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Primary and Derived Quantities and their Relationships

Primary quantities
geometry (point, line,
length, . . . )
time
force (typically static and
dynamic)
mass
temperature
body

Derived quantities
velocity, acceleration
work

Two kinds of equations
applicable to all bodies (balance
equations)

geometric balance, or congruence
mechanical balance, or equilibrium
thermal balance (OT)

describing the particular essence of
bodies (constitutive equations, e.g.
f = kδ)

Both kinds are usually differential equations
they are to be carefully written
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Assumptions
The Continuous Model

Objection

As the body is builds of atoms or
particles it isn’t regular

Answer

Only the continuous model can solve
systematically the problem

Moreover, the continuous model [1], [2]:

can separate the mechanical effects from other effects (e.g. magnetic, thermal)
gives good results at a macroscopic level
uses the classical differential/integral calculus
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Definitions

Definition (Configuration)
The place of a body in a 3D
space

Definition (Deformation state)
X ∈ V → X? ∈ V ? according to
Eq. 1

x1 = x1 (X1, X2, X3)
x2 = x2 (X1, X2, X3)
x3 = x3 (X1, X2, X3)

(1)

Figure 1 Credits: Wikipedia
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Assumptions and Restrictions

Fact
The functions must be sufficiently regular, i.e. must be
continuous along with their partial derivatives, so that
e.g. no break is allowed.

Fact
Eq. 1 must be locally invertible (Eq. 2)  3D→ 2D
isn’t allowed.

Fact
The deformations
u1 = x1 −X1, u2 = x2 −X2, u3 = x3 −X3 must be
small, i.e. ∂u1

∂X1
,
∂u2

∂X1
, . . . ,

∂u3

∂X3
� 1, so that the linear

classic theory is applicable.

J =

∣∣∣∣∣∣∣∣∣∣∣∣

∂x1

∂X1

∂x1

∂X2

∂x1

∂X3

∂x2

∂X1

∂x2

∂X2

∂x2

∂X3

∂x3

∂X1

∂x3

∂X2

∂x3

∂X3

∣∣∣∣∣∣∣∣∣∣∣∣
6= 0 (2)
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From Motion to Deformation I

Definition
As stresses depend on deformations instead of motions, we focus on the gradient of
the deformation (Eq. 3)

F =



∂x1
∂X1

∂x1
∂X2

∂x1
∂X3

∂x2
∂X1

∂x2
∂X2

∂x2
∂X3

∂x3
∂X1

∂x3
∂X2

∂x3
∂X3


(3)

Defining P ′ = X1 + dX1, X2 + dX2, X3 + dX3 and P ′? = x1 + dx1, x2 + dx2, x3 + dx3
as two points in the undeformed and deformed states, respectively, we want to
calculate

−−−→
P ?P ′

? = [dx1; dx2; dx3] as a function of
−−→
PP ′ = [dX1; dX2; dX3]
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From Motion to Deformation II

Recalling Eq. 1 we have:

dx1 = ∂x1
∂X1

dX1 + ∂x1
∂X2

dX2 + ∂x1
∂X3

dX3

dx2 = ∂x2
∂X1

dX1 + ∂x2
∂X2

dX2 + ∂x2
∂X3

dX3 (4)

dx3 = ∂x3
∂X1

dX1 + ∂x3
∂X2

dX2 + ∂x3
∂X3

dX3

or, because of Eq. 3:
−→
dx = F

−→
dX (5)
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An Example I

Example
What if x1 = aX2

1 + bX2, x2 = aX2, x3 = aX3?
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An Example II

From Eq. 4:

dx1 = 2aX1dX1 + b dX2

dx2 = a dX2 (6)
dx3 = a dX3

Fulfills the requests?
is regular because is continuous with its derivatives
is locally invertible (Eq. 2) if |J | = 2a3X1 6= 0, i.e. if a 6= 0 and X1 6= 0
produces small deformations if a� 1
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An Example III

Let’s compute
∣∣∣∣−−−→P ?P ′

?

∣∣∣∣2 = f

(∣∣∣−−→PP ′∣∣∣2)

∣∣∣−−→PP ′∣∣∣2 =dX2
1 + dX2

2 + dX2
3 ,

∣∣∣∣−−−−→P ?P ′
?

∣∣∣∣2 =
(
∂x1

∂X1
dX1 + . . .

)2
+
(
∂x2

∂X1
dX1 + . . .

)2
+
(
∂x3

∂X1
dX1 + . . .

)2

⇓∣∣∣∣−−−→P ?P ′
?
∣∣∣∣2 =

3∑
i,j,r=1

∂xr
∂Xi

∂xr
∂Xj

dXidXj (7)

Eq. 6 gives dx2
1 + dx2

2 + dx2
3 = 4a2dX2

1 + 4ab2dX1dX2 + b2dX2
2 + a2dX2

2 + a2dX2
3
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The Deformation Symmetry I
Recalling the displacement definition u1 = x1 −X1, u2 = x2 −X2, u3 = x3 −X3,
Eq. 7 becomes∣∣∣∣−−−→P ?P ′

?
∣∣∣∣2 =

3∑
i,j,r=1

(
∂Xr

∂Xi
+ ∂ur
∂Xi

)(
∂Xr

∂Xj
+ ∂ur
∂Xj

)
dXidXj (8)

or, neglecting the second order terms ∂ur
∂Xi

∂ur
∂Xj

and defining

δij = 1 if i = j, δij = 0 if i 6= j:

∣∣∣∣−−−→P ?P ′
?
∣∣∣∣2 =

3∑
r=1

dxrdxr =
3∑

i,j=1

(
δij + ∂ui

∂Xj
+ ∂uj
∂Xi

)
dXidXj (9)

where δijdXidXj = dX2
1 + dX2

2 + dX2
3 =

∣∣∣∣−−→PP ′∣∣∣∣2.
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The Deformation Symmetry II

Theorem

Eq. 9 defines the length of
−−−→
P ?P ′

? in terms of
−−→
PP ′. Such variations depend only on

the symmetric components ∂ui
∂Xj

+ ∂uj
∂Xi

, defined as 2εij = 2εji  the symmetric

tensor ε completely defines the deformations.
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The Physical Meaning of ε I

Example
If PP ′ ‖ X1 and P = [0; 0; 0], from Eqs. 7 and 9, as |PP ′|2 = dX2

1 , we have:
|P ?P ′

?

|2 =
[(

1 + ∂u1

∂X1

)2
+
(
∂u2

∂X1

)2
+
(
∂u3

∂X1

)2
]
dX2

1 ≈
[
1 + 2 ∂u1

∂X1

]
dX2

1

|P ?P ′
?

| =
√

1 + 2 ∂u1

∂X1
dX1 ≈

(
1 + ∂u1

∂X1

)
dX1 = (1 + ε11) dX1

Fact
εii (i = 1, 2, 3) gives length variations of elements parallel to axes.
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The Physical Meaning of ε II

Example
If PP ′ ‖ X1, PP ′′ ‖ X2, and P = [0; 0; 0], we have:
|PP ′| =

[(
1 + ∂u1

∂X1

)
dX1; ∂u2

∂X1
dX1; ∂u3

∂X1
dX1

]
|PP ′′| =

[
∂u1

∂X2
dX2;

(
1 + ∂u2

∂X2

)
dX2; ∂u3

∂X2
dX2

]
cos(γ?) =

−−→
PP ′ · P

−→
P ′′

|PP ′||PP ′′| =

(
∂u1
∂X2

+ ∂u2
∂X1

+ . . .
)
dX1dX2

(1 + ε11) dX1 (1 + ε22) dX2
≈ 2ε12

Fact
εij (i = 1, 2, 3) gives angular variations of elements parallel to axes.
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The Physical Meaning of ε III
Example

If
−−→
PP ′ = [dX1; 0; 0],

−−→
PP ′′ = [0; dX2; 0] and P = [0; 0; 0], the undeformed area dA = dX1dX2 and

the deformed area dA? =
−−−−→
P ?P ′

?

×
−−−−→
P ?P ′′

?

, by dropping the infinitesimal terms of higher order, are
related by dA? = dA(1 + ε11 + ε22).

Fact
ε11 + ε22, ε22 + ε33, and ε11 + ε33 give the coefficients of surface expansion.

Example

If
−−→
PP ′ = [dX1; 0; 0],

−−→
PP ′′ = [0; dX2; 0],

−−−→
PP ′′′ = [0; 0; dX3], and P = [0; 0; 0], the undeformed

volume dV = dX1dX2dX3 and the deformed volume dV ? = |
−−−−→
P ?P ′

?

||
−−−−→
P ?P ′′

?

||
−−−−−→
P ?P ′′′

?

|, by dropping
the infinitesimal terms of higher order, are related by dV ? = dV (1 + ε11 + ε22 + ε33).

Fact
ε11 + ε22 + ε33 gives the coefficient of volume expansion.
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Principal Strains

Problem
What if the axes are rotated?

If u3 = 0 u1 = u1n11 + u2n12 and ε′11 = ∂u′1
∂x1

∂x1

∂x′1
+ ∂u′1
∂x2

∂x2

∂x′1
= ∂u′1
∂x1

n11 + ∂u′1
∂x2

n21.

In the most general case we have u′h =
3∑
i=1

ui nih and ε′hk =
3∑

i,j=1
εi,j nih nik.

Is there any direction along which the deformation is maximum?

