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Topological bifurcations in a model society of reasonable contrarians
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People are often divided into conformists and contrarians, the former tending to align to the majority opinion
in their neighborhood and the latter tending to disagree with that majority. In practice, however, the contrarian
tendency is rarely followed when there is an overwhelming majority with a given opinion, which denotes a social
norm. Such reasonable contrarian behavior is often considered a mark of independent thought and can be a useful
strategy in financial markets. We present the opinion dynamics of a society of reasonable contrarian agents. The
model is a cellular automaton of Ising type, with antiferromagnetic pair interactions modeling contrarianism and
plaquette terms modeling social norms. We introduce the entropy of the collective variable as a way of comparing
deterministic (mean-field) and probabilistic (simulations) bifurcation diagrams. In the mean-field approximation
the model exhibits bifurcations and a chaotic phase, interpreted as coherent oscillations of the whole society.
However, in a one-dimensional spatial arrangement one observes incoherent oscillations and a constant average.
In simulations on Watts-Strogatz networks with a small-world effect the mean-field behavior is recovered, with
a bifurcation diagram that resembles the mean-field one but where the rewiring probability is used as the control
parameter. Similar bifurcation diagrams are found for scale-free networks, and we are able to compute an effective
connectivity for such networks.
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I. INTRODUCTION

The use of statistical physics methods [1] in the study of
social and economic systems is based on the fact that there
are global quantities that are not influenced by individual
preferences or opinions as in the study of election systems
[2] and social networks [3]. Opinion dynamics has been
investigated from the point of view of phase transitions [4] and
evolutionary dynamics [5]. In the first case, one is interested
in the asymptotic behavior of a global quantity when one or
more parameters change.

We can think of the many models inspired by the Ising or
Potts dynamics where the possible opinions and the affinity
between individuals are mapped to spin variables and to spin
couplings, respectively. The outstanding feature of opinion
formation models is the social network that has no counterpart
in spin systems since these are in general associated to regular
lattices. By changing the strength of the affinity we can
find a phase transition showing, for instance, the conditions
for the existence of a well-defined majority [6]. Instead of
an equilibrium situation, we may also be interested in the
geometry of the basins of attraction for irreversible dynamics,
like in Deffuant opinion dynamics [7].

Similarly to antiferromagnetic couplings in Ising models,
contrarians can have an opinion opposite to the average opinion
of the neighboring agents that may act as a disordering field
that prevents the formation of a majority. Contrarian agents
were first discussed in the field of finance [8] and later in
opinion formation models [9]. Contrarian behavior may have
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an advantage in financial investment. Financial contrarians
look for mispriced investments, buying those that appear
to be undervalued by the market and selling those that are
overpriced. In opinion formation models, contrarians gather
the average opinion of their neighbors and choose the opposite
one. Contrarians in irreversible opinion dynamics using an
annealed approach [10] lead to a behavior similar to that
observed in the Galam model [9].

Another important component is the network structure
which can be random (quenched or annealed), regular, with
long-range connections (Watts and Strogatz small world) [11],
or with a scale-free structure [12], and so on. Indeed, the
behavior of a spatial social game is strongly influenced by
the network structure [13]. These studies can be extended
to include variable network connections [14], depending, for
instance, on the difference in opinion [15].

In most of these studies the “agents” do not change their
strategy: Conformists remain conformists and contrarians
remain contrarians. On the other hand, one may be concerned
with the emergence of strategies, generally in the framework of
game theory [16]. In this case, the strategy may change due to
selection (elimination of low-fitness individuals) or imitation
of high-fitness ones (which constitutes a sort of metastrategy).
One can be interested in the conditions for which contrarian
behavior emerges.

In general, in the presence of weak selection [17] it is
natural to assume that the imitation takes the form of a growing
function of fitness, for instance, the Fermi distribution [18].
This imitation strategy consists in “running a bit ahead of
the group,” but there may be cases in which this is not the
most sensible thing to do. In particular, in minority games [19]
(which were introduced as a metaphor of markets) it might be
convenient to stay away from the majority, and this can be a
reason for which contrarian behaviors emerge.
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However, the contrarian behavior has limits. In any society
there are “social norms” that are adopted and respected
even if in contrast with an agent’s immediate advantage, or,
alternatively, even if they are costly with respect to a naive
behavior. Indeed, the social pressure towards a widespread
social norm is sometimes more powerful than a norm imposed
by punishments.

