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FIGURE 1.2. A simple arrangement to observe the Newton fringes in the optical workshop. With this
arrangement plane and long radius spherical surfaces can be tested.

integer multiple of the wavelength. We may easily conclude that if the separation x is
zero, there is a dark fringe.
Hence the dark fringes may be represented by

20x = n4, (1.1)
where n is an integer, and the bright fringes may be represented by

A
Each of these equations represents a system of equally spaced straight fringes, and

the distance d between two consecutive bright or dark fringes is

A
=_—. 1.3

S (1.3)
Thus the appearance of the fringes is as shown in Figure 1.3, when two good optical
flats are put in contact with each other, forming a small air wedge, and are viewed in

monochromatic light.
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ascertain its deviation from flatness. Let us consider a spherical surface of large
radius of curvature R in contact with the optical flat.

Then the sag of the surface is given by x?> /2R, where x is the distance measured
from the center of symmetry. Hence the OPD is given by x*/R + 4/2, and the
positions of the dark fringes are expressed by

(1.4)

Hence the distance of the nth dark fringe from the center is given by

X, = VnRA. (1.5)

From this, it is easy to show that the distance between the (n + 1)th and the nth fringe
is given by

Xni1 — Xn = VRA(Vn +1—/n), (1.6)

FIGURE 1.3. The principle of the formation of straight, equally spaced fringes between two optically
plane surfaces when the air gap is in the form of a wedge. The fringes are parallel to the line of intersection of

the two plane surfaces.
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Creation of interference fringes by an optical flat on a reflective surface. Light rays from a
monochromatic source pass through the glass and reflect off both the bottom surface of the
flat and the supporting surface. The tiny gap between the surfaces means the two reflected
rays have different path lengths. In addition the ray reflected from the bottom plate
undergoes a 180° phase reversal. As a result, at locations (a) where the path difference is an
odd multiple of A/2, the waves reinforce. At locations (b) where the path difference is an
even multiple of A/2 the waves cancel. Since the gap between the surfaces varies slightly in
width at different points, a series of alternating bright and dark bands, interference fringes,

are seen.
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TABLE 1.1. Nature of Newton fringes for different surfaces
with reference to a standard flat.

Appearance of the Newton fringes

S. No. Surface type Without tilt With tilt
1 Plane O {U:D
2 Almost plane Q (UD
3 Spherical @
B Conical @
oowe () Q)
6 Astigmatic
(curvatures of ((@)) (((@
same sign)
7 Astigmatic
(curvatures of @ @
opposite sign)
8 Highly irregular @@)
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Newton interferometer to estimate peak errors up to about /10 by visual observation
alone. Beyond that, it is advisable to obtain a photograph of the fringe system and to
make measurements on this photograph. Figure 1.11 shows a typical interferogram as
viewed in a Newton interferometer. Here, we have a peak error much less than 4/4.
Consequently, the top plate is tilted slightly to obtain the almost straight fringes. The
central diametral fringe is observed against a straight reference line such as the
reference grid kept in the Newton interferometer in Figure 1.2. By means of this grid
of straight lines, it is possible to estimate the deviation of the fringe from its
straightness and also from the fringe spacing. The optical path difference is 21, so
the separation between two consecutive fringes implies a change in the value of ¢
equal to 4/2. Thus, if the maximum fringe deviation from the straightness of the
fringes is d/k with d being the fringe separation, the peak error is given by

peak emor = (£) () 110

In Figure 1.11 £ = 2.5 mm and 4 = 25 mm; hence, we can say that the peak error is
4/20. Even in this case, it is desirable to know whether the surface is convex or
concave, and for this purpose we can use the procedure described earlier. The only
difference is that we have to imagine the center of the fringe system to be outside the
aperture of the two flats in contact.

SURE 1.11. Newton fringes for an optical flat showing peak error of 4/20.



1.3.7. Testing Nearly Parallel Plates

In many applications, glass plates having surfaces that are both plane and parallel are
required. In such cases, the small wedge angle of the plate can be determined by the
Fizeau interferometer, and the reference flat of the interferometer need not be used
since the fringes are formed between the surfaces of the plate being tested. If « is the
angle of the wedge and N is the refractive index of the glass, the angle between the
front- and back-reflected wavefronts is given by 2na, and hence the fringes can be
expressed as
2Na = A 1.23

&= d ’ ( . )
where d is the distance between two consecutive bright or dark fringes. Hence the
angle « is given by

a=-—. (1.24)

To determine the thinner side of the wedge, a simple method is to touch the plate
with a hot rod or even with a finger. Because of the slight local expansion, the
thickness of the plate increases slightly. Hence a straight fringe passing through the
region will form a kink pointing toward the thin side, as shown in Figure 1.22. For
instance, if we take N = 1.5, A =5 x 10~*mm, and « = 5 x 107° (1 s of arc), we
get for d a value of about 33 mm. Hence a plate of 33 mm diameter, showing one
fringe, has a wedge angle of 1 s of arc. If the plate also has some surface errors, we

FIGURE 1.22. Kink formation in the straight Fizeau fringes of a slightly wedged plate, obtained by
locally heating the plate. The kink is pointing toward the thin side of the wedge.
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FIGURE 1.16. Schematic arrangement of a Fizeau interferometer using a lens for collimation of light.



