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Preface

When compared with the conventional pictures of gases and crystals, the
physical representation of a liquid does not seem particularly attractive.
For this intermediate state of matter it is indeed rather easy to compile a
list of ‘unpleasant’ features, comprising the absence both of long-range
structural order and ideal disorder, the need to consider particle interactions
far from harmonic, the lack of an immediately evident ‘small parameter’
in the microscopic dynamics of the system, and so on. In this respect,
the characterization of a liquid appears to be dominated by just those
complicated aspects which are rather marginal in the other two states of
matter.

A well-known consequence of this perverse attitude is the ultimate failure
of the attempts to describe the features of the liquid state by extrapolating
the behaviour of either gases (density expansions) or solids (cell theories).
Even if in a historical perspective the heuristic value of these approaches
should not be undervalued, the appearance of divergences in some predic-
tions signals that liquids are much too complicated for the success of these
‘natural’ perturbative schemes.

In view of all this, the only sensible choice is to take the bull by the horns
by focusing on those properties which appear to characterize the liquid state
as unambiguously as possible. This strategy can be followed at a purely
macroscopic level, in a voyage which moves from the gentle waves of
linearized hydrodynamics to explore more turbulent waters or whirling
maelstroms. Alternatively, one may adopt a microscopic point of view, in
which the emphasis is put on the spatial arrangement and on the motion
of the atomic constituents. In the latter case, a comparison with the
behaviour typical of the other two phases of matter may shed some extra
light on the problem, or even suggest useful approximation schemes. To
give just one example, the microscopic structure of .monatomic liquids
appears to be dominated by close-packing effects, rather than by the details
of the interatomic potential as in moderately dense gases. Although
this recognition is far from being the full story, it is certainly one of the
cornerstones of the structural theories of the liquid state. _

The purpose of the book is to present a comprehensive discussion of the
physical concepts and theoretical approaches developed for the study of the
dynamical properties of liquids (or, more generally, of high-density fluids)
at a microscopic level. To keep in touch with real life, a rather detailed
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account of the experimental techniques in common use in this field is also
included. As we shall see, in most cases the inherent complexity of these
systems does not mean that we require abstract mathematical treatments

~or, say, exotic concepts for a satisfactory account of their properties. Even

if occasionally the appearance of some kinetic-theory expressions may be
rather discouraging for the average reader, that reader’s patience will be
rewarded, we hope, by the successful application of the framework to
some specific property of physical interest. To mitigate any residual formal
complication, attention will be focused mostly on the so-called ‘simple
fluids’, namely classical monatomic fluids or those equivalent to the latter
as far as the property under consideration is concerned. Even if nowadays
the study of much more ‘complex’ systems (ranging from glass-forming
liquids to polymers, colloids, and microemulsions) is in rapid evolution,
most of the basic concepts and results discussed in this book turn out to
provide useful guidelines even in these challenging cases.

Coming back to the specific field of our concern, the progress achieved
in the last decade permits a theoretical description from a unified point of
view. For example, this inherent conceptual unity is useful in order to stress
many common aspects of single-particle vs. collective atomic dynamics.
Nevertheless, this traditional distinction will be kept even here, mostly
because it is convenient when making contact with experiments. In this
context, it is well known that thermal neutrons inelastically scattered by the
fluid are quite efficient probes of its dynamics at an atomic level. As we
shall see, a good deal of information is also provided by light scattering,
not only in its conventional use in Rayleigh-Brillouin spectroscopy but also
in more unusual (and ‘microscopic’) applications, like interaction-induced
light scattering. Finally, it is worth mentioning the extremely important role
of ‘simulation experiments’ in the development of the whole field over the
years. As a consequence, we shall frequently refer to computer simulation
data, particularly in situations where they are useful to clarify concepts or
to illustrate phenomena whose practical observation is difficult. Trying
never to forget that, after all, nature is supposed to be real, and that the
correctness of any theoretical model, including the mimic-system investi-
gated in the simulations, should ultimately be tested against experiment.