Also in the context of minority games and markets, it might
be convenient to follow social norms. When a large majority
of agents do the same thing, it is convenient for any agent to
follow the majority. The competitive loss in case of common
failure is minimum, since it is shared by a large fraction of
competitors.

We shall denote as reasonable contrarian the contrarian
attitude that does not violate social norms. In other words, a
reasonable contrarian disagrees with a marginal majority but
agrees if the majority of neighbors is above a certain threshold.

In this paper we are interested in the study of models of a
society of reasonable contrarians on different topologies. We
show that nontrivial asymptotic states appear, characterized
by oscillations and chaotic behavior (in contrast with the
simple fixed point asymptotic state of conformists and mixed
conformists-contrarians systems).

One of the main motivations of this study is that of exploring
the possible behavior of autonomous agents employed in
algorithmic trading in an electronic market. Virtually all
markets are now electronic [20] and the speed of transaction
requires the use of automatic agents (algorithmic trading) [21].
Our study can be considered as an exploration of possible
collective effects in a homogeneous automatic market.

The model, presented in Sec. II, simulates a society of N

reasonable contrarians that can express one of two opinions,
0 and 1. It is essentially a cellular automaton model [22],
which can be seen also as a spin system. At each time step,
each agent changes his or her opinion according to a transition
probability that takes into account the average opinion of his
or her neighbors, that is, the local social pressure, and the
adherence to social norms. The neighborhoods are fixed in
time (quenched network).

In spin language, the contrarian character corresponds to an
antiferromagnetic linear coupling, while social norms can be
represented as plaquette terms since they are nonadditive and
important when the social pressure is above or below given
thresholds.

For a one-dimensional society where the neighborhood
of each agent includes its k nearest neighbors, the average
opinion fluctuates around the value 1/2, regardless of the
values of the parameters of the transition probability. Sim-
ulations of the one-dimensional version of the model show
irregular fluctuations at the microscopic level, with short-range
correlations [23].

The mean-field approximation of the model for the average
opinion is a discrete map which exhibits bifurcation diagrams
as the parameters k and J change, as discussed in Sec. III. The
diagrams show a period doubling route towards chaos.

In Sec. IV we discuss the model on Watts-Strogatz networks
that exhibit the small-world effect [11]. We find a bifurcation
diagram as the fraction p of rewired links changes. Since
the opinion of agents change probabilistically, we speak of
probabilistic bifurcation diagrams.

q 1−q

1−

τ

h

FIG. 1. (Color online) The transition probability τ (h) given by
Eq. (3) with J = −3, k = 20, q = 0.1, and ε = 0.2.

In Sec. V, the reasonable contrarian opinion model is
extended to scale-free networks. Again, we observe a prob-
abilistic bifurcation diagram, similar to the previous ones, by
varying the coupling J . We are able to obtain a good mapping
of the scale-free parameters onto the mean-field approximation
with fixed connectivity k.

In order to compare the deterministic and probabilistic
bifurcation diagrams, we exploit the entropy η of the average
opinion. In the deterministic case, large values of η correspond
to positive values of the Lyapunov exponent. In Secs. III, IV,
and V we show that η can be used to characterize numerically
order and disorder in deterministic and probabilistic bifurca-
tion diagrams. Finally, we present some conclusions.

II. THE MODEL

Each of the N agents has opinion si(t) at the discrete time t

with si ∈ {0,1} and i = 0, . . . ,N − 1. The state of the society
is s = (s0, . . . ,sN−1). In the context of cellular automata and
discrete magnetic systems, the state at site i is si and the spin
at site i is σi = 2si − 1, respectively. The average opinion c is
given by

c = 1

N

∑
i

si . (1)

The opinion of agent i evolves in time according to the
opinions of his or her neighbors, identified by an adjacency
matrix with components aij ∈ {0,1}. If agent j is a neighbor
of agent i, aij = 1, otherwise aij = 0. The adjacency matrix
defines the network of interactions and is considered fixed in
time. The connectivity ki of agent i is the size of his or her
neighborhood,

ki =
∑

j

aij .

