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Abstract	

The	covid19	pandemic	is	distinct	from	Spanish	flu	of	1918	from	many	aspects	among	
which	 the	 contrast	 between	 the	 overabundance	 of	worldwide	 exchange	 of	 information	
(infomedia)	and	the	actual	scarce	knowledge	of	the	pathogen	and	the	infection	mechanism.	
Another	 important	distinction	 is	 that	 the	epidemics	 threaten	society	components,	social	
groups,	communities	and	jobs	in	very	different	ways	and	different	death	tolls.	With	this	in	
mind,	we	start	with	simple	models	of	pandemics	and	we	drive	the	reader	to	more	complex	
models	that	take	into	accounts	social	compartments	and	communities.	The	discrete-state	
models	are	built	by	adding	elements,	first	in	a	mean-field	approximation,	then	adding	age	
classes	and	differential	contact	rates,	and	finally	inserting	the	social	group	dimension.	The	
novel	element	we	insert	is	the	effect	of	restrictions	in	contacts	and	travels,	filtered	by	the	
risk	perception,	according	with	the	growth	of	the	number	of	infected	or	recovered	people.	
Assimilating	 risk	 perception	 with	 cognitive	 behavior,	 we	 obtain	 several	 coarse-grain	
scenarios,	that	can	be	used	for	instance	to	calibrate	the	level	of	restrictions	so	not	to	exceed	
the	capacity	of	the	health	system,	and	to	speed	the	post-emergency	recovery.	

1	Introduction	

The	 COVID-19	 is	 an	 infectious	 disease	 caused	 by	 the	 Severe	 Acute	 Respiratory	 Syndrome	
Coronavirus	2	(SARS-CoV-2)	(1).	The	virus	is	most	contagious	during	the	first	three	days	after	
symptom	onset,	although	spread	may	be	possible	before	symptoms	appear	and	in	later	stages	
of	 the	disease	 (2).	Time	 from	exposure	 to	onset	of	 symptoms	 is	generally	between	 two	and	
fourteen	days,	with	an	average	of	five	days	(3).	The	infectivity	of	the	virus	is	quite	high,	one	
person	generally	infects	two	to	three	others	(4).	At	present	there	is	no	vaccine	available.		

The	 infection’s	 outcome	 strongly	 depends	 on	 age.	 Toddlers	 and	 teenagers	 get	 easily	
infected	but	are	almost	100%	spared	from	the	effects:	they	are	asymptomatic;	youngsters	(up	
to	39	years	old),	could	mistype	it	as	common	influenza.	People	in	their	forties,	could	find	it	an	
ultra-tough	 influenza.	 Older	 people	may	 get	 pneumonia	 and	 could	 progress	 to	multi	 organ	
failure	(5)	(6),	especially	in	case	of	co-morbidity	(7).	Figure	1	shows	a	representative	death	toll	



distribution	by	age.	Due	to	the	media	coverage	we	may	expect	that	the	risk	perception	for	the	
infection	to	follow	closely	this	distribution.	

There	is	also	a	substantial	ethnic	difference,	not	related	to	biological	factors.	For	example,	
African	Americans	are	dying	in	larger	numbers	than	white	people,	particularly	in	many	big	USA	
cities	as	a	result	of	differential	access	to	medical	care	(for	example	mechanical	ventilators).	At	
the	time	of	writing,	it	looks	that	the	mortality	is	larger	in	those	cities	(and	continents,	such	as	
Africa)	with	an	overloaded	health	system	or	with	very	low	density	of	ICUs	as	a	result	of	decades	
of	budget	cuts	or	chronic	lack	of	funding.		

Many	developed	 countries	 have	 population	distribution	 largely	 skewed	 towards	 older	
ages	so	that	the	low	number	of	hospital	beds	per	capita	results	in	severe	limitations	in	handling	
the	sudden	spike	in	the	number	of	COVID-19	hospitalization.	The	infection	initial	growth	curves	
for	several	countries	at	the	date	of	12	April	2020	are	shown	in	Fig.	2.	

The	curves	are	influenced	by	the	social	(contacts)	and	cognitive	behaviors	of	the	groups.	
For	example,	the	elderly	often	live	together	in	halls	and	special	structures	and	are	therefore	
exposed	 to	 high	 levels	 of	 distress	 and	mortality.	 On	 the	 other	 hand,	 as	we	 shall	 see	 in	 the	
following,	individual	behavior	can	deeply	influence	the	evolution	of	the	disease.	

The	limited	bed	per	capita	capacity	and	the	need	for	specialized	nurses	and	doctors	are	
significant	drivers	of	the	need	to	flatten	the	curve	(to	keep	the	speed	at	which	new	cases	occur	
and	thus	the	number	of	people	sick	at	one	point	in	time	lower).	One	study	in	China	found	5%	
were	 admitted	 to	 intensive	 care	 units,	 2.3%	needed	mechanical	 support	 of	 ventilation,	 and	
1.4%	died	(8).	Around	20–30%	of	the	people	in	hospital	with	pneumonia	from	COVID19	needed	
ICU	care	for	respiratory	support	(9).		

