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TUTORIAL REVIEW

Zernike polynomials: a guide

Vasudevan Lakshminarayanana,b*y and Andre Flecka,c

aSchool of Optometry, University of Waterloo, Waterloo, Ontario, Canada; bMichigan Center for Theoretical Physics,
University of Michigan, Ann Arbor, MI, USA; cGrand River Hospital, Kitchener, Ontario, Canada

(Received 5 October 2010; final version received 9 January 2011)

In this paper we review a special set of orthonormal functions, namely Zernike polynomials which are widely
used in representing the aberrations of optical systems. We give the recurrence relations, relationship to other
special functions, as well as scaling and other properties of these important polynomials. Mathematica code for
certain operations are given in the Appendix.

Keywords: optical aberrations; Zernike polynomials; special functions; aberrometry

1. Introduction

The Zernike polynomials are a sequence of polyno-
mials that are continuous and orthogonal over a unit
circle. A large fraction of optical systems in use today
employ imaging elements and pupils which are circu-
lar. As a result, Zernike polynomials have been
adopted as a mathematical description of optical
wavefronts propagating through such systems. An
optical wavefront can be thought of as the surface of
equivalent phase for radiation produced by a mono-
chromatic light source. For a point source at infinite
distance this surface is a plane wave. An example is
shown in Figure 1 with an aberrated wavefront for
comparison. The mathematical description, offered by
Zernike polynomials, is useful in defining the magni-
tude and characteristics of the differences between the
image formed by an optical system and the original
object. These optical aberrations can be a result of
optical imperfections in the individual elements of an
optical system and/or the system as a whole. First
employed by F. Zernike, in his phase contrast
method for testing circular mirrors [3], they have
since gained widespread use due to their orthogonality
and their balanced representation of classical aberra-
tions yielding minimum variance over a circular pupil
[4–9].

The Zernike polynomials are but one of infinite
number of complete sets of polynomials, with two
variables, that are orthogonal and continuous over the
interior of a unit circle [10]. The condition of being
continuous is important to note because, in general,

the Zernikes will not be orthogonal over a discrete set
of points within a unit circle [11]. However, Zernike
polynomials offer distinct advantages over other poly-
nomial sequences. Using the normalized Zernike
expansion to describe aberrations offers the advantage
that the coefficient or value of each mode represents
the root mean square (RMS) wavefront error attrib-
utable to that mode. The Zernike coefficients used to
mathematically describe a wavefront are independent
of the number of polynomials used in the sequence.
This condition of independence or orthogonality,
means that any number of additional terms can be
added without impact on those already computed.
Coefficients of larger magnitude indicate greater con-
tribution of that particular mode to the total RMS
wavefront error of the system and thus greater
negative impact on the optical performance of the
system.

Having stated the advantages of Zernike polyno-
mials in describing wavefront aberrations over a unit
circle it should also be clearly noted that Zernike
polynomials are not always the best polynomials for
fitting wavefront test data. In certain cases, Zernike
polynomials may provide a poor representation of the
wavefront. Some of the effects of air turbulence in
astronomy and effects of fabrication errors in the
production of optical elements may not be well
represented by even a large expansion of the Zernike
sequence. In the testing of conical optical elements
or irregular ocular optics, such as a condition known
as keratoconus (literally a cone shaped cornea),
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additional terms must be added to Zernike polyno-
mials to accurately represent alignment errors and even
in so doing, the description of the optical quality may

be incomplete [12]. In any system with noncircular
pupils, the Zernike circle polynomials will not be
orthogonal over the whole of the pupil area and thus
may not be the ideal polynomial sequence.

2. Mathematical basis

In general, the function describing an arbitrary
wavefront in polar coordinates (r, �), denoted by
W(r, �), can be expanded in terms of a sequence of
polynomials Z that are orthonormal over the entire
surface of the circular pupil:

Wðr, �Þ ¼
X
n, m

Cm
n Z

m
n ðr, �Þ, ð1Þ

where C denotes the Zernike amplitudes or coefficients
and Z the polynomials. The coordinate system is
shown in Figure 2.

