basins”.

We can introduce the correlation function

C(ρ,τ) =

(
N

∑
i=1

T

∑
t=1

xi(t)si+ρ(t + τ)

)
−
(

N

∑
i=1

T

∑
t=1

si(t)

)(
N

∑
i=1

T

∑
t=1

si+ρ(t + τ)

)

The observables can be defined in terms of the correlation function.
The correlation function is expected to decrease exponentially

C(ρ,τ)∼ exp
(
− ρ

ξ⊥

)
exp
(
− τ

ξ‖

)
.

defining the correlation lengths ξ⊥ (with respect to space) and ξ‖ (with respect to
time).

At a phase transition (non-analytical behaviour of some observables like discon-
tinuities, divergence or angular points) the correlation lengths can stay finite (first-
order phase transitions) or diverge (second-order phase transitions). In the latter
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Table 1 Transition probabilities of the Domany-Kinzel model.

S = s−1 + s+1 X = x−1 + x+1 τ(1|S) τ(0|S) = 1− τ(1|S) bond percolation site percolation
-1 0 w 1−w 0 0
0 1 p 1− p pb ps
1 2 q 1−q pb(2− pb) ps

case,

ξ (J,H;N)∼ Nα
ξ̃

(
J

Nγ
,

H
Nδ

)
,

where α,γ,δ are critical exponents. Also observables like the magnetization exhibit
similar scaling behaviour. This phenomenology extends to systems defined directly
by stochastic transition probabilities.

2 Probabilistic Cellular Automata

In many cases we are looking for the asymptotic properties of a system that is just
defined in terms of the local transition probabilities, of which Probabilistic Cellular
Automata (PCA) are prototypical examples.

Cellular automata are defined in a way similar to the previous Monte Carlo time-
space evolution, allowing for generic transition probabilities and parallel evolution
of all cells at the same time. PCA are therefore Markov chains for which the matrix
elements are given by the product of the local transition probabilities (generally
uniform),

M(x|y) = ∏
i

τ(xi|Yi).

Again, we can define stochastic trajectories (or deterministic trajectories over a
stochastic field)

xi(t +1) = [ri(t)< τ(xi|Yi)].

Deterministic Cellular Automaton (DCA) can be considered as limit cases of
PCA, where the transition probabilities τ are either zero or one.

2.1 Parallel Ising model

For instance, we can define a parallel version of the Ising model, for which

M(s′|s) = ∏
i

τ(s′i|Si),

with τ given by Eq. (3).
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Fig. 3 2-cell neighbourhood.

In this case we can still have an asymptotic probability distribution if the inter-
actions are symmetric (here they are for definition), but the asymptotic distribution
is now [11]

Peq(s) =
1
Z ∏

i
eβHsi cosh

(
∑

j
β (H + J ∑

j
ai js j)

)
,

where Z is again the normalization constant.
Notice that the transition probabilities of Eq. (3) do not depend on the previous

value of the site si. If we apply them in parallel to all sites, at least in one dimension
and with nearest-neighbour interactions, the lattice decouples in two noninteracting
sublattices (for even N, see Fig. 3), so that s′i = f (st

i−1 + si+1(t),ri(t)) It is an ex-
ample of a totalistic PCA, that has been studied by Kinzel [25] and shows no phase
transition.

2.2 Domany-Kinzel model. Absorbing states.

We can extend the parallel Ising example to a general case, on the same two-
neighbours network (Fig. 3), defining three independent totalistic transition prob-
abilities, as shown in Table 1. This model has been studied by Domany and
Kinzel [12, 25], and can be considered the simplest model showing a phase tran-
sition.

For generic values of w (τ(1|0)), p (τ(1|1)) and q (τ(1|2)), this model can be
mapped onto a parallel Ising model with a plaquette term [25] (we need another
control parameter in addition to H and J since here we have three free probabilities),

E(S) =−∑
i

si (H + J(si−1 + si+1)+Ksi−1si+1) .

Denoting h = exp(−2H), j = exp(−4J), k = exp(−2K), we have w = 1/(1+
hk/ j), p = 1/(1+h/k), q = 1/(1+h jk) and therefore

H =
1
6

log
wpq

(1−w)(1− p)(1−q)
, J =

1
8

log
(1−w)q
w(1−q)

, K =
1
6

log
w(1− p)q

(1−w)p(1−q)
.

