Appunti per Geometria e Algebra Computazionale 3-5. Decomposizione primaria. Molteplicità delle soluzioni.

Corso di Laurea in Matematica, Università di Firenze, 2019/20

Giorgio Ottaviani

29 maggio 2020

Decomposizione primaria e definizione di molteplicità

Sia $I \subset K[x_1, \dots, x_n]$, dove $K = \mathbb{R}$ oppure \mathbb{C} , un ideale zero-dimensionale.

In questa sezione assegneremo una molteplicità a ogni punto $p_i \in V(I)$, analogamente a quanto avviene per le radici di un polinomio in una variabile, in modo che la somma delle molteplicità di tutte le soluzioni sia uguale alla dimensione di $K[x_1,\ldots,x_n]/I$

Sia M_i l'ideale massimale dei polinomi che si annullano in $p_i = ((p_i)_1, \ldots, (p_i)_n)$. L'ideale M_i è generato dai polinomi $x_j - (p_i)_j$. Con un piccolo abuso di notazione, indicheremo con M_i anche la sua immagine nel quoziente $\mathbb{C}[x_1, \ldots, x_n]/I$, che è ancora un ideale massimale.

Ideale radicale di un numero finito di punti.

Lemma

- (i) $V(M_1 \cap \ldots \cap M_k) = p_1 \cup \ldots \cup p_k$.
- (ii) Sia $V(I) = \{p_1, \dots p_k\}$. Vale $\sqrt{I} = M_1 \cap \dots \cap M_k$. Questo significa che $g \in \sqrt{I}$ se e solo se $g(p_i) = 0$ per $i = 1, \dots, k$. In particolare, per ogni elemento del quoziente $g \in \mathbb{C}[x_1, \dots, x_n]/I$, la valutazione $g(p_i) \in \mathbb{C}$ è ben definita e non dipende dal rappresentante.

Dimostrazione.

(i) è elementare e segue dalle proprietà della topologia di Zariski. Per provare (ii), se $f \in \sqrt{I}$ allora esiste m>0 tale che $f^m(p_i)=0$, da cui $f(p_i)=0$ e quindi $f \in M_1 \cap \ldots \cap M_k$. Viceversa, per il teorema degli zeri, $\sqrt{I}=I(V(I))=I(p_1 \cup \ldots \cup p_k)=I(V(M_1 \cap \ldots \cap M_k))=\sqrt{M_1 \cap \ldots \cap M_k} \supset M_1 \cap \ldots \cap M_k$.

Il polinomio h che prende valori distinti sui punti

Lemma

Dato $V(I) = \{p_1, \dots p_k\} \subset \mathbb{C}^n$, esiste un polinomio h(x) tale che $h(p_i)$ siano distinti (si veda la Figura alla slide seguente). Se I è generato da polinomi a coefficienti reali, allora h(x) puo' essere scelto a coefficienti reali. In tale caso, per ogni coppia di punti complessi coniugati $\{p, \overline{p}\}$, abbiamo $h(\overline{p}) = \overline{h(p)}$.

Dimostrazione.

Il prodotto scalare euclideo si può estendere (algebricamente) a \mathbb{C}^n ponendo $(z_1,\ldots,z_n)\cdot (w_1,\ldots,w_n)=\sum_{i=1}^n z_iw_i$, $\forall (z_1,\ldots,z_n),(w_1,\ldots,w_n)\in\mathbb{C}^n$. E' sufficiente scegliere un vettore $H=(h_1,\ldots,h_n)$ tale che il prodotto scalare euclideo $H\cdot (p_i-p_j)\neq 0 \ \forall i\neq j$. Questo è possibile perché (p_i-p_j) sono un numero finito di vettori. Allora $h(x)=\sum_{i=1}^n h_ix_i$ soddisfa la condizione richiesta.

Esempio di polinomio h che prende valori distinti su 4 punti

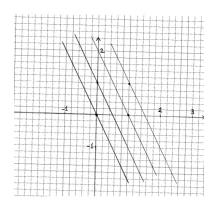


Figura: In figura i quattro punti $p_1=(0,0),\ p_2=(1,0),\ p_3=(0,1),\ p_4=(1,1)$ corrispondono a V(I) dove I=(x(x-1),y(y-1)). Posto h(x,y)=2x+y, il fascio di rette parallele $h(x,y)=\lambda$ incontra V(I) per i 4 valori $\lambda=h(p_i).$ I quattro autovalori di $M_{h(x)}$ sono $h(p_i).$ Ciascun punto ha molteplicità 1. In questo caso, M_x e M_y non hanno autovalori distinti (quali sono?).

