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We investigate some phase transitions of a nonlinear, parallel version
of the Ising model, characterized by an antiferromagnetic linear coupling
and a ferromagnetic nonlinear one. This model arises in problems of opin-
ion formation. The mean-field approximation shows chaotic oscillations by
changing the linear coupling or the connectivity. The spatial model ex-
hibits bifurcations in the average magnetization, similar to what is seen
in the mean-field approximation induced by the change of the topology,
after rewiring short-range to long-range connections as predicted by the
small-world effect. These coherent periodic and chaotic oscillations of the
magnetization reflect a certain degree of synchronization of the spins, in-
duced by long-range couplings. Similar bifurcations may be induced in the
randomly connected model by changing the coupling or the connectivity
and the synchronism of the updating (dilution of the rule).
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1. Introduction

Models of opinion formation are often based on some version of the Ising
model [1], where conformists are modelled by a ferromagnetic coupling and
contrarians by an antiferromagnetic one.

One of the most intriguing effects is the hipster’s one, in which a society
of contrarians tends to behave in a uniform way [2]. Clearly, “conformistic
hipsters” always change their behaviour, when they realize to be still in the
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mainstream, but since that do so all together, they remain synchronized.
This periodic synchronization is similar to that of pendula and can happen
also in continuous systems.

Individuals that are under a strong social pressure tend to agree with
the great majority even when they are certain that the majority’s opinion
is wrong, as shown by Asch [3].

An agent in our model can be either a conformist, that agrees with his
neighbours, or a contrarian that disagrees. If the total effect is just the sum
of individual terms, we say that this is a linear interaction. In order to
include the observations by Asch, we establish that even contrarian agents,
under a strong social pressure, tend to agree with the majority. Since this
effect manifests itself only when the majority is near total consensus, we say
that it is due to nonlinear interactions (the effect does not grow linearly with
the number of neighbours holding a given opinion).

The strategy of following an overwhelming majority is reasonable in a
competitive environment like trading markets, since it is probable that this
coherent behaviour is due to some unknown piece of information, and in any
case, the competitive loss is minimal since it equally affects all other agents.

In previous works [4,5], we studied the “nonlinear” behaviour of contrar-
ians, where the effect of overwhelming majority was present only above a
given threshold, denoting them with the term “reasonable contrarian”. We
investigated the collective behaviour of a society composed either of reason-
able contrarian agents, or a mixture of contrarians and conformists. The
rationale was that in some cases, and, in particular, in the presence of frus-
trated situations like in minority games [6], it is not convenient to always
follow the majority, since in this case, one is always on the “losing side” of the
market. This is one of the main reasons for the emergence of a contrarian
attitude. On the other hand, if all or almost all agents in a market take the
same decision, it is often wise to follow such a trend. We can denote such a
situation with the term “social norm”.

A society composed of a strong majority of reasonable contrarians ex-
hibits interesting behaviours when changing the topology of the connec-
tions. On a one-dimensional regular lattice, there is no long-range order, the
evolution is disordered and the average opinion is always halfway between
the extreme values. However, adding long-range connections or rewiring ex-
isting ones, we observe the Watts–Strogatz “small-world” effect, with a tran-
sition towards a mean-field behaviour. But since in this case the mean-field
equation is, for a suitable choice of parameters, chaotic, we observe the emer-
gence of coherent oscillations, with a bifurcation cascade eventually leading
to a chaotic-like behaviour of the average opinion. The small-world tran-
sition is essentially a synchronization effect. Similar effects with a bifurcation
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diagram resembling that of the logistic map have been observed in a different
model of “adapt if novel — drop if ubiquitous” behaviour, upon changing
the connectivity [7, 8].

The goal of the present study is that of reformulating this problem in
terms of a parallel, nonlinear Ising model. This paper is related to the one
by Bagnoli, Matteuzzi and Rechtman in this same issue [9].

