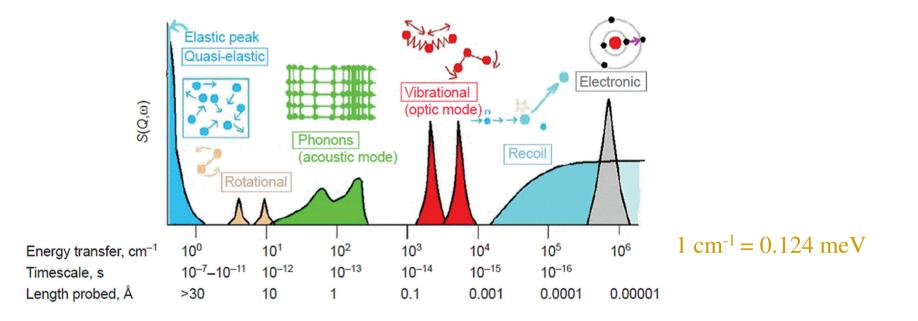
Spectroscopy and excitations in condensed matter

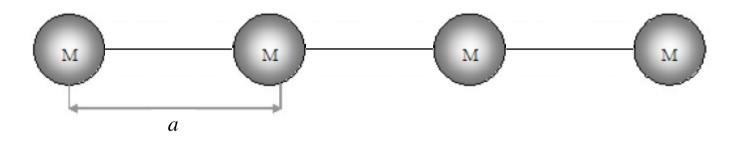
Inelastic scattering probes the elementary excitations associated to *characteristic frequencies* of the system, on variable length scales (i.e. with varying Q).



A sample can «accept» or «give» only amounts of energy which match the quantized forms of its possible excitations: the scattered signal emerging from a sample tells us which energy «jumps» of the system could be probed.

Vibrational modes in crystals

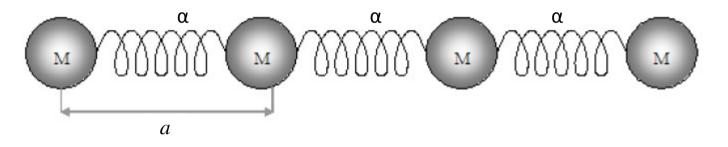
Monatomic one-dimensional crystal



- N : number of lattice sites (and atoms)
- M : atomic mass
- *a* : lattice parameter

How the atoms of this system move? How can we describe the time dependence of the displacement, $u_n(t)=u(na,t)$ of the *n*-th atom from its equilibrium position?

Monatomic one-dimensional crystal



Harmonic potential and interaction only with neighbouring atoms:

$$U^{harm} = \frac{1}{2} \alpha \sum_{n} \left[u_n(t) - u_{n+1}(t) \right]^2 \qquad \alpha \text{ elastic constant}$$

Equation of motion of *N* coupled harmonic oscillators:

$$M \ \ddot{u}_{n}(t) = -\frac{\partial U^{harm}}{\partial u_{n}(t)} = -\frac{\partial}{\partial u_{n}(t)} \frac{1}{2} \alpha \sum_{n} \left[u_{n}^{2} + u_{n+1}^{2} - 2u_{n}u_{n+1} \right] =$$

$$= -\frac{\partial}{\partial u_{n}(t)} \frac{1}{2} \alpha \left[\dots + \left(u_{n-1}^{2} + u_{n}^{2} - 2u_{n-1}u_{n} \right) + \left(u_{n}^{2} + u_{n+1}^{2} - 2u_{n}u_{n+1} \right) + \dots \right] =$$

$$= -\frac{1}{2} \alpha \left[2u_{n} - 2u_{n-1} + 2u_{n} - 2u_{n+1} \right] = \alpha \left[u_{n+1}(t) - 2u_{n}(t) + u_{n-1}(t) \right] \qquad (n = 1, \dots, N)$$

