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Epidemic spreading and risk perception in multiplex networks: A self-organized percolation method

Emanuele Massaro*

Risk and Decision Science Team, US Army Engineer Research and Development Center, 696 Virginia Road, Concord, Massachusetts 01742
and Department of Civil and Environmental Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh,

Pennsylvania 15213, USA

Franco Bagnoli†

Dipartimento di Fisica e Astronomia and CSDC, Università degli Studi di Firenze, and INFN, Sezione di Firenze,
via G. Sansone 1, 50019 Sesto Fiorentino, Firenze, Italy
(Received 22 May 2014; published 18 November 2014)

In this paper we study the interplay between epidemic spreading and risk perception on multiplex networks.
The basic idea is that the effective infection probability is affected by the perception of the risk of being infected,
which we assume to be related to the fraction of infected neighbors, as introduced by Bagnoli et al. [Phys. Rev.
E 76, 061904 (2007)]. We rederive previous results using a self-organized method that automatically gives the
percolation threshold in just one simulation. We then extend the model to multiplex networks considering that
people get infected by physical contacts in real life but often gather information from an information network,
which may be quite different from the physical ones. The similarity between the physical and the information
networks determines the possibility of stopping the infection for a sufficiently high precaution level: if the
networks are too different, there is no means of avoiding the epidemics.
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I. INTRODUCTION

Recently, Health magazine reported, “Although H1N1
influenza killed more than 4,000 people in the United States
in 2009–2010, this outbreak was relatively mild compared
to some flu pandemics” [1]. Indeed, the twentieth century
was characterized by a series of more serious events. During
1918–1919 the world was involved in the so-called Spanish
flu. Starting in three places: Brest (France), Boston (Mas-
sachusetts, USA), and Freetown (Sierra Leone), the disease
spread worldwide, killing 25 million people in 6 months (about
17 million in India, 500 000 in the United States, and 200 000
in the United Kingdom).

In 1957, another pandemic originated in China and spread
rapidly in Southeast Asia, hence taking the name Asian flu.
The virus responsible was identified as subtype H2N2, new to
humans, resulting from a previous human H1N1 virus that was
remixed with a duck virus from which it received the genes
encoding H2 and N2. This pandemic took 8 months to travel
worldwide and took 1 million to 2 million victims.

The 1968 pandemic was the mildest of the twentieth century
and started, once again, in China. From there it spread to Hong
Kong, where more than half a million people fell ill, and in
the same year it reached the United States and the rest of the
world.

Given these facts (and the entire record of pandemics
throughout history [2]), it is not surprising that public health
organizations are concerned about the appearance of a new
deadly pandemic. However, in recent decades there have
been many cases of false or exaggerated information about
epidemics. Examples are the swine flu of 1976; the avian flu
of 1997, where a United Nations health official warned that

*emassaro@andrew.cmu.edu
†franco.bagnoli@unifi.it

the virus could kill up to 150 million worldwide [1]; and the
more recent 2009 H1N1 flu, during whose outbreak the U.K.
Department of Health warned of about 65 000 possible deaths
as reported by the Daily Mail in 2010 [3]. Fortunately, these
fears did not realize.

These catastrophic scenarios and the extent of their impact
in economic and social contexts induce reflection on the
method used to forecast the evolution of a disease in the real
world. It is well known that in deeply connected networks (in
particular, in scale-free ones without strong compartmentaliza-
tion), the epidemic threshold of standard epidemic modeling is
vanishing [4–8]. Indeed, the lazzarettos [9] experience, first in
Venice and then in many ports and cities, was so successful in
the absence of effective treatments because it was able to break
the contact network. The pest was last observed in Venice in
1630, whereas in southeastern Europe, it was present until the
nineteenth century [10].

However, the last deadly pest pandemics occurred in Europe
in 1820 [2] and, worldwide, in Vietnam in the 1960s; the last
pandemic influenza, Hong Kong flu, in 1968–1969. In other
words, the last rapid deadly pandemics happened well before
the appearance of highly connected human networks.

