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This paper discusses some general properties of Zernike polynomials, such as their Fourier transforms, integral

representations, and derivatives. A Zernike representation of the Kolmogoroff spectrum of turbulence is given
that provides a complete analytical description of the number of independent corrections required in a wave-
front compensation system.

INTRODUCTION

The use of Zernike polynomials for describing the
classical aberrations of an optical system is well
known. 1 Fried2 used a form of these polynomials to
describe the statistical strength of aberrations pro-
duced by atmospheric turbulence, while Bradley and
Herrmann 3 described atmospheric thermal blooming
effects. Bezdid'ko4 has discussed the advantages of
Zernike polynomials in solving many optical problems.

In this paper, a review of Zernike polynomials is
undertaken with an emphasis on nomenclature. Some
new Zernike polynomial properties such as integral
representations and derivatives are discussed. Finally,
the work of Fried2 is extended by developing a Zernike
representation of the Kolmogoroff spectrum of turbu-
lence, which permits all the statistical aberration
strengths to be calculated analytically.

ZERNIKE POLYNOMIALS

Zernike polynomials are a set of polynomials de-
fined on a unit circle. It is convenient to use polar
coordinates so that the polynomials are a product of
angular functions and radial polynomials. The angular
functions are the basis functions for the two-dimen-
sional rotation group, and the radial polynomials are
developed from the well known Jacobi polynomials. 1

The polynomials used in this paper are slightly dif-
ferent than the usual set1 in that a different normaliza-
tion is used. The normalization chosen is convenient
for statistical analysis. Because of this normalization
difference, the polynomials used in this paper are tech-
nically a modified set of Zernike polynomials. For
convenience, in this paper the modified Zernike poly-
nomials are simply called Zernike polynomials. The
polynomials are defined here by

Zeven j = n+1 R (r)V2cos m 0

Zdd j = /n+1 R' (r)V sinm 0f

Zj= In+ Ro (r),

where

m •0

m=0

(1)

(n-m)/2

R-(r)= E(-1) (n s). 2Rn r= s![(n+m)/2-s]![(n -m)/2-s]-! (2

The values of n and m are always integral and satisfy
m c n, n - I m I = even. The index j is a mode ordering
number and is a function of n and m. A convenient or-
dering of the modes is shown in Table I. The defini-
tion in Eq. (1) is convenient because it gives a logical
ordering to the modes and allows the modal orthog-
onality relation to be written
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f d 2r W(r) Z, Z,1 = 6w,, (3)

where5

W(r)= 1/Tr r• 1

=0 r>1.

Typical interest in Zernike polynomials centers
around a polynomial expansion of an arbitrary wave
front over a circular aperture of arbitrary radius (R).
Thus, if c(r, 0) is some arbitrary function, its poly-
nomial expansion over a circle of radius (R) is given by

O (Rp, 0)=ZajZj(p, 0) , (4)
j

with p = r/R and the coefficients aj being given by

a,=f =dpW(p)O(Rp, 0)Zj(p, 0) (5)

or

a j= (1/RI)f d
2

r W(r/R)O (r, 0)Zj (r/R, 0) . (6)

The first few polynomials are shown in Table I along
with the classical aberration with which they are as-
sociated. 1

PROPERTIES OF ZERNIKE POLYNOMIALS

Let Qj(k, 4) be the Fourier transform of Zj (p, 0) so
that

W(p)z(p, 0)= f d2 k Qj (k, p)e 2
7ik-P (7)

The transform Qj (k, O) can be written1 from Eq. (1) as

Q even j ( k, O) =

Q0 dd (k, O)= tn+1 J,.j(2irk)

Q1(k /) = irk

(8)

where J, (x) is the Ith order Bessel function of the first
kind. If Eq. (8) is substituted back into Eq. (7), an in-
tegral representation for the radial function R', is found

) to be

Rn(p)= 2ir(- 1)(n")/2 dkJn Fi(27rk)Jm(21rkp) -
0

(9)

ZERNIKE DERIVATIVES

The integral representation for the function R'(p)
provides a good starting point for calculating deriva-
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. . , \ ,9 - .

(-I)W-m)t2i-V2 COS MO I

( -1) (n-m)/2 im ,f-2-sin m 0 ,

(_ 1)nl2 , (M = 0)



TABLE I. Zernike polynomials. The modes, Zj, are ordered such that even j corresponds to the symmetric modes defined by
cosmO, while odd j corresponds to the antisymmetric modes given by siwn0. For a given n, modes with a lower value of m are
ordered first.