The book begins with a rather extensive introduction to the quantities
of physical interest in the microscopic dynamics of liquids. Each of these
has a specific behaviour, conveniently described by a suitable correlation
function in the time domain or by the corresponding spectrum in the
frequency domain. A preliminary contact with experimental data indicates
that there is a large variety of phenomena for which a comprehensive theory
must be able to account. This immersion in reality is continued in
Chapter 2, a sort of ‘experimentalists’ corner’ where several possible ways
to probe the atomic dynamics in fluids are discussed in detail. Chapter 3

Preface vii

then establishes the theoretical framework needed to interpret the observed
features. After a rather general description of favourite theoretical tools
such as projection operators and memory functions, there are some of the
first rewarding applications to the field of interest, including a microscopic
deduction of the results of ordinary Navier-Stokes hydrodynamics. In
Chapter 4, the framework is shown to provide a sound basis for the buildup
of a modern version of kinetic theory. This turns out to be quite successful,
even in the liquid state, as shown- by the subsequent applications both to

- single-particle properties (Chapter 5) and to collective quantities (Chapter 6).

One of the most important results of the general theory is the natural
emergence in dense fluids of two basic dynamical mechanisms governing
the time decay of the correlation functions of interest. The first decay
channel, well known from the traditional kinetic theory of gases, is
provided by fast and largely uncorrelated collisional events. The second
mechanism is much less localized both in space and in time, and in very
dense fluids is basically associated with the sluggishness of any structural
relaxation process. The importance of this long-lasting mechanism rapidly
increases as we move toward the liquid range, and under suitable conditions
the decay time becomes eventually so long as to give rise to a structural
arrest, heralding the birth of a ‘frozen’ amorphous system. Hence, even at
a dynamical level the awkward ‘intermediate character’ of the liquid phase
is seen to have far-reaching consequences.

It is customary at this point to acknowledge all those who have con-
tributed to some extent to the authors’ efforts. In our case, this support
ranged from active collaborations to profitable discussions and contacts,
including a few embarassing question marks. Given these premises, a
comprehensive list of these colleagues would be too long; we express our
gratitude to all of them, as well as to the Oxford University Press reader
for his valuable comments and suggestions. One of us (U. B.) takes this
opportunity to remember Tom Gaskell, who until his premature death has
been to him both a valued companion of intellectual adventures in this field
and a sincere friend. Both of us have of course benefited from cooperation
with several colleagues in the familiar atmosphere of our Institute in
Florence. In our homes not far from there, the encouragement and
tolerance of Adriana and Brunella have made much smoother any asperity
met in the course of our work.

Florence , U.B.
March 1994 M.Z.
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general projection operator

wavevector variable

wavevector-dependent microscopic energy current at
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dynamic structure factor

general dynamic structure factor (quantum-mechanical)
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time

temperature
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volume of the system

total potential energy

Laplace transform variable (not to be confused with
the cartesian component of r)

atomic number

canonical partition function (total)

polarization index
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a(x) Dirac delta-function
ori(t) mean square displacement of a particle
€ well depth of the pair potential
n shear viscosity coefficient
N longitudinal viscosity coefficient (7, = (4/3)n + ny)
ny volume (bulk) viscosity coefficient
n(t) (shear) stress autocorrelation function
K thermal conductivity coefficient
A wavelength
g scattering cross section; also, a characteristic length

associated with the pair potential (typically, the first
zero of ¢(r))

o, coherent neutron scattering cross section

g; incoherent neutron scattering cross section

ok, ) wavevector-dependent microscopic stress tensor at time ¢

a% element of the microscopic stress tensor

T time variable

o(r) interparticle pair potential

Xr isothermal compressibility

w(t) velocity autocorrelation function (normalized to its
initial value)
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" general nth frequency moment
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"/ @)

wy. (k) wavevector-dependent longitudinal frequency

wr(k) wavevector-dependent transverse frequency

Q solid angle '