However, this model does not show any phase transition.
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If we set w = 0 (by letting the coupling take infinite values with suitable limits),
we leave the equilibrium condition. In this limit the configuration s = −1 becomes
an absorbing state. We can also switch to the Boolean representation by setting
xi = (si +1)/2. In this representation the absorbing state is the configuration x = 0.
It is called absorbing since it cannot be left by the dynamics once entered. The order
parameter is here the “density” of ones

c =
1
N ∑

i
xi.

We can reformulate the phase transition in this new language: for finite N there is
always a probability M(0|y) that brings any configuration to the absorbing state in
one step. In the limit N→ ∞ and for a suitable value of the parameters p and q this
probability goes to zero and the Markov matrix becomes reducible. It is composed
by a submatrix M1 that maps states “near” to 0 into 0 in a few time steps, and a set
of states with a non-vanishing density c

Again, one can speak of deterministic trajectories one that the stochastic field has
been laid out. The evolution equation of the system is

x′i = [r(1)i (t)< p](xi−1(t)⊕ xi+1(t))⊕ [r(2)i (t)< q]xi−1(t)xi+1(t)

where ⊕ is the XOR operation (sum modulus two). Notice that the two random
numbers r(1)i (t) and r(2)i (t) may be the same or not, since the two conditions
(xi−1(t)⊕ xi+1(t) and xi−1(t)xi+1(t) are never true at the same time (but this makes
a difference for damage spreading, Section 2.5).

In the language of trajectories, one can say that there are two attractors, the fixed
point 0 and a “chaotic” attractor with d > 0, each one with its own basin. More on
absorbing phase transition can be found in Ref. [19].

For w = q = 0 and p = 1 we have the deterministic rule 90 in Wolfram’s nota-
tion [30], so the line q = w = 0 corresponds to the dilution of rule 90.

2.3 Mean-field approximation

In order not to use a heavy notation, let us apply this approximation using the DK
model, assuming that a site i at time t +1 is connected to sites i and i+1 at time t
(i.e., using the skewed lattice of Fig. 3).

The evolution equation for the probability distribution is

P(x1,x2, . . . ,xN ; t +1) = ∑
y1,y2,...,yN

(
∏

i
τ(xi|yi,yi+1

)
P(y1,y2, . . . ,yN ; t), (4)

considering appropriate boundary conditions (e.g., periodic). We can obtain the re-
duced probabilities π`(xi, . . . ,x`; t) by summing P(x1,x2, . . . ,xN ; t+1) over all i > `.
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Fig. 4 The phase diagram of the Domany-Kinkel model, α marks the density transition and γ the
damage transition. Left: the phase diagram for w = 0. The dashed line marks the transition line for
the simplest mean-field approximation. Right: the complete phase diagram. The curves labelled α

and α ′ belong to planes w = 0 and w = 1 resp., and correspond to the density phase transitions.
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existence line for the parallel Ising model for positive and negative temperatures, resp. The points
labelled M and M′ to the critical points of the parallel Ising model at zero temperature (compact
DP), and the point labelled R to infinite temperature. The dotted line labelled χ corresponds to the
damage in the parallel Ising model.

If the system is translation-invariant, one obtains the same result summing the ele-
ments of any set of consecutive variables. Since ∑xi τ(xi|yi,yi+1 = 1 for all xi, we
can then sum over yi+2, . . . ,yN , obtaining

π1(x1, t +1) = τ(x1|y1,y2)π2(y1,y2; t),
π2(x1,x2, t +1) = τ(x1|y1,y2)τ(x2|y2,y3)π3(y1,y2y2; t),

. . .

i.e., a hierarchy of equations that are equivalent to Eq. 4.
If the correlation length ξ is less than N, two cell separated by a distance greater

that ξ are practically independent. The system acts like a collection of subsystems
each of length ξ (this is why ergodicy and selfaveraging holds far from the transi-
tion). Since ξ is not known a priori, one assumes a certain correlation length ` and
computes the quantity of interest. By comparing the values of these quantities with
increasing ` generally a clear scaling law appears, allowing to extrapolate the results
to the case `→ ∞.