Clearly, public health systems have put a lot of effort
into trying to make people aware of the dangers connected
with poor hygiene, dangerous sexual habits, and so on.
Indeed, the current worldwide diffusion of large-scale diseases
(HIV, seasonal influenza, cold, papilloma virus, herpes virus,
and viral hepatitis, among others) is deeply related to their
silent (and slow) progression or to the assumption (possibly
erroneous) of their harmlessness. However, it is well known
that direct experience (contact with actual ill people) is much
more influential than public exhortations.

Therefore, in order to accurately model the spreading of
a disease in human societies, we need to take into account
the perception of its impact and the consequent precautions
that people take when they become aware of an epidemic.
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These precautions may consist in changes in personal habits,
vaccination, or modifications of the contact network.

We are interested here in diseases for which no vaccination
is possible (or performed), so that the only way to avoid a
pandemic is by means of an appropriate level of precautions, in
order to lower the infection rate below the epidemic threshold.
We also assume that there is no acquired immunity from
the disease and that its consequences are neglected so that
they do not induce any radical change in social contacts or
reach the mass media level. Indeed, one of the dangers of this
negligence is the sudden outbreak of epidemics, as we show
in the following.

In a previous work [11], some of us investigated the influ-
ence of risk perception in epidemic spreading. We assumed that
knowledge about the diffusion of the disease among neighbors
(without knowing who is actually infected) effectively lowers
the probability of transmission (the effective infectiousness).
We studied the worst case of an infection on a scale-free
network with exponent γ = 2 and we showed that in this
case no degree of prevention is able to stop the infection and
one has to take additional precaution for hubs (such as public
officers and physicians).

Here we extend the investigation to different network
structures, in order to obtain a complete reference frame. For
regular, random, Watts-Strogatz small-world, and nonassorta-
tive scale-free networks with exponent γ > 3, there is always
a finite level of precaution parameter at which the epidemics
go extinct. For scale-free networks with γ < 3 the precaution
level depends on the cutoff of the power law, which depends
at least on the finite number of the nodes of the given network.

We consider, then, an important factor of modern society:
the fact that most of the information comes not from physical
contacts nor from broadcasting media but, rather, from the
“virtual” social contact networks [12–14]. A series of recent
studies on the “State of the News Media” in the United States
[15] highlights this phenomenon. It shows the extent of the
influence of social networks, for subscribers who can read
news published in newspapers. The 9% of this population
claims to inquire “very often” through Facebook and Twitter
and the 70% of newspaper subscribers on Facebook are
referred to articles (from newspapers and other sources) by
friends and family members who are in any case the main
drivers of news.

We are therefore confronted with news coming mainly
from an information network. On the other hand, the physical
network of contacts is the environment in which actual
infections occur. We consider diseases that have few or no
visible symptoms, so that the only way to get information
about them is by effective information sharing. However, one
generally does not share information (e.g., talk) with all of his
or her physical contacts. It may happen that one gets infected,
say, on a public transportation system by an unknown person
who belongs to his or her effective physical contact network
but not to his or her information network.

We therefore extend our model to the case in which the
source of information (mixed physical and virtual contacts)
does not coincide with the actual source of infection (the
physical contacts). This system is well represented as a
multiplex network [16–20], i.e., a graph composed of several
layers in which the same set of N nodes can be connected

to each other by means of links belonging to different layers,
which represents a specific case of the interdependent network
[21,22]. Recently, Granell et al. [23] have drawn attention to
an interesting scenario in which the multiplex corresponds to a
two-layer network, one where the dynamics of the awareness
about the disease (the information dynamics) evolves and
another where the epidemic process spreads. Recently they
have also investigated the effect of mass media when all the
agents are aware of the infection [24], which is the best case
for stopping the epidemic. However, here we are interested in
studying the case of neglected diseases, where the probability
of being aware of the disease is very low.

The first layer represents the information network, where
people become aware of the epidemic thanks to news coming
from virtual and physical contacts in various proportions. The
second layer represents the physical contact network, where
epidemic spreading takes place.