We look for solutions of the form

$$u_{n}(t) = A_{q} e^{i(qna-\omega t)} \text{ with } q = \text{wave vector, } \omega = \text{angular frequency}$$
Periodic boundary condition (Born-von Karman)
$$u_{N+1}(t) = u([N+1]a,t) = u(a,t) = u_{1};$$

$$u_{0}(t) = u(0,t) = u(Na,t) = u_{N}(t) \Rightarrow e^{-i\omega t} = e^{iqNa}e^{-i\omega t} \Rightarrow e^{iqNa} = 1$$

$$\Rightarrow q = \frac{m}{N}\frac{2\pi}{a} \text{ with } m \in \mathbb{Z} \text{ (positive or negative integer)}$$

$$q \text{ can take only discrete values}$$

Note that if q is changed by $2\pi/a$ the displacement $u_n(t)$ is unaffected:

$$u_n(t) = e^{iqna}e^{-i\omega t} = e^{i\left(q + \frac{2\pi}{a}\right)na}e^{-i\omega t} = e^{iqna}e^{i2\pi n}e^{-i\omega t}$$

Consequently, there are just N values of q that yield distinct solutions

Independent (distinct) solutions: we take them to be the N q-values lying between

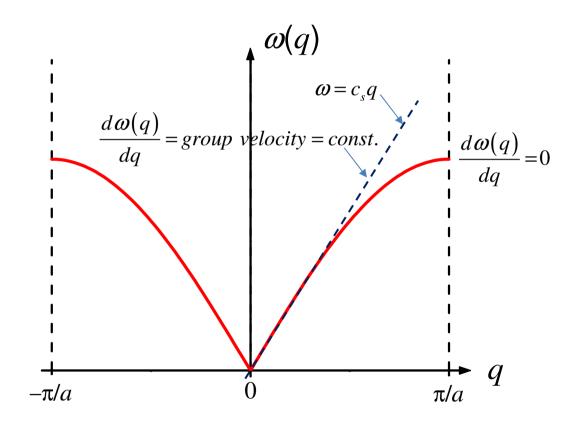
$$-\frac{\pi}{a} \le q \le \frac{\pi}{a} \iff -\frac{N}{2} \le m \le \frac{N}{2}$$

This is the one-dimensional version of requiring q to lie in the FIRST Brillouin zone (1ZB)

$$u_n(t) = A_q e^{i(qna-\omega t)} \rightarrow M \ddot{u}_n(t) = \alpha \left[u_{n+1}(t) - 2u_n(t) + u_{n-1}(t) \right]$$

Dispersion curve:

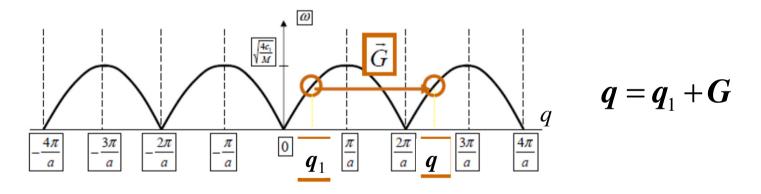
$$\omega(q) = 2\sqrt{\frac{\alpha}{M}} \cdot \left| \sin\left(\frac{a}{2} q\right) \right|$$
N normal modes



At low q (i.e. when the wavelength is large compared to the interparticle spacing a) ω is linear in q (no «dispersion»). The 1st BZ is the region in reciprocal space containing all information about the vibrations of the one-dimensional Bravais lattice.

Only the q values in the 1st BZ correspond to unique vibrational modes. Any q outside this zone is mathematically equivalent to a q_1 value inside the 1st BZ.