The very first step is to assume ` = 1. In this case we can simply factorize
π2(x1,x2) = π1(x1)π1(x2). By calling c = π1(1; t) (1−c = π1(0; t)), c′ = π1(1; t+1)
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Dilution of DCA rule 90 site percolation bond percolation Ising T = 0
p = 0.81,q = 0 p = q = 0.71 p = 0.64,q = 0.87 p = 0.5,q = 1

Fig. 5 Typical patterns of the DK model. Space runs horizontally and time vertically, from top to
bottom.

and using the transition probabilities of Table 1 with w = 0, one gets

c′ = 2pc(1− c)+qc2.

Notice that in the mean-field approximation, the evolution of the system is given by
a deterministic equation for the average value of observables. In this approximation,
a phase transition corresponds to a bifurcation (change of stability of the attractors)
of the map.

The fixed points (c′ = c) are c = 0 and c = 2p/(2p− q). There is a change of
stability from c = 0 (the absorbing state) to c > 0 for pc = 1/2. As shown in Fig. 4-
left, this approximation is quite rough.

The DK model includes the Directed Percolation (DP) one [24], which can be
formulated thinking to an infection process: an individual i at time t can get infected
by its infected neighbours at the previous time step, with a probability that depends
on the number of infected neighbours (bond percolation) or not (site percolation),
see Table 1. In the mean-field approximation, we have for the bond percolation the
line q = p(2− p), and for the site percolation the line q = p, as shown in Fig. 4-left.

There are two ways of extending the above approximation. The first one is still to
factorize the cluster probabilities at single site level but to consider more time steps,
for instance obtaining π1(t + 2) in terms of π3(t) and then factorizing π3 in terms
of π2. The map is still expressed as a polynomial of the density c. The advantage of
this method is that we still work with a scalar (the density), but in the vicinity of a
phase transition the convergence towards the thermodynamic limit is very slow.

The second approach, sometimes called local structure approximation [18], is
a bit more complex. Let us start from the generic ` cluster probabilities π`. We
generate the `−1 cluster probabilities π`−1 from π` by summing over one variable,

π`−1(x1, . . . ,x`−1) = ∑
x`

π`(x1, . . . ,x`−1,x`).
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Fig. 6 Local structure ap-
proximation for the DK
model, with several values
of length `. The case ` = 1
is the simplest mean-field ap-
proximation and corresponds
to the line p = 1/2. The line
marked ’exp’ corresponds to
numerical simulations as in
Fig. 4.
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The `+1 cluster probabilities are generated by using a Bayesian estimation

π`+1(x1,x2, . . . ,x`,x`+1) =
π`(x1, . . . ,x`)π`(x2, . . . ,x`+1)

π`−1(x2, . . . ,x`)
.

Finally, one is back to the ` cluster probabilities by applying the transition probabil-
ities

π
′(x1, . . . ,x`) = ∑

y1,...,y`+1

l

∏
i=1

τ(xi|yi,yi+1).

This last approach has the disadvantage that the map lives in a high-dimensional
(2`) space, but the results converges much better in the whole phase diagram.

This mean-field technique can be considered an application of the transfer matrix
concept to the calculation of the the eigenvector (asymptotic probability distribu-
tion) corresponding to the maximum eigenvalue (fundamental or ground state), by
means of the iteration of the matrix.

2.4 Asynchronism of DCA

An unexpected phase transition occurs with an increasing level of asynchronism of
some DCA rule [13, 14]. Let us denote by f (xi−1,xi,xi+1) the deterministic rule.
The evolution equation of its dilution is

x′i = xi⊕ [ri(t)< (1− p)]
(
xi⊕ f (xi−1,xi,xi+1)

)
.

With probability 1− p the site follows the rule f , and with probability p it keeps its
old value.



12 Franco Bagnoli and Raúl Rechtman
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Fig. 7 DCA dilution phase transition for two Elementary Cellular Automaton rule 6 and 18 in
Wolfram notation [30], comparisons between numerical simulations and the local structure ap-
proximation (from Ref. [15]). In the y axis the asynchronism parameter p.