In this paper we want to model the effect of virtual
information on simulating the awareness of the agents in
real-world network contacts. We study how the percolation
threshold of susceptible-infected-susceptible (SIS) dynamics
depends on the perception of the risk (which affects the
infectivity probability) when this information comes from
the same contact network of the disease or from a different
network. In other words, we study the interplay between risk
perception and spreading of disease in multiplex networks.

We are interested in the epidemic threshold, which is a
quantity that it is not easy to obtain automatically (for different
values of the parameters) using numerical simulations. We
extend a self-organized formulation of percolation phenomena
[25] that allows us to obtain this threshold in just one
simulation (for a sufficiently large system).

II. THE NETWORK MODEL

In this section we report our method for generating
multiplex networks. First, we describe the mechanisms for
generating regular, random, and scale-free networks.

Let us denote by aij = 0,1 the adjacency matrix of the
network, aij = 1 if there is a link from j to i and aij = 0
otherwise. We denote by ki = ∑

j aij the connectivity of site

i and by j
(i)
1 ,j

(i)
2 , . . . ,j

(i)
ki

that of its neighbors (a
i,j

(i)
n

= 1). We
consider only symmetric networks. We generate networks with
N nodes and 2mN links, so that the average connectivity of
each node is 〈k〉 = 2m.

(i) Regular one-dimensional: Nodes are arranged in a ring
(periodic boundary condition). Any given node establishes a
link with the m closest nodes on its right. For instance, for
m = 2, node 1 establishes a link with nodes 2 and 3, node 2
with nodes 3 and 4, and so on, until node N − 1 establishes
links with nodes N and 1 and node N with nodes 1 and 2.

(ii) Random: Any node establishes m links with randomly
chosen nodes, avoiding self-loops and multiple links. The
probability distribution of random networks is Poissonian,
P (k) = zke−z

k! , where z = 〈k〉.
(iii) Scale-free: We use a configurational model also fixing

a cutoff K . First, at each node i is assigned a connectivity
ki draft from a power-law distribution P (k) = Ak−γ , m �
k � K , with A = (γ − 1)/(m1−γ − K1−γ ). Then links are
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FIG. 1. (Color online) Example of a multiplex generated with our
method. We start with the physical and the virtual networks, both
symmetric and with the same average connectivity, and then we build
the information network by choosing, for each node, outgoing links
with probability q from the virtual network and with probability 1 − q

from the real network.

connected at random, avoiding self-loops and multiple links,
and finally, the total number of links is pruned in order to
adjust the total number of links. This mechanism allows us to
generate scale-free networks with a given exponent γ .

We are interested in multiplex networks composed of
two layers that we denote physical and information. First,
we generate the physical network by choosing one from
the regular, random, or scale-free group. Then we generate
a virtual network also chosen from the three benchmark
networks, with the same average connectivity 〈k〉 = 2m. In
order to construct the information network, for each node we
add outgoing links from the physical network with probability
1 − q and links from the virtual network with probability q.
Since this process is repeated independently for each node, the
resulting information network is no longer symmetric (a given
link can be chosen by one of its vertices but not by the other).
The quantity Nq〈k〉 corresponds to the difference between the
information and the physical network.

This procedure allows us to study the effects of the
difference between the physical network, where epidemic
spreading takes place, and the information one, where actors
become aware of the disease, i.e., over which they evaluate
the perception of the risk of being infected. An example of a
multiplex is shown in Fig. 1.

III. INFECTION MODEL AND MEAN-FIELD
APPROXIMATION

Following Ref. [11], we assume that the probability that a
site i with connectivity i is infected by any one of s infected
neighbors is given by

u(s,ki) = τ exp

(
−J

s

ki

)
, (1)

where τ is the “bare” infection probability and s is the number
of infected neighbors. The idea is that the perception of the risk,
given by the percentage of infected neighbors and modulated
by the factor J , effectively lowers the infection probability
(for instance, because people take more precautions). In the
case of information networks, the perception is computed
in the mixed physical-virtual neighborhood, while the actual
infection process takes places in the physical network.