It	is	noteworthy	that	the	incubation	period	for	COVID-19	is	typically	five	to	six	days	but	
may	range	from	two	to	14	days.	A	fraction	of	97.5%	of	people	who	develop	symptoms	will	do	
so	within	11.5	days	of	infection.	This	and	the	large	number	of	asymptomatic	infected	make	the	
counts	of	 infected	people	extremely	difficult.	 It	 is	not	clear	if	this	viral	winning	strategy	was	
present	in	bats	or	has	been	determined	by	the	human	physiology.	

	
Figure	1.	Case	fatality	rates	by	age	group	in	China.	Data	through	11	

February	2020.		
	

	



	
Figure	2.	Number	of	confirmed	cases	aligned	to	the	1000th	case	(10).		

	
The	occurrence	of	the	intergenerational	caring	and	the	fact	that	power	and	richness	in	

human	society	are	mostly	concentrated	with	the	old	people	have	caused	an	immediate	arrest	
of	the	economy	and	industrial	activities.	The	crucial	point	for	the	human	species	to	return	to	
the	past	 lifestyle	and	avoid	millions	of	deaths	 is	 to	 flatten	the	curve	of	 infection.	Worldwide	
measures	 of	 restriction	 of	 contacts,	 which	 can	 take	 the	 form	 of	 compulsory	 or	 voluntary	
quarantine	have	been	taken	by	national	governs.	The	main	criticism	has	focused	on	the	rapid	
decay	of	national	and	world	economies.		

Another	 important	 factor	 is	 the	 self-restraint	 and	 self-quarantine,	 induced	 by	 the	
perception	of	risk	of	contracting	the	infection	and/or	of	infecting	others.	It	is	noteworthy	for	
instance	that	the	first	Chinese	patients	in	the	Spallanzani	hospital	in	Rome	(the	30th	of	January	
2020)	always	wore	their	masks	(also	before	showing	any	symptoms)	and	did	not	 infect	any	
other	participant	of	their	journey	through	Italy.	Similarly,	in	spite	of	the	huge	return	to	their	
families	in	the	South	of	Italy	of	people	escaping	from	the	forecasted	quarantine	in	the	North	
Italy	(around	the	21st	of	February	2020),	very	few	cases	appeared	in	the	South,	probably	due	to	
a	self-imposed	quarantine	of	those	people.	Finally,	the	spreading	of	the	virus	in	Lombardy	is	
mainly	due	to	the	concentration	of	ill	people	in	hospitals	without	the	proper	isolation,	a	fact	
that	corresponds	also	to	a	huge	infection	rate	and	mortality	among	the	medical	personal,	again	
the	Lombardy.		

Models	 are	 needed	 to	 forecast	 the	 progression	 of	 the	 disease	 and	 the	 effects	 of	
countermeasures.	Most	models	are	based	on	continuous	dynamics,	i.e.,	mean-field,	as	described	
in	the	Section	2,	with	parameters	adapted	so	to	fit	average	data.	However,	such	models	cannot	
reproduce	the	sawtooth	patterns	seen	in	experimental	data	(see	Fig.	3),	and	in	general	do	not	
include	the	explicit	dependence	of	restriction	measures	with	the	progression	of	the	disease.		



	
Figure	3.	Patterns	of	daily	confirmed	cases	in	different	countries/regions	(11)	

	
In	general,	the	simplest	infection	model	says	that	the	infection	can	stop	only	if	the	average	

number	of	new	infections	per	each	infectivity	individual	should	be	less	than	one.	Given	the	bare	
infectivity	probability	𝜏	(for	the	all	duration	of	the	infectivity	period)	and	the	average	number	
of	contacts	⟨𝑘⟩,	in	the	absence	of	immune	people,	we	have	to	reduce	the	product	𝜏⟨𝑘⟩	(better,	
𝜏⟨𝑘!⟩/⟨𝑘⟩,	which	is	generally	similar	to	𝜏⟨𝑘⟩	for	uncorrelated	networks	(12))	to	less	than	one.	
This	can	be	done	either	using	protective	means	(like	masks,	washing	hands)	which	have	the	
effect	of	reducing	𝜏,	or	isolation,	i.e.	reducing	⟨𝑘⟩.		

	In	any	case,	the	pre-pandemic	high	connectivity	of	humans	(implying	both	the	number	of	
contacts	and	the	mobility)	constituted	an	important	factor	for	the	spreading	of	any	disease.	It	
can	 be	 shown	 that	 for	 scale-free	 networks	 (that	 show	 a	 diverging	 second	 moment	 of	 the	
connectivity)	the	epidemic	threshold	(the	critical	value	of	𝜏)	is	zero,	i.e.,	no	epidemics	can	be	
stopped	without	restrictions	to	contacts	(13).	