Gli elementi invertibili dell'anello quoziente

Lemma

Sia $V(I) = \{p_1, \dots p_k\}$. Un elemento del quoziente $g \in \mathbb{C}[x_1, \dots, x_n]/I$ è invertibile se e solo se $g(p_i) \neq 0 \ \forall i$.

Dimostrazione.

Se g è invertibile, segue immediatamente che $g(p_i) \neq 0$. Viceversa, supponiamo $g(p_i) \neq 0 \ \forall i$. Abbiamo visto che esiste h(x) tale che $h(p_i)$ sono distinti. Definiamo $g'(x) = \sum_{i=1}^k \frac{1}{g(p_i)} \prod_{j \neq i} \frac{h(x) - h(p_j)}{h(p_i) - h(p_j)}$, che soddisfa le uguaglianze $g(p_i)g'(p_i) = 1 \ \forall i$. Per il Lemma iniziale (ii) abbiamo $1 - gg' \in \sqrt{I}$, da cui esiste m > 0 tale che $(1 - gg')^m \in I$. Espandendo la potenza m-esima e raccogliendo i termini che contengono g, si trova \tilde{g} tale che $1 - \tilde{g}g \in I$, da cui g è invertibile nel quoziente , come volevamo.

Gli autovalori di M_h corrispondono ai valori assunti da h.

Lemma

Sia $V(I) = \{p_1, \dots, p_k\} \subset \mathbb{C}^n$, e sia $h(x) \in \mathbb{C}[x_1, \dots, x_n]$. Gli autovalori di $M_{h(x)} : \mathbb{C}[x_1, \dots, x_n]/I \to \mathbb{C}[x_1, \dots, x_n]/I$ coincidono con i valori $h(p_i) \in \mathbb{C}$.

Dimostrazione.

Sia λ l' autovalore di $M_{h(x)}$ corrispondente all'autovettore v(x). Allora $(h(x)-\lambda)$ $v(x)\in I$. Affermiamo che $h(p_i)=\lambda$ per qualche i. Se per assurdo $h(p_i)-\lambda\neq 0$ $\forall i$, allora $h(x)-\lambda$ è invertibile per il Lemma 0.3. Quindi $v(x)\in I$, che è una contraddizione perché gli autovettori sono non nulli.

Viceversa, proviamo che $h(p_i)$ è un autovalore di $M_{h(x)}$. Sia q(t) il polinomio minimo di $M_{h(x)}$. Allora $0 = q(M_{h(x)}) = M_{q(h(x))}$. Quindi $q(h(x)) \in I$, da cui, valutando in p_i , $q(h(p_i)) = 0$, pertanto $h(p_i)$ è un autovalore.

Gli autovalori di M_{x_i} sono le coordinate *i*-esime dei punti p_i .

Osservazione

Applicando il Lemma precedente alle matrici M_{x_i} si ottiene che le coordinate i-esime dei punti di V(I) coincidono con gli autovalori di M_{x_i} . Questa è già un'informazione importante per calcolare i punti di V(I), ma richiede lavoro supplementare per stabilire quali coordinate corrispondono allo stesso punto. Un metodo più efficiente è descritto dalla proposizione che vedremo in GAC3-6.

Riepilogo sugli ideali primari

Ricordiamo che un ideale J si dice primario se $fg \in J$ implica $f \in J$ oppure $g^m \in J$ per qualche m > 0. Per gli ideali valgono le implicazioni

 $massimale \Longrightarrow primo \Longrightarrow primario.$

e ciascuna delle implicazioni precedenti è stretta. Se J è primario allora \sqrt{J} è primo, ma il viceversa è falso. Però se \sqrt{J} è massimale allora J è primario.

Segue immediatamente dalla definizione che il radicale di un ideale primario è primo.