Radial Azimuthal frequency (m)
degree
(n) 0 1 2 3 4 5

o Z1 =1

Constant

Z2 = 2rcosO

1 Z 3=2rsinO

Tilts (Lateral position)

Z4= (2y
2 

-1) Z5 =Vqr
2
sin20

2 Defocus Z6 =V/r
2

cos28
(Longitudinal position) Astigmatism

(3rd Order)

Z, ='(3r
3

-2 ) sinO Z9=4r'sin3U

3 Z8='I(3r
3
-2r)cosO Z1 0 =aT

3
cos30

Coma (3rd order)

Z 1 1 = (6r
4

- 6r
2 

+1) Z, 2 =v'Th(4r
4

- 3r
2
) cos2O Z,4 =Ai'Gr

4
cos46

4 3rd order spherical Z 13 ='10 (4r
4

-3r
2

) sin29 Z,5 =.FiTGr
4

sin40

Z, 6 =IE (1Or'- 12r
3

; 3r) cos O Z18 =4/3C(5r'- 4r3) cos3O Z2 0 = '2r' cos5

5 Z1 7 = /I1(10r'- 12r
3 

+3r) sine Z9= -'(5r
5

- 4r3 ) sin39 Z2 = v2rsin5

Z22 = T(20r
6 

- 30r
4 

+ 12r
2 

- 1) Z23 Z25

6 5th order spherical Z24 Z29

tives. Derivatives of the radial function can be written

(dldp) R' = 2 ir( 1) Inm) /2

x dk J t+1 2rk2 dJm(2Tp)
Of 4' dp

By using the identities

dJ, /dx = 2 [J, j(x) - Jl.l(x)]

and

xJr+(x)= 21 JI(x) - xJ,-,(x),

Eq. (10) can be written as a recursion relation

(d/dp) Rn = n[Rmn1 + Rnm' ]+ (d/dp)Rm.2 -

(10)

(11)

(12)

(13)

The recursion relation in Eq. (13) provides the pre-
scription for representing derivatives of Zernike poly-
nomials as a linear combination of Zernike polynomials,

vzi=zvYJi'Zjg
is

(14)

The matrix y is most easily expressed in rectangular
coordinates so that

(15)y ='f d2pZ, dX

and

Yff =Jf d P Z,, dy

a. All magnitudes are given by

I(n+l)(n'+l) form and m'*0,

J/2(n+1)(n'+1) form orm'= 0.

b. The nonzero elements are for j andj' either both
even or both odd except for m or m'= 0. When
m or m'= 0, only even j or' gives a nonzero re-
sult.

c. For a particular m, only m'= m ±1 gives nonzero
matrix elements.

d. All matrix elements are positive.

a.

b.

All magnitudes are the same as yv.

The nonzero elements are forj andj' either even/
odd or odd/even except for m or m' = 0. When m
or m'= 0, only oddj orj' gives a nonzero result.

c. Only m'=m ±1 gives nonzero results.

d. All m and m'= 0 elements are (+).
Elements with m'= m + 1 and odd j are (-).
Elements with m ' = m - 1 and even j are (-).
All other elements are (+).

ATMOSPHERIC STATISTICS

The propagation of a wave through the atmosphere
(16) has been well discussed, and the structure function for

the phase fluctuations is defined as

The natrixL el~eweaL y . auld yf1 , [ given by Eqs. (15)
and (16) and displayed in Tables II and III] can be con-
structed with the following rules.
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(17)Do(r)= 2[Ko o 2(gr))f (t(rl) 0(r c+ r) rt .

For Kolmogoroff turbulence D,,(r) can be written in
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TABLE II. Zernike polynomial derivative matrix: y9 j.

m' 0 1 1 0 2 2 1 1 3 3 0 2 2 4 4
j' 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

m
0

1
1

0
2
2

1
1
3
3

0
2
2

1

2

3
4

5

6

.7
8
9

10

11
12
13

F2.0O

VW_

246
24W

24W2-r -

4 14
4 15

1
1

3
3
5

6.016
17
18
19

20

342

2rW

24Th
245 24W

25W

245

312

342

5 21

terms of the correlation length
as

D<,(r)= 6. 88(r/r0 ) 513 .

(ro) introduced by Fried2

(18)

The structure function is related to the Weiner spec-
trum, ik), by

D,(r)=2f dk4(k)[1-cos(2lYk r)] .

By using Eq. (18) and the integral

r x [I -Jo(bx)]dx= 2P[r(P+ 1)/2]2 sin[ir(P - 1)/2] '

we find that (20)

4I3(k)= (0. 023/r'/ 3 )k-11 / (21)

which is the Wiener spectrum of the phase fluctuations
19) due to Kolmogoroff turbulence.