Theorem
∃ 3 axes X?

1 , X
?
2 , X

?
3 , mutually orthogonal, along which the deformation tensor is diagonal,

according to Eq. 10. They are computed by solving det|ε− λ I| = 0.

ε? =

[
ε?

11 0 0
0 ε?

22 0
0 0 ε?

33

]
(10)
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The Congruence Equation
u1 = u u2 = v u3 = w u = [u; v;w] X1 = x X2 = y X3 = z

εxx = ∂u

∂x

εyy = ∂v

∂y

εzz = ∂w

∂z

εxy = εxy = 1
2

(
∂u

∂y
+ ∂v

∂x

)
= γxy

2

εxz = εxz = 1
2

(
∂u

∂z
+ ∂w

∂x

)
= γxz

2

εyz = εyz = 1
2

(
∂v

∂z
+ ∂w

∂y

)
= γyz

2

(11)



εxx

εyy

εzz

γxy

γxz

γyz


=



∂

∂x
0 0

0 ∂

∂y
0

0 0 ∂

∂z

∂

∂y

∂

∂x
0

∂

∂z
0 ∂

∂x

0 ∂

∂z

∂

∂y




u

v

w

 (12)

ε = 1
2
(
(∇u) + (∇u)T

)
(13)

20/136



Introduction Deformation Analysis Stress Analysis Constitutive Relationships The Virtual Work Principle Theory of Beams Theory of Beam Assemblies Theory of Plates Finite Element Method

Outline

1 Introduction
2 Deformation Analysis
3 Stress Analysis
4 Constitutive Relationships
5 The Virtual Work Principle
6 Theory of Beams

Tension/Compression
Bending
Torsion
Shear

7 Theory of Beam Assemblies
8 Theory of Plates

Flat Tick Rectangular Plates
Flat Thin Rectangular Plates
Flat Circular Plates

9 Finite Element Method
Introduction
Element Stiffness Matrix
Global Stiffness Matrix

21/136



Introduction Deformation Analysis Stress Analysis Constitutive Relationships The Virtual Work Principle Theory of Beams Theory of Beam Assemblies Theory of Plates Finite Element Method

Force Classification
Basic Definitions

Forces are basic quantities, defined by vectors, classified as
external (known)

1 contact-less forces (e.g. gravitational, magnetic) [N ×m−3]
2 contact forces [N ×m−2]

internal (unknown)
3 contact-less forces [N ×m−3]
4 contact forces [N ×m−2]

Problem
As forces # 3 are mostly negligible, the core problem of continuum mechanics is
computing forces # 4 as a function of the given external forces # 1 and # 2.

Assumption
As we assume small displacement and deformations, all the upcoming

computations are carried out in the undeformed configuration.
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The Basic Assumptions

In order to characterize the internal contact forces, we need to define the
equilibrium with the following assumptions

Euler’s principle
An arbitrary subset V ′ of the volume V can be independently analyzed provided

that all the forces applied by V − V ′ on V ′ are considered.

Cauchy’s principle
1 Internal contact forces are pressures.
2 The contact pressure ~t depends only on the point coordinates and the normal
~n, i.e. ~t = ~t (X1, X2, X3, ~n).
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Cauchy’s Theorem

Theorem
If all kinds of forces are equilibrated, ~t depends linearly on ~n, according to t = σn
in Eq. 14, where σ11, σ12, . . . , σ33 are suitable coefficients.

t1 = σ11 n1 + σ12 n2 + σ13 n3

t2 = σ21 n1 + σ22 n2 + σ23 n3 (14)
t3 = σ31 n1 + σ32 n2 + σ33 n3
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Cauchy’s Theorem Consequences: the Translational Equilibrium I

As, given σ11, σ12, . . . , σ33, ∀P ∈ V , ~t can be calculated, we must relate σij with
the (known) data: the surface forces Fk and the volume fk.
In a volume V ′ bounded by the surface S′ the translational equilibrium equation is∫
S′
~t dS +

∫
V ′
~f dV = 0, which, according to Cauchy (Eq. 14), can be expressed as

∫
S′

(σ11n1 + σ12n2 + σ13n3) dS +
∫
V ′
f1dV = 0∫

S′
(σ21n1 + σ22n2 + σ23n3) dS +

∫
V ′
f2dV = 0 (15)∫

S′
(σ31n1 + σ32n2 + σ33n3) dS +

∫
V ′
f3dV = 0
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Cauchy’s Theorem Consequences: the Translational Equilibrium II

According to Gauss’s theorem,
∫
V

(∇ ·G)dV =
∮
S

(G · n)dS, Eq. 15 can be
rewritten as ∫

V ′

(
∂σ11
∂X1

+ ∂σ12
∂X2

+ ∂σ13
∂X3

+ f1

)
dV = 0∫

V ′

(
∂σ21
∂X1

+ ∂σ22
∂X2

+ ∂σ23
∂X3

+ f2

)
dV = 0 (16)∫

V ′

(
∂σ31
∂X1

+ ∂σ32
∂X2

+ ∂σ33
∂X3

+ f3

)
dV = 0

As V ′ is arbitrary, Eq. 16 is satisfied if the integrands of the integrals are null, i.e.:

3∑
i=1

∂σij
∂Xi

+ fj = 0 ; (i = 1, 2, 3) (17)
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Cauchy’s Theorem Consequences: the Rotational Equilibrium
In a volume V ′ bounded by the surface S′ the rotational equilibrium equation is∫

S′

−−→
OP ′ × ~t dS +

∫
V ′

−−→
OP × ~f dV = 0, which, according to Cauchy (Eq. 14), can be expressed as∫

S

[
x′2(n1σ31 + n2σ32 + n3σ33)− x′3(n1σ21 + n2σ22 + n3σ23)

]
dS +

∫
V

(f3X2 − f2X3) dV∫
S

[
x′3(n1σ11 + n2σ12 + n3σ13)− x′1(n1σ31 + n2σ32 + n3σ33)

]
dS +

∫
V

(f1X3 − f3X1) dV∫
S

[
x′1(n1σ21 + n2σ22 + n3σ23)− x′2(n1σ11 + n2σ12 + n3σ13)

]
dS +

∫
V

(f2X1 − f1X2) dV

(18)

Applying the Gauss theorem to Eq. 18, substituting Eq. 17, and developing the integral
calculation, yields, because of the arbitrarity of V :

σ12 = σ21, σ13 = σ31, σ23 = σ32  σij = σji (19)

Fact
According to the translational and rotational equilibrium equations, the stress state in a point is
completely defined by the 6 quantities σ11, σ22, σ33, σ12, σ13, andσ23  σ in Eq. 14 is symmetric.
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Cauchy’s Theorem Outcome

Fact

analogy to 1
2

(
∂ui
∂Xj

+ ∂uj
∂Xi

)
Cauchy’s equations are valid for fi
continuous as well for ∂σij

∂Xi
continuous

fi include the inertia forces

Theorem
As with the deformation ten-
sor, ∃ 3 axes X?

1 , X
?
2 , X

?
3 , mutu-

ally orthogonal, along which the
stress tensor is diagonal (Eq. 20).
They are computed by solving
det|σ − λ I| = 0.

σ? =

σ?11 0 0
0 σ?22 0
0 0 σ?33

 (20)
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Do We Need More Equations? I

The problem statement

data
~f in V : body forces
~F in S2: surface forces
~̂u in S1: surface displacements

unknowns
~u in V : volume displacements
εij in V : volume deformations
σij in V : volume stresses

available equations (field equations)

εij = 1
2

(
∂ui
∂Xj

+ ∂uj
∂Xi

)
in V

3∑
i=1

= ∂σij
∂Xi

+ fi = 0 in V

boundary conditions (needed to
solve the PDE)

~ui = ~̂ui in S1
ti = Fi in S2
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Do We Need More Equations? II

The general solution

Problem
3 ~u+ 6 εij + 6σij = 15 unknowns
6 εij + 3σij = 9 equations
The problem isn’t solvable, unless we introduce further equations, able to link σij
with the kinematic variables.

Fact
We define as constitutive relationship an equation able to connect σij with dis-
placements, deformations, coordinates, and time (displacements and deformations
depend on the history of the material, like fatigue and work-hardening), i.e.:
σij = f (u1(τ), u2(τ), u3(τ), εij(τ), X1, X2, X3, t).
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Do We Need More Equations? III

Assumptions and restrictions

The 3 axioms (Noll, 1954)

determinism the stress state of P at t is affected only by the motion history of all the points of
the body for −∞ < τ < t

local action the motion history of points at finite distances from P doesn’t affect the
constitutive relationship of P

material regardlessness the material response isn’t affected by the coordinate system, i.e. the
constitutive relationships don’t depend on rigid rotations of the coordinate system

The 2 experimental deductions
t isn’t an explicit variable
elastic materials1: σij = f (εij , X1, X2, X3)

1 Structural materials are mostly elastic; besides, many materials behave elastically if smoothly
loaded.
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A First Class of Materials I

The Cauchy’s definition

A further simplification derives from assuming a linear σ−ε relationship (Cauchy,
1829), with the 36 constants cijkl in Eq. 21, so that σij = cijklεkl. Such constants
are in principle dependent only on Xh and are with a good level of approximation
not dependent of the time derivative of load/unload.