It is possible to derive a simple mean-field approximation
for the fixed-k case. Denoting by c the fraction of infected
individuals at time t , and by c′ that at time t + 1, we have,
considering a random network,

c′ =
k∑

s=0

(
k

s

)
cs(1 − c)k−sp(s,k), (2)

where p(s,k) is the probability of being infected if there are s

of k infected neighbors. The probability p depends on u as

p(s,k) = 1 − [1 − u(s,k)]s ,

since the infection processes are independent, although the
infection probabilities are coupled by the “perception”-
dependent infection probability q, Eq. (1).

Near the infection-percolation threshold, the probability u

is low, and therefore we can approximate

p(s,k) � su(s,k) = sτ exp

(
−J

s

k

)
.

Replacing p in Eq. (2), we get

c′ =
k∑

s=0

(
k

s

)
cs(1 − c)k−ssτ exp

(
−J

s

k

)
,

and setting a = exp(−J/k),

c′ = τ

k∑
s=0

(
k

s

)
cs(1 − c)k−ssas,

which gives

c′ = τak(ca + 1 − c)k−1.

The critical threshold Jc corresponds to the stationary state
c′ = c in the limit c → 0, i.e.,

τ = 1

k
exp

(
Jc

k

)
, Jc = k ln(kτ ). (3)

This prediction is quite accurate: in the comparison between
Eq. (3) and actual simulations is reported in Fig. 2 for different
values of 〈k〉 using random networks.

The analysis can be extended to nonhomogeneous networks
with a connectivity distribution P (k) like the scale-free ones.
We can start by analyzing a node with connectivity k,

c′
k =

1∑
s1,s2,...,sk=0

∞∑
j1,j2,...,jk=0

k∏
i=1

C(ji,k)I (si,ji)T (k|si),

where we denote by i = 1, . . . ,k the neighbors, si = 0,1 is
their state (healthy, infected), and ji their connectivity. C(j,k)
is the probability that a node with connectivity j is attached
to a node with connectivity k, I (si,ji) is the probability that
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FIG. 2. (Color online) Comparison between mean-field approx-
imation and simulations for random networks with different values
of 〈k〉.

the neighbor i is infected, and T (k|si) is the probability that it
transmits the infection to the node under investigation.

Clearly,
∑

j C(j,k) = 1. We use symmetric networks, so
jC(j,k)P (j ) = kC(k,j )Pk (detailed balance). For nonassor-
tative networks, C(j,k) does not depend on k, and sum-
ming over the detailed balance condition we get C(j,k) =
jP (j )/〈k〉.

The quantity I (si,ji) is simply c
si

ji
(1 − cji

)1−si and
T (k|si) = 1 − (1 − τ exp(−J s/k))s , where s = ∑

i si (risk
perception). Near extinction, again τ exp(−J s/k) is small and
we can approximate T (k|si) = sτ exp(−J s/k).

Summing up, we have

c′
k =

1∑
s1,s2,...,sk=0

∞∑
j1,j2,...,jk=0

k∏
i=1

jiP (ji)

〈k〉 c
si

ji

× (1 − cji
)1−si sτ exp

(
−J

s

k

)

=
1∑

s1,s2,...,sk=0

sτ exp

(
−J

s

k

) k∏
i=1

∞∑
ji=0

jiP (ji)

〈k〉 c
si

ji
(1 − cji

)1−si .

Let us define c̃ = ∑
j jP (j )cj/〈k〉. Since si = 0 or 1, the

quantity c
si

ji
(1 − cji

)1−si is either ci or 1 − ci , so that, for a
given combination of {s1,s2, . . . ,sk}, the sum over ji is given by
terms of the type

∑
ji

jiP (ji)cji
/〈k〉 = c̃ or

∑
ji

jiP (ji)(1 −
cji

)/〈k〉 = 1 − c̃. We can therefore say that

k∏
i=1

∞∑
ji=0

jiP (ji)

〈k〉 c
si

ji

(
1 − cji

)1−si =
k∏

i=1

c̃si (1 − c̃)1−si ,

and thus, since c̃ does not depend on i,

c′
k =

1∑
s1,s2,...,sk=0

sτ exp

(
−J

s

k

) k∏
i=1

c̃si (1 − c̃)1−si

=
k∑

s=0

(
k

s

)
sτ exp

(
−J

s

k

)
c̃s(1 − c̃)k−s ;

i.e.,

c′
k = c̃kτ exp

(−J s

k

)(
c̃ exp

(
−J

k

)
+ 1 − c̃

)
.