Decomposizione primaria di un ideale zero-dimensionale. Versione con somma diretta

Teorema (Decomposizione primaria, somma diretta)

Sia $V(I) = \{p_1, ..., p_k\}$. Sia $h(x) \in \mathbb{C}[x_1, ..., x_n]$ tale che $h(p_i)$ siano distinti (si veda il Lemma precedente). Considero per i = 1, ..., k le applicazioni lineari

$$M_{h(x)-h(p_i)} \colon \mathbb{C}[x_1,\ldots,x_n]/I \to \mathbb{C}[x_1,\ldots,x_n]/I$$

Posto $A_i:=\ker\left[M_{h(x)-h(p_i)}\right]^\infty$, abbiamo la decomposizione diretta di sottoalgebre

$$\mathbb{C}[x_1,\ldots,x_n]/I=\oplus_{i=1}^k A_i. \tag{0.1}$$

Se $v(x) \in A_i$ allora $v(p_j) = 0 \ \forall j \neq i$. Ogni sottoalgebra A_i ha un elemento unità e_i , che soddisfa le proprietà $e_i^2 = e_i$, $e_i e_j = 0$ per $i \neq j$. Inoltre, valutando in p_j , $e_i(p_j) = \delta_{ij}$. Gli elementi $g \in A_i$ sono invertibili in A_i se e solo se $g(p_i) \neq 0$.

Dimostrazione della decomp. primaria con \oplus

Dimostrazione.

La somma diretta segue dalla decomposizione in autospazi generalizzati dell'Algebra Lineare. E' facile verificare dalla definizione che A_i è un ideale. Se $v(x) \in A_i$ allora esiste n_i tale che $(h(x) - h(p_i))^{n_i} v(x) \in I$, da cui valutando per $x = p_i$ segue $v(p_i) = 0$. L'unità e_i di ogni sottoalgebra A_i proviene dalla decomposizione in somma diretta $1 = \sum_{i=1}^{k} e_i$, risolubile dividendo 1 per i generatori di ciascuna A_i (aggiungendo eventualmente i generatori di 1), si può applicare il comando "quotientRemainder" di M2. L'elemento e_i funge da unità in A_i perché, preso $a_i \in A_i \subset \mathbb{C}[x_1, \dots, x_n]/I$, moltiplicando per 1 abbiamo $a_i = 1 \cdot a_i = \sum_{i=1}^{k} e_i a_i = e_i a_i.$ Se $i \neq j$, abbiamo $e_i e_i \in A_i \cap A_i = 0$, da cui $1 = 1^2 = \sum_{i=1}^k e_i^2$ e per l'unicità della decomposizione $e_i^2 = e_i$. L'affermazione sull'invertibilità segue applicando il Lemma sugli elementi invertibili del quoziente al caso k = 1 in cui V(I) contiene un solo punto.

Decomposizione primaria di un ideale zero-dimensionale. Versione con intersezione

Teorema (Decomposizione primaria, intersezione)

Posto $J_i = \bigoplus_{j \neq i} A_j$, ideale di $\mathbb{C}[x_1, \ldots, x_n]/I$, la sua retroimmagine $\tilde{J}_i \subset \mathbb{C}[x_1, \ldots, x_n]$ è un ideale primario, tale che $\sqrt{\tilde{J}_i} = M_i$, $A_i = \mathbb{C}[x_1, \ldots, x_n]/(\tilde{J}_i)$,

$$\cap_{i=1}^n \tilde{J}_i = I. \tag{0.2}$$

L' intersezione (0.2) si dice la decomposizione primaria di I. Notiamo che e_i corrisponde alla classe di 1 modulo $\tilde{J_i}$.

Dimostrazione della decomp. primaria con intersezione

Dimostrazione.

Per come è definito l'ideale \tilde{J}_i , abbiamo $\mathbb{C}[x_1,\ldots,x_n]/\tilde{J}_i\simeq A_i$. Notiamo che $\bigcap_{i=1}^n J_i=0$, da cui prendendo le retroimmagini $\bigcap_{i=1}^n \tilde{J}_i=I$. Valutando gli elementi unità e_i abbiamo $p_i=V(\tilde{J}_i)$, dal Nullstellensatz segue che $\sqrt{\tilde{J}_i}=M_i$, ideale massimale, segue che \tilde{J}_i è primario.

Localizzazione. Molteplicità di un punto.