Q general proper frequency matrix in the memory
function formalism

2, Einstein frequency

In this book the physical quantities have been expressed in cgs units, except
in a few cases (such as A or eV) where we have followed a long-established
tradition. Some fundamental constants of common use are: kg = 1.38 X
10~ erg K~! (Boltzmann constant): & = 1.054 x 10~* erg s (Planck cons-
tant # divided by 27); e = 4.8 X 10~ ®esu of electric charge (the charge
of an electron being—e); m, = 0.91110% g (electron mass); m, =
1.6710 g (neutron mass). An useful conversion relation among the
various ‘energy units’ used in spectroscopic studies of condensed system is

1meV=10"3eV =1.6x10"%erg=8.07cm~ ' =11.61 K =0.24 x 10">Hz.

The basic dynamical quantities

1.1 MICROSCOPIC CHARACTERIZATION OF A
LIQUID SYSTEM

On the gross scale of everyday experience, a liquid can be described by a
relatively small number of quantities. As in any other physical system, the
criteria of choice of these macroscopic variables are established by ther-
modynamics. For example, the equilibrium state of a one-component fluid*
is specified by the volume V of the system, its pressure P, and its absolute
temperature 7. The actual independence of these equilibrium thermo-
dynamic variables is limited by ‘constitutive relations’ (in the example, the
equation of state), whose specific form is taken phenomenologically from
some experimental evidence. The well-established ‘principia’ of ther-
modynamics are subsequently exploited to yield the best possible descrip-
tion of the equilibrium properties of the system from a macroscopic point
of view.

Similar steps can be found in the logical structure of irreversible thermo-
dynamics, which explicitly deals with non-equilibrium processes (de Groot
and Mazur 1962). If the deviation from equilibrium is not too large,
semiphenomenological results such as, for example, Fick’s law for diffusion
or the Navier-Stokes hydrodynamic equations may be exploited. Irreversi-
ble thermodynamics then predicts several formal results for the coefficients
in these equations, including those symmetry requirements known as
Onsager relations. However, the explicit expressions of these dissipative (or
‘transport’) coefficients cannot be deduced, and their values for a given
system have ultimately to be taken from experiment.

This frequent recourse to phenomenology appears rather natural in a
macroscopic framework. In contrast, one of the purposes of a microscopic
description at an atomic level is to try to avoid any resort to experiment
in the development of the theory. In our specific subject of concern, this
ambitious strategy is of course made possible by a framework based on
statistical mechanics. Besides any methodological merit or aesthetic appeal,

*Henceforth we shall adhere to the common use of denoting as ‘fluid’ a system macro-
scopically characterized by the absence of a definite shape. For a given substance, this defini-
tion clearly encompasses both its ordinary gaseous and liquid phases.



2 The basic dynamical quantities

the microscopic approach has the practical advantage of dealing even with
phenomena which are rather far from ‘everyday experience’, and yet are
directly observable. In particular, rather sophisticated experimental probes
may yield invaluable pieces of information on several physical events occur-
ring in the system over different length and time scales. In this respect, an
obvious example is provided by the experiments in which a beam of thermal
neutrons is scattered by the system: at least in principle, a proper choice
of the scattering conditions and of the isotopic species provides an almost
complete description of the structural and dynamical properties of the
system, both in their single-particle aspects and in the collective features.

Needless to say, in the microscopic framework a more complicated
formalism is the price to pay for all these advantages. Also, the toll is
particularly expensive in a strongly interacting system such as a ‘liquid’ in
its conventional meaning. In such a situation, it is wiser to take a moderate
attitude, confining our attention to the so-called ‘simple liquids’. In the
literature there is no consensus about the precise definition of a simple
liquid, but there is at least the widespread agreement that this model should
encompass most of the basic features of real liquids without the unnecessary
complications which may be present in a particular system.