Near the epidemic threshold, c̃ → 0 and

c̃′ = 1

〈k〉
∑

k

kc′
kP (k) = τ c̃

〈k〉
∑

k

k2P (k) exp

(
−J

k

)
.

The correspondence between τc and Jc is therefore

τc(Jc) = 〈k〉∑
k k2P (k) exp

(− Jc

k

) , (4)

which, for Jc = 0, gives the usual relationship τc = 〈k〉/〈k2〉;
for a sharply peaked P (k) this corresponds to Eq. (3).

By using a continuous approximation, it is possible to make
explicit the relationship between τ and Jc in the scale-free case.
Equation (4) becomes

τc(Jc) = 〈k〉∫ K

m
k2P (k) exp

(− Jc

k

)
dk

. (5)

Substituting, for the scale-free case, P (k) = Ak−γ , where
A is the normalization constant so that

∫ K

m
P (k) = 1,

A = γ − 1

m1−γ − K1−γ
� (γ − 1)mγ−1,

if K � m (and γ < 3). We get

〈k〉 = γ − 1

γ − 2

m2−γ − K2−γ

m1−γ − K1−γ
� γ − 1

γ − 2
m

for K � m, and

τc(Jc) = J 3−γ
c

[
�

(
γ − 3,

Jc

K

)
− �

(
γ − 3,

Jc

m

)]
, (6)

where �(a,x) is the incomplete � function. Equation (6)
diverges for K → ∞, and thus for infinite networks Jc = 0
∀τ . However, real networks always have a cutoff (at least due
to the finite number of nodes) [26]. For Jc = 0 we recover the
standard threshold,

τc(0) = γ − 3

γ − 2

m2−γ − K2−γ

m3−γ − K3−γ
� 3 − γ

γ − 2

m2−γ

K3−γ
. (7)

The problem of the epidemic threshold in finite-size scale-
free networks was studied in Ref. [27]. The conclusion there is
that even in finite-size networks the epidemic is hard to stop.
Indeed, we find numerically that the epidemic always stops in
finite scale-free networks, although the required critical value
of Jc may be quite large.

In Fig. 3 the comparison between the mean-field prediction,
Eq. (4), and actual simulations is shown for three instances
of a scale-free network generated with the same parameters.
The theoretical prediction coincides with the simulations only
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FIG. 3. (Color online) Comparison between results of the mean-
field approximation (curves) and results of simulations (symbols) for
three instances of scale-free networks with γ = 2.4, N = 10 000,
m = 2, and K = 300. Although the simulations give similar results,
the mean-field computations (that coincide with the simulation only
for Jc = 0) are very dependent on the details of the network.

for Jc = 0. Moreover, although the simulation result seems
to be sufficiently independent of the details of the generated
networks, the theoretical prediction is quite sensitive to them.
The continuous approximation, Eq. (7), gives, for m = 2,
K = 300, and γ = 2.4, a value of τ (0) � 0.037, quite different
from the computed one, τ (0) � 0.08.

IV. THE SELF-ORGANIZED PERCOLATION METHOD

Here we report a self-organized percolation method that
allows us to obtain the critical value of the percolation
parameter in a single run, for a given network. We consider
a parallel SIS process, which is equivalent to a directed
percolation problem where the directed direction is time.
Let us denote by xi(t) = 0,1 (0 = healthy, 1 = infected)
the percolating variable and by p the control parameter
(percolation probability).