σ11
σ22
σ33
σ12
σ23
σ31


=



c1111 c1122 . . .
...
... . . .
...

c3111 . . . c3131





ε11
ε22
ε33
ε12
ε23
ε31


(21)
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A First Class of Materials II

A subset of Cauchy’s definition

Additionally simplifying:

if ∂cijkl
∂Xh

= 0 the material is homogeneous

given a coordinate system,
if u1 6= 0 andu2 = u3 = 0, so that ∂u1

∂X1
6= 0  σ11 = c1111ε11,

if u2 6= 0 andu1 = u3 = 0, so that ∂u2
∂X2

6= 0  σ22 = c2222ε22,
and so on.
Thus, generalizing, we have only 4 constants, i.e. the material is isotropic.
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A Second Class of Materials I

Some energy considerations

The energy balance equation in a body of volume V , subject to a body force f and
a surface force F in a given coordinate system, is

d

dt

∫
V

(W +K) dV =
∫
V

∑
j

fj u̇j dV +
∫
S
Fj u̇j dS +

∫
V
QdV (22)

where W , K, and Q are the internal, kinetic, and heat energies, respectively. If the
displacements are small (i.e. V doesn’t change), considering Eq. 17, Eq. 22 becomes

∫
V

(Ẇ + K̇) dV =
∫
V

∑
j

(
−
∑
i

∂σij
∂Xi

u̇j

)
dV +

∫
S
Fj u̇j dS +

∫
V
QdV (23)
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A Second Class of Materials II

Simplifying the energy equations

According to Gauss’s theorem, because, from Eq. 14,∫
S

∑
j

(−σijni) u̇j dS =
∫
S

∑
j

Fj u̇j dS, naming ρ the material density, Eq. 22

becomes ∫
V

(Ẇ + ρ
∑
j

u̇j üj) dV =
∫
V

∑
ij

(
∂σij
∂Xi

u̇j

)
dV +

∫
V
QdV (24)

If the process is slow (u̇ ≈ 0) and adiabatic (Q = 0), recalling that εij = ∂uj
∂Xi

,
Eq. 24 gives ∫

V
Ẇ dV =

∫
V

∑
ij

σij ε̇ij dV (25)
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A Second Class of Materials III
The Green’s materials

Supposing W = W (εij), we have Ẇ = ∂W

∂ε11
ε̇11 + ∂W

∂ε22
ε̇22 + . . .+ ∂W

∂ε23
ε̇23, and,

from Eq. 25,∫
V

[(
∂W

∂ε11
− σ11

)
ε̇11 +

(
∂W

∂ε22
− σ22

)
ε̇22 + . . .+

(
∂W

∂ε23
− σ23

)
ε̇23

]
dV = 0 (26)

As V in Eq. 26 is arbitrary and if ε11 6= 0, ε22, . . . , ε23 = 0 σ11 = ∂W

∂ε11
, we have

σ11 = ∂W

∂ε11
, σ22 = ∂W

∂ε22
, . . . , σ23 = 1

2

(
∂W

∂ε23
+ ∂W

∂ε32

)
, . . . (27)

Fact
W is a potential function of σij.
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Comparing Cauchy’s and Green’s Materials I

As Cauchy’s materials are linear, according to σij = cijhkεhk, and Green’s
materials depend on the potential W , according to Eq. 27, we can state:

Fact (a Green’s material is also a Cauchy’s material if)
W is a quadratic function of εij
cijhk = chkij

2

2 because ∂σ11

∂ε22
= ∂2W

∂ε22∂ε11
= ∂2W

∂ε11∂ε22
= ∂σ22

∂ε11
, where the first term is c1122 and the last term is

c2211.

38/136



Introduction Deformation Analysis Stress Analysis Constitutive Relationships The Virtual Work Principle Theory of Beams Theory of Beam Assemblies Theory of Plates Finite Element Method

Comparing Cauchy’s and Green’s Materials II

If a material is homogeneous and isotropic

homogeneous W doesn’t depend on Xi

isotropic W depends only on the three invariants of the deformation3:
I = ε11 + ε22 + ε33
II = ε11ε22 + ε22ε33 + ε11ε33 − ε2

12 − ε2
13 − ε2

23
III = det ε

Fact (homogeneous and isotropic materials)
Cauchy’s material ∩ Green’s material  W = W (I, II, III), i.e., excluding
non-rational forms and the cubic term III,
W = A(ε11 + ε22 + ε33)2 + B

2 (ε11ε22 + ε22ε33 + ε11ε33 − ε2
12 − ε2

13 − ε2
23).

3Analytically, I, II, and III don’t depend on the axis directions, but only on the coordinates of
the point.
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The Constitutive Relationship I
As a consequence, because of Eq. 27, the explicit form of the constitutive relationship is

σ11 = 2A(ε11 + ε22 + ε33) +B(ε22 + ε33)
σ22 = 2A(ε11 + ε22 + ε33) +B(ε11 + ε33)
σ33 = 2A(ε11 + ε22 + ε33) +B(ε11 + ε22)

σ12 = −Bε12

σ13 = −Bε13

σ23 = −Bε23

(28)

Naming µ = −B2 and λ = 2A+B, Eq. 28 may be rewritten in the compact form4

σij = 2µεij + δijλ (ε11 + ε22 + ε33) (29)

Inverting the Lamé equations (Eq. 29) gives:
4 Eq. 29 is matricially expressed as σ = λtr(ε)I + 2µε.
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The Constitutive Relationship II

ε12 = 1
2µσ12

ε13 = 1
2µσ13

ε23 = 1
2µσ23

ε11 = 1
2µ

[
σ11 −

λ

2µ+ 3λ (σ11 + σ22 + σ33)
]

ε22 = 1
2µ

[
σ22 −

λ

2µ+ 3λ (σ11 + σ22 + σ33)
]

ε33 = 1
2µ

[
σ33 −

λ

2µ+ 3λ (σ11 + σ22 + σ33)
]

(30)
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The Constitutive Relationship III

Naming

E = µ(2µ+ 3λ)
µ+ λ

(Young’s modulus)

ν = λ

2(µ+ λ) (Poisson’s modulus)

G = µ = E

2(1 + ν) (Shear modulus)

Eq. 30 gives Eq. 31

ε12 = 1
2Gσ12

ε13 = 1
2Gσ13

ε23 = 1
2Gσ23

ε11 = 1
E

[σ11 − ν (σ22 + σ33)]

ε22 = 1
E

[σ22 − ν (σ11 + σ33)]

ε33 = 1
E

[σ33 − ν (σ11 + σ22)]

(31)
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The Constitutive Relationship IV

Fact (The physical meaning of µ and λ)
The Lamé equations are invertible only if µ 6= 0 and 2µ+ 3λ 6= 0. Such a condition
comes from the experience — there isn’t any material which exhibits µ ≤ 0 and
2µ+ 3λ ≤ 0.

Fact (The physical meaning of ν and E)
In a straight bar A × h subject to F = pA, σ11 = . . . σ23 = 0 and σ33 = p. Thus,
ε33 = p

E
and ε11 = ε22 = −ν p

E
.
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Solving the Problem I
The Necessary and the Sufficient Condition

Problem
Given the body forces ~f in V , the surface forces ~F in S2, and the surface
displacements ~̂u in S1, find the 15 unknowns ui, σij , and εij.

6 congruence equations εij = 1
2

(
∂ui
∂Xj

∂uj
∂Xi

)
in V

3 Cauchy’s equations
3∑
j

= ∂σij
∂Xj

+ fi in V + BC

6 constitutive equations σij = 2µεij + δijλ (ε11 + ε22 + ε33) in V + BC

Fact
Although there are mathematical proofs that the system of 15 linear equations with
15 unknowns has a unique solution, we can further simplify the problem.
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Solving the Problem II
The Necessary and the Sufficient Condition

The solutions must:
exist (x=1 and 2x=1 isn’t allowed)
be unique (x+y=1 isn’t allowed)
be stable (small data perturbations  small result perturbations)
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The Virtual Work Principle

Theorem (VW)
Given a body of volume V subject to a body force fi, on which boundary S the
forces Fi are applied, if fi, Fi, and σij are equilibrated, i.e. Cauchy’s equations are
satisfied, the internal work Wi and the external work We are equal, provided that the

displacement field u?i is regular, |u?i | � D, and
∣∣∣∣∣ ∂u?i∂Xj

∣∣∣∣∣ � 1, as stated in Eq. 325,

where ε?ij = 1
2

(
∂u?i
∂Xj

+
∂u?j
∂Xi

)
.

Wi =
∫
V

∑
i,j

σijε
?
ij dV =

∫
V

∑
i

fi u
?
i dV +

∫
S

∑
i

Fi u
?
i dS = We (32)

5 See Appendix 10 for a demonstration of Eq. 32 and a relevant consequence.
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Consequences of the Virtual Work Principle

Fact
As any constitutive relationship is involved in the VW principle, it is valid also for
non-elastic bodies.

Lemma (Clapeyron’s Theorem)
If V is an elastic body according to Lamé and u?i = ui, ε

?
ij = εij, with ui small, as

1
2

∫
V

∑
ij

εijσij dV =
∫
V
W dV because of Eq. 27, the external work is equal to two

times the internal energy.