2. The nonlinear model

We consider a system with N sites, each one in a state si ∈ {−1, 1},
i = 0, . . . , N−1. The state of the system is s = (s0, . . . , sN−1). The topology
of the system is defined by the adjacency matrix a with aij = 1 if site j
belongs to site is neighbourhood and is zero otherwise. The connectivity ki
and the local field hi of site i are

ki =
∑
j

aij , h̃i =
∑
j

aijsj , hi =
h̃i
ki
.

It is clear that hi ∈ [−1, 1]. The magnetization m is defined by

m =
1

N

∑
i

si ,

with m ∈ [−1, 1].
The Hamiltonian of the model is

H(s) = −J
∑
i

hisi .

The dynamics of the model (i.e., Monte Carlo simulations) is given here
by the heat-bath transition probabilities

τ
(
s′i|hi

)
=

1

1 + exp (−2Js′ihi)
=

1

2

[
1 + tanh

(
Js′ihi

)]
,

where si ≡ si(t) and s′i ≡ si(t+1) and the coupling terms have been rescaled
with the temperature. The dynamical model can be updated in a sequential
or parallel order; the sequential dynamics brings to the equilibrium distri-
bution (in the case of symmetric couplings), while the fully parallel version
has a different equilibrium distribution [10], although many observables like
the magnetization take the same value [9, 11].
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Let us consider multi-spin interactions, for instance up to four spins as
depicted in figure 1. The Hamiltonian of the model becomes

H(s)=−
∑
i

si

H+J
∑
j

aijsj+Z
∑
jk

aijajksjsk+W
∑
jkl

aijaikailsjsksl

 .

It is possible to recast the interactions in terms of the local field hi only.
For simplifying the notation, we denote with s′ = si the updating spin,
and with s1, s2, s3 the three connected neighbours (i.e., those for which
aij 6= 0, regardless of their spatial relationship). Considering only the terms
containing s′ (the others simplifies in the transition probabilities), we have

2− spin : s′(s1 + s2 + s3) ;

3− spin : s′(s1s2 + s1s3 + s2s3) ;

4− spin : s′(s1s2s3) ,

and considering powers of the local field h̃ (not rescaled here with the con-
nectivity),

h̃ = s1 + s2 + s3 ;

h̃2 = (s1 + s2 + s3)
2 = 3 + 2(s1s2 + s1s3 + s2s3) ;

h̃3 = (s1 + s2 + s3)
3 = 7h̃+ 6s1s2s3

we see that, by rescaling the interaction terms to include the connectivity
and the constant factors, one can obtain all plaquette contributions.

s1 s2 s3

s′

Fig. 1. The plaquette terms in the one-dimensional model.

In the following, we shall consider a pair (h) and four-spin (h3) terms in
order to keep the system symmetric with respect to spin inversion (as the
linear version). Here, the nonlinearity is related to the powers of local field.
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The local transition probability is thus given by

τ
(
s′i|hi

)
=

1

1 + exp
(
−2s′i

(
Jhi+Wh3i

)) =
1

2

{
1 + tanh

[
s′i
(
Jhi+Wh3i

)]}
.

(1)
The term J models the “linear” effects of neighbours, so J > 0 gives a

conformistic (ferromagnetic) behaviour and J < 0 a contrarian (antiferro-
magnetic) one. The term W models the nonlinear effects of the crowd. One
can model the effects of an overwhelming majority (Asch) by inserting J < 0
(contrarian attitude) and W > 0 (social norms).

2.1. Mean-field approximation

The Markov equation for the probability distribution of the configura-
tion s in the fully parallel case is

P
(
s′, t+ 1

)
=
∑
s

[
N∏
i=1

τ
(
s′i|s

)]
P (s, t) .

The simplest mean-field approximation is built discarding spatial correla-
tions among spins. In this case, the joint probability distribution factorizes
P (s, t) =

∏
i π(si, t) and we get, for a generic spin and considering a fixed

connectivity K,

π
(
s′, t+ 1

)
=

∑
s1,s2,...,sK

τ
(
s′|h
) [∏

i

π (si, t)

]
,

where h = (s1 + s2 + · · · + sK)/K = h̃/K and the subscripts now identify
the spins connected with s′.