This is expressed in terms of a general translation vector of the reciprocal lattice:

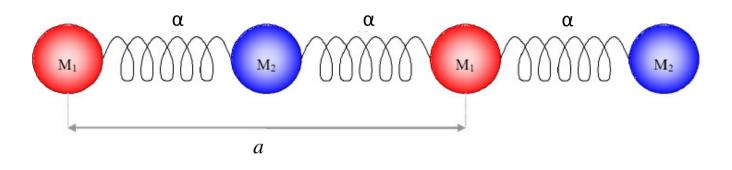


General (classical) solution:

$$u_{n}(t) = \frac{1}{\sqrt{N}} \sum_{q} e^{iqna} \left[A_{q} e^{-i\omega(q)t} + B_{q} e^{i\omega(q)t} \right] \qquad (n = 1, ..., N)$$
$$u(na, t) \propto \begin{cases} \cos(qna - \omega t) \\ \sin(qna - \omega t) \end{cases} \qquad \text{We have } N \text{ distinct values of } q, \text{ each with a} \\ \text{unique frequency } \omega(q), \text{ so there are } 2N \\ \text{independent solutions.} \end{cases}$$

However, the «normal modes» are only N because the sine solution is simply the cosine one shifted in time by $\pi/(2\omega)$.

Diatomic one-dimensional crystal



- N : number of lattice sites
- 2N: total number of atoms
- M_1 : mass of atom 1
- M_2 : mass of atom 2
- *a* : lattice parameter
- α : elastic constant (here assumed to be the same between atom 1 and 2)

Now the normal modes in 1ZB are 2N

Diatomic one-dimensional crystal

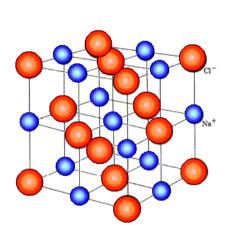
$$\omega_{\pm}(q) = \sqrt{\alpha} \left\{ \left(\frac{1}{M_1} + \frac{1}{M_2} \right) \pm \sqrt{\left(\frac{1}{M_1} + \frac{1}{M_2} \right)^2 - \frac{4}{M_1 M_2} \sin^2 \left(\frac{a}{2} q \right)} \right\}$$

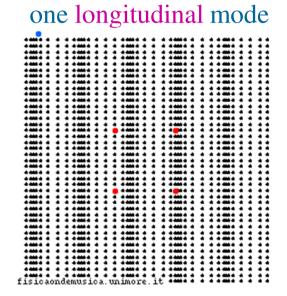
N discrete values of q in 1ZB
2 branches
2N normal modes