Examples of phase transitions are shown in Fig 7.
An unexpected fact is that the simplest mean-field approximation completely

fails for this problem. Indeed, we have

c′ = pc+(1− p)
1

∑
a,b,c=0

f (a,b,c)ca+b+c(1− c)3−a−b−c

and for the stationary state c′ = c one gets

c =
1

∑
a,b,c=0

f (a,b,c)ca+b+c(1− c)3−a−b−c

i.e., the mean-field approximation of the deterministic rule, without any dependence
on p. Increasing the order of the mean-field approximation (local structure approx-
imation), one can approximate the actual phase transition behaviour [15], as shown
in Fig. 7.

2.5 Damage spreading

We have said that the large-time distribution x(T ) depends in general on the random
field and the initial conditions x(0), although, for large N, the observables like the
density does not depend on them due to ergodicity and self-averaging. Actually, we
can check the dependence on the initial conditions by considering the evolution of
an initial difference between two replicas, evolving on the same random field, and
looking at the difference (or damage) zi = xi⊕ yi,



Phase transitions of Cellular Automata 13

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p
2

p
1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1
0

0.5

1

p
2

p
1

0.1 0.2 0.3 0.4 0.5
0.5

0.6

0.7

0.8

0.9

1

0 0.20.40.60.8 1
0

0.2
0.4
0.6
0.8
1

p
2

p
1

Fig. 8 Phase transition diagrams of the BBR model (colour code: white=0, black=1). Left: mean-
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x′i = [r(1)i (t)< p]
(
xi−1(t)⊕ xi+1(t)

)
⊕ [r(2)i (t)< q]xi−1(t)xi+1(t),

y′i = [r(1)i (t)< p]
(
yi−1(t)⊕ yi+1(t)

)
⊕ [r(2)i (t)< q]yi−1(t)yi+1(t),

z′i = x′i⊕ y′i = [r(1)i (t)< p]
(
zi−1(t)⊕ zi+1(t)

)
⊕ [r(2)i (t)< q] ·(

(zi−1(t)zi+1(t)⊕ zi−1(t)xi+1(t)⊕ xi−1(t)zi+1(t)⊕ xi−1(t)xi+1(t)
)
.

Since now the two conditions can occur at the same time, there is a difference in the
evolution if one uses one or two random numbers per site (or if they are otherwise
correlated). Looking only at the evolution of the difference z, the evolution of the
x replica (which is not affected by z) is just another field (although it is not fully
random). The quantity z shows another phase transition (Fig. 4) that characterizes
the dependence on the initial condition: in one phase the difference goes to zero,
meaning that all initial conditions will follow after a transient time the same trajec-
tory, only depending on the stochastic field. In the other phase, the system maintains
forever some memory of the initial condition.

This phase transition also belongs to the directed percolation universality class.
It is possible to approximately map the density phase transition onto the damage
one [2].

2.6 A richer phase diagram: the BBR model

The DK model is quite useful for studying nonequilibrium phase transitions due
to its simplicity. In order to explore other types of transitions beyond DP, let us
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Fig. 9 (left) The graph of f (x;a) for three values of a. (right) Space time pattern of the CML
of Eq. (5) with a = 1.9 and N = 256 drawn horizontally for a total time of T = 300 time steps
drawn vertically from top to bottom. The initial configuration x(0) is chosen randomly. The color
code assigns white (black) whenever xi(t) = 0(1) and a rainbow color scale for other values of
xi(t) starting with red for values near zero. Patches of CA behaviour (rule 150) appear after a short
transient and will eventually fill the whole pattern.

introduce the BBR model [10], that is a 3-input cellular automata with two absorbing
states. It is a totalistic automaton, meaning the the transition probability depends on
the sum S of the states in the neighbourhood, with 0 ≤ S ≤ 3. The BBR transition
probabilities τ(x′|S) are τ(1|0) = w, τ(1|1) = p1, τ(1|2) = p2, τ(1|3) = 1−w By
setting w = 0, the states 0 and 1 are absorbing, and on the line p1 = 1− p2 the
system is symmetric for the inversion 1↔ 0.