Lemma (Betti’s Theorem)
In a linear elastic body subject to two sets of forces f ′i , F ′i and f ′′i , F ′′i , the work done
by the first set through the displacements produced by the second set is equal to the
work done by the second set through the displacements produced by the first set.
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The Basic Assumptions
Geometrical and Physical Constraints

The beam theory (A. de Saint-Venant, 1855) deals with prismatic bodies,
on which we make the following assumptions

geometrical
slender prismatic bodies (D � l)
closed ( Appendix 14 ) cross sections

static
body force = 0
surface forces only at ends
translational and rotational equilibrium

constitutive: material isotropic and homogeneous according to Lamé
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The Axial Problem I

The data

Figure 2
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The Axial Problem II

The data

We choose X2 ‖ Z (the axis of the cylindrical body passing through the
cross-section centroid), and X1 and X2 as −x and y (the principal axes of the cross
section, Fig. 2), respectively, and naming −u1 ≡ u, u2 ≡ v, u3 ≡ w. Besides the
constitutive and congruence equations, we have the equations Eq. 33 in V with the
boundary conditions of Eq. 34 in S1 (the lateral surfaces) and Eq. 35 in S2 (the
bases), where ~n = [nx;ny; 0] and ~n = [0; 0; 1], respectively.

∂σxx

∂x
+ ∂σxy

∂y
+ ∂σxz

∂z
= 0

∂σyx

∂x
+ ∂σyy

∂y
+ ∂σyz

∂z
= 0

∂σzx

∂x
+ ∂σzy

∂y
+ ∂σzz

∂z
= 0

(33)
σxxnx + σxyny = 0
σxynx + σyyny = 0
σxznx + σzyny = 0

(34)
σzx = 0
σzy = 0
σzz = p

(35)
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The Axial Problem III
The solution

The heuristic solution

σxx = σyy = σxy = σxz + σyz = 0, σzz = p

fulfills the boundary conditions and the Eq. 33, and is unique. Moreover, according
to the Lamé equations (Eq. 30), we have

εxy = εxz = εyz = 0, εxx = εyy = −ν σzz
E
, εzz = σzz

E

Fact (De Saint-Venant Principle)
“The difference between the effects of two different but statically equivalent loads
becomes very small at sufficiently large distances from load” [1], i.e. the solution is
valid if

∫
A
p dA = N = pA @ z > D.
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The Bending Problem I
The Data

The data

Figure 3
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The Bending Problem II
The Data

The data
If Fx = Fy = 0 and Fz = b′y, with b′ = const (Fig. 3), the bending moment Mx

is defined as
∫
A
Fzy dA = b′Jx, as

∫
A
y2 dA = Jx, so that b′ = Mx

Jx
. Besides the

constitutive and congruence equations, we have the equations Eq. 36 in V with the
boundary conditions of Eq. 37 in S1 (the lateral surfaces) and Eq. 38 in S2 (the
bases), where ~n = [nx;ny; 0] and ~n = [0; 0; 1], respectively.

∂σxx

∂x
+ ∂σxy

∂y
+ ∂σxz

∂z
=0

∂σyx

∂x
+ ∂σyy

∂y
+ ∂σyz

∂z
=0

∂σzx

∂x
+ ∂σzy

∂y
+ ∂σzz

∂z
=0

(36)
σxxnx+σxyny =0
σxynx+σyyny =0
σxznx+σzyny =0

(37)

σzx =Fx =0
σzy =Fy =0

σzz =Fz = Mx

Jx
y

(38)

57/136



Introduction Deformation Analysis Stress Analysis Constitutive Relationships The Virtual Work Principle Theory of Beams Theory of Beam Assemblies Theory of Plates Finite Element MethodTension/Compression Bending Torsion Shear

The Bending Problem III
The Data

The solution

The heuristic solution σxx = σyy = σxy = σxz + σyz = 0, σzz = Mx

Jx
y fulfills the

boundary conditions and the Eq. 36, and is unique.

Fact (Consequences)
1. The result is valid for ∀F
2. If y = 0 σzz = 0
3. σzz is maximum if y is maximum
4. Given a material, |σzz|max decreases with Jx
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The Torsion Problem I
In order to solve the most general case, we define

u = −αyz
v = αxz (39)
w = αϕ(x, y)

where the constant α and the function ϕ(x, y) are unknowns. Substituting Eq. 39
in Eq. 11 gives

εxx = εyy = εzz = εxy = 0; εxz = α

2

(
−y + ∂ϕ

∂x

)
; εyz = α

2

(
x+ ∂ϕ

∂y

)
(40)

Substituting Eq. 40 in Eq. 29 (the constitutive equations) gives

σxx = σyy = σzz = σxy = 0; σxz = µα

(
−y + ∂ϕ

∂x

)
; σyz = µα

(
x+ ∂ϕ

∂y

)
(41)
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The Torsion Problem II
Substituting Eq. 41 in Eq. 17 gives

µα

(
∂2ϕ

∂x2 + ∂2ϕ

∂y2

)
= 0 ∇2ϕ = 0 (42)

i.e. ϕ is harmonic in A (the cross section). Substituting Eq. 40 in the third boundary
condition (Eq. 37) on C (the boundary of A) gives

µα

(
−ynx + ∂ϕ

∂x
nx + xny + ∂ϕ

∂y
ny

)
= 0 (43)

As a consequence, ϕ solves the Neumann problem6 (if A has a single contour C ∃ a
solution ϕ, except for a constant): ∆ϕ = 0 on A

∂ϕ

∂x
nx + ∂ϕ

∂y
ny = ynx + xny on C

(44)

6 ∆ in Eq. 44 denotes the Laplace operator, or Laplacian, ∆ = ∇2.
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The Torsion Problem III

Fact (Unspecific cross section)

While α in Eq. 42 can be computed as α = Mzq

µJp
, where Jp =

∫
A

(x2 + y2) dA,

q = Jp

Jp +
∫

A

(
∂ϕ
∂y
x− ∂ϕ

∂x
y
)
dA

, and Mz =
∫

A

(σyzx+ σxzy) dA, the warping function ϕ(x, y) 6= 0

has an analytic solution only if A is an equilateral triangle or an ellipse.

Fact (Circular cross section)

If A is a circle of radius R, on C we have nx = x

R
, ny = y

R
, so that the solution of Eq. 43 is

ϕ = 0, i.e. the deformed cross section is a plane.

Fact (Thin wall tube)
According to Bredt (1896), in a thin tube of thickness h and cross section Ωm, as

Mz
~k =

∮
C

−−→
OP×τ h~t ds and τ ≈ const, we have τ = Mz

2hΩm
.
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The Shear Problem I

The problem statement
The shear is to be associated with a moment, in order to satisfy the rotational

equilibrium. This implies that, ∀ section, if ∃Ty  Mz=−Ty(l − z)

The two solutions

Rigorous We set ( DSV Principle) σxx = σyy = σxy = 0, and we find
σyz, σxz, σzz, via the equilibrium, congruence, and constitutive
equations, as well the boundary conditions  complicated solutions.

Approximate According to Grashof (~1880), as D � l and Ty and Mz must
coexist the possible, unknown σxz and σyz are to be associated with

σzz = −Ty(l − z)y
Jx

, being σzz the greatest contribution to the stress
state.
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The Shear Problem II

Figure 4
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The Shear Problem III

Figure 5
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The Shear Problem IV

The approximate solution

We find a solution with the equilibrium equations — avoiding to verify the congruence — on a cross
section symmetric wrt the y axis, i.e. ∂σij

∂x
= 0 (Fig. 4). The z equilibrium equation of the portion

in Fig. 5 is
∫

A′

(
σzz + ∂σzz

∂z
dz
)
dA −

∫
A′
σzz dA − σzybrdz = 0 so that

∫
A′

∂σzz

∂z
dA = σzybr. As

σzz = −Ty(l − z)y
Jx

, we have ∂σzz

∂z
= Tyy

Jx
, which, substituted in the previous expression of σzy and

defining mr =
∫

A′
ydA, gives

σzy = Tymr

Jxbr
(45)

Example (rectangular cross section b×h)

Eq. 45 gives σzy = 12
Ty

1
2

(
h2

4 − y
2
)

h3b
 σzymax

= 3
2
Ty

hb
@ y = 0.
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The Shear Problem V
The shear effects

Let’s compute the y displacement of point B in Fig. 4 caused by the shear. Enforcing the VW

principle (Eq. 32), we have We = TyvTB =
∫

V

2σzyεzy dV = 1
µ

∫
V

σ2
zy dV , from which, defining

χ = A

J2
x

∫
A

(
mr

br

)2
dA, vTB is defined in Eq. 467. Besides, the bending, again because of Eq. 32,

givesWe = TyvMB =
∫

V

2σzzεzz dV = 1
E

∫
V

σ2
zz dV , so that vMB is defined in Eq. 47 and β = vTB

vMB

in Eq. 48.

vTB = χ
Tyl

µA
(46) vMB = Tyl

3

3EJx
(47) vTB

vMB

= 6χ(1 + ν)J
Al2

(48)

Fact

The bending deformation is � than the shear one in a slender beam, i.e. when J

Al2
s� 1 (Eq. 48).

7 See Appendix 11 for some considerations about χ in Eq. 46.
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Definitions
Assumptions and Restrictions

Definition (Beam assembly)
A beam assembly is a combination of beams mutually connected. When all of them
∈ x= const, according to the de Saint-Venant’s assumption (σzz, σzx, σzy 6= 0 and
σxx = σyy = σxy = 0) the stress state is a function of N, Mx, My, Tx, Ty, andMz.