A. Simple infection (direct percolation)

Assuming that the infection probability τ is fixed, the
stochastic evolution process for the network is defined as

xi(t + 1) =
∨

j=j
(i)
1 ,...,j

(i)
ki

[τ > rij (t)]xj (t), (8)

where
∨

represents the OR operator and the multiplication
operation is to be replaced by the AND logical operation. The
brackets represent the truth function, [·] = 1 if “·” is true and
0 otherwise. The quantity rij (t) is a random number between
0 and 1, drawn independently for each triplet i,j,t . We want
to derive an equation for τi(t), which is the minimum value
of τ for which xi(t) is infected. We can replace xi(t) with
[τ > τi(t)]. Equation (8) becomes

[τ > τi(t + 1)] =
∨

j=j
(i)
1 ,...,j

(i)
ki

[τ > rij (t)][τ > τj (t)]. (9)

FIG. 4. (Color online) Evolution of the local minimum value of
the percolation parameter pi for a 1D regular network with k = 2.

Now [τ > a][τ > b] is equal to [τ > max(a,b)] and [τ > a] ∨
[τ > b] is equal to [τ > min(a,b)]. Equation (9) becomes

[τ > τi(t + 1)] =
[
τ >

(
min

j=j
(i)
1 ,...,j

(i)
ki

max(rij (t),τj (t))

)]
,

(10)

and we get the desired equation for the τi’s:

τi(t + 1) = min
j=j

(i)
1 ,...,j

(i)
ki

max(rij (t),τj (t)). (11)

Let us assume that at time t = 0 all sites are infected, so that
xi(0) = 1 ∀τ . We can alternatively write τi(0) = 0, since the
minimum value of τ for which xi(0) = 1 is 1 for sure. We can
iterate Eq. (11) and get the asymptotic distribution of τi . The
minimum of this distribution gives the critical value τc, for
which there is at least one percolating cluster with at least one
“infected” site at long times. As usual, t cannot be infinitely
large for finite N ; otherwise, there will surely be a fluctuation
that will bring the system into the absorbing (healthy xi = 0)
configuration. A schematic of this modus operandi is shown
in Fig. 4.

B. Infection with risk perception

Now let us apply the method to a more difficult problem, for
which the percolation probability depends on the fraction of in-
fected sites in the neighborhood (risk perception), as expressed
by Eq. (1). In this case we want to find the minimum value of
the parameter J for which there is no spreading of the infection
at long times. The quantity [u > r] = [τ exp(−J s/k) > r]
is equivalent to [J < −(k/s) ln(r/τ )]. Therefore Eq. (9) is
replaced by

[J < Ji(t + 1)] =
∨

j=j
(i)
1 ,...,j

(i)
ki

[
J < −ki

si

ln

(
rij (t)

τ

)]

× [J < Jj (t)], (12)

where

si ≡ si(J ) =
∑

j=j
(i)
1 ,...,j

(i)
ki

xj =
∑

j=j
(i)
1 ,...,j

(i)
ki

[Jj (t) � J ]. (13)

052817-5



EMANUELE MASSARO AND FRANCO BAGNOLI PHYSICAL REVIEW E 90, 052817 (2014)

So

[J < Ji(t + 1)] =
∨

j=j
(i)
1 ,...,j

(i)
ki

[
J < − ki

si(Jj (t))
ln

(
rij (t)

τ

)]

× [J < Jj (t)], (14)

and therefore

Ji(t + 1) = max
j=j

(i)
1 ,...,j

(i)
ki

min

(
− ki

si(Jj (t))
ln

(
rij (t)

τ

)
,Jj (t)

)
.

(15)

Analogously to the previous case, the critical value of Jc is
obtained by taking the maximum value ofe Ji(t) for some
large (but finite) value of t .