We can introduce the mean value of the magnetization m ≡ m(t) =

2π(1, t) − 1 and since the transition rule depends only on the sum h̃ of the
spin values, we get

m′ =
1

2K

K∑
h̃=0

(
K

h̃

)
(1 +m)h̃(1−m)h̃−K

× tanh

J (2 h̃
K
− 1

)
+W

(
2
h̃

K
− 1

)3
 , (2)

where, as usual, m′ = m(t+ 1), see Fig. 2 (b).
The mean-field return map exhibits chaotic phases and bifurcations:

period-doubling and pitchfork ones. The pitchfork bifurcations are due
to the symmetry of the map, Fig. 2 (b): one can have disjoint symmetric
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Fig. 2. (a) Transition probabilities and (b) mean-field map, Eq. (2) for the nonlinear
Ising model, for J = −1, W = 2.693; J = −3, W = 3.693; J = −6, W = 6.693

(the values of W have been chosen in order to have all curves meet for h = ±1).

attractors that finally merge. The numerical bifurcation diagrams as func-
tion of J and K are shown in Fig. 3 (a) and (b), respectively. In order to
cover all branches of the pitchfork bifurcations, we used several initial condi-
tions for the magnetization m. These bifurcation diagrams are qualitatively
very similar to the ones reported in Ref. [4]. This scenario is reminiscent of
that of the logistic map (where, however, the pitchfork bifurcations are not
present).
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Fig. 3. Mean-field bifurcation diagram of the nonlinear parallel Ising model, (a) as
a function of J (K = 20) and (b) as a function of K (J = 10). Here, W = 20, 200
iterations after a transient of 1000 steps, three initial conditions (m0 = 0.2, 0.5, 0.8).

2.2. Topological phase transitions

The fully parallel version defines a probabilistic, totalistic cellular au-
tomaton, whose transition probabilities are given by Eq. (1), applied to all
sites. The behaviour of the one-dimensional model with a finite number of
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interactions is not very interesting, since in this configuration and in the
absence of absorbing states, one cannot have true phase transitions (this
situation corresponds, for the randomly connected case, to the dilution pa-
rameter d = 1, see Section 3 and Fig. 7).

In order to recover the mean-field behaviour and to be more adherent
to reality, we rewired a fraction p of links to random sites, as in the scheme
by Watts and Strogatz [12]. Notice that in this case, the interactions are no
more symmetric.

The numerical simulations exhibit topologically induced bifurcations, as
shown in Fig. 4. We can observe transitions as a function of p, Fig. 4, as
well as a function of J , Fig. 5 (a), and K, Fig. 5 (b), shown for p = 1.
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Fig. 4. Bifurcations as a function of long-range rewiring probability p. Here, J =

−10, W = 20 p = 1, 500 points, N = 40, 000, transient of 2000 steps, two initial
conditions (m0 = 0.2, 0.8). The gap near p = 0.5 is a pitchfork bifurcation with a
branch not captured by the initial magnetization.
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Fig. 5. (a) Bifurcations as a function of p and (b) as a function of K. Here,
J = −10, W = 20, p = 1, 400 points, N = 10, 000, transient of 1000 steps, two
initial conditions (m0 = 0.2, 0.8).
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2.3. Mapping parameters

There are some similarities between the bifurcation diagrams for p = 1
as a function of J and of K, Fig. 3, and, in general, among all bifurcation
diagrams. Indeed, it can be shown that it is possible to obtain a mapping
among parameters, i.e., the behaviour of the model for a certain value of J ,
W and K is the same if we increase these parameters in a proper way. We
use a continuous approximation of the mean-field equation.

By using Stirling’s approximation for the binomial coefficients in Eq. (2),
for intermediate values of c [13], we obtain(

K

n

)
cn(1− c)K−n ' 1√

2πKc(1− c)
exp

[
−K (n/K − c)2

2c(1− c)

]
, (3)

and therefore

m′ =

∞∫
−∞

dx

√
K

2π(1−m2)
exp

(
−K(x−m)2

2(1−m2)

)
τ(1|x) .