Getting rid of limitations

theory real world approximation

geometrical prismatic beam tapered ∪ slender beams
straight axis arc R� l

mechanical loads on ends lumped forces volume forcesno mass forces distributed weight

constitutive homogeneity polymers mean moduliisotropy reinforced concrete
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The ODE Re-definition

In the (very common) case of plane assemblies we deal only with deformations in
the yz plane (so that u = 0, v 6= 0, w 6= 0), and the loads (per unit length) are q ‖ z
and p ‖ y. With these assumptions, the stress/deformations state is obtained from
M(z), N(z), and T (z), so that we are dealing with ODE’s.

The ODE’s of the beam assembly
Given p(z) and q(z), as well the boundary conditions, we redefine the ODE’s in
terms of the unknowns M(z), N(z), T (z), v(z), and w(z). To that, we have to find
a suitable form of the following equations:

congruence
equilibrium
constitutive
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The Congruence Equations
As v is affected by the sum of the shear and moment effects, we define
dv = (ϕ+ ϕm)dz, where ϕm = arctan dv

dz
is the angle between the tangents to the

mean line in the undeformed and deformed states and ϕ is the rotation angle
of the cross section due the shear. Because of we assume small deformations
and displacements, we define the total rotation as γ = dv

dz
+ ϕ. As ds = Rdψ,

where R is the radius of curvature, where dψ = d

(
arctan dv

dz

)
= 1

1 + v′2
v′′dz and

ds =
(
dv2 + dz2

) 1
2 = dz

(
1 + v′

) 1
2 , again under the previous assumptions, we define

the curvature8 κ = 1
R

= dψ

ds
as −v′′. Consequently, the deformation is identified by

means of Eq. 49.

ε = dw

dz
κ = −d

2v

dz2 γ = dv

dz
+ ϕ (49)

8 See Appendix 13 for some additional considerations about κ.
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The Equilibrium Equations
The equilibrium equations of the portion of beam of length l from 1 to 2 for 0 ≤ z ≤ l (z = 0 @ 1
and z = l@ 2) are

‖z −N1+N2+
∫ 2

1
q dz = 0 ‖y −T1+T2+

∫ 2

1
p dz = 0 	x −M1−T1l+M2+

∫ 2

1
p(l−z) dz = 0 (50)

If M(z), N(z), and T (z) are continuous functions and their first derivatives are also continu-

ous (i.e. there’s no concentrated load), we have N2 −N1 =
∫ 2

1

dN

dz
dz, T2 − T1 =

∫ 2

1

dT

dz
dz, and

M2 −M1 =
∫ 2

1

dM

dz
dz, which, substituted in Eq. 50, give, as the integration limits are arbitrary:

dN

dz
+ q = 0 (51a) dT

dz
+ p = 0 (51b) dM

dz
− T = 0 (51c)

Eq. 51a and Eq. 51b are the translation equilibrium equations along z and y, respectively, and
Eq. 51c9 is the rotational equilibrium equation around x.
9 Eq. 51c is obtained integrating by parts

∫ 2
1 p(l − z) dz, substituting pdz = −dT , according to

Eq. 51b, and g = l − z  dg = −dz, so that
∫ 2

1 p(l − z) dz = −T1l −
∫ 1

2 T (−dz) = −T1l −
∫ 2

1 T dz.
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The Constitutive Equations I
Recalling the Lamé equations (Eq. 31), the internal work can be expressed as∫
V

(
σ2
zz

E
+ 1
µ
σ2
zy

)
dV where σzz = N

A
+M

J
y (Eqs. 35 and 38), σzy = Tmr

Jbr
(Eq. 45).

Thus, it is:

Wi =
∫ 2

1
dz

[∫
A

1
E

(
N2

A2 + 2NM
AJ

y + M2y2

J2

)
+ T 2m2

r

µJ2b2
r

]
dA (52)

Choosing the origin of the xy plane coincident with the neutral axis of the cross
section, so that

∫
A
y dA = 0, Eq. 52, recalling the definition of χ, can be written as

Wi =
2∫

1

[
N2

EA
+ M2

EJ
+ χ

T 2

µA

]
dz (53)
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The Constitutive Equations II
As we have assumed the continuity, the internal energy can be expressed also as

Wi =
∫ 2

1
Mdϕ+ Tdv +Ndz =

∫ 2

1
(Mκ+ Tγ +Ndε) dz (54)

Equalling the expressions of Wi in Eqs. 53 and 54, as the integration limits are

arbitrary, we obtain N2

EA
+ M2

EJ
+χ

T 2

µA
= Nε+Mκ+ Tγ, so that we can define the

axial, bending, and shear stiffnesses, respectively, as in Eq. 55.

ε = N

EA
κ = M

EJ
γ = χ

T

µA
(55)

Fact
The constitutive equations of the beam assembly are unconcatenated.
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The Differential Equations of Beams

Combining Eqs. 49, 55, and 51 allows to define the follow-
ing three ODE’s [3] in w, v, and ϕ, each one with its
suitable boundary conditions:

d

dz

(
EA

dw

dz

)
+q=0 (56)

d

dz

[
µA

χ

(
dv

dz
+ϕ
)]

+p=0 d

dz

(
EJ

dϕ

dz

)
=T (57)

Although the two statements in Eq. 57 are combined,
Bernoulli proposed their decoupling supposing γ=0 in
Eq. 49, i.e. neglecting the rotation due to the shear, as
shown in Fig. 6, so that ϕ = −dv

dz
= −v′, ϕ′ = v′′ .

Thus, Eq. 57 is replaced by Eq. 58:

d2

dz2 (EJv′′) = −T ′ = p (58)

Figure 6

Fact
Eqs. 56 and 58 are the ODE’s of
any plane system of beams.
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Solving the Beam ODE: Axial

Figure 7

Example (Fig. 7)
If q = const and p = 0, as EA = const from the integration of Eq. 56 with the
boundary conditions w(0) = 0 and N(l) = EAw′(l) = 0 we have
w(z) = q

EA
z

(
l − z

2

)
and N(z) = q (l − z).
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Solving the Beam ODE: Bending (1)

Figure 8

Example (Fig. 8)
If p = 0 and q = 0, as EJ = const from the four times integration of Eq. 58 with
the boundary conditions v(0) = v′(0) = M(l) = 0 and T (l) = P we have

w(z) = P

EJ

(
−z

3

3 + z2

2 l
)

and M(z) = P (l − z).
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Solving the Beam ODE: Bending (2)

Figure 9

Example (Fig. 9)
Considering two beams loaded at their ends, with v1 and v2 the v in a and b,

respectively, we have the eight equations EJ
d4v1

dz4 = 0 ∪ EJ
d4v2

dz4 = 0 and the
eight boundary conditions v1(0) = M1(0) = v2(l) = M2(l) = 0, v1(a) = v2(a), v′1(a) = v′2(a),
−EJv′′1 (a) = M1(a) = M2(a) = −EJv′′2 (a), −T1 + P + T2 = 0. A (unique) solution ∃.
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The Limitations of the Beams ODE’s

Fact
Analytically solving the beam problem by means of ODE, as in the previous ex-
amples, may become extremely complicated, unless numerical methods are adopted.
Nevertheless, the virtual work principle allows to solve a statically indeterminate
problem with few unknowns.
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Assumption and Restrictions

From continuum mechanics
small displacements and small deformations
homogeneous, isotropic, Green’s material, i.e. there exists a potential function by
which stresses and strains can be represented
the material is a Cauchy continuum, i.e. the stress tensor is symmetric

From thin shell theory [4]
two geometrical dimensions are prevalent with respect to the third one, i.e. the
plate is thin
stress ⊥ to middle plane is 0, i.e. stress diffusivity isn’t considered
only forces acting perpendicularly to the middle plane are considered
a generic straight segment, initially ⊥ to the middle plane, after the deformation
it is still straight — not necessarily, after the deformation, it is still
perpendicular to the deformed middle plane
the displacement ⊥ to the middle plane depends only on in-plane coordinates
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The General Scheme

Figure 10 Credits: [5]
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Displacement Definitions

Naming s(x, y, z) = [u; v;w] the local displacement where u = −zϕx(x, y),
v = −zϕy(x, y), and w(x, y) are the displacements in the x, y, and z directions,
and ϕx(x, y) and ϕy(x, y) are are the rotations around the y axis occurring in the
xz plane and the x axis occurring in the yz plane, respectively, (we name ϕx(x, y),
ϕy(x, y), and w(x, y) the generalized displacements, as in Eq. 59), we have s = nU ,
where n is defined in Eq. 60.