The average local opinion or social pressure hi is defined by

hi =
∑

j aij sj

ki

. (2)

The opinion of agent i changes in time according to the
transition probability τ (si |hi) that agent i will hold the opinion
si at time t + 1 given the local opinion hi at time t . This
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transition probability, shown in Fig. 1, is given by

τ (h) =

⎧⎪⎪⎨
⎪⎪⎩

ε if h < q,
1

1 + exp(−2J (2h − 1))
if q � h � 1 − q,

1 − ε if h > 1 − q,

(3)

with τ (h) = τ (1|h). The quantity q denotes the threshold for
the social norm and ε the probability of being reasonable.
With ε = 0 or q = 0, s = (0, . . . ,0) and s = (1, . . . ,1) are
absorbing states [23]. In the following we set ε = 0.2 and
q = 0.1 if not otherwise stated. The results are qualitatively
independent of ε and q as long as they are small and positive.
The transition probability τ has the symmetry

τ (1 − h) = 1 − τ (h). (4)

With J > 0 and q < hi < 1 − q, agent i will likely agree
with his or her neighbors, a society of conformists. With J < 0
and q < hi < 1 − q, agent i will likely disagree with his or
her neighbors, a contrarian society. For 0 � h � q or 1 − q �
h � 1 agent i will likely agree (if ε is small) with the majority
of his or her neighbors, regardless of the value of J .

We might also add an external field H , modeling news and
broadcasting media, but in this study we always keep H = 0.
We are thus modeling a completely uniform society, i.e., we
assume that the agent variations in the response to stimuli are
quite small. Moreover, we do not include any memory effect,
so the dynamics is completely Markovian.

In the language of spin systems, τ (hi) is the transition
probability of the heat bath dynamics of a parallel Ising
model with ferromagnetic, J > 0, or antiferromagnetic, J <

0, interactions [24]. The behavior of the transition probability
in the regions h < q and h > 1 − q may be seen as due to
a nonlinear plaquette term that modifies the ferroantiferro
interaction. If we set ε = 0 and J = −∞, the system becomes
deterministic (in magnetic terms, this is the limit of zero
temperature).

In one dimension, with k = 3, 1/3 < q � 1/2, and ε = 0
this model exhibits a nontrivial phase diagram, with two
directed-percolation transition lines that meet a first-order
transition line in a critical point, belonging to the parity
conservation universality class [25]. In this case, we have the
stability of the two absorbing states for J > 0 (conformist
society or ordered phase), while for J < 0 (antiferro or
contrarian) the absorbing states are unstable and a new,
disordered active phase is observed. The model has been
studied in the one-dimensional case with larger neighborhood
[23]. In this case one observes again the transition from an
ordered to an active, microscopically disordered phase but
with no coherent oscillations. Indeed, if the system enters
a truly disordered configuration, then the local field h is
everywhere equal to 0.5 and the transition probabilities τ

become insensitive to J and equal to 0.5; see Eq. (3).

III. MEAN-FIELD APPROXIMATION

The simplest mean-field description of the model is given
by

c′ = f (c) =
k∑

w=0

(
k

w

)
cw(1 − c)k−wτ (w/k) , (5)
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FIG. 2. (Color online) (a) Graphs of the mean-field map, Eq. (5)
for different values of J and k = 20. From bottom to top for c < 1/2,
J = −0.5 (red, solid line), J = −3.0 (green, dotted line), and J =
−6.0 (blue, dashed-dotted line). (b) Graphs of Eq. (5) for different
values of k and J = −6. From bottom to top for c ∼ 0.2, k = 4 (red,
solid line), k = 10 (green, dotted line), and k = 38 (blue, dashed-
dotted line).

with c′ = c(t + 1) and c = c(t) [26]. The term in parenthesis
on the right-hand side of this expression denotes the w

combinations from a set of k elements. In Fig. 2 we show some
graphs of f . The map f has the same symmetry property as
the transition probabilities τ ,

f (1 − c) = 1 − f (c). (6)

The mean-field map, Eq. (5), shows bifurcation diagrams
when the parameters J and k change, Figs. 3(a) and 4(a),
respectively. Since the mean-field map is deterministic, these
bifurcations can be characterized by means of the Lyapunov
exponent λ. However, in order to study these diagrams and and
those found in the probabilistic models, we use Boltzmann’s
entropy [27] η of the collective variable c. In the case of
deterministic maps, large values of η correspond to positive
values of the Lyapunov exponent as we show below. For
probabilistic processes, it is a measure of disorder. We define
the normalized Boltzmann entropy η as

η = −1

log L

L∑
i=1

qi log qi, (7)

where the interval [0,1] is divided in L disjoint intervals
Ii of equal size (bins) and qi is the probability that c ∈
Ii , i = 0, . . . ,L − 1. It is clear that 0 � η � 1, the lower
bound corresponding to a fixed point, the upper one to the
uniform distribution qi = 1/L. The probabilities qi are found
numerically by finding the fraction of time one orbit visits each
of the subintervals Ii .