Osservazione

Gli anelli A_i hanno come unico ideale massimale M_i e sono quindi anelli locali. La decomposizione (0.1) spiega l'origine del termine locale. Ogni A_i corrisponde a localizzare in un punto p_i , cioè la classe di un polinomio in A_i è influenzata soltanto dal comportamento vicino a p_i e può essere ricostruita da un opportuno sviluppo di Taylor nel punto p_i (rispetto ai monomi $\notin \tilde{J_i}$). In particolare la localizzazione di A in M_i coincide con A_i . Infatti l'elemento $e_i \notin M_i$ soddisfa $e_i A_j = 0$ per $j \neq i$ e quindi localizzando rispetto a M_i gli addendi A_j per $j \neq i$ sono identificati a zero.

Definizione

 $\dim A_i$ si dice <u>molteplicità</u> di p_i in I, la indicheremo con m_{p_i} , non dipende dal polinomio h(x) scelto nella decomposizione primaria.

Unicità della decomposizione primaria, I.

Il fatto che la molteplicità sia ben definita e non dipenda da h(x)segue dal fatto che A_i ha una definizione intrinseca come localizzato di A rispetto a M_i . Per provare che la molteplicità non dipende da h(x), con un ragionamento diretto ed elementare, prendiamo un altro polinomio h'(x) che assume valori distinti sui punti p_i . Si osserva che A_i è h'(x)-invariante. Siccome $A_i = \mathbb{C}[x_1, \dots, x_n]/(\tilde{J_i})$ e $V(\tilde{J_i}) = V(\sqrt{\tilde{J_i}}) = \{p_i\}$ dal Teorema sulla decomposizione primaria, segue che l'unico autovalore di $M_{h'(x)}$ su A_i è $h'(p_i)$ per il Lemma sugli autovalori di M_h , applicato al caso $I = \tilde{J}_i$. Pertanto l' autospazio generalizzato A_i di $M_{h(x)}$ relativo all'autovalore $h(p_i)$ è contenuto nell' autospazio generalizzato A'_i di $M_{h'(x)}$ relativo all'autovalore $h'(p_i)$. Sia la somma dei A_i che quella dei A'_i sono entrambe dirette, quindi vale l'uguaglianza $A_i = A'_i$.

Come conseguenza di questo ragionamento enunciamo esplicitamente la

Unicità della decomposizione primaria, II.

Proposizione

- (i) Sia h(x) un polinomio che assume valori distinti sui punti p_i . Gli ideali A_i sono gli autospazi generalizzati di $M_{h(x)}$ e l'unico autovalore di $M_{h(x)}$ su A_i è $h(p_i)$.
- (ii) Per ogni polinomio k(x), l'unico autovalore di $M_{k(x)}$ su A_i è $k(p_i)$ (segue dal Lemma 0.4 applicato al caso $I = \tilde{J_i}$).
- (iii) La sottoalgebra A_i del teorema sulla decomposizione primaria dipende solo da I.
- (iv) La decomposizione primaria $I = \bigcap_{i=1}^{n} \tilde{J}_{i}$ è unica.

Esercizio[']

Esercizio

Modificando la figura precedente con i 4 punti 0.1, consideriamo $I = (x^2(x-1), y(y-1))$. Provare che, con le notazioni della figura, $V(I) = \{p_1, p_2, p_3, p_4\}$, la molteplicità di p_1, p_3 è 2, la molteplicità di p_2, p_4 è 1.

Corollario

La somma delle molteplicità di ciascun p_i in I è uguale alla dimensione di $\mathbb{C}[x_1,\ldots,x_n]/I$.

Corollario

Vale $I = \sqrt{I}$ se e solo se tutti i punti hanno molteplicità 1 in I.

Dimostrazione.

Basta confrontare

$$\mathbb{C}[x_1,\ldots,x_n]/I=\bigoplus_{i=1}^k\mathbb{C}[x_1,\ldots,x_n]/\tilde{J}_i$$

con

$$\mathbb{C}[x_1,\ldots,x_n]/\sqrt{I}=\oplus_{i=1}^k\mathbb{C}[x_1,\ldots,x_n]/M_i,$$

dove nella seconda somma gli addendi hanno dimensione 1, si veda (ii) del primo Lemma di GAC3-5.