U =

ϕx(x, y)
ϕy(x, y)
w(x, y)

 (59) n =

−z 0 0
0 −z 0
0 0 1

 (60)
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Strain Definitions I

The strain components are

ε =



εxx
εyy
εzz
γxy
γxz
γyz


=



∂u

∂x

∂v

∂y

∂w

∂z

∂u

∂y
+ ∂v

∂x

∂u

∂z
+ ∂w

∂x

∂w

∂y
+ ∂v

∂z



=



−z ∂ϕx
∂x

−z ∂ϕy
∂y

0

−z ∂ϕx
∂y
− z ∂ϕy

∂x

−ϕx + ∂w

∂x

−ϕy + ∂w

∂y



(61)
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Strain Definitions II
Naming χi the generalized curvatures and ti the shear angular deformations (Eq. 62), and
defining b as in Eq. 63, Eq. 61 can be rewritten as ε = b q, where q is the vector of the
generalized strains.

q =



−z ∂ϕx
∂x

−z ∂ϕy
∂y

0

−z ∂ϕx
∂y
− z ∂ϕy

∂x

−ϕx + ∂w

∂x

−ϕy + ∂w

∂y



=


χx
χy
0
χxy
tx
ty

 (62) b =


z 0 0 0 0 0
0 z 0 0 0 0
0 0 0 0 0 0
0 0 0 z 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 (63)
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Load Definitions I
Naming F = [Fx;Fy;Fz] the external force per unit area, the external specific work per unit area is
defined by Eq. 64, where P is the generalized load (per unit area) and δŝi is the virtual
displacement field.

dWe

dA
=

h/2∫
−h/2

∑
i

Fiδŝi dz = P T δÛ =

h/2∫
−h/2

δŝTF dz (64)

As s = nU , so that δŝT = δÛ
T
nT , from Eq. 64 we have

dWe

dA
= δÛ

T

h/2∫
−h/2

nTF dz = P T δÛ = δÛ
T
P (65)

Thus, from Eq. 65 we have

P =

h/2∫
−h/2

nTF dz (66)
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Load Definitions II
Substituting the Eq. 60 into Eq. 66 and recalling the definition of F , we get

P =
h/2∫
−h/2

−zFx−zFy
Fz

 dz =

mx(x, y)
my(x, y)
p(x, y)

 (67)

Fact
p(x, y) is a force per unit area, and mx(x, y) and my(x, y) are moments per unit
area.

Fact
There isn’t any explicit information about the points where the generalized loads are
acting — we know only that they are applied onto the middle plane, as shown in
Fig. 10.
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Stress Definitions I

Naming δε̂ the virtual local strains and σ the local stresses, the internal specific
work per unit area, according to the VW principle, is, recalling that σ = Dε and
ε = b q,

dWi

dA
=

h/2∫
−h/2

δε̂σ dz = δqT
h/2∫
−h/2

bσ dz = δqTQ (68)

where Q is the generalized stress vector. As a consequence, Q =
∫ h/2

−h/2
bσ dz.
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Stress Definitions II
Performing the computation, we obtain:

Q =
∫ h/2

−h/2


z 0 0 0 0 0
0 z 0 0 0 0
0 0 0 0 0 0
0 0 0 z 0 0
0 0 0 0 1 0
0 0 0 0 0 1




σxx
σyy
σzz
τxy
τxz
τyz

 dz =
∫ h/2

−h/2


zσxx
zσyy

0
zτxy
τxz
τyz

 dz =


Mx

My

0
Mxy

Vx
Vy

 (69)

Fact
The generalized moments Mx, My, and Mxy are moments per unit length, while the
generalized shears Vx and Vy are forces per unit length.

Fact
Both the local and the generalized stresses, along with their directions, are shown in
Fig. 11.
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Stress Definitions III

Figure 11 Credits: [5]
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The Plate Equations I
The equation of the rotational equilibrium wrt x of the dx× dy plate of Fig. 11 is

V
′

ydxdy = M
′
ydx + Mydx + M

′
xydy + p(x, y)dxdy

dy

2
+ mydxdy = 0 (70)

Dropping out the terms of higher order and because of G′ = G +
∂G

∂α
dα, we obtain

Vy =
∂My

∂y
+
∂Mxy

∂x
−my (71)

Similarly, the rotational equilibrium wrt the y axis gives

Vx =
∂Mx

∂x
+
∂Mxy

∂y
−mx (72)

and the translational equilibrium wrt the z axis gives

∂Vx

∂x
+
∂Vy

∂y
+ p(x, y) = 0 (73)

Finally, substituting Eq. 71 and Eq. 72 into Eq. 73 we obtain

∂2Mx

∂x2 + 2
∂2Mxy

∂x∂y
+
∂2My

∂y2 + p(x(, y) +
∂mx

∂x
+
∂my

∂y
= 0 (74)
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The Plate Equations II
Recalling the local constitutive relationship10, redefined as σ = Dε, where

D = E

1− ν2



1 ν ν 0 0 0
ν 1 ν 0 0 0
ν ν 1 0 0 0
0 0 0 1− ν

2 0 0

0 0 0 0 1− ν
2 0

0 0 0 0 0 1− ν
2


(75)

and the strain definition of Eq. 61, we can write the specific energy per unit area as

dΩ
dA

= 1
2

∫ h/2

−h/2
εTσ dz = 1

2q
T
∫ h/2

−h/2
bTDbq dz = 1

2q
TD?q (76)

10 Cf. Eq. 29
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The Plate Equations III

Recalling Eq. 63, as

∫ h/2

−h/2

z2 dz =
h3

12
and

∫ h/2

−h/2

1 dz = h, the generalized stiffness matrix

D?=
1
2

∫ h/2

−h/2

bT Db dz in Eq. 76 can be defined as:

D? =
E

1− ν2



h3

12
ν 0 0 0 0

ν
h3

12
0 0 0 0

0 0 0 0 0 0

0 0 0 h
1− ν

2
0 0

0 0 0 0 h
1− ν

2
0

0 0 0 0 0 h
1− ν

2


(77)

The generalized stiffness matrix D? in Eq. 77 relates the generalized stresses Q (Eq. 69) to the generalized
strains q (Eq. 62) as in Eq. 78

Q = D?q (78)
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The Plate Equations IV

Expanding the Eq. 78 gives rise to the following relationships

Mx = D(χx + νχy)
My = D(χy + νχx)

Mxy = h3

12Gχxy

Vx = Ghtx

Vy = Ghty

(79)

where D = Eh3

1− ν2 is the plate flexural rigidity and G = E

1 + ν
is the plate shear

modulus.
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The Simplified Equations of a a× b× h Plate

Kirchhoff’s (~1880) hypothesis:

h < min(a, b)/5

wmax < h/5

γxz=γyz=0 ϕx= ∂w

∂x
, ϕy= ∂w

∂y

Fact
Under the Kirchhoff’s hypothesis the rotation of the generic
straight segment is exactly equal to the one of the middle plane,
i.e. there are no angular deformations. Therefore the plate
model can be reformulated in this simplified case, obtaining, from
Eq. 74, the more undemanding form in Eq. 80.

∂4w

∂x4 + ∂4w

∂x2∂y2 + ∂4w

∂y4 = ∇4w(x, y) = −p(x, y)
D

(80)

Example
If the dimensions of the rectangular plate are a and b, the plate is simply supported at
y = 0 and y = b, and p = p0 = const, the (Navier) solution of Eq. 80 is

w(x, y) = 16p0

π6D

∞∑
m=1,3,5,...

∞∑
n=1,3,5,...

1

mn(m
2

a2 + n2

b2 )
sin mπx

a
sin nπy

b
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The Simplified Equations of a Circular Plate I

Figure 12
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The Simplified Equations of a Circular Plate II
When dealing with an axially symmetric geometry (Fig. 12), substituting x = r cos θ and
y = r sin θ into the previous equations, as ∂

∂θ
= 0, leads to

∇4
rw(r, θ) ≡

(
∂2

∂r2 + 1
r

∂

∂r

)(
∂2w

∂r2 + 1
r

∂w

∂r

)
= −p(r, θ)

D
(81)

If also the load axially symmetric, Eq. 81 can be rewritten as

∇4
rw(r) ≡ 1

r

d

dr

{
r
d

dr

[1
r

d

dr

(
r
dw

dr

)]}
= −p(r)

D
(82)

Example

If p(r) = p0 = const the solution of Eq. 82 is w(r) = C1 log r + C2r
2 log r + C3r

2 + C4 + p0r
4

64D
where the constants of integration C1, C2, C3, and C4 are found using the boundary conditions at
r = a and the conditions that w, dw

dr
, Mr and Qr must be finite at r = 0.
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Definition

FEM
The Finite Element Method is a numerical technique to find approximate solutions

of PDE. Originated from the need of solving complex elasticity and structural
analysis problems in engineering, FEM:

helps in producing stiffness and strength visualizations
helps to minimize material weight and its cost of the structures
allows for detailed visualization and indicates the distribution of stresses and strains
inside the body of a structure
as a powerful yet complex tool requires training and education to properly interpret
the results
allows entire designs to be constructed, refined and optimized before the design is
manufactured
decreases the time to take products from concept to the construction
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The Numerical Methods
Approximate Solutions instead of Analytical Solutions

Finite Difference Method
Finite Volume Method
Finite Element Method
Boundary Element Method
Meshless Method

Each method has advantages and limitations . . .
. . . however, it is possible to solve various problems by finite element method, even
with highly complex geometry and loading conditions, with the restriction that there
is always some numerical errors. Therefore, effective and reliable use of this method
requires a solid understanding of its limitations.
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The General Description I

Figure 13
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The General Description II
Any continuum/domain is divided into small pieces, called Finite Elements (Fig. 13).

the original domain is considered as an assemblage of number of such small elements,
connected through joints called nodes
the elements are attached to the adjacent elements only at the nodal points
each node has (not more than) 6 degrees-of-freedom (dof), namely u, v, w and θx, θy, θz

each element has a simple spatial variation (field quantity), described by polynomial terms
each element contains the material and geometrical properties — the material properties
inside an element are assumed to be constant
the physical object is modeled by choosing appropriate elements (beam, plate, solid)
all elements are then assembled to obtain the solution of the entire domain/structure under
certain loading conditions
nodes are assigned at a certain density throughout the continuum depending on the
estimated stress levels of a particular domain, i.e. regions which will receive large amounts of
stress variation usually have a higher node density than those which experience little or no
stress
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The Background