As can be seen in Fig. 8, we have here, for high-p1 and low-p2 value, two DP
transitions reminiscent of the DK model. The two lines meet at about p1 = p4 = 0.5
(p1 = 1− p2 = 1/3 in the mean-field approximation). In this point the universal-
ity class changes to that of parity conservation. In the low-p1, high-p2 part of the
diagram, we have a first-order transition: the two absorbing states are stable (as pre-
dicted by the mean-field analysis) and we can investigate the nature of an hysteresis
cycle. In order to do that, we have to remove the absorbing characteristic of the states
0 and 1. We do this by imposing that w (τ(1|0) is small but different from zero, so
that in principle the system does not more show a true phase transition. Indeed, that
states with high or low values of the density are now metastable, so we have to tune
the simulation time with the value of w. This tuning is however not critical: for a
large range of values of simulations times, we obtain an hysteresis diagram similar
to that of Fig. 8.
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2.7 Janssen-Grassberger’s conjecture

The DP class is extremely robust with respect to the microscopic dynamic rules. The
large variety and robustness of DP models led Janssen [23] and Grassberger [16] to
the conjuncture that all systems with a single order parameter and a single absorbing
state will belong to the universality class of the Directed Percolation (DP) model.
More precisely, the requirements are

• The model displays a continuous phase transition from a fluctuating active phase
into a dominant stable absorbing state.

• The transition is characterized by a positive one-component order parameter.
• The dynamic rules involve only short-range processes.
• The system has no unconventional attributes such as additional symmetries or

quenched randomness.

We have already seen that the BBR model has two absorbing states. As far as
their basins are different, the phase transition belongs to the DP universality class,
on the symmetry line p1 = 1− p2 it switches to the parity conservation class.

Another way of violating this condition is that of modifying the stability of the
absorbing state. This can be easily realized in the synchronization scenario [17].

2.8 Synchronization

The idea of a replica synchronization is the following: take two replicas of a system,
either driven by a deterministic or a stochastic dynamics (in the latter case, the
random field is the same for the two systems). Let one system evolve by itself, and
“push” the other towards the first. If the pushing is strong enough, the system will
synchronize. A simple illustration is the following. Let’s consider a continuous map
x′ = f (x), and construct the synchronization mechanism

x′ = f (x),

y′ = (1− p) f (y)+ p f (x),

for p = 0 the two systems are completely disconnected, and if the map f is chaotic,
they stay well separated. For p = 1 the two system are identically the same. There is
a critical value pc such that the distance δ = |x−y| goes to zero. For small distance,
δ evolves as

δ
′ = (1− p)| f (y)− f (x)| ' (1− p)

∣∣∣∣d f (x)
dx

∣∣∣∣δ
and thus
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δ (t) = (1− p)t
δ (0)∏

t ′

∣∣∣∣d f (x(t ′))
dx

∣∣∣∣= (1− p)t
δ (0)exp

(
∑
t ′

log
∣∣∣∣d f (x(t ′))

dx

∣∣∣∣
)

= δ0 exp((log(1− p)+λ )t),

where λ is the Lyapunov exponent of the map. Thus, when δ (t) = δ (0) (the syn-
chronization threshold), pc = 1− exp(−λ ), and this relates the synchronization
threshold to the chaotic properties of the map.

This mechanism can be extended in several ways to extended systems (coupled
map lattices and cellular automata). For reference, consider the following generic
coupled system

x′i = f (g(xi−1,xi,xi+1)),

where g defines the coupling. One can use a homogeneous “pushing”, i.e., use the
same p for all sites, or, at the other extreme, a all-or-none pushing, i.e., choose a
fraction p of sites to be completely synchronized and leave the other unperturbed.