The	effects	of	the	risk	perception	on	the	mitigation	of	an	epidemics	has	been	studied	in	
Ref.	(12),	and	it	has	been	shown	that	for	networks	with	finite	connectivity	(and	finite	second	
moment	of	it),	there	is	always	a	value	of	the	perception	able	to	stop	the	epidemics	though	self-
restrictions,	but	for	scale	free	networks,	additional	precautions	has	to	be	taken	by	hubs,	 i.e.,		
people	with	high	connectivity	like	physicians.		

However,	the	other	important	ingredient	is	that	the	risk	perception	has	to	be	really	given	
by	the	actual	community	of	real	contacts.	What	happens	is	that	the	information	contact	network	
can	 be	 quite	 different	 from	 the	 real	 one	 (14),	 and	 clearly	 in	 this	 case	 one	 can	 either	
underestimate	the	risk,	has	happened	in	Lombardy,	or	overestimate	it,	which	is	harmless	unless	
the	over-alarmism	then	leads	to	breakage	of	the	restriction	norms.		

Finally,	data	from	China,	Italy	and	France	are	best	fit	by	a	power-law	(15),	which	is	not	
consistent	with	the	standard	mean-field	models.	This	ingredient	can	be	inserted	as	a	
phenomenological	factor	in	such	models	(16).	



In	 this	 work	 we	 present	 some	 models	 incorporating	 the	 risk	 perception	 and/or	 the	
dependence	of	restriction	measures	on	the	number	of	cases,	the	presence	of	several	age	classes	
and	finally	 the	geographic	distribution.	This	model	has	no	predictive	value,	due	to	the	great	
number	of	parameters	(and	the	lack	of	an	extensive	investigation	on	them)	but	may	be	useful	
for	visualizing	some	possible	scenarios.		

2	Modelling	epidemics	

Most	of	“classical”	epidemics	model	are	based	on	differential	equations,	but	this	approach	has	
several	“hidden”	assumptions,	so	let	us	start	from	the	very	basics.		

In	principle,	the	most	accurate	model	is	that	in	which	each	individual	in	a	real	population	
is	represented	by	an	“agent”	in	the	computer	simulation.	Clearly,	we	have	to	simplify	drastically	
the	representation	of	a	person.	First	of	all,	we	can	assume	that	the	state	𝑋" 	of	an	individual	𝑖	can	
assume	a	certain	number	of	values,	say	susceptible	(S),	infected	(I)	and,	if	the	disease	confers	
immunity,	recovery	(R),	i.	e.,	the	SIR	model.	Given	these	states,	we	have	to	specify	the	unit	of	
time	for	which	there	can	be	a	transition	among	states;	it	is	quite	natural	to	assume	a	time	unit	
of	one	day,	since	the	reports	are	issued	on	a	daily	base.	We	should	then	define	the	probability	
of	the	transition	from	one	state	to	another,	which	can	depend	on	the	state	of	other	people	(as	
in	the	case	of	an	infection),	or	on	the	previous	state	of	the	individual.	For	accurately	modelling	
the	 infection	 phase,	 one	 could	 add	 intermediate	 steps,	 like	 𝐼#, 𝐼!, …	 so	 that	 one	 can	 avoid	
unphysical	recovering	after	a	too	short	period.		

For	what	concerns	 the	 infection	phase,	we	should	consider	 the	network	of	 contacts	of	
individual	𝑖,	which	can	be	conveniently	defined	by	a	matrix	𝐴"$ ,	which	gives	the	probability	of	a	
daily	contact	between	individual	𝑖	and	𝑗.	Actually,	the	matrix	needs	not	to	be	symmetric,	since	
it	expresses	the	modulation	of	infectivity	of	individual	𝑖	from	individual	𝑗,	and	this	depends	on	
the	precaution	adopted.	The	matrix	𝐴"$ 	can	replicate	the	fact	that	intimate	(family)	connections	
are	stronger,	followed	by	those	among	the	own	community,	etc.,	and	can	also	reflect	the	job	or	
the	age	class	of	individual	𝑖,	so	that	for	instance	a	teacher	or	a	physician	(but	also	an	adolescent)	
may	have	more	(and	more	intense)	contacts	than	a	retired	elder	individual.		

So,	the	simplest	SIR	model	for	one	individual	𝑖	can	be	expressed	as	in	Fig.	4,	where	[⋅] = 1	
if	 ⋅	 is	 true	 and	 zero	 otherwise,	 𝛼	is	 the	 “bare”	 infection	 probability	 and	 𝜀	 is	 the	 recovery	
probability.		