The Finite Element Model (FEM) is a computer model of a continuum, with
infinite particles and continuous variation of material properties, that is
stressed and analyzed for specific results
Therefore, it is to be simplified as an assemblage of substructures, components
and members
A discretization process is necessary to convert whole structure to an
assemblage of members/elements (mesh), in order to determine its responses
On the basis of assumptions, the appropriate constitutive model can be
constructed.
For the linear-elastic-static analysis of structures, the final form of equation
will be made in the form of F = Kd where F , K and d are the nodal loads,
global stiffness and nodal displacements respectively
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The Method
Classical Actual structure
∂σx
∂x

+ ∂σy
∂y

+ ∂σz
∂z

+ f = 0
(PDE)

↓
Assumptions Equilibrium, congruence, constitutive∫

V
δεTσ dV =

∫
V
δdTf dV +

∫
S
δdTF dS

(Principle of virtual works)

↓
FEM Structural model

F = Kd
(Algebraic equations)
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Basic Steps in FEA

1 Discretization of the continuum The continuum is divided into a
number of elements by imaginary lines or surfaces. The interconnected
elements may have different sizes and shapes.

2 Identification of variables The elements are assumed to be connected
at their intersecting points, the nodes. At each node, unknown
displacements are to be prescribed.

3 Choice of approximating functions Displacement function is the starting point
of the mathematical analysis. This represents the variation of the
displacement within the element. The displacement function may be
approximated in the form a linear function or a higher-order function. A
convenient way to express it is by polynomial expressions. The shape or
geometry of the element may also be approximated.
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Basic Steps in FEA
4 Formation of the element stiffness matrix After continuum is discretized with

desired element shapes, the individual element stiffness matrix is
formulated. Basically it is a minimization procedure whatever may be the
approach adopted. For certain elements, the form involves a great deal of
sophistication. The geometry of the element is defined in reference to the
global frame. Coordinate transformation must be done for elements where it is
necessary.

5 Formation of overall stiffness matrix After the element stiffness matrices in
global coordinates are formed, they are assembled to form the overall
stiffness matrix. The assembly is done through the nodes which are
common to adjacent elements. The overall stiffness matrix is symmetric and
banded.

6 Formation of the element loading matrix The loading inside an element
is transferred at the nodes and a consistent element matrix is formed.
The loading forms an essential parameter in any structural engineering
problem.110/136
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Basic Steps in FEA
7 Formation of the overall loading matrix Like the overall stiffness matrix, the

element loading matrices are assembled to form the overall loading
matrix. This matrix has one column per loading case.

8 Incorporation of boundary conditions The boundary restraint
conditions are to be imposed in the stiffness matrix. Various
techniques can satisfy the boundary conditions. One is the size of the stiffness
matrix may be reduced or condensed in its final form. To ease computer
programming aspect and to elegantly incorporate the boundary conditions,
the size of overall matrix is kept the same.

9 Solution of simultaneous equations The unknown nodal displacements are
calculated by the multiplication of force vector with the inverse of
stiffness matrix.

10 Calculation of stresses or stress-resultants Nodal displacements are
utilized for the calculation of the stresses for all elements of the
continuum or for some of them. The results, in terms of displacements and
stress/strain, may also be obtained by graphical means.110/136
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The Shape Function

In FEA the variations of displacement u at any point inside the element are
expressed by its nodal displacement ui by means of u =

∑
i

Niui, where the

interpolation function Ni is the shape function — generally a n degree polynomial
which provides a single-valued and continuous field.

displacement must be compatible between adjacent elements
must be continuous within the elements: this can be ensured by choosing a
suitable polynomial
must be capable of rigid body displacements of the element: the constant
terms used in the polynomial ensure this condition
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Element Classification

One dimensional
elements

2 nodes
3 nodes

Two dimensional
elements

3 node triangle
6 node triangle
4 node rectangle
8 node rectangle

Three dimensional
elements

tetrahedron
brick
hexahedron Figure 14
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The Element Stiffness Matrix
According to Eq. 32, δWe = δWi, i.e. the work done by external forces due to the virtual
displacement δd of a structure in equilibrium is equal to the work done by the internal forces for
the virtual internal displacement δε, as in Eq. 83∫

V

δεTσ dV =
∫

V

δdTf dV +
∫

S

δdTF dS (83)

Defining ε = Bd (Eq. 12) and recalling the constitutive equation σ = Dε, we have

Wi = 1
2

∫
V

εTσ dV = 1
2

∫
V

dTBTDBd dV = 1
2d

Td

∫
V

BTDB dV , and, differentiating wrt δd,

δWi = d δd

∫
V

BTDB dV (84)

According to F = ∂Wi

∂d
(VW principle), from Eq. 84 the element stiffness matrix is

k =
∫

V

BTDB dV (85)

Fact (Properties of element stiffness matrix)

symmetric and square all diagonal elements are positive
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The Global Stiffness Matrix

A structural system is an assemblage of number of elements, interconnected together to
form the whole structure. Therefore, the element stiffness of all the elements are first to be

calculated and then systematically assembled together.

Process of assembling the global stiffness matrix K via the local stiffness matrix k
(a) initialize the n× n K as zero
(b) compute individual element properties and calculate k of that element
(c) add k to K using proper locations
(d) repeat steps (b) and (c) till all k are placed globally

the stiffness at the joint (node) i out of n (the total number of dof) is obtained by
adding the stiffness of all elements meeting at joint i
the dof of the structure are numbered from 1 to n
the k of each element is placed in its proper position in the K
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A Simple Case of Assembling the Global Stiffness Matrix I
The equilibrium of a linear spring
of constant k, at which ends act the
forces f1 and f2, can be expressed
as keu = f , that is:[

k −k
−k k

] [
u1
u2

]
=
[
f1
f2

]
(86)

where ke =
[
k −k
−k k

]
is the el-

ement stiffness matrix in the ele-
ment coordinate system (or local
system), u is the column vector of
nodal displacements u1 and u2, and
f is the column vector of element
nodal forces.

the element stiffness matrix for the linear
spring element is a 2 by 2 matrix

the element exhibits two nodal
displacements (dof)
the two displacements are not
independent, i.e. the body is continuous
and elastic

the matrix is symmetric, as a consequence
of the symmetry of the forces (equal and
opposite to ensure the equilibrium)
the matrix is singular and therefore not
invertible, as a consequence of the
incompleteness of the problem (boundary
conditions are required)
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A Simple Case of Assembling the Global Stiffness Matrix II

For a system with 3 nodes and 2 springs of stiffness k1 and k2, respectively, the
equations for each spring in matrix form are11[

k1 −k1
−k1 k1

] [
u

(1)
1
u

(1)
2

]
=
[
f

(1)
1
f

(1)
2

] [
k2 −k2
−k2 k2

] [
u

(2)
1
u

(2)
2

]
=
[
f

(2)
2
f

(2)
3

]
(87)

As u(1)
1 = U1 u

(1)
2 = u

(2)
1 = U2 u

(2)
2 = U3, we can expand Eq. 87 as in Eq. 88 k1 −k1 0

−k1 k1 0
0 0 0


U1
U2
0

 =

f
(1)
1
f

(1)
2
0


0 0 0

0 k2 −k2
0 −k2 k2


 0
U2
U3

 =

 0
f

(2)
2
f

(2)
3

 (88)

11 The notation f (j)
i represents the force exerted on element j at node i.

118/136



Introduction Deformation Analysis Stress Analysis Constitutive Relationships The Virtual Work Principle Theory of Beams Theory of Beam Assemblies Theory of Plates Finite Element MethodIntroduction Element Stiffness Matrix Global Stiffness Matrix

A Simple Case of Assembling the Global Stiffness Matrix III

Summing member by member the terms
of Eq. 88 and defining the nodal forces as
f

(1)
1 = F1, f (1)

2 + f
(2)
2 = F2, and f (2)

3 = F3
the final form of Eq. 88 is

KU = F (89)

where K =

 k1 −k1 0
−k1 k1 + k2 −k2

0 −k2 k2


is the system (global) stiffness matrix,
U = [U1;U2;U3], and F = [F1;F2;F3] .

Features of the system stiffness matrix

Symmetry
As is the element stiffness matrix

Superposition
The individual element stiffness matrices
are superposed with proper assignment
of element nodal displacements and

associated stiffness coefficients to system
nodal displacements

Singularity
No constraints are applied to prevent

rigid body motion of the system
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The Solution of the Simple Case

Applying (at least) one boundary condition the solution is given by Eq. 90, provided
that the row i and the column i are eliminated from K in Eq. 89, being i the index
of the constrained displacement.

U = K−1F (90)

For instance, if U1 = 0 i = 1 the solution of Eq. 89 is given by Eq. 91: the matrix
equations governing the unknown displacements are obtained by simply striking out
the first row and column of K, since the constrained displacement is zero (homoge-
neous12).