In this respect, a classical monatomic system in a limited range of den-
sities and temperatures is a convenient physical model for a simple liquid.
Denoting by r; and p; the position and the momentum of the ith particle
in a laboratory frame, the Hamiltonian'3C of our model system is written
as a sum of kinetic and potential energy contributions:

3 = (1/2m) Zp,? + Valry, oo ry) 1.1)

where the summation runs over the N particles of the system, each of mass
m. The potential energy Vy is assumed to depend only on the interatomic
interactions, which in the simplest scheme are written as a sum of pairwise
central contributions

Vilrss-om) =35 33 $(7) 1.2
i%j
where the pair potential ¢ depends on the interatomic separation
ry = |r; — r;| between the ith and the jth atoms. Combining eqns (1.1)
and (1.2), the resulting Hamiltonian is the simplest which we may envisage
for a classical interacting system made of identical particles. The system is
implicitly assumed to be homogeneous and isotropic, that is JC is not
affected by a translation or a rotation of the reference frame.

In general, the pair potential ¢(r) comprises both attractive (¢(r) < 0)
and repulsive (¢(r) > 0) portions, with the latter dominant for sufficiently
small separations. Broadly speaking, the pairwise approximation (1.2) with
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a more or less phenomenological form of ¢(r) is fairly successful in the
description of real fluids, although the presence of non-negligible triplet
contributions has been detected in moderately dense gases (Egelstaff 1990).
In liquids the situation is still far from being defined, and for simplicity
we shall adopt the pairwise model, which proves indeed sufficient to
account for most of the complicated features of the dynamics of the liquid
state.

Before exploring the consequences of the above-mentioned classical
model, it is worth ascertaining the possible presence of quantum effects in
real monatomic liquids. Generally speaking, these effects fall into the
following three classes: ‘

(i) Quantum diffraction. Physically, the wave-like character of a particle
begins to be relevant when its de Broglie wavelength A = h/p is comparable
with a suitable ‘size’ of the particle. Denoting this size by o, a classical
framework is expected to be appropriate only if A/p < 0. If quantum
effects are not severe, the particle momentum p can be replaced by its
classical average at thermal equilibrium, of the order of (mkyzT)V2. In
practice, quantum diffraction effects turn out to be small in almost all
cases, an exception being the systems made of light particles at very low
temperatures, such as liquid helium.

(ii) Quantum statistics. Systems of identical particles are known to require
an appropriate treatment of the inherent indistinguishability of their consti-
tuents. This task involves the consideration of the symmetric or antisym-
metric character of the system wavefunction under a permutation of two
particles, and ultimately leads to the nonclassical Bose-Einstein and
Fermi-Dirac statistics. On the other hand, the relevance of such effects is
expected to be pronounced only if there is a significant overlap between the
single-particle wavefunctions. A convenient measure of the spatial extent
of the latter is again provided by the previous ‘thermal’ de Broglie
wavelength. Taking the average interparticle separation as (V/N)'3, the
overlap will be negligible if

h/ (2mmkg T)V? < (V/N)'2. (1.3)

Since in the liquid range the particles are almost in mutual contact,
(V/N)'3 = ¢ and the criterion (1.3) becomes essentially equivalent to the
neglect of the aforementioned quantum diffraction effects.

(iii) Detailed balance factors. The quantized character of the energy
transfers at a microscopic level leads to a natural unbalance of the spectral
properties of a system, depending whether energy gains or losses are con-
sidered (see Section 2.3). Here we limit ourselves to state that a classical
treatment of ‘these features is approximately valid only for frequencies w
such that

hw < kgT. (1.4)
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1.2 THE STRUCTURAL BACKGROUND