 

Figure	4:	Simple	agent-based	SIR	model	

This	model	can	be	extended	by	adding	more	states,	 like	asymptomatic	exposed	E,	mild	
symptoms	M,	people	in	therapy	T,	dead	individuals	D,	etc.	One	can	also	add	age	classes,	so	that	
susceptibles	for	instance	can	be	in	state	𝑆% ,	where	𝑘	identifies	the	class,	and	can	pass	to	state	
𝐼_𝑘	with	probability	proportional	to	𝛼% ,	etc.		

Clearly,	 this	 model	 requires	 many	 parameters	 and	 is	 not	 susceptible	 by	 analytic	
treatment.	So,	before	computers,	scholars	 imposed	a	“mean-field”	or	“chemical”	assumption,	
implying	homogeneity	and	isotropy.	With	these	assumption,	one	can	introduce	the	probability	
S	of	staying	in	state	S	(and	I,	R,	…	),	i.e.,	for	a	population	of	𝑁	individuals,	

𝑆 =
1
𝑁8[X" = S]

"

.	

Indicating	by	𝐾	the	average	connectivity		

𝐾 =
1
𝑁8𝐴"$

"$

,	

one	gets	the	following	discrete-time	equations	(for	the	SIR	model)	
𝑆& = (1 − 𝛼𝐾𝐼)𝑆;	

𝐼& = (1 − 𝜀)𝐼 + 𝛼𝐾𝑆𝐼;	

𝑅& = 𝑅 + 𝜀𝐼;	
and	𝑆 + 𝑅 + 𝐼 = 1.	Finally,	assuming	continuous	time,	one	can	convert	the	previous	equations	
into	differential	ones.		



3	Our	model	

	 	

Figure	5:	(left)	Model-A,	7	states.	(right)	Model-B,	6	states	

	
The	models	are	based	on	discrete	states	of	individuals.	In	the	first	version	(Fig.	5)	we	have	7	
states,	which	correspond	in	principle	to	observable	quantities:		

S:	susceptible;		
E:	exposed	(infectious	but	yet	asymptomatic);		
A:	asymptomatic	(otherwise	like	E);		
M:	mild	symptoms;		
T:	therapy	(intensive);		
D:	dead;		
R:	recovered	(heal);	
	

where	𝛼,	𝜖,	𝜇,	𝜏,	𝜉,	𝜌,	𝛾	and	𝛿	are	the	transition	probabilities	on	a	daily	base,	and	𝐾	is	the	average	
number	of	contacts	per	agent.	In	order	to	simplify	a	bit	the	model,	and	also	due	to	the	difficulties	
of	detecting	asymptomatic	people,	we	can	include	them	into	the	exposed,	and	fusing	together	
the	probabilities	𝜏	and	𝜉,	getting	the	model-B	of	Fig.	5,	so	that	we	have	

	
𝜖	:	probability	of	going	from	E	to	R	(healing	from	asymptomatic	state);		
𝜇	:	probability	of	passing	from	E	to	M	(inverse	of	the	incubation	time);		
𝜏	:	probability	of	passing	from	M	to	T	(aggravation);		
𝛿	:	probability	of	passing	from	T	to	D	(death);		
𝛾	:	probability	of	going	from	T	to	R	(healing	with	therapies);		
𝜌	:	probability	of	recovery	from	mild	symptoms.	

	

3.1	Estimation	of	the	range	of	probabilities	



We	have	to	estimate	the	daily	probabilities,	knowing	that	the	average	time	⟨𝑡⟩	is	related	to	the	
probability	𝑝	by	⟨𝑡⟩ 	= 	1/𝑝.	Obviously	ϵ	is	not	known,	but	we	have	that	𝛼	 = 	1	 − 	𝜇𝜏.		

In	the	following,	we	shall	extend	the	model	to	different	class	of	people,	either	based	of	
their	age	or	on	their	profession.	

The	probability	of	infection	(transition	𝐴 → 𝐸)	is	given	both	by	the	fraction	of	infected	(𝐸	
and/or	𝑀,	according	with	the	class	of	people	considered)	and	by	the	number	of	contacts	per	
day	(that	can	depend	on	the	age	class)	𝐾.	

Given	that	𝛼	is	the	probability	of	infection	by	one	contact,	indicating	with	𝑋	the	probability	
that	 a	 neighbor	 is	 infected,	 we	 have	 on	 average	𝐾𝑋	 infected	 neighbors	 and	 therefore	 the	
probability	 of	 not	 becoming	 infected	 is	 (1	 − 	𝛼)'(	 and	 that	 of	 becoming	 infected	 is	 1	 −
	(1	 − 	𝛼)'( 	≃ 	𝛼𝐾𝑋	if	𝛼	is	small.		

If	𝐾	and	𝑋	are	constant,	the	average	time	⟨𝑡⟩	to	contract	the	infection	is	⟨𝑡⟩ 	= 	1(𝛼𝐾𝑋)	and	
therefore	𝛼	 = 	1(𝜏𝐾𝑋).		