The map f of Eq. (5) depends on the parameters J , k,
q, and ε. We keep q and ε fixed. By changing J for k = 20
we find the bifurcation diagram shown in Fig. 3(a) with the
corresponding values of the Lyapunov exponent λ and the
entropy η in Fig. 3(b). The bifurcation diagram appears to show
a period-doubling cascade, but it is more complex than that. For
0 > J � J0 there are period-one orbits and for J0 > J � J1

period-two orbits. For J1 > J � J2 the orbits appear to have
period four but actually correspond to two separate period-
two attractors. In other words, there is a pitchfork bifurcation
at J = J1 For J2 > J � Jc there are two separate period-
doubling bifurcations with the appearance of chaos at J = Jc.
For Jc > J � J3 there are two chaotic attractors that merge
at J = J3 [28]. Due to the symmetry of the map, Eq. (6), if c
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FIG. 3. (Color online) (a) Bifurcation diagram of the mean-field
map, Eq. (5), by varying J . The doubling bifurcation route to chaos
ends at J = Jc. For 0 > J � J2 and J3 > J � 6 there is only one
attractor (blue, darker dots). For J2 > J � Jc there are two: One
of them corresponds to the lower branches that bifurcate up to Jc

(red, lighter dots) and the other one to the upper branches (blue,
darker dots). For Jc > J � J3 there are two chaotic attractors, one
corresponding to the lower branches (blue, darker dots) and the other
to the top branches (red, lighter dots). For every value of J , the dots are
64 iterates of the map of Eq. (5) after a transient of 103 time steps. For
values of J with only one basin of attraction the orbits do not depend
on the initial average opinion c(t = 0). For values of J that correspond
to two attractors, one of them was found with c(0) = 0.1 and the other
one with c(0) = 0.9. (b) The Lyapunov exponent λ [top curve on the
left of the graph (in blue, darker)] and entropy η, [top curve on the right
of the graph (in red, lighter)]. For every value of J , λ was evaluated
during 103 time steps. The entropy η was computed using L = 214

bins. After a transient of 500 time steps, the probability distribution
was evaluated during the next 100 × L time steps. The horizontal dot-
ted lines are drawn, starting from below, at η = w/m, w = 1, . . . ,3
corresponding to periodic orbits of period 2w . The connectivity is
k = 20 and the vertical dotted lines are drawn at J0 = −1.045,
J1 = −1.965, J2 = −2.375, Jc = −2.545, and J3 = −2.705.

belongs to one of the basins of attraction, 1 − c belongs to the
other one.

In Fig. 4(a) we show the bifurcation diagram of the map f

as k changes with fixed J , ε, and q. For k < k0 there are period-
one orbits and for k0 � k < k1 period-two orbits. For k1 � k <

k2 there are two period-two attractors. The two attractors are

(a)

(b)
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FIG. 4. (Color online) (a) Bifurcation diagram of the mean-field
map of Eq. (5) varying k for J = −6. For every value of k, two initial
values were considered, c(0) = 0.1 and c(0) = 0.9, and for each one
64 iterations were plotted after a transient of 103 time steps. For
k < k0 there is a fixed point and for k0 � k < k1 period-two orbits.
For k1 � k < k2 the bottom branches (in red, lighter) correspond to
one attractor and the top branches (in blue, darker) to the other one.
For k3 � k < k5 the orbits are chaotic but for k = k4 there are two
attractors, one (in red) corresponds to the alternate clusters of points
starting from below, the other one (in blue, darker) to the other three
clusters of points. For k6 � k < k7, and k7 � k < k8 there are again
two attractors, one cluster (in red, lighter) corresponds roughly to
the bottom branches and the other one (in blue, darker) to the top
branches. These attractors are not chaotic except for k = k6. (b) The
Lyapunov exponent λ, top curve for k < k2 (in blue, darker), and
the entropy η, top curve for k3 < k < k5 (in red, lighter), both as
functions of the connectivity k for the same values of J as in (a). For
each value of k, λ was evaluated during 103 time steps. For η, L = 216

and the probability distribution was evaluated during the 100 × L

time steps after a transient of 103 time steps. The horizontal dotted
lines correspond, starting from below, to period-two, period-four, and
period-six orbits. The vertical dotted lines are drawn at k0 = 5, k1 = 9,
k2 = 13, k3 = 15, k4 = 19, k5 = 26, k6 = 32, k7 = 38, k8 = 41, and
k9 = 44.