Using the first mechanism, one again relates the synchronization threshold to
the Maximum Lyapunov Exponent (MLE) of the system. Chaotic systems are ex-
pected to amplify the distance between replicas. For a value of p slightly below
the synchronization threshold, some patches may synchronize for some time, after
which they will separate. This picture resembles that of a growing interface that
may stay pinned to local traps. From field theory studies, such a behaviour is de-
noted multiplicative noise (MN) and is equivalent to the behaviour of the “bounded”
Kardar-Parisi-Zhang equation, which describes the behaviour of a growing surface
that tends to pin and is pushed from below [22, 26, 27]. On the other hand, sta-
ble systems have a negative MLE. So, replicas should naturally synchronize once
their distance is (locally) below the threshold of validity of linear analysis. However,
when the local difference is large, non-linear terms may maintain or amplify this dis-
tance. In this case synchronized patches may be destabilized only at the boundaries.
Again, theoretical studies associate such a behaviour to that of directed percolation
(DP) [24]

However, it is questionable if the MLE exponent really captures the chaotic prop-
erties of an extended system. For instance, let us take f chaotic and g(a,b,c) =
ε(a+ c)+(1− ε)b, i.e., a diffusive coupling. The Lyapunov exponent λ (ε) in gen-
eral decreases with ε , since the coupling acts like a constraint (a kind of surface
tension). Thus λ takes its maximum values for ε = 0, but in this case the chaos does
not spread on the lattice.

On the contrary, the all-or-none (“pinching”) synchronization mechanism shows
that the case in which synchronization is most difficult is for ε ' 1/3, which is
what one intuitively expects. Moreover, we can apply this synchronization mech-
anism also to cellular automata, provided that the two replicas evolve using the
same random field. It is possible to show that in this case one can develop a con-
cept of Boolean derivative for such a discrete systems, and obtain an equivalent of
the maximum Lyapunov exponent, which is related to the pinching synchronization
threshold [1, 6].



Phase transitions of Cellular Automata 17

q 1−q

ǫ

1−ǫ

τ

h
0

1

0 0.2 0.4 0.6 0.8 1

c ′

c

Fig. 10 (left) The transition probability τ(h) given by Eq. (6) with J = −3, k = 20, q = 0.1, and
ε = 0.2. (right) Graphs of the mean field map, Eq. (7) for different values of J and k = 20. From
bottom to top for c < 1/2, J =−0.5 (red, lower line), J =−3.0 (green, middle line), and J =−6.0
(blue, upper line).

The synchronized state is an example of absorbing state, but clearly in real cases
one rarely expect to find a complete synchronization: the evolution may be influ-
enced by noise, or the two replicas can be slightly different.

We can test this hypothesis using the map

f (x;a) =


(6x)a/2 0≤ x < 1/6,
1−|6(1/3− x)|a/2 1/3≤ x < 1/2,
|6(x−2/3)|a/2 1/2≤ x < 5/6,
1− (6(1− x))a/2 5/6≤ x < 1,

(5)

where 1 ≤ a < ∞ (see Fig. 9-left), see Ref. [7]. This map that has the advantage of
reducing to the DCA rule 150 for a large, and to a chaotic map from a small. For a&
1.81 (stable chaos) one observes a transient chaos, with positive Lyapunov exponent,
followed by a cellular automata pattern. One may wonder about the unpredictability
of such map: in the chaotic phase an infinitesimal damage will amply, while in
stable chaos phase infinitesimal damages are absorbed (and thus the word “stable”)
but finite ones spread (and thus the word “chaos”). The synchronization procedure
applied to a lattice of such maps indeed shows that a certain effort is needed even
in the “stable” phase to get the synchronization. In agreement with the Janssen-
Grassberger conjecture, one finds the synchronization phase transition for a < 1 do
belongs to the MN universality class, while for a & 1.81

Such a behaviour is not limited to systems that reduce to DCA, see Ref. [5] for
an example.



18 Franco Bagnoli and Raúl Rechtman
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Fig. 11 (left) Bifurcation diagram of the mean-field map, Eq. (7), by varying J. (right) Small-
world probabilistic bifurcation diagrams as functions of the long range probability p. The colors
mark different attractors.

2.9 Topology and chaotic phase transitions

Up to now we have not investigated the influence of the topology, i.e., of the con-
nections defined by the adjacency matrix ai j. It is well known that if we replace a
regular lattice with a random network of the same connectivity, the global behaviour
becomes that of the mean-field, since in this way correlations are disrupted.

We can study the influence of the topology by adopting the Watts-Strogatz
rewiring mechanism [29]: start with a regular lattice of connectivity k in 1D and,
for each site, rewire at random a fraction p of incoming links.