An	infected	individual	surrounded	by	healthy	people	can	infect	in	average	𝑛	 ≃ 	𝛼𝐾	people	
per	 day	 (𝑛	 ≃ 	 (1	 − 	𝑋)𝛼𝐾),	 so	 if	 the	 infectivity	 period	 (the	 quarantine)	 is	𝑄	 ≃ 	14	 days	 is,	
roughly,	𝑛	 ≃ 	𝛼𝐾𝑄.	If	𝑛	is	about	2.5	and	taking	for	𝐾	a	value	of	about	𝐾	 ≃ 	10,	we	have	𝛼	 =	≃
	0.2.		

If	we	now	combine	the	two	formulas,	assuming	that	𝜏	 ≃ 	2,	we	have	that	the	fraction	of	
infected	individuals	(among	those	exposed)	should	be	𝑋	 ≃ 	1(2𝑛)	or	approximately	the	20%.		

Since	the	probability	of	remaining	in	state	E	is	1	 −	(𝜖	 + 	𝜇),	assuming	that	the	incubation	
time	is	about	𝑤	 = 	7	days,	we	have	𝜖	 + 	𝜇	 = 	1.	The	probability	ϵ	should	be	about	the	inverse	
of	children’s	recovery	time,	say	𝜖	 ≃ 	110.	The	incubation	period	is	about	5	days,	but	this	is	not	
related	to	1,	since	this	parameter	is	rather	the	probability	of	showing	symptoms.		

All	probabilities	are	obviously	positive	and	less	or	equal	to	one,	and	
𝜀 + 𝜇 ≤ 1	𝛾	 + 	𝛿	 ≤ 	1	 (1)	

4	Mean-field	equations	

In	the	following	we	shall	indicate	with	the	same	symbol	(italic)	the	fraction	of	agents	in	a	given	
state	or,	in	for	the	stochastic	version,	the	probability	of	finding	an	agent	in	such	state.	

The	 discrete-time	 equations,	 essentially	 equivalent	 to	 the	 Euler	 scheme	 for	 solving	
differential	equations	with	𝛥𝑡	 = 	1,	are		

	 		 	 		 	 		 	

𝐸′	 = 	 (1 − 𝜀 − 𝜇)𝐸	 + 𝑆𝐾𝑋;	
𝑀′	 = (1 − 𝜌 − 𝜏)𝑀 + 𝜇𝐸;	
𝑇′	 = (1 − 𝛿 − 𝛾)𝑇 + 𝜏𝑀;		
𝑅′	 = 𝑅 + 𝜀𝐸 + 𝜌𝑀 + 𝛾𝑇;	
𝐷′	 = 𝐷 + 𝛿𝑇;	
𝑆′	 = 1 − (𝐸′	 + 𝑀′	 + 𝑇′	 + 𝑅′	 + 𝐷′),	

(2)	

where	𝑋	 = 	𝑋(𝑡)	is	a	quantity	at	time	𝑡	and	𝑋′	 = 	𝑋(𝑡	 + 	1)	denotes	the	same	quantity	one	time	
step	 (one	 day)	 later.	 The	 system	 is	 linear	 except	 for	 a	 quadratic	 nonlinearity	 in	 the	 first	
equation.		



The	quantity	𝐾	denotes	the	average	number	of	contacts	of	an	agent.	In	the	following,	we	
shall	 let	𝐾	 decrease	 according	 to	 the	 restriction	 strategies	 and	 perception	 of	 the	 risk.	 The	
quantity	𝑋	denotes	the	number	of	infected	people	who	spread	the	disease,	so	either	𝑋 = 𝐸	or	
𝑋 = 𝐸 +𝑀.		

 

Figure	6:	Simple	SEIR	model,	𝐾	 = 	22,	𝛼	 = 	0.02,	𝜖	 = 	0.1,	𝜇	 = 	0.1,	
	𝜏	 = 	𝛿	 = 	𝛾	 = 	𝜌	 = 	0.01.	Here	and	in	the	following	figures,	time	is	

in	days	(iterations).	

All	simulations	start	with	a	small	number	𝐸(0) 	= 	𝐸0	 = 	 10−*	of	infected	people.		

Simulations	show,	as	expected,	the	classic	SIR	behavior,	with	the	number	of	susceptible	
people	going	to	zero,	people	in	therapy	showing	a	peak	and	the	deaths	reaching	a	certain	final	
fraction	of	the	population	(Fig	6).		

In	 the	 following	 we	monitor	 the	 final	 fraction	 of	 deaths	𝐷+ 	= 	0.125	 and	 the	 maximal	
fraction	of	people	in	therapy	𝑀,-( 	= 	0.09,	for	the	simulation	of	Fig.	6.		