The Zernike polynomials expressed in polar coor-
dinates (X ¼ r sin �, Y ¼ r cos �) are given by the
complex combination:

Zm
n ðr, �Þ � iZ�mn ðr, �Þ ¼ V�mn ðr cos �, r sin �Þ

¼ Rm
n ðrÞ expð�im�Þ,

which leads to

Zm
n ðr, �Þ ¼ Rm

n ðrÞ cosm� for m � 0,

Z�mn ðr, �Þ ¼ Rm
n ðrÞ sinm� for m5 0, ð2Þ

where r is restricted to the unit circle (0� r� 1),
meaning that the radial coordinate is normalized by
the semi-diameter of the pupil, and � is measured

clockwise from the y-axis. This is consistent with

aberration theory definitions, but different from the

conventional mathematical definition of polar coordi-

nates. The convention employed is at the discretion of

the author and may differ depending on the applica-

tion. The radial function, Rm
n ðrÞ, is described by:

Rm
n ðrÞ ¼

Xðn�mÞ=2
l¼0

ð�1Þl ðn� lÞ!

l! 1
2ðnþmÞ� l
� �

! 1
2ðn�mÞ� l
� �

!
rn�2l: ð3Þ

Figure 1. A plane wave (perfect wavefront) and an aberrated wavefront subdivided into smaller wavefronts where the local slope
determines the location of a ray tracing projection of the sublet (subdivided wavelet). This is the operating principle of wavefront
sensors [1]. (The color version of this figure is included in the online version of the journal.)

Figure 2. Cartesian (x, y) and polar (r, �) coordinates of a
point Q in the plane of a unit circle representing the circular
exit pupil of an imaging system [6].
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The radial function is plotted in Figure 3 for the

first four radial orders for the angular frequency 1, 2

and 3. The first 10 orders of the Zernike polynomial

sequence are shown as surface plots in Figure 4.

The first three radial orders, r¼ 0, 1, 2 are called low

order aberrations and radial orders 3 and above

are called higher order aberrations. It should be

noted that the radial order 2 is of special interest in

visual/ophthalmic optics; it is nothing but the ordinary

spectacle correction that is commonly prescribed by

optometrists. Furthermore, the radial order n¼ 1 is

equivalent to prism terms that are prescribed in

spectacles as well.
The normalization has been chosen to satisfy

R�mn ð1Þ ¼ 1 for all values of n and m. This gives a

normalization constant described by:

Nm
n ¼

2ðnþ 1Þ

1þ �m0

� �1=2

, ð4Þ

where �m0 is the Kronecker delta (�m0 ¼ 0 for m 6¼ 0).
The algebraic form of the first 10 orders of Zernike

polynomials which correspond to the surface plots of

Figure 4 are shown in Tables 1 and 2, in both polar and

Cartesian form, for comparison. In Cartesian coordi-

nates, the 0� r� 1 limit becomes x2 þ y2 � 1, and the

recursion relationship for the sequence in Cartesian

form is given by [13]:

Zm
n ðx, yÞ ¼

Xq
i¼0

XM
j¼0

XM�J
k¼0

ð�1Þiþj
n� 2M

2iþ p

 !
M� j

k

 !

�
ðn� j Þ!

j!ðM� j Þ!ðn�M� j Þ!
x�y�, ð5Þ

where

M ¼
n

2
� m�

n

2

��� ���, p ¼
jsj

2
ðsþ 1Þ,

q ¼ ðd� sMod½n, 2�Þ
s

2
, s ¼ sgnðd Þ, d ¼ n� 2m,

� ¼ 2ðiþ kÞ þ p, � ¼ n� 2ðiþ jþ kÞ � p:

As can be seen from the relationship above and the

expanded form shown in Tables 1 and 2, representa-

tion of the polynomials in polar form offers some

advantage in efficiency by nature of its circular

symmetry. Tables of Zernikes are given, for example,

by Born and Wolf [4] and in the article by Noll [9].

However, there is a difference between the two:

each of Noll’s polynomials should be multiplied by a

factor 1/(2(nþ 1))1/2 to get the terms given by Born and

Wolf.
Although different indexing schemes exist for the

Zernike polynomial sequence, the recommended

double indexing scheme is portrayed [14,15].