C. The self-organized percolation method
for multiplex networks

We can now turn to the problem of computing the critical
value Jc for a fixed value of τ if the perception is computed
for the information network which is partially different from
the physical one, where infection spreads. Here the perception
of the importance of the infection, si , is computed for the

neighbors j
(i)

in the information network. The perceived
number of infected neighbors depends on how many of them,
in the information network, have a Jj value larger than that
computed in the physical network; i.e.,

Ji(t + 1) = max
j=j

(i)
1 ,...,j

(i)
ki

min

(
− ki

si(Jj )
ln

(
rij (t)

τ

)
,Jj (t)

)
,

(16)
where

si(Jj ) =
∑

j=j
(i)
1 ,...,j

(i)
ki

[Jj � Jj ]. (17)

In other words, for a given site i, one has to consider its
neighbors j with parameter Jj . For each value Jj one computes
how many neighbors si(J − j ) in the information network (j i)
have Jj � Jj . This allows us to establish the contribution to the
minimum precaution level Ji coming from neighbor j which
is infected if J � Jj .

V. RESULTS

In this section we report the results of the self-organized
percolation method in both single-layered and multiplex
networks (with and without risk perception). For our exper-
iments we generally use the network size N = 10 000 and the
computational time T = 10 000 time steps.

A. Percolation in single-layered networks (SIS dynamics)

We investigated SIS dynamics over regular, Poisson, and
scale-free networks as shown in Fig. 5. In particular, we

FIG. 5. (Color online) Asymptotic number of infected individu-
als c versus the bare infection probability τ for the SIS dynamics
for different networks. From left to right, for c = 0: scale-free (SF),
random (Poisson), and regular. Here N = 10 000.

evaluated the critical epidemic threshold values τc for which
there is at least one percolating cluster with at least one infected
node (points labeled “Theory τc” in Fig. 5).

Considering a regular lattice with connectivity degree k =
2, we found τc � 0.6447, which is compatible with the results
of the bond percolation transition in the Domany-Kinzel model
[28]. In the case of random networks with Poisson degree
distributions the critical epidemic threshold τc = 〈k〉/〈k2〉 �
〈k〉−1 if the distribution is sharp [5]. Indeed, for a Poisson
network with 〈k〉 = 12 the self-organized percolation method
gives τc � 0.08 � 1/12. For a scale-free network with 〈k〉 =
13.95 and 〈k2〉 = 538.5, from simulations we get τc � 0.026,
in agreement with the expected value.

B. Effects of risk perception in SIS dynamics

We investigate the effects of risk perception in the previous
simple model of epidemic spreading. The results are quite
interesting compared with the simple SIS dynamics. By
inserting the risk perception it is possible to stop the epidemic
for every value of the bare infection probability τ up to τ = 1.
Let us consider, for instance, the case of random networks
with 〈k〉 = 6. For the simple infection process we found a
critical value τc = 0.165. As shown in Fig. 2, beyond this
value of τc the epidemic can still be stopped if all agents adopt
a sufficiently high precaution level J . The same consideration
can be applied also for the other scenarios (Fig. 3).

C. Multiplex risk perception

The phase diagram for the risk perception with SIS
dynamics in multiplex networks is shown in Fig. 6. The general
shape of this phase diagram can be understood by considering
that a given node of physical connectivity kr is connected, in
the information network, to (1 − q)kr physical neighbors, the
rest being virtual ones. At the threshold, the global fraction
of infected sites is small. For the spreading of the epidemic,
the important sites are those that have an infected physical
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FIG. 6. (Color online) Critical precaution threshold Jc (gray in-
tensity or color code) as a function of the bare infection τ and of
the difference q between the physical and the information network.
Here the physical and virtual networks are Poissonian (random), with
〈k〉 = 6 and N = 1000. In the darker region there is always a value of
Jc able to stop the epidemic, while in the white region the epidemic
cannot be stopped.

neighbor. It may be assumed that the virtual neighbors, being
uncorrelated with the physical ones, do not contribute at all
to the risk perception. Among the physical neighbors, the
fraction qkr , replaced by virtual ones, has become invisible,
and so the perception decreases by a factor q. For a given
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FIG. 7. (Color online) Critical precaution threshold Jc versus the
difference between the physical and the information network q for
some values of the bare infection τ (from right to left τ = 0.1, 0.2,
0.3). Random physical network and scale-free virtual network, both
with 〈k〉 = 6, N = 10 000.