5	Effects	of	restrictions	and/or	risk	perception	

Now	 let’s	 insert	 the	 effect	 of	 the	 restriction	 measures	 and/or	 the	 perception	 of	 the	 risk,	
modelled	through	the	decrease	of	the	connectivity	K	with	the	number	of	infected	people	E,	or	
of	people	in	therapy	𝑀.		

We	assume	that	the	connectivity	K	is	given	by	the	sum	of	a	fixed	component	K0	(family)	
and	a	term	𝐾. ,	as		

𝐾(𝑡) = 	𝐾/ 	+ 𝐾. 𝑒𝑥𝑝(−𝑐𝑀(𝑡))	 (3)	

with	a	new	parameter	𝑐.	We	assume	that	the	connectivity	decreases	with	the	number	showing	
mild	symptoms,	but	with	the	increasing	of	sampling,	it	might	depend	on	the	number	of	detected	
asymptomatic	𝐸.	
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Figure	7:	SEIR	model	with	risk	perception,	𝐾! 	= 	2,	𝐾" 	= 	20,	𝑐	 = 	10,	𝛼	 = 	0.02,	𝜖	 = 	0.1,	𝜇	 =
	0.1,	𝜏	 = 	𝛿	 = 	𝛾	 = 	𝜌	 = 	0.01.	Left:	time	plot	of	observables	Eq.	(2),	right:	time	plot	of	connectivity	

𝐾(𝑡),	Eq.	(3).	

	
By	increasing	c	to	10,	we	observe	a	decrease	in	connectivity	in	correspondence	with	the	

peaks	 of	 people	 in	 therapy	 (Fig.	7-right),	with	 a	 final	 fraction	 of	 deaths	D∞	 =	 0.124	 (almost	
unchanged),	but	a	maximal	fraction	of	people	in	therapy	MMAX	=	0.07,	for	the	simulation	of	Fig.	7.	

	
	

  

Figure	8:	SEIR	model	with	risk	perception,	𝑐	 = 	100,	other	parameters	as	in	Fig	7.	Left:	time	plot	of	
observables	Eq.	(2),	right:	time	plot	of	connectivity	𝐾(𝑡),	Eq.	(3).		

	
By	 further	 increasing	 𝑐	 (i.e.,	with	much	 stronger	 restriction	measures)	 and	 letting	𝐾. 	

depend	on	𝐸	(implying	extended	sampling	of	asymptomatic	people),	we	get	a	smaller	number	
of	𝑀,-( = 0.02,	at	the	cost	of	a	longer	emergence	phase	(the	timescale	is	roughly	six	times	in	
Fig.	7	with	respect	to	Fig.	6).	The	fraction	of	deaths	has	not	changed	much	(𝐷+ 	= 	0.12)	but	
now	not	all	susceptible	people	got	infected	𝑆+ > 	0	(Fig.	8).		
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Figure	9:	Plots	in	a	log-lin	scale.	(left)	fraction	of	M	people	without	risk	perception	(𝑐	 = 	0);	(right)	
fraction	of	M	people	with	extreme	risk	perception	𝑐	 = 	1000,	other	parameters	as	in	Fig	7.	

	

Another	interesting	effect	of	the	risk	perception	is	that	the	curve	of	infected	people,	which	
in	 the	 SEIRD	 model	 shows	 an	 exponential	 growth	 and	 decrease	 (Fig.	 9	 -left),	 with	 risk	
perception	starts	showing	a	different	behavior	(Fig.	9-right).	

6	Age	classes	

Different	 age	 classes	 have	 both	 different	 susceptibility,	 different	 contact	 patterns	 and,	
moreover,	different	probabilities	of	showing	symptoms.		

We	start	defining	three	age	classes:	young	(0-25	y),	middle	age	(25-65	y)	and	elders	(>	
65).	From	the	census	2019	in	Italy,	we	get	that	the	respective	percentages	are	23%,	54%	and	
23%	(10).		

All	 parameters	 now	 carry	 an	 index	k,	k	=	1,2,3	 for	 young,	middle	 age	 and	 elder,	 resp.		
	

𝐸%& 	= 	 (1 − 𝜀% − 𝜇%)𝐸% 	+ 𝑆%𝑋;	
𝑀%
& 	= (1 − 𝜌% − 𝜏%)𝑀% + 𝜇%𝐸%;	

𝑇%& 	= (1 − 𝛿% − 𝛾%)𝑇% + 𝜏%𝑀%;		
𝑅%& 	= 𝑅% + 𝜀%𝐸% + 𝜌%𝑀% + 𝛾%𝑇%;	
𝐷%& 	= 𝐷% + 𝛿%𝑇%;	
𝑆%& 	= 1 − (𝐸%& 	+ 𝑀%

& 	+ 𝑇%& 	+ 𝑅%& 	+ 𝐷%& ),	

(4)	

The	equations	are	coupled	by	the	fraction	of	infected	people	𝑋		

𝑋 = 	8𝐾%𝐸%
%

.	