A Zernike representation of this spectrum can be ob-

TABLE III. Zernike polynomial derivative matrix: yy .

m' 0 1 1 0 2 2 1 1 3 3 0 2 2 4 4
j' 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

m
0 1

1 2
1 3

0
2
2

I
1
3
3

0
2
2

4
5
6

7
8
9

10

11
12
13

r2-.0

V4W
243

-4V

246
24W

-24Z

24
-4Ta

243

24Th
- 245

4 14
4 15

1
1
3
3
5
5

16
17
18
19
20
21

34W
6.0

-34W

2Z5
24W

-24W
-24W

245

2V --34W

34W
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� 3-0
-I 3-0 -

_ _1(30
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tained by evaluating the covariance of the expansion
coefficients in Eq. (4). The coefficients aj can be con-

sidered to be Gaussian random variables with zero
mean so that the covariance is, from Eq. (5),

(asajs )=f dpf dp'W(p)W(p')Zj(p, 0)

XC(RpC Rp')Zh.(P', a r )a , (22)

where C(Rp, Rp') is the phase covariance function

C(Rp, Rp')=(P(Rp)(A(Rp')) . (23)

Equation (22) can also be written in Fourier space as

(agaj,)=JJdkdkk iQ(k)4(k/Rk'/R)Qj,(kJ),

where

c1(.k/R, k'/R)= O. 023(R/ro)5/ 3k"1/ 36(k - k').

Substituting Eq. (8) into Eq. (24) yields

(24)

(aj a,,) = (0. 046/7T)(R/ro)' / 3 [(n +1l)( n,+ 1)]1 /2
X(- 1)0+0-2n)/26mmI

x k-8/3 jn+1(27Tk)Jnal+(2 Trk) (5x f dk kz(25)

which is a Zernike matrix representation of the Kolmo-
goroff phase spectrum. This representation has the
advantage that the integrals that appear in Eq. (25) can
be evaluated in closed form (see Appendix).

DEGREES OF CORRECTION

If the lowest order aberrations in the random wave
front are corrected, one is interested in knowing how

much wave-front distortion remains. This question is

easily addressed with Zernike polynomials. If the first

J modes are corrected, the correction can be written

J

Oc=EajZj (26
j=1

The mean square residual error can be defined as

A= J dp W(p) ([ (P(Rp) - Oc(Rp)]2 ) * (27

Substituting Eq. (26) into (27) and remembering that
(aj )=O yields

J

Aej=(¢2)- ( aj I'), (28
J=1

where (42) is the phase variance, which is infinite for
the Kolmogoroff spectrum. This infinity is contained

solely in the piston mode (see Appendix) of the spec-
trum so that Al is finite. The first few values of Ar
are shown in Table IV. When J is large (J > 10), Eq.
(28) can be approximated by6

A1 , 0. 2944J -I/2(D/ro)5 / 3[rad2 ] . (29)

Fried2 calculated the first few values of A by a very

laborious technique. His results compaire with tLhose

in Table IV. The advantage of the Fourier representa-

tion of the Zernike polynomials is therefore the ease
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TABLE IV. Zernike-Kolmogoroff residual errors (A1 ). (D

is the aperture diameter.)

A,= 1.0299 (D/ro)5'"

A2 = 0.582 (Dir 0 )
5

/
3

A3 =0.134 (D/r0 )5 /3

A4 = 0.0111 (Dr 0)
513

A = 0.0880 (D/rO) 5/3

A6 =0.0648 (D/ro)51/3

A7 =0.0587 (D/r0 )5/3

A8 =0.0525 (D/ro)
51 3

A,=0.0463 (D/ro)51/3

A1 0 = 0.0401 (Diro)5 /3

A12 = 0.0352 (D/r0 )I/3

A 3, = 0.0328 (Diro) 5 /3

A14 = 0.0304 (D/ro)I/ 3

Ai 5 =0. 0279 (Dir 0 )5 /3

A16 = 0. 0267 (DIro)~'3

A17 = 0.0255 (Diro)5 /3

A, 8 = 0.0243 (D/ro) 5/3

A13 = 0.0232 (D/ro) 5/3

A20 = 0. 0220 (D/ro)5/1 3

A21 = 0. 0208 (Diro) 51 3

A,,= 0.0377 (D/ro) 5 /3

A, -0.2944 J,3/2 (D/ro) 5/
3 (For large J)

by which all the A, can be calculated.

CONCLUSION

The properties of Zernike polynomials have been re-
viewed. In particular, rules for computing the de-
rivatives of these polynomials as a linear combination
of the polynomials themselves have been given.

Derivatives of Zernike polynomials can be useful
whenever the gradient of a wave front is required.
Wave-front gradients occur in some geometrical optics
problems as well as direct measurements in an elec-
tronic Hartmann Test. 7

An application of Zernike polynomials to the problem
of atmospheric wave-front correction is discussed. It
is found that the Zernike polynomials permit an analytic
evaluation of the residual wave-front error for any
number of independent corrections.