Occasionally a single indexing scheme is used for

describing the Zernike expansion coefficients. Since the

polynomials depend upon two parameters n and m,

ordering of a single indexing scheme is arbitrary.

To obtain the single index j, it is convenient to lay out

the polynomials in a pyramid with row number n and

Figure 3. (a) The Zernike radial function for m¼ 0, n¼ 2
(defocus), 4 (spherical aberration), 6, 8 [6]. (b) The Zernike
radial function for m¼ 1, n¼ 1, 3, 5, 7. (c) The Zernike radial
function for m¼ 2, n¼ 2, 4, 6, 8 [6].
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column number m. The single index, j, starts at the top

and the corresponding single indexing scheme, with

index variable j, is shown in Table 3.
In the single index scheme:

Zjðr, �Þ ¼ Zm
n ðr, �Þ ð6Þ

where j ¼ ½nðnþ 2Þ þm�=2, n¼ roundup ½ð�3þ ð9þ
8j Þ1=2Þ=2� and m ¼ 2j� nðnþ 2Þ:

In this article we will deal exclusively with the
double indexed Zernike polynomials. Some older
literature does use the single index scheme and because
of the variety of indexing schemes that are available

Figure 4. Surface plots of the Zernike polynomial sequence up to 10 orders. The name of the classical aberration associated with
some of them is also provided. (The color version of this figure is included in the online version of the journal.)
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and have been employed in the past, care should be

taken when comparing results from different journal

articles and software packages.

3. Orthonormality

The orthonormality of the Zernike polynomial

sequence is expressed by:

ð1
0

ð2p
0

Zj ðr, �ÞZj0 ðr, �Þr dr d�

�ð1
0

ð2p
0

r dr d� ¼ �jj 0 , ð7Þ

where �jj0 ¼ 1 if j ¼ j0, �jj0 ¼ 0 if j 6¼ j0. This can be

separated into its radial orthogonality component

given by: ð1
0

Rm
n ðrÞR

m
n0 ðrÞr dr ¼

1

2ðnþ 1Þ
�nn0 ð8Þ

and angular orthogonality component:

ð2p
0

d�

cosm� cosm0�

sinm� sinm0�

cosm� sinm0�

sinm� cosm0�

8>>>>>>><
>>>>>>>:

¼

pð1þ �m0Þ�mm0

p�mm0

0

0

8>>>>>>><
>>>>>>>:

ð9Þ

Table 1. Algebraic expansion of the Zernike polynomial sequence, orders one through seven [2].
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The sign of the angular frequency, m, determines the

angular parity. The polynomial is said to be even when

m� 0 and odd when m5 0.

4. Recurrence relations

The relationship between different Zernike modes is

given by the following recurrence relations:

Rm
n ðrÞ¼

1

2ðnþ1Þr
ðnþmþ2ÞRmþ1

nþ1 ðrÞþ ðn�mÞRmþ1
n�1 ðrÞ

� �
,

ð10Þ

Rm
nþ2ðrÞ ¼

nþ 2

ðnþ 2Þ2 �m2

� 4ðnþ 1Þr2 �
ðnþmÞ2

n
�
ðn�mþ 2Þ2

nþ 2

� 	


� Rm
n ðrÞ �

n2 �m2

n
Rm

n�2ðrÞ

�
, ð11Þ

Rm
n ðrÞ þ Rmþ2

n ðrÞ ¼
1

nþ 1

d½Rmþ1
nþ1 ðrÞ � Rmþ1

n�1 ðrÞ�

dr
: ð12Þ

The recurrence procedure can be started using

Rm
mðrÞ ¼ rm. Ideally, a recurrence procedure should be

numerically stable and free of errors which propagate

and are magnified as the recurrence proceeds [16,17].

For the Zernike recurrence relation above it is found

that the recurrence procedure is not absolutely stable in

all cases and that, as m increases, small errors in high

order terms (m �410) can become magnified. Forbes

[18] has shown how to dramatically improve numerical

stability of the Zernike expansion to high order.