again present for k = k4, k6 � k < k7, and k8 � k < k9. For
k = k4 and k = k6 the two attractors are chaotic. In Fig. 4(b) we
show λ and η as k changes. Again, chaotic orbits have entropy
larger than ηc = 1/2. Chaotic orbits are present for k = k2,
k3 � k � k5, and k = k6. Both bifurcation diagrams, Figs. 3(a)
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FIG. 5. (Color online) (a) Phase diagram showing positive values
the Lyapunov exponent λ for the mean-field approximation [Eq. (5)]
as a function of k and J . For each value of J and k the Lyapunov
exponent λ was calculated during 103 time steps. (b) Phase diagram
of the entropy η showing values larger than 1/2 for the same values of
ε and q as in (a). After a transient of 2 · 103 time steps the probability
distribution was evaluated during the next 103 time steps on L = 128
bins.

and 4(a), are symmetric around c = 0.5, a consequence of the
symmetry of the mean-field map, Eq. (6).

In Figs. 5(a) and 5(b) we show the phase diagrams, as J

and k change, of the Lyapunov exponent λ and the entropy η,
respectively. In Fig. 5(a) the points correspond to λ > 0 and
in Fig. 5(b) to η > ηc = 1/2. These figures show that both
quantities are a good measure of chaos in this case. The values
of λ and η shown in Fig. 3(b) correspond to those on a vertical
line k = 20 of Figs. 5(a) and 5(b), respectively. The results
shown in Fig. 4(b) correspond to a horizontal line J = −6 of
Figs. 5(a) and 5(b). For J < −15 both phase diagrams show
no qualitative change since the transition probability τ (h) is
essentially a step function.

IV. SMALL-WORLD NETWORKS

In the Watts-Strogatz small-world network model there is a
smooth change from a regular to a random lattice [11]. Starting
with a network with N agents, where the neighborhood of each
agent is formed by his k nearest neighbors, with probability p
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FIG. 6. (Color online) Return map of the average opinion c on
small-world networks for several values of the long-range connection
probability p with J = −6, k = 20, N = 103, and a transient of 103

time steps. The following 200 iterations are shown as (blue, darker)
dots. The (red, lighter) continuous curve is Eq. (5). (a) p = 0.0, (b)
p = 0.5, (c) p = 0.6, and (d) p = 1.0.

each neighbor is replaced by another agent chosen at random
among those that are not in the neighborhood. We call p the
long-range connection probability. In Fig. 6 we show the return
map of the average opinion c, after a long transient, together
with the mean-field return map f of Eq. (5) for several values
of p. For p = 0, the density c fluctuates around its mean value
0.5. As p grows, the system becomes more homogeneous and
the distribution of points approaches the mean-field behavior,
even though the mean-field approximation is based on the
absence of correlations. As shown in the figure, for p = 0.6
the return map is already close to the mean-field behavior and
for p = 1 it is indistinguishable from it.

We show in Figs. 7(a) and 7(b) the probabilistic bifurcation
diagrams of c as a function of the probability of long-range
connections p for J = −6 and J = −3 and the same value
of k. In both figures, for 0 < p � p0 and p0 < p � p1 we
can identify period-one and period-two orbits, respectively.
For p1 � p � p2 there are two period-two attractors which
become indistinguishable for p � p2. For p2 � p there is only
one attractor. In Figs. 7(b) and 7(c) we show the corresponding
entropy. We would like to find a threshold ηd for the appearance
of disorder, similar to ηc of the mean-field approximation, and
we propose ηd = η(p2) shown as the horizontal lines in Figs. 7.

In Figs. 8(a) and 8(b) we show the phase diagrams of the
entropy η for p = 0.5 and p = 1, respectively. It is evident
that for p = 1 [Fig. 8(b)] the diagram is very similar to that
of Fig. 5(b), while for p = 0.5 [Fig. 8(a)] the region where
η > ηd extends to larger values of k. The dependence on J is
much less marked. It is possible to roughly understand these
results assuming that the main contributions to the mean-field
character of the collective behavior come from the fraction of
links that are rewired (long-range connections) and that depend
on p.
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FIG. 7. (Color online) [(a) and (b)] Small-world probabilistic
bifurcation diagrams as functions of the long-range probability p.
For p � p0 there are almost periodic orbits of period one and
for p0 � p � p1 of period two. For p1 � p � p2 we find two
attractors, one (in red, lighter) in the lower branches and the other
one (in blue, darker) in the top ones. [(c) and (d)] The entropy
η as a function of p. The (red, lighter) lines mark the value of
ηd . [(a) and (c)] J = −6, p0 ∼ 0.15, p1 ∼ 0.38, p2 ∼ 0.45, and
ηd = η(p2) = 0.835. [(b) and (d)] J = −3, p0 ∼ 0.12, p1 ∼ 0.40,
p2 ∼ 0.57, and ηd = η(p2) = 0.787. In (a) and (b) the number of
agents is N = 5 × 104, the connectivity is k = 20. After a transient
of 4 × 103 time steps, the probability distribution is evaluated using
L = 256 bins during the next 100 × L time steps.