In general, the optimum correction would be obtained
from a set of orthonormal functions that make the ma-
trix defined by Eq. (22) a diagonal matrix. These func-

tions are eigenfunctions of the covariance matrix and

constitute the basis for a Karhunen-Loeve expansion
of the wave front. For the Kolmogoroff spectrum of

turbulence, the Karhunen-Loeve functions are not anal-
ytic functions. The advantage of Zernike polynomials
as a basis is not only that results can be obtained in
closed form, but also that the first few modes repre-
sent the classical aberrations familiar to opticians.
Comparison of the Zernike with a Karhunen-Loeve ex-
pansion8 suggests that the Zernike expansion is near
optimum.

APPENDIX

Evaluation of the integral I,,,,

In this section the integral in Eq. (25), I,, is eval-
uated:

I= rdkk_813 Jn..(k)Jn,.(k) (Al)

This integral is tabulated in most standard integral ta-
ble handbooks of Bessel function integrals:
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Inn'= 2 r+ )r[(n4-n'- '+ 3)/21

for n, n' •O, where r (x) is the gamma function.

The piston integral 1OO, as indicated in the text, di-
verges. The singularity in the piston integral exactly
matches the singularity in the variance. This indi-
cates that the piston corrected variance Al is finite.
To evaluate Al an integral of the form

{ l - [4j 2 (X)] /X~}x_ 'dx0 (A3)

needs to be evaluated. To evaluate the integral in Eq.

I
(A3), consider

dx d J1(x)12

r[(3- q)/21ir(q)
=2,,r[(q+ 1)/2] r[(q + 1)/2] r[(q+ 3)/2]

=Fl(q) O<q<3. (A4)

By analytic continuation of F1 (q) to the domain 3 < q < 5,
the integral in Eq. (A3) can be written

J 4J2(x) i7rr(P+ 2)
fo (1 -X2) JX dx= 2 P Jr{[(P+ 3)/2]}2 r [(P + 5)/2] r [(1 +P/2] sin[(u/2)(P - 1)] -

ACKNOWLEDGMENTS

The author wishes to thank Dr. R. E. Hufnagel for
suggesting this publication and for his many helpful
comments and suggestions during the course of this
work. Additional thanks are extended to R. J. Arguello
for his significant contributions to this work and for
introducing the author to the problem of atmospheric
turbulence.

*Part of this material has been presented by the author at the
Imaging in Astronomy Conference, Cambridge, Mass., June
1975.

'M. Born and E. Wolf, Principles of Optics (Pergamon, New

York, 1965), Sec. 9.2.
2D. L. Fried, J. Opt. Soc. Am. 55, 1427 (1965).
3L. C. Bradley and J. Herrmann, Appl. Opt. 13, 331 (1974).
4S. N. Bezdid'ko, Sov. J. Opt. Tech. 41, 425 (1974).
5 Defining the aperture weight function W(r) as shown allows the

aperture weighted variance, cr2, of a phase function, p, to be
written as

-'2= f d 2 rW(r)cb2 (r) .

6Although Eq. (29) has not been proven to be an asymptotic
form of Eq. (28), a graph of Eq. (28) yields a linear log plot
for large J. Equation (29) represents a fit to such a plot.

7L. I. Golden, R. V. Shack, P. N. Slater, NASA Final Re-
port, NAS 8-27863 (1974).

8D. L. Fried (private communication).

Sums of independent lognormally distributed random variables

Richard Barakat
Division of Engineering and Applied Physics, Harvard University, Cambridge, Massachusetts 02138

and Bolt Beranek and Newman Inc., Cambridge, Massachusetts 02138
(Received 24 April 1975)

The probability-density function of the sum of lognormally distributed random variables is studied by a
method that involves the calculation of the Fourier transform of the characteristic function; this method is
exact. When the number of terms in the sum is large, we employ an asymptotic series in N- ', where N is the
number of terms, developed by Cramer. This method is employed in order to show that the permanence of
the lognormal probability-density function is a consequence of the fact that the skewness coefficient of the
lognormal variables is nonzero. Finally, a simplified proof, by use of the Carleman criterion, is presented to
show that the lognormal is not uniquely determined by its moments.

The lognormal probability distribution permeates much
of the current literature on optical propagation through
the turbulent atmosphere and has been the source of a
good deal of controversy in various contexts of the
general problem.

The purpose of the present paper is to report on
three aspects of the lognormal probability-density func-
tion that are pertinent to the atmospheric-propagation
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problem. The three topics are as follows.

(i) An expression is developed for the characteristic
function of the lognormal probability-density function.
This expression is used to calculate the probability-
density function of sums of lognormally distributed
random variables.

(ii) The permanence of the lognormal probability-
density function is investigated by use of an adaptation
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