U2 = F2 + F3

k1
U3 = F2

k1
+ F3(k1 + k2)

k1k2
(91)

12 If the displacement boundary condition is not equal to zero (non homogeneous) the method
cannot be applied — the matrices need to be manipulated differently (partitioning).
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Assembly of the Global Equation System I

The aim of assembly is to form the global equation system KQ = F using the
element equations kiqi = f i. The total potential energy for the body is sum of the
element potential energies πi

Π =
∑
i

πi =
∑
i

1
2q

T
i kiqi −

∑
i

qTi f i (92)

where ki, qi, and f i are the stiffness matrix, the displacement vector and the load
vector of the element i, respectively. Introducing the matrices defined in Eq. 93

Qd =
[
q1 q2 . . .

]
F d =

[
f1 f2 . . .

]
Kd =

k1 0 0
0 k2 0
0 0 . . .

 (93)

we have to find a matrix A such that Qd = AQ and F d = AF .
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Assembly of the Global Equation System II
Eq. 92 may be rewritten as

Π = 1
2Q

T
dKdQd −QT

dF d = 1
2Q

TATKdAQ−QTATF d (94)

According to the Galerkin’s method13, i.e. using the condition of minimum of the
total potential energy ∂Π

∂Q
= 0, the global equation system is

ATKdAQ−ATF d = 0 (95)

Eq. 95 shows that the algorithms of assembly the global stiffness matrix and the
global load vector are

K = ATKdA F = ATF d (96)

13 In elasticity problems, Galerkin’s method turns out to be the principle of virtual work.
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Assembly of the Global Equation System III

Example
Write the matrix A which
relates local (element) and
global (domain) node num-
bers for the finite element
mesh in Fig. 15. In order to
make the matrix representa-
tion compact, we assume that
each node has one dof — in
3D solid mechanics problems
each node has three dof. Figure 15
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Assembly of the Global Equation System IV

A relates element and global
nodal values in the following
way: Qd = AQ, where Q is a
global vector of nodal values
and Qd is the vector contain-
ing the element vectors. The
explicit rewriting of the above
relation looks as in Eq. 97.




Q1
Q2
Q5
Q4


Q1
Q2
Q5
Q4


Q5
Q6
Q7
Q8





=



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0





Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8


(97)
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Assembly of the Global Equation System V

Fact
A in Eq. 96 is the matrix pro-
viding transformation from
global to local enumeration.
Because of the fraction of
entries 6= 0 in A is very
small, A is never used explic-
itly in actual computer codes.
Suitable algorithms are im-
plemented to sort the enu-
meration in order to mini-
mize the band in Fig. 16.

Figure 16 Credits: [6]
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The Final Remarks

The real FE basic computation
As the real models are usually extremely large,
as in Fig. 17, the direct method of solving Eq. 90
isn’t applicable. Instead, numerical recursive pro-
cedures, typically based on Gaussian elimination
and Galerkin approach, are adopted.

Figure 17 Credits: Materialize Inc.

An extension to dynamics
Defining, similarly toK, a mass matrixM and a damping matrix D, the free (natural) and
forced frequencies/modes of a system can be computed by means of

(
−ω2M +K

)
U = [0]

and MÜ +CU̇ +KU = F , respectively.
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Demonstration of the Virtual Work Theorem

Due to the symmetry of ε?ij we can write Wi =
∫
V

∑
i,j

σijε
?
ij dV =

∫
V

∑
i,j

σij
∂u?i
∂Xj

dV .

As the product σij
∂u?i
∂Xj

is equal to the sum ∂

∂Xj
(σiju?i ) −

∂σij
∂Xj

u?i , we have

Wi =
∫
V

∑
ij

∂

∂Xj
(σiju?i ) dV −

∫
V

∑
ij

∂σij
∂Xj

u?i dV , where
∫
V

∑
ij

∂

∂Xj
(σiju?i ) dV =∫

S

∑
ij

σijnju
?
i dS is equal to Fiu?i and

∫
V

∑
ij

∂σij
∂Xj

u?i dV is equal to −fju?i (Eq. 17).

Thus, we have We = Wi.
Return
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The Shear Area

Many textbooks refer to the shear areas A?y and A?x when treating the shear ef-

fects, defined as A?y = J2
x∫

A

(
Sx(y)
b(y)

)2
dA

and A?x =
J2
y∫

A

(
Sy(x)
h(x)

)2
dA

where b(y) is

the width of the cross section at position y from the principal x axis, h(x) is the
width of the cross section at position x from the principal y axis, Sx(y) is equal to
mr in Eq. 45, and Sy(x) is the counterpart of Sx(y). The ratios A

A?y
≈ χ and A

A?x
are tabulated for widely used cross sections14.
14 For instance, computing the integrals for the rectangular cross section b× h in the example 42

gives A

A?
y

= χ = 6
5

Return
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Solving the Timoshenko Beam Equation I
Assuming p, E, A, and J as constants, Eq. 51c, because of Eq. 55 and recalling that
γ = v′ + ϕ, can be rewritten as

EJϕ′′ − GA

χ
(v′ + ϕ) = 0 (98)

The solution of the second equation in Eq. 57, rewritten as EJϕ′′′ = −p, is

ϕ(z) = − p

6EJ z
3 + C1

2 z2 + C2z + C3 (99)

Substituting Eq. 99 in Eq. 98 and solving for ϕ gives

v(z) = p

24EJ z
4 − C1

6 z3 +
(
−C2

2 −
χp

2GA

)
z2 +

(
C1EJχ

GA
− C3

)
z + C4 (100)

so that
T (z) = −pz + C1EJ (101)

M(z) = −p2z
2 + C1EJz + C2EJ (102)

129/136



Appendix I Appendix II Appendix III Appendix IV Appendix V Bibliography

Solving the Timoshenko Beam Equation II

Assuming again p, E, A, and J as constants, according to the Bernoulli simplification γ = 0,
integrating the second equation in Eq. 55 gives

v(z) = p

24EJ z
4 + C1

6 z3 + C2

2 z2 + C3z + C4 (103)

so that
ϕ(z) = − p

6EJ z
3 − C1

2 z2 − C2z − C3 (104)

T (z) = −pz − C1EJ (105)

M(z) = −p2z
2 − C1EJz − C2EJ (106)
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Solving the Timoshenko Beam Equation III

The constants C1, C2, C3, and C4 in Eqs. 99 to 106 are determined by the boundary condi-
tions. As an example, we take a beam fixed at both ends, i.e. v(0) = v(l) = ϕ(0) = ϕ(l) = 0.
In such a case, the equations of ϕ (Eqs. 99 and 104), M (Eqs. 102 and 106), and
T (Eqs. 101 and 105) are equal for both the Timoshenko and the Bernoulli models:
(Eqs. 107 to 109).

ϕ(z) = − p

6EJ z
3 + lp

4EJ z
2 − l2p

12EJ z (107)

M(z) = −p2z
2 + lp

2 z −
l2p

12 (108)

T (z) = −pz + lp

2 (109)
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Solving the Timoshenko Beam Equation IV
Yet, the governing equations v(z) for the Timoshenko and the Bernoulli beams match only

if Jχ(1 + ν)
Al2

� 1, as shown in Eqs. 110 and 111, respectively.

v(z) = pl4

24EJ

[(
z

l

)4
− 2
(
z

l

)3
+
(

1− 24Jχ+ 24Jχν
Al2

)(
z

l

)2
+
(24Jχ+ 24Jχν

Al2

)(
z

l

)]
(110)

v(z) = pl4

24EJ

[(
z

l

)4
− 2
(
z

l

)3
+
(
z

l

)2
]

(111)

Fact
The ratio of the maximum displacements, which occurs at
l/2 for a beam fixed at both ends, between the Timoshenko
and the Bernoulli formulations is equal to 1 + 96Jχ

Al2
(1 + ν).

The Bernoulli beam is a very good approximation of the
Timoshenko one if it is slender enough, so that the shear
contribution may be neglected.

Example (b×h× l beam)
For a rectangular cross-section beam
with b = .1, h = .3, χ = 6/5, ν = .3,
the error on the maximum displace-
ment when approximating the Timo-
shenko formulation with the Bernoulli
one is > 3% if L < 7.
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Finding the Beam Curvature I
The center of curvature C = [zc; vc] of v(z) between z1 and z2 = z1 + dz, obtained by solving the
linear system Eq. 112 {

v − v1 = k1(z − z1)
v − v2 = k2(z − z2)

(112)

where k1 = tan(α1 + π/2) and k2 = tan(α2 + π/2) = tan(α1 + dα+ π/2), being

α1 = arctan
(
dv

dz

∣∣∣
z=z1

)
and α2 = arctan

(
dv

dz

∣∣∣
z=z2

)
, is given by Eq. 113

C =

z − tan(α)
dα

dz

, v + 1
dα

dz

 (113)

Thus the radius of curvature, R =
√

(z − zc)2 + (v − vc)2, is given by Eq. 114.

R = 1
dα

dz
cos(α)

(114)
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Finding the Beam Curvature II

Under the hypothesis of small deflections, i.e. if α� 1 α = sinα = tanα, Eqs. 113 and 114 are
simplified into their linear forms as in Eqs. 115 and 116

C =

z − α
dα

dz

, v + 1
dα

dz

 (115)

R = 1
dα

dz

(116)

and the curvature variation, κ = dα

ds
= dα

Rdα
= 1
R

= dα

dz
cosα, becomes κ = −dα

dz
, where the

minus sign has been introduced in order to match the moment direction.

Return
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Closed vs Non-Closed Sections Return I
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