V. SCALE-FREE NETWORKS

Human and technological networks often present a scale-
free character, with different degrees of correlation among
nodes. In this section we present results of the model on
uncorrelated scale-free networks [12]. Starting from a fully
connected group of m agents, other N − m agents join
sequentially, each one choosing m neighbors among those
already in the group. The choice is preferential; the probability
that a new member chooses agent i is proportional to its
connectivity ki , the number of neighbors agent i already has.
Another way of building the network is to choose a random
edge of a random node and connect to the other end of the

1

2

3

4

5

6

10 20 30 40 50 60 70 80

−J

k

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1
(a) (b)

1

2

3

4

5

6

10 15 20 25 30 35 40 45 50

−J

k

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

FIG. 8. (Color online) Entropy phase diagrams of simulations
on small-world networks as functions of k and J for (a) p = 0.5
and (b) p = 1.0. The colored region corresponds to η > ηd = 0.8.
Entropy computed with 128 bins, lattice size N = 104, sampling
time 1.2 × 104 steps after a transient of 4 × 103 steps.
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FIG. 9. (Color online) Comparisons between simulations on
scale-free networks and mean-field approximation. In (a) and (b)
bifurcation diagrams of simulations on scale-free networks with
m = 15 and m = 30, respectively. In both cases, the number of agents
is N = 10 000 and for every value of J , the initial opinions are chosen
at random with c = 1/2, and 128 values of c are plotted after a
transient of 300 time steps. In (c) and (d) we show the bifurcation
diagrams of the mean-field approximation with k = 25 ∼ 1.7 × 15
and k = 51 ∼ 1.7 × 30, respectively. In both figures, c(0) is chosen
at random and 128 values of c are plotted after a transient of 103 time
steps. In (e) and (f) the entropy η of the simulations on scale-free
networks [top curve (blue) for J > −1] is compared with that of
the mean-field approximation [bottom curve (green) for J > −1]. In
(e), k = 15 and m = 25, in (f) k = 30 and m = 51. The entropy is
found by dividing the unit interval in 256 bins. For each value of J ,
c(0) = 0.1 and after a transient of 103 time steps the entropy was
evaluated during the following 2.56 × 104 time steps. In (a) and (e)
J0 = −2.267, and in (b) and (f) J0 = −1.766.

edge, since such an edge arrives to a vertex with probability
proportional to kp(k) [29].

In the appendix we show that the model dynamics on scale-
free networks is comparable to the mean-field approximation
of Sec. III on a network with constant connectivity k with

k = αm, α ∼ 1.7. (8)

In Figs. 9(a) and 9(b) we show the probabilistic bifurcation
diagrams of the model on scale-free networks as a function of
J for two values of m and in Figs. 9(c) and 9(d) we show the
bifurcation diagram of the mean-field approximation [Eq. (5)]
for the corresponding values of k according to Eq. (8). We find
a qualitative agreement between these bifurcation diagrams.
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In Figs. 9(e) and 9(f) we show the entropy of of the
mean-field approximation and of the simulations on scale-free
networks. We find a reasonable agreement when η > ηd with
ηd = η(J0) and J0 the value of J for which the entropy of
the mean-field approximation crosses the line η = 1/2 for the
first time. Thus, the entropy is a good way of comparing both
dynamics when k and m are related according to Eq. (8). Above
ηd , both entropies are numerically similar, except where there
are periodic windows in the mean-field approximation, and
this agreement is better for m = 30 and k = 51.

VI. CONCLUSIONS

We studied a reasonable contrarian opinion model. The
reasonableness condition forbids the presence of absorbing
states. In the model, this condition depends on two parameters
that are held fixed. The model also depends on the connectivity
k which may vary among agents, and the coupling parameter
J . The neighborhood of each agent is defined by an adjacency
matrix that can have fixed or variable connectivity (fixed
or power law) and a regular or stochastic character. The
interesting observable is the average opinion c at time t . We
computed the entropy η of the stationary distribution of c, after
a transient.