5. Relationship to other polynomial sequences

The relationship between the Zernike polynomials and

other polynomial sequences can be derived. Of partic-

ular importance is the formulation with respect to the

Bessel function, J,ð1
0

Rm
n ðrÞJmðxrÞr dr

¼ ð�1Þðn�mÞ=2
Jnþ1ðxÞ

x
,

where JmðxÞ ¼
X1
l¼0

ð�1Þl

22lþml!ðmþ 1Þ!
x2lþm, ð13Þ

which has applications in the Nijboer–Zernike theory

of diffraction and aberrations [7]. The relationship

between Zernike and Jacobi polynomials, P, is given

by [2, 4]:

Rm
n ðrÞ ¼ ð�1Þ

ðn�mÞ=2rmP
ðm,0Þ
ðn�mÞ=2ð1� r2Þ, ð14Þ

where

Pð�,�Þn ¼
1

2

Xn
m¼0

nþ �

m

� �
nþ �

n�m

� �
ðx� 1Þnðxþ 1Þm

ð15Þ

between Zernike and the hypergeometric function, F,

through:

Rm
n ðrÞ ¼ ð�1Þ

n�m
2

1
2 ðnþmÞ

m

 !
rm 2F1

�
nþmþ 2

2
, �

n�m

2
,mþ 1, r2

� �
, ð16Þ

where

2F1ða, b; c; xÞ 	
X1
n¼0

ðaÞnðbÞn
ðcÞn

xn

n!
ð17Þ

and, between Zernike and the Legendre polynomials,

P, through:

PnðrÞ ¼ 2�n
Xn=2
i¼0

ð�1Þi
n

i

� �
2n� 2i

n

� �
rn�2i, ð18Þ

where n is even.
The aberration of a general optical system with a

point object can also be represented by a wave

aberration polynomial of the form:

WðX,YÞ ¼W1 þW2XþW3YþW4X
2 þW5XY

þW6Y
2 þW7X

3 þW8X
2YþW9XY

2

þW10Y
3 þW11X

4 þW12X
3Yþ 
 
 
 ;

ð19Þ

here X and Y are co-ordinates in the entrance pupil.

This Taylor series can be represented very simply as:

WðX,YÞ ¼
Xn¼k
n¼0

Xm¼n
m¼0

Wnðnþ1Þ
2 þmþ1


 Xn�mYm : ð20Þ

Table 3. Relationship between single and double index
schemes to third order.

Radial
Angular frequency, m

order, n �3 �2 �1 0 1 2 3

0 j¼0
1 j¼1 j¼2
2 j¼3 j¼4 j¼5
3 j¼6 j¼7 j¼8 j¼9
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Any Zernike term can be expressed as a combination

of Taylor terms and vice versa. Malacara, for example,

provides the matrix transformation relations for con-

versions up to the 45th term [19].
The Zernike coefficients represent combinations of

primary (Seidel) and higher-order aberrations through

the expression [20,21]:

Cnm ¼
X
l¼n

X
k¼0

TnmklSkl, ð21Þ

where l � m is even,

Tnmkl ¼
ðnþ sÞl!22�l

ð1þ �m0Þð
lþm
2 Þ!ð

l�m
2 Þ!

�
Xðn�mÞ=2
s¼0

ð�1Þsðn� sÞ!

s!ðnþm2 � sÞ!ðn�m2 � sÞ!ðn� 2sþ kþ 2Þ

ð22Þ

and n � m must be even as well.
In addition, the other special functions can be

generated by performing a Gram–Schmidt orthogo-

nalization of a power series (see [2]; Table 4).

6. Wavefront error

A common metric of wavefront flatness for the

wavefront, W(r, �), defined in Equation (1) is the

RMS wavefront error, �, or wavefront variance, �2,

�¼RMSw¼
1

A

ð
pupil

ðWðx,yÞ�WÞ2 dxdy

� �1=2

, ð23aÞ

where A is the pupil area and W is the mean wavefront

optical path difference.
The wavefront error or variance can also be com-

puted from a vector of the Zernike amplitudes using:

� ¼
XN
j¼3

C2
j

 !1=2

, ð23bÞ

where the first few terms representing the

pseudo-aberrations of piston, tip and tilt are ignored.