1.2.1 The basic structural properties

" Before embarking on the study of the dynamical features of simple liquids,
it is essential to recall a few concepts about their time-independent proper-
ties. The latter comprise all the equilibrium quantities familiar from
ordinary thermodynamics, such as the internal energy, the pressure, the
specific heats and so on. For a given system, all these quantities depend
on ‘state parameters’ such as the temperature T and the volume V. In addi-
tion to these thermodynamic properties, in a microscopic framework it is
convenient to consider other ‘static’ quantities which are directly related to
the atomic nature of the system. Typical examples of such properties are
the various ‘n-particle distribution functions® which describe the average
spatial arrangements of clusters of » atoms. Besides the dependence on the
state parameters of the system, these quantities are also functions of addi-
tional ‘field’ variables, usually vectorial distances or separations. Because
of their more microscopic nature, this second class of equilibrium proper-
ties is more fundamental than the thermodynamical quantities, which in
most cases can be written as simple integrals involving these functional
probes of structure. '

In any case, both kinds of properties can be expressed as statistical
averages ot suitable microscopic quantities involving the positions and the
momenta of the constituent particles. In the following, we shall almost
exclusively deal with systems with a fixed number of particles and at ther-
mal equilibrium at the temperature T in such a situation the appropriate
statistical average is the canonical ensemble average ’

() = (1/2y) jdrNde(...) exp(—B3C) (1.5)

where = (kgT)~! and the 6N-dimensional integral runs over the set of
coordinates rV¥ = {r,,...,ry} and conjugate momenta p~ = {p,,..., px}.
Moreover,

Zy = [ dr™ dp™ exp(-p1c) (1.6)

is the canonical partition function. In our classical model, Z, factors in
the product- of a kinetic contribution .

(Zy)xin = fdp”exp {—/3 2 pi/ ZmJ
< N
= [47: 5 dp p*exp( —ﬂpz/zm)] = 2nmkgT)™?  (1.7)
0

and a potential contribution
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(Zn)por = | dr¥exp —BV(x¥)] = QW(V, T). (1.8)

In contrast with (Zy),, in general the potential part of Zy (also referred
to as the ‘configurational. partition function’ Qn(V, T)) cannot be
evaluated exactly; a trivial exception is the ‘ideal gas’ situation where
Vy(ry) = 0 and Qu(V, T) = V7. In a dilute gas, the first deviations from
nonideality can also be treated exactly by means of a ‘virial’ expansion in
the small parameter na3, where n = N/V is the gumber density and o is
a microscopic length of the order of the range of the interatomic potential.
As already remarked, such expansions are bound to fail at high densities
(in particular, in the liquid range where na? = 1).

As an example of evaluation of a thermodynamic property by eqn (1.5),
consider the internal energy of the system. In the pairwise approximation
(1.2) this is simply given by

E = (%) = (1/2m) {0} + (Vu(r™)

=%NkBT+%<Z ¢(rij))

i)

3 1
=> Nk T+ EandrqS(r)g(r) (1.9)
where we have exploited the fundamental property of a classical system
(p?) = m*(v?) = 3mky T (1.10)

and defined
ng(r) = (1/N) ) (6(r — ry)). (1.11)
i+j

The quantity g(r), referred to as the pair distribution function of the system,
is the simplest example of the microscopic structural properties mentioned
earlier. After eqns (1.5)-(1.8), an alternative expression of g(r) is given by

ng(r) = [(N-1)/Qn(V, T)] SdrISerJ(r— r) jdl's ...dryexp(—BVy)

=[(N-1)/0n(V, T)] Vs dry;...drvexp[ —BVy(r, 1y, ... 10) ]
' (1.12)

where in the last part we have introduced relative coordinates and exploited
the homogeneity of the system. Since the fluid is also isotropic, g(r)
turns out to depend only on r = |r|, and in the following it is denoted by
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Fig. 1.1 Pair distribution function in liquid Cs as obtained in a computer simula-
tion experiment at a temperature 7 = 308 K and a number density » = 0.0083 A -3
(after Balucani ef al. 1992).