For	beginning,	we	used	the	set	of	parameters	of	Table	1	

	
parameter	 young	 middle	age	 elders	

α		 0.02		 0.02		 0.02		
ϵ		 0.1		 0.01		 0.001	
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μ		 0.0		 0.01		 0.1		
τ		 0.0		 0.01		 0.1		
δ		 0.0		 0.001		 0.01	
γ		 0.0		 0.001		 0.02		
ρ		 0.01		 0.01		 0.01		
KV		 20		 20		 4		
K0		 2		 2		 1		
c		 c0		 c0		 c0		

	

Table	1:	set	of	parameters	of	the	age-class	model	of	Eq.	(4).	
	

	

 
 

  

Figure	10:	𝑐" 	= 	1,	other	parameters	as	in	Table	1.	(top	left)	total	fractions;	(top	right)	infected	for	
different	age	classes;	(bottom	left)	people	in	therapy;	(bottom	right)	deaths	on	a	log-log	scale.	

As	expected,	with	a	small	value	of	c0	=	1,	little	changes	for	the	total	values	(although	not	
all	susceptibles	now	get	infected),	but	the	distribution	for	the	different	age	classes	are	obviously	
different	(and	the	most	of	infected	came	from	middle	age),	Fig.	10.	However,	even	for	limited	
risk	perception,	the	number	of	deaths	seems	to	follow	a	curve	similar	to	a	power-law,	as	in	real	
data	 (15).	The	 final	 fraction	of	deaths	 is	D∞≃	 0.067	and	 the	maximum	 fraction	of	people	 in	
therapy	is	MMAX≃	0.08.		

For	larger	values	of	c0	(100),	as	in	the	previous	case	the	epidemics	lasts	longer,	but	the	
numbers	MMAX≃	0.017	and	D∞≃	0.059	lower,	and	the	fraction	of	susceptibles	who	do	not	get	
infected	increases,	see	Fig.	11.	
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Figure	11:	𝑐" 	= 	100,	other	parameters	as	in	Table	1.	(top	left)	total	fractions;	(top	right)	infected	
for	different	age	classes;	(bottom	left)	people	in	therapy;	(bottom	right)	deaths	on	a	log-log	scale.	

	

7	Social	groups	model	

The	main	goal	of	restriction	measures	is	that	of	stopping	the	epidemics	before	it	reaches	all	the	
country.	 In	order	 to	model	 it,	we	need	to	 introduce	a	spatial	model.	Let	us	denote	by	Aij	 the	
probability	of	contact	between	individuals	i	and	j.	The	contact	needs	not	to	be	symmetric,	since	
the	transmission	of	the	disease	depends	on	the	precautions	taken.		
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Figure	12:	(left)	Index	of	a	hierarchical	network	with	three-community	sizes	𝐿 = {2,3,2}.	(right)	A	
realization	of	a	network	with	𝐿 = {6,4,4}	and	connection	probability	𝑝 = {1,0.04,0.002}.	

	
We	consider	a	hierarchical	network	(17),	of	the	type	of	Fig.	12-left.	It	is	defined	by	a	block	

matrix	𝐼	of	the	type	of	Fig.	11-right.	The	index	matrix	𝐼	defines	the	parameters	of	the	matrix	𝐴:	
𝐴"$ = 	1	 with	 a	 certain	 probability	 𝑝(𝐼"$)	such	 that	 the	 average	 number	 of	 contacts	 of	 an	
individual	in	community	𝑛	is	𝐾(1).		

The	index	matrix	𝐼	is	defined	by	the	size	𝐿	of	the	blocks,	in	the	example	of	Fig.	12	they	are	
𝐿(#) 	= 	2, 𝐿(!) 	= 	3, 𝐿(3) 	= 	2	 (the	 size	 of	 the	 smallest	 community	 is	 2,	 the	 following	 one	 is	
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composed	by	3	 smaller	 communities,	 and	 the	whole	 system	 is	 composed	by	2	 intermediate	
communities).	One	can	think	to	families,	cities	and	country.		

The	number	of	connections	may	change	from	individual	to	individual,	when	chosen	with	
the	realization	of	the	stochastic	choice	of	connections	with	probability	𝑝(1),	as	in	Fig.	12-left,	
but	for	simulations	it	is	faster	to	keep	𝐾1	fixed	and	choose	this	number	of	individual	at	random	
among	 the	 given	 community.	 The	 random	 choice	 is	 repeated	 in	 each	 time	 step	 (annealed	
version)	or	may	be	kept	fixed	(quenched	version).	The	annealed	version	assures	that	there	is	
no	isolated	community,	a	case	that	may	happen	in	the	quenched	version	for	low	connectivity.	
In	the	following	we	use	the	annealed	version.		