7. Transformations of Zernike coefficients

The mathematical basis by which Zernike coefficients
can be transformed analytically with regard to con-
centric scaling, rotating and translating both circular
and elliptical pupils has been developed by several
groups [22–27]. Using the matrix method, the wave-
front can be expressed as an inner product of Zh j,
a row vector with the Zernike polynomials:

Zh j ¼ Z�nmax
nmax

Z
�ðnmax�1Þ
nmax�1

Z
�ðnmax�2Þ
nmax�2

Z�ðnmax�2Þ
nmax


 
 
 Znmax�2
nmax

���
�Znmax�1

nmax�1
Znmax

nmax

��� ð24Þ

and Cj i, a column vector with the corresponding
Zernike coefficients:

Cj i ¼

C�nmax
nmax

C
�ðnmax�1Þ
nmax�1

C
�ðnmax�2Þ
nmax�2

C�ðnmax�2Þ
nmax

..

.

Cnmax�2
nmax

Cnmax�1
nmax�1

Cnmax
nmax

�������������������������

�������������������������

ð25Þ

with a form comparable to Equation (1):

Wð	, �Þ ¼
X
n

X
m

cmn Z
m
n ð	, �Þ ¼ Zjch i, ð26Þ

where 0 � ð	 ¼ r=r0Þ � 1. In this formalism the
Zernike polynomials can be written as:

Zh j ¼ h	Mj ½�� ½R� ½N�, ð27Þ

where

	Mh j ¼ 	nmaxe�inmax� 	nmax � 1e�iðnmax�1Þ� 	nmax
�
� 2e�iðnmax�2Þ� 	nmaxe�iðnmax�2Þ� . . . 	nmaxeinmax�

�
,

ð28Þ

Table 4. Functions generated from Gram–Schmidt orthogonalization of a power series [2].

Functions Series Interval Weight Norm

Legendre f1, r, r2, r3, . . .g �1� r� 1 1 2/(2nþ1)
Shifted Legendre 00 0� r� 1 1 1/(2nþ1)
Chebyshev I 00 �1� r� 1 ð1� x2Þ�1=2 p=ð2� �n0Þ
Shifted Chebyshev I 00 0� r� 1 ½xð1� x2Þ��1=2 p=ð2� �n0Þ
Chebyshev II 00 �1� r� 1 ð1� x2Þ�1=2 
/2
Associated Laguerre 00 0� r51 rke�r ðnþ kÞ!=n!
Hermite 00 �15 r51 e�r2 2np1=2n!
Zernike radial frm, rmþ2, rmþ4, . . .g 0� r� 1 r 1/(2nþ2)
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R½ � ¼

R�nmax
nmax

0 0 0 
 
 
 0

0 R
�ðnmax�1Þ
nmax�1

0 0 
 
 
 0

0 0 R
�ðnmax�2Þ
nmax�2

0 
 
 
 0

0 0 0 R�ðnmax�2Þ
nmax


 
 
 0

..

. ..
. ..

. ..
. . .

. ..
.

0 0 0 0 
 
 
 Rnmax
nmax

2
6666666666664

3
7777777777775
,

ð29Þ

N½ � ¼

Rnmax
0 0 0 
 
 
 0

0 Rnmax�1
0 0 
 
 
 0

0 0 Rnmax�2
0 
 
 
 0

0 0 0 Rnmax

 
 
 0

..

. ..
. ..

. ..
. . .

. ..
.

0 0 0 0 
 
 
 Rnmax

2
66666666664

3
77777777775
ð30Þ

and [�] is the transformation matrix specific to the type
of transformation being considered. The conversion
matrix, [C], which yields the new set of Zernike
coefficients in terms of the original set is then given
by [28]:

C½ � ¼ N½ ��1 R½ ��1 �½ � R½ � N½ �: ð31Þ

7.1. Scaled pupil (see Figure 5(a))

For a change in the size of wavefront from r0 to rs as
depicted in Figure 5(a), the angular coordinate remains
unchanged with � ¼ �0 but the radial coordinate is

scaled by factor �s ¼ rs=r0 giving 	 ¼ �s	
0 and:

	 expði�Þ ¼ �s	
0 expði�0Þ: ð32Þ

This, in turn, changes the terms of 	Mh j by:

	n expðim�Þ ¼ �ns	
0n expðim�0Þ, ð33Þ

where �s is a diagonal matrix with elements �ns . An

example of this scaling matrix to third order is shown
below [27]:

½��s ¼

�3s 0 0 0 0 0 0 0 0 0

0 �2s 0 0 0 0 0 0 0 0

0 0 �s 0 0 0 0 0 0 0

0 0 0 �3s 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 �2s 0 0 0 0

0 0 0 0 0 0 �s 0 0 0

0 0 0 0 0 0 0 �3s 0 0

0 0 0 0 0 0 0 0 �2s 0

0 0 0 0 0 0 0 0 0 �3s

:

2
6666666666666666664

3
7777777777777777775

ð34Þ

7.2. Translated pupil (see Figure 5(b))

For a translation of this scaled wavefront by rt at angle
�t, as depicted in Figure 5(b), the translation transfor-
mation is described by factor �t ¼ rt=r0 which gives:

	 expði�Þ ¼ �s	
0 expði�0Þ þ �t expði�tÞ, ð35Þ

and after expansion and use of the binomial theorem:

	expðim�Þ ¼
1

2n

XðnþmÞ=2
p¼0

Xðn�mÞ=2
q¼0

nþm
2

p

� � n�m
2

q

� �

�ð�eþ1Þn�p�qðne�1Þpþq

�exp½i2ðp�qÞ�e�	
0n exp½iðm�2pþ2qÞ�0�:

ð36Þ

An example of this translation and scaling transfor-
mation matrix to third order is shown below [27]:

7.3. Rotated pupil (see Figure 5(c))

A rotation by �r, as depicted in Figure 5(c), gives:

	n expðim�Þ ¼ expðim�rÞ	
0n expðim�0Þ, ð38Þ

½��t ¼

�3s 0 0 0 0 0 0 0 0 0

3�2s�te
�i�t �2s 0 �2s�te

i�t 0 0 0 0 0

3�s�
2
t e
�i2�t 2�s�te

�i�t �s 2�s�
2
t 0 �s�te

i�t 0 �s�
2
t e

i2�t 0 0

0 0 0 �3s 0 0 0 0 0 0

�3t e
�3i�t �2t e

�2i�t �te
�i�t �3t e

�i�t 1 �2t �te
i�t �3t e

i�t �2t e
i2�t �3t e

i3�t

0 0 0 2�2s�te
�i�t 0 �2s 0 2�2s�te

i�t 0 0

0 0 0 �s�
2
t e
�2i�t 0 �s�te

�i�t �s 2�s�
2
t 2�s�te

i�t 3�s�
2
t e

i2�t

0 0 0 0 0 0 0 �3s 0 0

0 0 0 0 0 0 0 �2s�te
�i�t �2s 3�2s�te

i�t

0 0 0 0 0 0 0 0 0 �3s

:

2
6666666666666664

3
7777777777777775

ð37Þ
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with rotation transformation matrix example, to third
order, shown below:

½��r¼

e�i3�r 0 0 0 0 0 0 0 0 0

0 e�i2�r 0 0 0 0 0 0 0 0

0 0 e�i�r 0 0 0 0 0 0 0

0 0 0 e�i�r 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 ei�r 0 0 0

0 0 0 0 0 0 0 ei�r 0 0

0 0 0 0 0 0 0 0 ei2�r 0

0 0 0 0 0 0 0 0 0 ei3�r

2
666666666666666666664

3
777777777777777777775

:

ð39Þ

7.4. Elliptical pupil (see Figure 5(d))

As stated earlier, the Zernike polynomials are contin-
uous and orthogonal over a unit circle. When a

wavefront is measured off axis or with a pupil rotated

with respect to an axis orthogonal to the optical axis of

the system, the pupil projected onto a flat surface

(sensor) will be elliptical. In this case, the Zernike

polynomials and coefficients will describe a wavefront

extrapolated to areas for which there is no informa-

tion. The solution adopted [27,28] is to mathematically

stretch the elliptical wavefront into a circle, thus

correcting for the extrapolation. For the elliptical

pupil, shown in Figure 5(d ), this gives:

	n expðim�Þ ¼
1

2n

XðnþmÞ=2
p¼0

Xðn�mÞ=2
q¼0

nþm
2

p

� � n�m
2

q

� �

�ð�eþ1Þn�p�qð�e�1Þpþq

� exp½i2ðp�qÞ�e�	
0n exp½iðm�2pþ2qÞ�0�:

ð40Þ

A measurement of a model eye showing the impact on

the Zernike coefficients of using both a circular pupil

and elliptical pupil is shown in Figure 6 [29]. In this

Figure 5. Transformation types: (a) scaling of a circular pupil from r0 to rs. (b) Translation of circular pupil a distance rt at
angle �t. (c) Rotation of a circular pupil at angle �r. (d) Transformation for elliptical pupil with major radius rma, minor radius rmi

and rotation angle �e.
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example, the wavefront is measured with a circular

entrance pupil and an elliptical entrance pupil pro-

duced by rotating the circular aperture 40�. The long

axis of the ellipse is equal to the diameter of the

circular pupil. As expected, the change in pupil shape

does not impact the defocus term, whereas the unex-

pected discrepancies for primary astigmatism, vertical

coma and secondary astigmatism are thought to be a

result of some small, residual misalignment.

8. Primary aberrations

As noted earlier, the primary aberrations of ocular

prescriptions, (usually written as Sphere combined

with a cylindrical power and specifying the axis of the

cylinder) through a pupil of radius, r0, can be

computed from the Zernike amplitudes using:

cyl ¼ 2ðJ20 þ J245Þ
1=2, sphere ¼M�

cyl

2
,

axis ¼ � arctan
cyl=2þ J0

J45

� �
,

ð41Þ

where:

M ¼
�4ð31=2Þ

r20
C0

2, J0 ¼
�2ð61=2Þ

r20
C2

2,

J45 ¼
�2ð61=2Þ

r20
C�22 :

9. Zernike polynomials using Fourier transform

For large values of the radial order n, the conventional

representation of the radial function of the Zernike

polynomials given in Equation (3) can produce unac-

ceptable numerical results. In order to deal with this a

possible solution is to convert the Zernike coefficients

to a Fourier representation and do a numerical FFT

computation [30–32].
The wavefront can be expressed as:

Wðr, �Þ ¼
XN2�1

j¼0

aj ðk, ’Þ exp
2pi
N

k 
 r

� �
, ð42Þ

where k and r are the position vectors in polar

coordinates in the spatial and the frequency domains,

respectively, and N2 is the total number of wavefront

sampling points. The relationship between Zernike

coefficients and Fourier coefficients is then given by:

cj ¼
1

p

XN2�1

l¼0

al ðk, ’ÞU
�
j ðk, ’Þ, ð43Þ

where Uj is the Fourier transform of the Zernike

polynomials and given by:

Ujðk, ’Þ ¼

ðð
PðrÞZjðr, �Þ expð�2pik 
 rÞ dr

¼ ð�1Þn=2þ mj j
ðnþ 1Þ1=2

Jnþ1ð2pkÞ
k

�

21=2 cos mj j�

1

21=2 sin mj j�

ðm4 0Þ

ðm ¼ 0Þ

ðm5 0Þ ð44Þ

and Jn is the nth-order Bessel function of the first kind.

Figure 6. (a) A measurement of an aberrated wavefront with
a circular pupil and an elliptical pupil overlayed by the
dashed line. (b) The measured wavefront from the elliptical
aperture. (c) The change in the first 28 Zernike coefficients
(up to six orders) as a result of the change in pupil shape [27].
(The color version of this figure is included in the online
version of the journal.)
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Fourier full reconstruction has been demonstrated
to be more accurate than Zernike reconstruction from
sixth to tenth order for random wavefront images with
low to moderate noise levels [33]. However, experi-
mentally, Zernike-based reconstruction algorithms
have been found to outperform Fourier wavefront
reconstruction to fifth order, in terms of the residual
RMS error [34]. See [13] regarding numerical stability.