2(r). Tts functional form is exactly known only at low densities, where
g(r) = exp[—Bo(n)].

From its definition (1.11), g(r) is seen to measure the probability density
that a particle is separated by a distance r from another one. In particular,
the average number of neighbours of a given atom up to a distance R is:

R
9(R) = dnn | drrg(r) (1.13)

0
" The typical features of g(r) in the liquid range are illustrated in Fig. 1.1,
which refers to liquid Cs near its melting point. In particular, the
vanishingly small value of g(r) below r = 4 A reflects the strong interparti-
cle repulsion occurring for such small separations. Beyond this region, the
presence of several oscillations indicates that the average arrangement of
particles around an arbitrary atom proceeds through ‘clusters’ resembling
the shells of neighbours occurring in a crystal. The analogy is however
incomplete, both because of the inherent isotropy of the liquid and for the
ill-defined character of the shells, which are considerably broader than
those of a crystal at finite temperatures. From eqn (1.13) the number of
‘nearest neighbours’ up to the position of the first minimum of g(r) turns
out to be (R = 7 A) = 12, a value consistent with a nearly close-packed
arrangement. For very large separations, g(r) eventually approaches unity
and the system effectively behaves as a structureless continuum.
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S(k)
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Fig. 1.2 Experimental static structure factor of liquid Cs at the same state point

as in Fig. 1.1. The data have been obtained by X-ray diffraction (open circles;

Huijben and van der Lust 1979) and by neutron scattering (asterisks; Bodensteiner

et al. 1992). The full line is the result obtained from eqn (1.14) using for g(r) the
simulation data reported in Fig. 1.1.

An experimentally accessible quantity which is closely related to g(r) is
the static structure factor defined by

S(k) =1+ njdr[g(r) — 1] exp(ik-r)

=1+ 47m§ drri[g(r) — 1]

sin kr
kr

(1.19)

which can be measuréd either by X-ray or neutron diffraction. Note that
in the last step of (1.14) the angular integrations have been performed by
exploiting the independence of the pair distribution function on the direc-
tion of r. Thus, as a consequence of the isotropy of the system, the static
structure factor of a fluid is seen to depend only on the magnitude of the
‘wave vector’ k.

Broadly speaking, the shapes of S(k) and g(r) in typical simple liquids
are remarkably similar (see Fig. 1.2), although of course the physical mean-
ing to be attributed to the various features is completely different in the

"wave vector domain. Thus, the first sharp peak of S(k) reflects the existence

of a dominant nearly regular arrangement of the particles in real space; in
the specific example of Fig. 1.2 the position of the main peak of S(k) is at
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ky, = 1.43 A -1, corresponding to a ‘lattice spacing’ 2n/k,, =~ 4.4 A in fair
agreement with the period of the oscillations of g(r) from Fig. 1.1. The
sharp decrease of g(r) at small separations (r < 5 A) is responsible for the
subsequent maxima and minima of S(k), which become more and more
damped as k increases. Eventually, at large wave vectors, S(k) probes the
‘hard core’ region .where g(r) is vanishingly small: here the contribution of
the integral in eqn (1.14) becomes negligible, and S(k) — 1. In the opposite
extreme, S(k — 0) reflects in an average sense the features of g(r), including
its asymptotic approach to unity at very large separations. As a con-
sequence, S(0) can be expected to be associated with some macroscopic
property of the system. It can indeed be shown that (Hansen and
McDonald 1986)

S(0) = nkgT- xr (1.15)

where xris the isothermal compressibility. The very low values of S(k — 0)
apparent from Fig. 1.2 are typical for all liquids near melting, and reflect
our very limited ability to compress such systems. This situation is to be
contrasted with those met in an ideal gas (where g(r) = 1 for all r, making
S(k) = 1 at any k) and in a fluid near the liquid-gas critical point (where
the onset of huge density fluctuations over macroscopic distances causes
S(0) to diverge).