In the simplest case, the neighborhood of each agent
includes k random sites. In this case, the mean-field approxi-
mation for the time evolution of the average opinion exhibits,
by changing J , a period doubling bifurcation cascade towards
chaos with an interspaced pitchfork bifurcation. A positive
(negative) Lyapunov exponent corresponds to an entropy larger
(smaller) than ηc = 1/2. Thus, entropy is a good measure of
chaos for this map and can be also used in the simulations of
the stochastic microscopic model.

The bifurcation diagram of the mean-field approximation
as a function of k shows periodic and chaotic regions, also
with a pitchfork bifurcation. Again, entropies larger than ηc

correspond to chaotic orbits.
Actual simulations on a one-dimensional lattice show

incoherent local oscillations around c = 1/2. By rewiring at
random a fraction p of local connections, the model presents
a series of bifurcations induced by the small-world effect:
The density c exhibits a probabilistic bifurcation diagram that
resembles that obtained by varying J in the mean-field approx-
imation. These small-world induced bifurcations are consistent
with the general trend whereby long-range connections induce
mean-field behavior. This is the first observation of this for
a system exhibiting a chaotic mean-field behavior. Indeed,
the small-world effect makes the system more coherent (with
varying degree). We think that this observation may be useful
since many theoretical studies of population behavior have
been based on mean-field assumptions (differential equations),
while actually one should rather consider agents, and therefore
spatially extended, microscopic simulations. The well-stirred
assumption is often not sustainable from the experimental
point of view. However, it may well be that there is a small
fraction of long-range interactions (or jumps) that might justify
the small-world effect.

The model on scale-free networks with a minimum con-
nectivity m shows a similar behavior to that of the mean-field

approximation of the model on a network with constant
connectivity k [Eq. (5)] if k = αm with α ∼ 1.7.

In summary, we have found that, as usual, long-range
rewiring leads to mean-field behavior, which can become
chaotic by varying the coupling or the connectivity. Similar
scenarios are found in actual microscopic simulations, also
by varying the long-range connectivity, and in scale-free
networks.

The model can be extended to cases where there are both
contrarians and conformists, where the neighborhoods change
in time and even where the political mood (contrarian or
conformist) can change according to the social pressure (local
field). Any one of these extensions can lead to interesting
behavior. This study can have applications to the investigation
of collective phenomena in algorithmic trading.
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APPENDIX

The similarity between the bifurcations diagrams in
Figs. 3(a) and 4(a), which comes from the similarities of
the mean-field maps when changing J and k (Fig. 2), can
be explained by using a continuous approximation for the
connectivity k. By using Stirling’s approximation for the
binomial coefficients in Eq. (5), for intermediate values of
c [30], we obtain(

k

w

)
cw(1 − c)k−w � 1√

2πkc(1 − c)
exp

[−k (w/k − c)2

2c(1 − c)

]
.

(A1)

In this approximation, Eq. (5) can be written as

c′ =
∫ ∞

−∞
dx

√
k

2πc(1 − c)
exp

[
−k(x − c)2

2c(1 − c)

]
τ (x), (A2)

with x the continuous approximation of w/k. This expression
is just a Gaussian convolution of τ , i.e., a smoothing of the
transition probability, as can be seen by comparing Fig. 1 with
Fig. 2. This smoothing has the effect of reducing the slope of
the curve in a way similar to changing J (but it depends also
on c), and this explains the similarities between the bifurcation
diagrams in Figs. 3(a) and 4(a). For instance, Fig. 3(a) is
obtained for k = 20, a value that in Fig. 4(a) corresponds to a
chaotic strip just after a window with six branches. A similar
window can be observed also in Fig. 3(a) by increasing J from
the value J = −6 of Fig. 4(a).

This approximation can be used also to find the “effective”
connectivity of the model on a scale-free network. The mean-
field approximation for a nonhomogeneous network can be
written as

c′
k =

∑
s1,s2, . . . ,sk

j1,j2, . . . ,jk

k∏
i=1

c
si

ji
(1 − cji

)1−si Q(ji |k)τ (hi), (A3)
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FIG. 10. (Color online) Comparisons between the two functions
f (x) (blue, solid line) and g(x) (red, dashed line), for α = 1.7,
corresponding to the minimum of

∫ 4
0 (f (x) − g(x))2dx.

with c′
k the probability that the opinion of an agent with

connectivity k at time t + 1 is 1, and cj the probability that the
opinion of an agent with connectivity j at time t is 1. The sum
on the right-hand side is taken over the opinions s1, . . . ,sk of
the k agents in the neighborhood and over their connectivities
j1, . . . ,jk . The variables si take the values zero or 1, while ji

ranges from m to ∞. The quantity Q(j |k) is the probability
that the agent with connectivity j is connected to another one
of connectivity k and

∑
j Q(j |k) = 1.