The	matrix	𝐴	is	generated	according	to	𝐼	and	𝑝’s	at	each	time	step	(annealed),	and	actually	
in	simulations	we	do	not	have	any	matrix,	just	the	probability	of	connections	that	are	translated	
into	the	number	of	contacts	in	each	community,	randomly	chosen.		

The	equations	are	the	same,	but	now	the	connection	𝐾	is	split	into	that	of	the	different	
communities,	and	also	the	infection	rate	α	depends	on	the	community	𝑛,	so	we	have	now	a	real	
agent-based	model	(for	the	moment	without	age	structure).		

Let	us	consider	for	the	moment	a	simple	model	with	four	states:	S,	E,	R	and	D	(SERD)	and	
three	parameters:	𝛼(1) 	,	 infection	rate	from	infected	people	in	community	𝑛, 𝜌,	recovery	rate	
and	𝛿,	death	rate.		

The	transition	probabilities	of	an	individual	are	
	

𝑆 →

⎩
⎪
⎨

⎪
⎧
𝐸 𝑤𝑖𝑡ℎ	𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦		88 𝛼(1) n𝑄$(4)∈6($) = 𝐸o ;

'($)

47#1
𝑆 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒;																																																																				
			 																																																																

	

𝐸 → 	 q
𝑅 𝑤𝑖𝑡ℎ	𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦		𝜌;
𝑆 𝑤𝑖𝑡ℎ	𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦	𝛿;
𝐸 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒;																

	

𝑅 → 𝑅;	

D→D;		

(5)	

where	𝑗(𝑚)	indicates	and	individual	at	random	in	community	𝑚,	𝑄$(4)∈6($) 	is	its	state	and	again	
[⋅]	is	one	if	⋅	is	true	and	zero	otherwise.		

Let	us	consider	for	instance	the	case	𝐿	 = 	 {4,10,20}	(800	individuals),	𝐾	 = 	 {4,2,1}	and	
𝛼	 = 	 {0.5,0.01,0.001},	see	Fig.	13.		

	



 

Figure	13:	A	snapshot	of	the	status	of	the	network.	Bottom	line	denotes	susceptible	individuals	(blue	
marks	infected	or	recovered	or	died),	middle	lines	are	infected	(light	green	marks),	top	line	are	dead	(red	

marks).	

	

 
 

Figure	14:	(left)	Saw-teeth	behavior	of	infection	curve.	(right)	Sudden	outbreaks.	

As	expected,	we	see	a	quick	propagation	 inside	 the	 first-level	 community,	 followed	by	
sporadic	breakdown	in	other	communities,	Fig.	14-left.		

The	 infection	 curve	 starts	 to	 assume	 the	 saw-teeth	 appearance	 of	 those	 coming	 from	
actual	data,	Fig.	3	and	all	curved	show	sudden	jumps,	Fig.	14-right,	when	there	is	an	outbreak.		

	

8	Improvements	and	perspectives	

The	models	here	presented	constitute	just	the	first	approximations	to	the	problem.	First	of	all,	
we	are	developing	the	spatial	model	with	age	classes,	and	implementing	a	more	real	network	
structure,	 with	 quenched	 and	 annealed	 parts,	 representing	 the	 connections	 that	 are	 stable	
(family,	 school,	 some	kind	of	work)	and	 those	 that	are	variable	 (casual	contacts,	 commerce,	
travels).	 In	 this	way	one	 can	 simulate	with	more	 efficacy	 the	 effects	 of	 restrictions	 and	 the	
perspective	 of	 reopening.	 Clearly,	 these	 improvements	 come	 at	 the	 cost	 of	 increasing	 the	
number	of	parameters,	which	are	quite	difficult	to	estimate	from	field	data	(often	missing	and	
quite	sparse).		
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9	Conclusions	

We	have	presented	some	basic	simulation	scenarios	for	an	infectious	disease	inspired	by	the	
observed	characteristics	of	Covid-19.	We	started	with	the	“classical”	mean-field	approach	based	
on	time-discrete	equations,	introducing	the	risk	perception	effects	by	means	of	the	restrictions	
of	contacts,	and	age	classes,	showing	that	in	this	case	the	overall	growth	of	deaths	(and	of	other	
quantities)	is	no	more	an	exponential,	but	shows	a	power-law	like	behavior.		

We	then	introduced	an	agent-based	model,	limited	to	the	standard	infection	case	(without	
age	 classes	 and	 risk	 perception)	 showing	 that	 the	 network	 of	 contacts	 organized	 in	
communities	 is	 a	 crucial	 ingredient	 for	 reproducing	 the	 observed	 saw-tooth	 behavior	 and	
sudden	outbreaks.		

Further	work	is	ongoing	for	developing	a	unified	model,	with	the	goals	of	furnishing	a	tool	
for	interpreting	the	observed	scenarios,	without	any	presumption	of	fitting	observed	data	and	
forecasting	the	outcome	of	the	pandemic.		
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