Given a particular pair potential ¢(r), the main objective of the structural
theories of dense fluids and liquids is to deduce the appropriate form of
g(r) and S(k) in a specified state point. For simple liquids, this task was
essentially accomplished in the early 1970s by the so-called ‘reference-
system’ approaches. These approximate methods are based on the physical
recognition that the structure of a dense fluid is mostly determined by the
interatomic repulsive forces, which give rise' to the so-called ‘excluded

volume’ effects. As a consequence, for a fluid specified by a given ¢(r) a -

convenient starting point is the determination of the ‘underlying’ repulsive
system. For the latter, one is ultimately led to the consideration of a system
of hard spheres with infinitely strong repulsive forces, whose structural pro-
perties can approximately be worked out (Percus and Yevick 1958). Having
established the appropriate reference system, the actual fluid under con-
sideration is investigated by variational methods by determining the specific
form of the remaining nonrepulsive interactions, as well as their effect in
modifiying the structure of the reference fluid (Weeks et al. 1971).

1.2.2 More complicated structural quantities

Although very important, the knowledge of g(r) alone is not sufficient to
give a full account of the structural properties of a dense fluid. In principle,
such a complete description is provided by the consideration of n-particle
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distribution functions (with n > 2), which are proportional to the pro-
bability of occurrence of clusters of n particles with specified mutual
separations. These higher-order distribution functions are mutually linked
by complicated hierarchical equations (Hansen and McDonald 1986).
Fortunately, in most applications of interest a reasonably accurate descrip-
tion of structural effects can be obtained by considering only the first few
distribution functions. In particular, besides g(r) we shall often deal with
the triplet distribution function g®(r,r’) defined by ‘

ng®(r,r’) = (1/N) ), (o(r—r)d(r' —r)).  (1.16)
JEiT#ij

As in the case of g(r), the isotropy of the fluid simplifies somewhat the func-
tional dependence of g® on r and r’. Using simple symmetry arguments,
there turn out to be only three really independent variables, namely r = |r|,
r’ =|r’| and |r —r’| (or, alternatively, r, r’ and the angle 6,,. between
r and r’). Even after this reduction, the functional dependence of g® is
rather complicated and very scarce information on it is generally available
for dense systems. Computer simulation studies have partially dealt with
this problem by restricting the attention on special configurations
(equilateral, isosceles) of the ‘triangle’ formed by r, r’, and r — r’ (Tanaka
and Fukui 1975, Haymet et al. 1981a, b). These data indicate that a fairly

‘good account of the quantitative features of g® is provided by the

so-called superposition approximation (Kirkwood 1935):

go(r,r’) = g(r)g(r') g(r—r’}). (1.17)

Equation (1.17) is exact for all separations in the limiting case of a low den-
sity fluid, and is found to be rather accurate even for liquids at intermediate
and large separations. The largest discrepancies occur for clusters of three

" particles close to each other, with deviations which are typically of the order

of 20%. :

In contrast with g(r), which in a fluid probes atomic distances only in
a scalar sense, the triplet distribution function yields additional information
on local orientational order. Suppose, for example, that we are looking for
the probability distribution of the angle 8 between the ‘bonds’ joining a
central atom with two neighbouring particles. In a fluid these neighbours
may be defined as in eqn (1.13), namely by considering all the particles
separated by a distance up to R from the central atom. In terms of the
cosine of 6 the required probability distribution can be written as

P(R,cos8) = Anzjdrjdr' g®(r,r")6(cos @ —cosb,,.) (1.18)

where A is a normalization constant, and the integrals over r and r’ com-
prise separations up to R. In an isotropic system eqn (1.18) becomes
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Fig. 1.3 Bond angle distribution P(R,cosf) in liquid Rb at T = 320K and
n = 0.010 A ~3. The filled circles represent the simulation data of Balucani and
Vallauri (1990) obtained with a cutoff distance R = 6.61 A The arrows in the upper
part of the figure indicate the cosines of the bond angles for the first two shells
of neighbours in a body-centred cubic (bcc) lattice. The arrows at the bottom refer
to a similar evaluation for the neighbours of a local icosahedral environment. The
total number of involved neighbours is = 12.4 in the liquid, 14 for the bcc lattice
and 12 in the icosahedral arrangement.