In order to show the effects of the mechanism and also to present a new type of
phase transition, let us consider a cellular automaton whose mean-field approxima-
tion is chaotic. This model has been developed originally as an opinion formation
model [8].

The average local opinion or social pressure hi, is defined by

hi =
∑ j ai js j

k
.

The opinion of agent i changes in time according to the transition probability
τ(si|hi) that agent i will hold the opinion si at time t + 1 given the local opinion hi
at time t. This transition probability, shown in Fig. 10-left, is given by

τ(h) =


ε if h < q,

1
1+ exp(−2J(2h−1))

if q≤ h≤ 1−q,

1− ε if h > 1−q,

(6)

with τ(h) = τ(1|h).
The simplest mean-field description of the model is given by
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Fig. 12 (Color online) Return map of the average opinion c on small-world networks for several
values of the long-range connection probability p with J = −6, k = 20, N = 103, and a transient
of 103 time steps. The following 200 iterations are shown as (blue, darker) dots. The (red, lighter)
continuous curve is Eq. (7). From left to right: p = 0.0, p = 0.5, p = 0.6, and p = 1.0.

c′ = f (c) =
k

∑
w=0

(
k
w

)
cw(1− c)k−w

τ

(w
k

)
, (7)

with c′ = c(t+1) and c= c(t). The term in parenthesis on the r.h.s of this expression
denotes the w-combinations from a set of k elements. In Fig. 10-right we show some
graphs of f . The bifurcation digram of this map after varying J is shown in Fig. 11-
left. The doubling bifurcation route to chaos ends at J = Jc. For 0 > J ≥ J2 and J3 >
J ≥ 6 there is only one attractor (blue, darker dots). For J2 > J ≥ Jc there are two,
one corresponding to the lower branches that bifurcate up to Jc (red, lighter dots),
and the other one to the upper branches (blue, darker dots). For Jc > J ≥ J3 there
are two chaotic attractors, one corresponding to the lower branches (blue, darker
dots), the other to the top branches (red, lighter dots). For every value of J, the dots
are 64 iterates of the map after a transient of 103 time steps. For values of J with
only one basin of attraction the orbits do not depend on the initial average opinion
c(t = 0). For values of J that correspond to two attractors, one of them was found
with c(0) = 0.1, the other one with c(0) = 0.9.

By varying the long-range probability p, we observe the transition towards the
mean-field behaviour, as reported in Fig. 12. This induces a stochastic bifurcation
diagram by varying p, Fig. 11-right that is quite similar to that obtained in the mean-
field approximation by varying J, Fig. 11-left. For p . p0 there are almost periodic
orbits of period one and for p0 . p . p1 of period two. For p1 . p . p2 we find two
attractors, one (in red, lighter) in the lower branches, the other one (in blue, darker)
in the top ones.

Notice that up to now we have met phase transition that, in the mean-field de-
scription, implies the change of stability of fixed points, while here we observe a
real bifurcation diagram with coexistence of basins, period-doubling and chaos.

3 Conclusions

The main aim of this presentation was that of discussing some characteristics of
nonequilibrium phase transitions.
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We have illustrated some aspects of phase transitions in probabilistic cellular
automata, trying to show how such a problem arises in different contexts and some
of the method used for its study.

The real-life problems are usually more complex than those faced here. However,
a phase transition separates qualitatively different states, and since continuous phase
transitions are related to the divergence of the correlation function, the general sce-
nario is quite independent of the details of the model, so that the investigation of
simplified models is justified.

The numerical simulations of phase transitions constitute also a challenge by
itself: the need of approaching the limit of infinite space and time requires particular
techniques and an efficient implementation.

This study can be complemented by an analysis based on the principles of the
renormalization group (see for instance Ref. [28]), that in principle allows to group
several models into a few universality classes.

The study of phase transitions in stochastic systems (and the related one of bi-
furcations in dynamical systems) can constitute a good training ground for both
theoretical, computational and experimental students.
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23. Muñoz, M. A., Hwa, T.: On nonlinear diffusion with multiplicative noise. Europhys. Lett. 41,

147–152 (1998).
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