FIG. 8. (Color online) Critical precaution threshold Jc versus
the difference between the physical and the information network
q for some values of the bare infection τ (from right to left:
τ = 0.2, 0.3, . . . , 0.6). Random physical and virtual networks, both
with 〈k〉 = 6 and N = 10 000.

value of the perception, the infection is stoppable only if the
infectiousness is also decreased by a factor q. Indeed, the
shape of the stoppability boundary in Fig. 6 resembles that
of a hyperbola τq = const. Note, however, that near τ = 1
stopping the spread appears to be almost impossible, even for
small values of q. Indeed, simulations with N = 10 000 show
that for τ = 1 the critical value of q that gives a finite value
of Jc is very close to 0. This is probably due to the formation
of a core of nodes connected by “invisible” links. If two or
more sites are mutually connected at the physical level but not
at the information level, and all their physical neighbors are
healthy, their perception of the risk is null. For τ = 1 they may
keep infecting each other, while not propagating the disease to
the other neighbors that have information about their ill state,
since, if J is large, the effective infection probability in the
presence of risk perception is vanishing.

The general trend is that, with an increase in the difference
q between the information network and the physical one,
it becomes harder to stop an epidemic. It is interesting to
investigate this transition. As we can see in Fig. 7 for a physical
random and virtual scale-free network, this transition is quite
sharp, especially for low values of τ . A similar scenario holds
for a mixture of physical and virtual random networks, as
shown in Fig. 8.

VI. CONCLUSIONS

We have investigated the interplay between epidemic
spreading and risk perception in multiplex networks, exploit-
ing mean-field approximations and a self-organized method
that automatically gives the percolation threshold in just
one simulation. We have focused on multiplex networks,
considering that people get infected by physical contacts in
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real life but often gather information from an information
network, that which be quite different from the physical ones.
The main conclusion is that the similarity between the physical
and the information networks determines the possibility of
stopping the infection for a sufficiently high precaution level:
if the networks are too different, there is no means of avoiding
the epidemic. Moreover, especially for low values of the bare
infection probability, this transition occurs sharply, without
evident forerunners. The sudden occurrence of this transition
constitutes a warning against relying too much on the Internet
as the sole source of information: although the virtual world
indeed has the advantage of allowing rapid diffusion of
information, real epidemics still propagate in the physical
world. This is of particular importance for those diseases,

possibly diffused in a marginalized part of the population
or in some ethnic group, that do not reach the media level.
In the present society, it is quite possible that people from
different social levels establish a “physical” contact (and thus
the possibility of contagion) even if they are not in contact at
the “information” level.
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[11] F. Bagnoli, P. Liò, and L. Sguanci, Phys. Rev. E 76, 061904
(2007).

[12] J. Ginsberg, M. Mohebbi, R. Patel, L. Brammer, M. Smolinski,
and L. Brilliant, Nature 457, 1012 (2009).

[13] D. Scanfeld, V. Scanfeld, and E. L. Larson, Am. J. Infect. Control
38, 182 (2010).

[14] C. Chew and G. Eysenbach, PLoS ONE 5, e14118 (2010).
[15] The state of the news media. The Pew Research Center’s

project for excellence in journalism, http://stateofthemedia.org/
(2014). In particular: “What Facebook and Twitter Mean for

News” http://www.stateofthemedia.org/2012/mobile-devices-
and-news-consumption-some-good-signs-for-journalism/
what-facebook-and-twitter-mean-for-news/ (2012) and
“Friends and Family - Important Drivers of News”
http://www.stateofthemedia.org/2013/special-reports-landing-
page/friends-and-family-important-drivers-of-news/ (2013).

[16] M. Kurant and P. Thiran, Phys. Rev. Lett. 96, 138701 (2006).
[17] P. J. Mucha, T. Richardson, K. Macon, M. A. Porter, and J.-P.

Onnela, Science 328, 876 (2010).
[18] M. Szell, R. Lambiotte, and S. Thurner, Proc. Natl. Acad. Sci.

USA 107, 13636 (2010).
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