
1 cm-1 = 0.124 meV

Inelastic scattering probes the elementary excitations associated to characteristic frequencies 

of the system, on variable length scales (i.e. with varying Q).

A sample can «accept» or «give» only amounts of energy which match the quantized

forms of its possible excitations: the scattered signal emerging from a sample tells us

which energy «jumps» of the system could be probed.

Spectroscopy and excitations in condensed matter



Vibrational modes in crystals

Monatomic one-dimensional crystal

N :   number of lattice sites (and atoms)

M :   atomic mass

a :   lattice parameter

How the atoms of this system move? How can we describe the time dependence of the 

displacement, un(t)=u(na,t) of the n-th atom from its equilibrium position? 

a



Monatomic one-dimensional crystal

Equation of motion of N coupled harmonic oscillators:

a

α α α

( )
( ) ( )

( )
( ) ( )

[ ] ( ) ( ) ( )

2 2

1 1

2 2 2 2

1 1 1 1

1 1 1 1

1
2

2

1
.... 2 2 ...

2

1
2 2 2 2 2 ( 1,..., )

2

harm

n n n n n

nn n

n n n n n n n n

n

n n n n n n n

U
M u t u u u u

u t u t

u u u u u u u u
u t

u u u u u t u t u t n N

α

α

α α

+ +

− − + +

− + + −

∂ ∂
 = − = − + − = ∂ ∂

∂  = − + + − + + − + = ∂

= − − + − = − + =  

∑ɺɺ

Harmonic potential and interaction only with neighbouring atoms:

( ) ( )
2

1

1

2

harm

n n

n

U u t u tα += −  ∑ α elastic constant



Monatomic one-dimensional crystal

We look for solutions of the form
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q   can take only discrete values

Note that if q is changed by 2π /a the displacement un(t) is unaffected:
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Consequently, there are just N values of q that yield distinct solutions



Monatomic one-dimensional crystal
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Independent (distinct) solutions: we take them to be the N q-values lying between

This is the one-dimensional version of requiring q to lie in the 

FIRST Brillouin zone  (1ZB)
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Dispersion curve:

N normal modes

Normal modes
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At low q (i.e. when the wavelength is large 

compared to the interparticle spacing a) ω is 

linear in q (no «dispersion»).



The 1st BZ is the region in reciprocal space containing all information about the vibrations of

the one-dimensional Bravais lattice.

Only the q values in the 1st BZ correspond to unique vibrational modes.

Any q outside this zone is mathematically equivalent to a q1 value inside the 1st BZ.

This is expressed in terms of a general translation vector of the reciprocal lattice:

q1 q

1= +q q G
q

Brillouin zones (one-dimensional monatomic case)



Atomic displacements

We have N distinct values of q, each with a

unique frequency ω(q), so there are 2N

independent solutions.
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General (classical) solution:

However, the «normal modes» are only N because the sine solution is simply the 

cosine one shifted in time by π /(2ω).



Diatomic one-dimensional crystal

N :   number of lattice sites

2N :   total number of atoms

M1 :   mass of atom 1

M2 :   mass of atom 2

a :   lattice parameter

α     :   elastic constant (here assumed to be the same between atom 1 and 2)

Now the normal modes in 1ZB are 2N

a

α α α
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• N discrete values of q in 1ZB

• 2 branches

2N normal modes
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Diatomic one-dimensional crystal



N :   n. lattice sites

p :   n. of atoms per site 3pN normal modes in 1ZB

pN  :   totale number of atoms

3N acoustic modes

3(p-1)N optical modes









In 3 dimensions atoms can oscillate in the 3 spatial directions, so for each wave vector 

q we have:

one longitudinal mode two transverse modes

p-atomic three-dimensional crystal
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General solution:

where   ln is the position of the n-th lattice site,

es,q is the polarization vector

s is the branch index

Dispersion curve
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p-atomic three-dimensional crystal



Normal mode (s,q)  =  elastic wave propagating in the crystal with angular frequency 

ωs(q)

� ħωs(q)      quantum of vibrational energy: phonon

More rigorously, given the displacements un(t),  one defines:

- canonical variables (Qs,q , Ps,q)  and the classical Hamiltonian

- creation and annihilation operators: 

- Quantum Hamiltonian of 3pN independent harmonic oscillators: Ĥ

If interested, see Appendix L of Neil W. Ashcroft, N. David Mermin, “Solid State Physics”, Saunders 

College, Philadelphia, USA (1976). 
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Admitted energies for the single quantum oscillator (s,q) :

Given ns,q:  instead of saying that the normal mode of branch s with wave 

vector q is in its ns,q-th excited state of energy (ns,q +1/2) ħωs(q) we 

equivalently say that ns,q phonons are present in state (s,q) 
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Normal modes



pN atoms in harmonic oscillation

(3pN  normal modes)

3pN quantum states (s,q)  occupied by a potentially infinite number of phonons

The state of the system is defined by the occupation numbers ns,q of the total 3pN

available energy levels ħωs(q):
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Occupation numbers are determined by the temperature:
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Phonon gas