Since this network is symmetric, kQ(j |k)P (k) =
jQ(k|j )P (j ) (detailed balance). It is also nonassortative, so
Q(j |k) does not depend on k and we can write Q(j |k) = φ(j ).
By summing the detailed balance condition over j we get
φ(k) = kP (k)/〈k〉.

Therefore, Eq. (A3) becomes

c′
k =

∑
s1,s2,...,sk

τ

(∑
i si

k

) k∏
i=1

∑
ji

jiP (ji)

〈k〉 c
si

ji
(1 − cji

)1−si .

(A4)

In the previous equation, si is either zero or 1, so only one
between c

si

ji
and (1 − cji

)1−si differs from zero. Assuming that
ck depends only slightly on k in Eq. (A4), we approximate
(
∑

ji
jiP (ji)cji

)/〈k〉 with c and we get

c′
k =

∑
s1,s2,...,sk

τ

(∑
i si

k

) k∏
i=1

csi (1 − c)1−si ,

=
∑
w

τ

(
w

k

)(
k

w

)
cw(1 − c)k−w,

with w = ∑
i si . In order to close the equation, we average c′

k

over the probability distribution P (k).
By using the approximation of Eq. (A1), we get

c′ =
∞∑

k=m

P (k)
∑
w

τ

(
w

k

)(
k

w

)
cw(1 − c)k−w

�
∫ ∞

m

dk P (k)
∫ ∞

−∞
dx τ (x)

√
k

2πc(1 − c)

× exp

[
−k (x − c)2

2c(1 − c)

]
,

c

c
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FIG. 11. (Color online) First 100 steps of the return map for the
density c of the model on a scale-free network with N = 104, m = 20,
J = −4. The first iterate is marked by the arrow. The continuous curve
is the graph of Eq. (A5) with k = 34.

where x = w/k. For scale-free networks the connectivity
distribution P is given by P (k) = 2m2k−3. Then

c′ �
∫ ∞

−∞
dx

2m2τ (x)√
(2πc(1 − c))

∫ ∞

m

dk k−5/2 exp(−kA),

=
∫ ∞

−∞
dx

m1/2τ (x)

(2πc(1 − c))1/2
2(mA)3/2


(
−3

2
,mA

)
,

where A = A(x) = (x − c)2/(2c(1 − c)) and 
(a,x) is the
incomplete upper gamma function extended to negative values
of a (the function x−a
(a,x) is single-valued and analytic for
all values of a and x [31]).

The function f (y) = y3/2
(−3/2,y) is well approximated
by g(y) = (1/2)

√
α exp(−αy), as shown in Fig. 10. Therefore

we can write

c′ �
∫ ∞

−∞
dx τ (x)

√
αm

2πc(1 − c)
exp

[
−αm(x − c)2

2c(1 − c)

]
.

This last expression has the form of Eq. (A2), with an effective
connectivity k̃ = αm.

Since the argument y of g(y) is mA(x) = m(x −
c)2/(2c(1 − c)), the substituted g(x) results to be a Gaussian,
centered around x = c. The important values of g(x) lie
between 0 and 4, depending on the value of c. In this interval,
the best approximation of f (y) (the minimum of

∫ 4
0 (f (y) −

g(y)2dy) is around α � 1.7. Therefore k̃ definitively differs
from the average connectivity 〈k〉 = 2m.

In conclusion, as in the case of a nonassortative scale-free
network, the probability of getting a site with value 1 in the
mean-field approximation is given by

c′ =
k̃∑

j=0

cj (1 − c)k̃−j τ

(
j

k̃

)
, (A5)

with k̃ � 1.7m.
As usual, the mean-field predictions are only approximately

followed by actual simulations. In Fig. 11 we show the first
100 steps of the return map of the density c for J = −0.4.
The scale-free network is fixed, with m = 20, N = 10 000
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and the initial opinions of the agents are chosen at random
with c = 0.01. The arrow marks the first point that follows the
mean-field prediction with α = 1.7 (k̃ = 34), as in Fig. 11, but

then, due to correlations, the return maps follows a different
curve. This implies that nontrivial correlations establish also
in scale-free networks.
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