Spectroscopy and excitations in condensed matter

Inelastic scattering probes the elementary excitations associated to characteristic frequencies
of the system, on variable length scales (i.e. with varying Q).
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A sample can «accept» or «give» only amounts of energy which match the quantized
forms of its possible excitations: the scattered signal emerging from a sample tells us
which energy «jumps» of the system could be probed.



Vibrational modes in crystals

Monatomic one-dimensional crystal
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N : number of lattice sites (and atoms)
M : atomic mass
a . lattice parameter

How the atoms of this system move? How can we describe the time dependence of the
displacement, u,(f)=u(na,t) of the n-th atom from its equilibrium position?



Monatomic one-dimensional crystal

Harmonic potential and interaction only with neighbouring atoms:
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Equation of motion of N coupled harmonic oscillators:
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Monatomic one-dimensional crystal

We look for solutions of the form

u, (1) = A, ") with g=wave vector, @ = angular frequency

Periodic boundary condition (Born-von Karman) (:::D

uy,, (1) u([N+1]a,t)= u(a,t)=u,;
u, (1) =u(0,t)=u(Na,t)=u, (1) => e =™ =" =1
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g can take only discrete values

Note that if g 1s changed by 27 /a the displacement u,(¢) 1s unaffected:
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Consequently, there are just N values of ¢ that yield distinct solutions



Monatomic one-dimensional crystal

Independent (distinct) solutions: we take them to be the N g-values lying between
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This 1s the one-dimensional version of requiring g to lie in the
FIRST Brillouin zone (1ZB)
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At low ¢ (i.e. when the wavelength is large
compared to the interparticle spacing a) @1is
linear in g (no «dispersion»).



Brillouin zones (one-dimensional monatomic case)

The 1st BZ is the region in reciprocal space containing all information about the vibrations of
the one-dimensional Bravais lattice.

Only the g values in the 1st BZ correspond to unique vibrational modes.
Any q outside this zone is mathematically equivalent to a g, value inside the 1st BZ.

This is expressed in terms of a general translation vector of the reciprocal lattice:
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Atomic displacements

General (classical) solution:

\/_Ze"’”“ [A g ) +quiw(Q)t] (n=1,...,N)

cos (gna — o)

u(na,t) o< { _

sin (gna — o) unique frequency ag), so there are 2N

} We have N distinct values of g, each with a
independent solutions.

However, the «<normal modes» are only N because the sine solution 1s simply the
cosine one shifted in time by 7/(2 @).



Diatomic one-dimensional crystal

number of lattice sites
total number of atoms
mass of atom 1

mass of atom 2

lattice parameter
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elastic constant (here assumed to be the same between atom 1 and 2)

Now the normal modes in 1ZB are 2N



Diatomic one-dimensional crystal

* N discrete values of g in 1ZB

* 2 branches

2N normal modes
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two transverse modes
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he 3 spatial directions, so for each wave vector

one longitudinal mode
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p-atomic three-dimensional crystal

Dispersion curve

(p=2)
6 branches
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General solution:
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where 1 1s the position of the n-th lattice site,

e, 18 the polarization vector

s 1S the branch index

reduced units
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Normal mode (s,q) = elastic wave propagating in the crystal with angular frequency
0,(q)

-2 | Ao (q) | quantum of vibrational energy: phonon

More rigorously, given the displacements u,(7), one defines:
- canonical variables (Q; ., P;,) and the classical Hamiltonian
- creation and annihilation operators: d:, qQ’ ds,q (

) |
- Quantum Hamiltonian of 3pN independent harmonic oscillators: H :Zh"% (Q) d; (G o +§
sq

If interested, see Appendix L of Neil W. Ashcroft, N. David Mermin, “Solid State Physics”, Saunders
College, Philadelphia, USA (1976).

Admitted energies for the single quantum oscillator (s,q) :
1 :
(ns’q +5) ho,(q) with n  =0,1,2, .., e

Given n: instead of saying that the normal mode of branch s with wave
vector q 1s in its ng -th excited state of energy (ns,q +1/2) i (q) we
equivalently say that n , phonons are present in state (s,q)



pN atoms in harmonic oscillation
(3pN normal modes)
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3pN quantum states (s,q) occupied by a potentially infinite number of phonons

The state of the system is defined by the occupation numbers n; , of the total 3pN
available energy levels 7w (q):
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Occupation numbers are determined by the temperature:
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" (T) = o) Bose-Einstein statistic distribution
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