10. Zernike annular polynomials

For a unit annulus with obscuration ratio �, shown in
Figure 7(a), the wavefunction in Equation (1) can be
expanded in terms of this additional variable [35]:

Wðr, �; �Þ ¼
X
n,m

Cm
n Z

m
n ðr, �; �Þ, ð45Þ

where � � r � 1 and 0 � � � 2p. The orthogonality
condition of the radial polynomial sequence for an
annulus is then given by:ð1

�

Rm
n ðr; �ÞR

m
n0 ðr; �Þr dr ¼

1� �2

2ðnþ 1Þ
�nn0 : ð46Þ

The annular polynomials, obtained from the circle
polynomials using the Gram–Schmidt orthogonaliza-
tion process, differ only in their normalization and that
they are orthogonal over an annulus, not a circle.
Comparing the m¼ 0, angularly independent, radial
functions for circular and annular Zernike polynomials
(Figure 7(b) and (c)) clearly shows the similarities and
radial extent.

11. Gram–Schmidt orthogonalization for apertures

of arbitrary shape

An aperture of arbitrary shape can have an orthonor-
mal basis set that is generated from the circular
Zernike polynomials apodized by a mask using the
Gram–Schmidt orthogonalization technique [20,36].
In general, orthogonality is defined with respect to the
inner product:

f, g
� 

¼

Ð
dr f ðrÞ gðrÞHðrÞÐ

drHðrÞ
, ð47Þ

where H is a zero-one valued function that defines the
aperture. For a basis of arbitrary shape defined by the
vectors fV1 . . . Vng, Gram–Schmidt orthogonalization
is represented by:

V0n ¼ Zn þ
Xn�1
m¼1

D0nmVm, ð48Þ

where fV01 . . . V0ng are the set of orthonogonal but
not orthonormal vectors of the arbitrary shape

(hence Vn ¼ V0n=jjV
0
njj) and fZ1 . . .Zng is the circular

Zernike basis. For an orthogonal basis set, D0nm can be

calculated and shown to be given by:

D0nm ¼ � Zn,Vmh i ð49Þ

Figure 7. (a) Diagram of annular pupil. (b) The Zernike
circle radial polynomial for m¼ 0, n¼ 2, 4, 6, 8. (c) The
Zernike annular radial polynomial with �¼ 0.5, m¼ 0, n¼ 2,
4, 6, 8 [6].
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for each m5 n. Expressing the new basis fV1 . . . Vng in

terms of the circular Zernike polynomials then gives:

Vi ¼
Xn
m¼1

CimZm, ð50Þ

where C is the transformation matrix.

12. Conclusions

The Zernike polynomials are very well suited for

mathematically describing wavefronts or the optical

path differences of systems with circular pupils. The

Zernike polynomials form a complete basis set of

functions that are orthogonal over a circle of unit

radius. In this paper, the most important properties of

the Zernike polynomials have been reviewed including

the generating functions of the Zernike polynomials,

relationships to other polynomial sets, the orthonorm-

ality conditions as well as transformations. It is meant

to constitute a reasonable introduction into this

exceptionally useful polynomial set with figures that

have been combined from multiple sources to provide a

useful resource. No detailed comparisons with alter-

native methods of describing wavefronts have been

included nor has any discussion of various methods of

wavefront measurement. A comprehensive introduc-

tion to these topics is provided by Tyson [37].
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Appendix 1. Mathematica code

1. Code to generate table of Zernike polynomials (note that the indexing scheme is slightly different – the TableForm command,

shown below, in either polar or Cartesian coordinates shows the indexing scheme) [37]

(a) For table in polar coordinates:

(b) For table in Cartesian coordinates:

2. For a cylindrical plot:

3. For wavefront aberrations:
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4. For concentric scaling:

From:
http://demonstrations.wolfram.com/ZernikeCoefficientsForConcentricCircularScaledPupils/
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5. For conversion of Zernike coefficients for scaled, translated or rotated pupils [27] corresponding to the coordinate system

depicted in Figure 5:
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6. For interactive display and plotting including annular pupils:
http://demonstrations.wolfram.com/ZernikePolynomialsAndOpticalAberration/
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