By approximating tanh(x) with x, we can compute the convolution, obtain-
ing (after reinserting the hyperbolic tangent)

m′ = tanh
(
J̃m+ W̃m3

)
(4)

with 
J̃ = J +

3W

K
,

W̃ =W

(
1− 3

K

)
.

(5)

Notice that in the limit K →∞, J̃ → J and W̃ →W .
The relation between parameters J,K and J1,K1 of two mean-field ap-

proximations with different connectivities K and K1 is
J1 = J +

3

K
W

(
1− K − 3

K1 − 3

)
,

W1 =W
K1

K

K − 3

K1 − 3
.

(6)

The approximation of the hyperbolic tangent is valid for small x, so we
expect that this scaling is better for largeK, for which the convolution length
is small. In Fig. 6, we report a mean-field map for four sets of corresponding
values of the parameters. We see that the curves almost overlap.
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Fig. 6. Mean-field function, Eq. (2), for four set of corresponding parameters ac-
cording with Eq. (5).

Since J < 0 and K > 0, the effect of this scaling is that of lowering
the absolute value of J̃ and K̃ for small K (larger than 3), so, given that
for a large value of K and certain values of J and W , the mean-field equa-
tion is chaotic, it may be reduced to a fixed point graph by lowering the
connectivity K.

3. Partial asynchronism (dilution)

We introduce the dilution d in a way similar to what has been done in
the sister article [9]. The dilution d is the fraction of sites chosen at random
that are not updated at every time step, i.e., a measure of the asynchronism
of the updating rule.

We define the diluted rule as

si(t+ 1) =


1 with probability (1− d)τ(hi) ,
−1 with probability (1− d) [1− τ(hi)] ,
si(t) otherwise, i .e.,with probability d ,

(7)

so that for d = 0 one has the standard parallel updating rule.
One time step is defined when, on the average, every site of the lattice is

updated once. For a system with N sites, the smallest value of the dilution
is d = 1/N and then td = 1/d updates are needed to complete one time
step. If d = 1/2, td = 2, etc.

As shown in figure 7, also the dilution is able to trigger bifurcations in
the spatial model.
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Fig. 7. Bifurcations as a function of the dilution d. Here, J = −10, W = 20

p = 1, 500 points, N = 10, 000, transient of 1000 steps, three initial conditions
(m0 = 0.2, 0.5, 0.8). The gap near d = 0.2 is due to a pitchfork bifurcation not
captured by the set of initial conditions.

4. Conclusions

We investigated the phase transitions of a nonlinear, parallel version of
the Ising model, characterized by a linear coupling J < 0 and a nonlinear
one W > 0.

The mean-field approximation shows chaotic oscillations, by changing
the linear coupling J or the connectivity K. We show that there is a form
of mapping among the parameters J , W and K, so that only two of them
are independent.

The spatial model exhibits bifurcations in the average magnetization,
similar to what is seen in the mean-field approximation, induced by the
change of the topology, after rewiring short-range to long-range connections.
Indeed, this is a consequence of the small-world effect [12], for which a suf-
ficiently large number of long-range connections make the system behave as
the mean-field approximation. In the spatial model, the periodic and chaotic
oscillations of the magnetization imply a certain degree of synchronization
of the spins, induced by long-range couplings.

We have also shown that similar bifurcations may be induced in the ran-
domly connected model by changing the parameters J , the connectivity K
and also the asynchronism factor d.

This model may be useful in modelling collective effects in systems that
take decisions based on those coming from peers. In particular, we think that
this situation may be important for high-frequency algorithmic trading. In
this case, due to the necessity of performing actions in the smallest possible
time, all operations are carried out by algorithms, in an almost parallel way.
The contrarian attitude is a well-known practice, coupled with the necessity



Topological Phase Transitions in the Nonlinear Parallel Ising Model 47

of following the majority in the case of consensus (see the discussion in
Ref. [4]). Our model shows that in this case, chaotic oscillations may arise,
corresponding, in the finance language, to crashes and crisis. As shown, these
effects may be mitigated by the asynchronism and by local interactions.
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