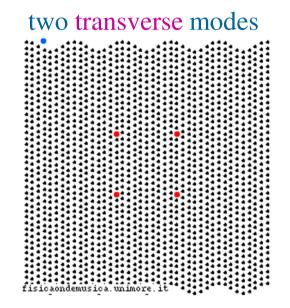
$$\sqrt{(1 + \frac{1}{M_2})^2 - \frac{4}{M_1 M_2} \sin^2 \left(\frac{a}{2} q \right)} = \sqrt{(1 + \frac{1}{M_2})^2 - \frac{4}{M_1 M_2} \sin^2 \left(\frac{a}{2} q \right)} = \sqrt{(1 + \frac{1}{M_2})^2 - \frac{4}{M_1 M_2} \sin^2 \left(\frac{a}{2} q \right)} = \sqrt{(1 + \frac{1}{M_2})^2 - \frac{4}{M_1 M_2} \sin^2 \left(\frac{a}{2} q \right)} = \sqrt{(1 + \frac{1}{M_2})^2 - \frac{4}{M_1 M_2} \sin^2 \left(\frac{a}{2} q \right)} = \sqrt{(1 + \frac{1}{M_2})^2 - \frac{4}{M_1 M_2} \sin^2 \left(\frac{a}{2} q \right)} = \sqrt{(1 + \frac{1}{M_2})^2 - \frac{4}{M_1 M_2} \sin^2 \left(\frac{a}{2} q \right)} = \sqrt{(1 + \frac{1}{M_2})^2 - \frac{4}{M_1 M_2} \sin^2 \left(\frac{a}{2} q \right)} = \sqrt{(1 + \frac{1}{M_2})^2 - \frac{4}{M_1 M_2} \sin^2 \left(\frac{a}{2} q \right)} = \sqrt{(1 + \frac{1}{M_2})^2 - \frac{4}{M_1 M_2} \sin^2 \left(\frac{a}{2} q \right)} = \sqrt{(1 + \frac{1}{M_2})^2 - \frac{4}{M_1 M_2} \sin^2 \left(\frac{a}{2} q \right)} = \sqrt{(1 + \frac{1}{M_2})^2 - \frac{4}{M_1 M_2} \sin^2 \left(\frac{a}{2} q \right)} = \sqrt{(1 + \frac{1}{M_2})^2 - \frac{4}{M_1 M_2} \sin^2 \left(\frac{a}{2} q \right)} = \sqrt{(1 + \frac{1}{M_2})^2 - \frac{4}{M_1 M_2} \sin^2 \left(\frac{a}{2} q \right)} = \sqrt{(1 + \frac{1}{M_2})^2 - \frac{4}{M_1 M_2} \sin^2 \left(\frac{a}{2} q \right)} = \sqrt{(1 + \frac{1}{M_2})^2 - \frac{4}{M_1 M_2} \sin^2 \left(\frac{a}{2} q \right)} = \sqrt{(1 + \frac{1}{M_2})^2 - \frac{4}{M_1 M_2} \sin^2 \left(\frac{a}{2} q \right)} = \sqrt{(1 + \frac{1}{M_2})^2 - \frac{4}{M_1 M_2} \sin^2 \left(\frac{a}{2} q \right)} = \sqrt{(1 + \frac{1}{M_2})^2 - \frac{4}{M_1 M_2} \sin^2 \left(\frac{a}{2} q \right)} = \sqrt{(1 + \frac{1}{M_2})^2 - \frac{4}{M_1 M_2} \sin^2 \left(\frac{a}{2} q \right)} = \sqrt{(1 + \frac{1}{M_2})^2 - \frac{4}{M_1 M_2} \sin^2 \left(\frac{a}{2} q \right)} = \sqrt{(1 + \frac{1}{M_2})^2 - \frac{4}{M_1 M_2} \sin^2 \left(\frac{a}{2} q \right)} = \sqrt{(1 + \frac{1}{M_2})^2 - \frac{4}{M_1 M_2} \sin^2 \left(\frac{a}{2} q \right)} = \sqrt{(1 + \frac{1}{M_2})^2 - \frac{4}{M_1 M_2} \sin^2 \left(\frac{a}{2} q \right)} = \sqrt{(1 + \frac{1}{M_2})^2 - \frac{4}{M_1 M_2} \sin^2 \left(\frac{a}{2} q \right)} = \sqrt{(1 + \frac{1}{M_2})^2 - \frac{4}{M_1 M_2} \sin^2 \left(\frac{a}{2} q \right)} = \sqrt{(1 + \frac{1}{M_2})^2 - \frac{4}{M_1 M_2} \sin^2 \left(\frac{a}{2} q \right)} = \sqrt{(1 + \frac{1}{M_2})^2 - \frac{4}{M_1 M_2} \sin^2 \left(\frac{a}{2} q \right)} = \sqrt{(1 + \frac{1}{M_2})^2 - \frac{4}{M_1 M_2} \sin^2 \left(\frac{a}{2} q \right)} = \sqrt{(1 + \frac{1}{M_2})^2 - \frac{4}{M_1 M_2} \sin^2 \left(\frac{a}{2} q \right)} = \sqrt{(1 + \frac{1}{M_1 M_2})^2 - \frac{4}{M_1 M_2} \sin^2 \left(\frac{a}{2} q \right)} = \sqrt{(1 + \frac{1}{M_1 M_2})^2 - \frac$$

p-atomic three-dimensional crystal

In 3 dimensions atoms can oscillate in the 3 spatial directions, so for each wave vector **q** we have:





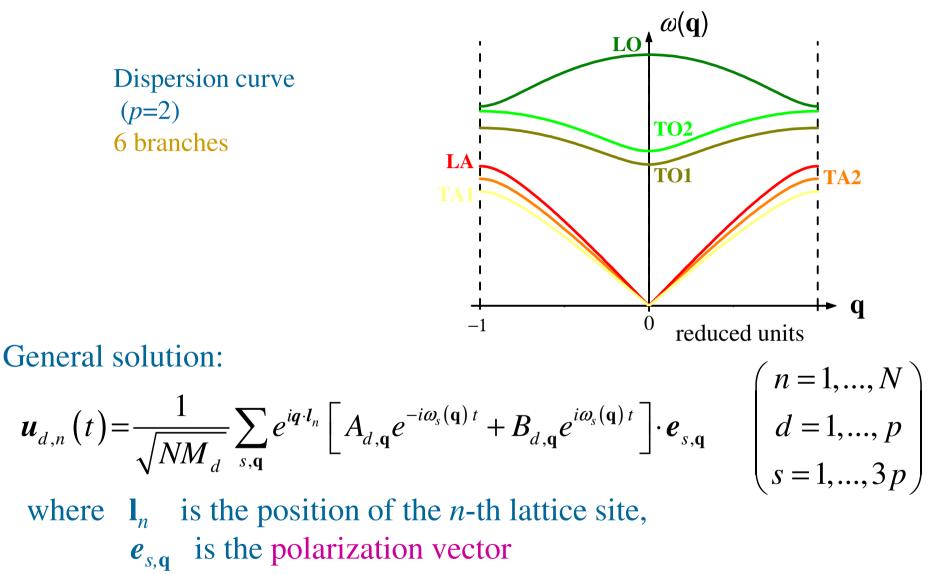


N : n. lattice sitesp : n. of atoms per sitepN : totale number of atoms

3pN normal modes in 1ZB

3N acoustic modes 3(p-1)N optical modes

p-atomic three-dimensional crystal



s is the branch index

Normal modes

Normal mode (s,\mathbf{q}) = elastic wave propagating in the crystal with angular frequency $\omega_s(\mathbf{q})$

quantum of vibrational energy: phonon

More rigorously, given the displacements $\mathbf{u}_n(t)$, one defines:

- canonical variables $(Q_{s,q}, P_{s,q})$ and the classical Hamiltonian
- creation and annihilation operators: $\hat{a}_{s,q}^+$, $\hat{a}_{s,q}$

- Quantum Hamiltonian of 3pN independent harmonic oscillators: $\hat{H} =$

$$\sum_{s,\mathbf{q}} \hbar \omega_s(\mathbf{q}) \left(\hat{a}_{s,\mathbf{q}}^+ \hat{a}_{s,\mathbf{q}} + \frac{1}{2} \right)$$

If interested, see Appendix *L* of Neil W. Ashcroft, N. David Mermin, "*Solid State Physics*", Saunders College, Philadelphia, USA (1976).

Admitted energies for the single quantum oscillator (s,q):

$$\left(n_{s,q}+\frac{1}{2}\right)\hbar\omega_{s}\left(\mathbf{q}\right)$$
 with $n_{s,q}=0, 1, 2, ..., \infty$

Given $n_{s,\mathbf{q}}$: instead of saying that the normal mode of branch *s* with wave vector \mathbf{q} is in its $n_{s,\mathbf{q}}$ -th excited state of energy $(n_{s,\mathbf{q}}+1/2) \hbar \omega_s(\mathbf{q})$ we *equivalently* say that $n_{s,\mathbf{q}}$ phonons are present in state (s,\mathbf{q})

pN atoms in harmonic oscillation (3*pN* normal modes)

3pN quantum states (s,q) occupied by a potentially *infinite* number of phonons

The state of the system is defined by the occupation numbers $n_{s,\mathbf{q}}$ of the total 3pN available energy levels $\hbar\omega_s(\mathbf{q})$:

$$\left| n_{(s,\mathbf{q})_{1}}, n_{(s,\mathbf{q})_{2}}, \dots, n_{(s,\mathbf{q})_{3pN}} \right\rangle$$

Occupation numbers are determined by the temperature:

$$n_{s,\mathbf{q}}(T) = \frac{1}{e^{\frac{\hbar\omega_s(\mathbf{q})}{k_B T}} - 1}$$
 Bose-Einstei

Bose-Einstein statistic distribution