R R
P(R,cos ) = SnZAnZS drrzj ar’ r2g®(r,r', |r=1'|) (1.19)
0 0 \

where |r —r’ |2 =r? + r’? — 2rr’ cos 6. The quantity P(R, cos 6) has been
‘measured’ in several model systems by computer simulation techniques,
choosing in most cases R as the position of the first minimum of g(r). The
typical features of P(R, cos 6) for simple liquids near the melting point are
ilustrated in Fig. 1.3, which refers to liquid rubidium. It is apparent that
P vanishes for small angles (up to 8 = 36°, namely for cos 6 > 0.8) because
of the repulsive core in ¢(r), which prevents any interpenetration of the
neighbours. The subsequent peak near cos@ = 0.5 (i.e. for 8 = 60°)
indicates the presence of local arrangements with the three particles in
nearly close contact near the vertices of an equilateral triangle. As cos 6
decreases larger bond angles and ‘open’ arrangements are eventually pro-
bed, with two broad peaks appearing for § = 110° (cos @ = —0.35) and
6 = 180° (cos § = —1). Liquid Rb is known to crystallize in a body-centred
cubic (bcc) structure, but comparing the features of P(R,cos @) in the
liquid with those expected for an ideal bcc lattice one hardly notes any
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resemblance. Rather, the peak positions of P in the liquid agree closely with
those expected for a local icosahedral arrangement. :

These noteworthy features are only an example of the kind of informa-
tion deducible from triplet correlations. In addition to P(R, cos 8), other
more refined probes of local orientational order have been devised
(Steinhardt ef al. 1981) and exploited to investigate, for example, the transi-
tion toward a ‘glassy’ phase as the liquid is supercooled and/or the onset
of nucleation events (Hsu and Rahman 19794, b; Mountain 1982; Mountain
and Basu 1983; Haymet 1984).

Whether positional or orientational, the microscopic structural properties
discussed above yield a sort of ‘equilibrium background’ against which
several quantities of physical interest may fluctuate. These fluctuations are
both space and time dependent, and the rest of this chapter will be devoted
to their analysis.

1.3 AN INTRODUCTION TO LIQUID-STATE DYNAMICS

The dynamical properties of liquids at the microscopic level are conve-
niently expressed in terms of time-dependent correlations of the form
{B(0)A(?)>, where the quantities 4, B are functions of the 6N phase-space
variables (r,p") and A() = ATN(E), p™(¢)). Leaving aside for the
moment any statistical aspect, the basic problem in the dynamics is the solu-
tion of the 6N classical equations of motion

dri(z) _pi(2)
s (1.20a)
dp;(¢) _  aVn(r¥(2))

a ~ on(o) (1.200)

where i = 1,..., N. In principle, the availability of the 6N solutions of
eqns (1.20) determines the time evolution of any other phase-space variable
such as A@™(¢), p™()). Such a program is obviously hopeless for a
real macroscopic system where N = 10%*; however, under well-defined
conditions this kind of strategy has been successfully adopted in the
molecular-dynamics simulations, which deal with much smaller systems
(N = 10%-10°) so that eqns (1.20) are amenable to a numerical solution by
high-speed computers. The widespread use of such simulation techniques
in liquid state physics has indeed been of considerable help to the genuine
theoretical developments. However, for the time being, we shall ignore
these mutual relationships and, having dismissed as unpractical the direct

~ approach of eqns (1.20), we look for an alternative starting point.

Rather than dealing with 6N nonlinear differential equations for r™(¢)
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and p™(¢), we may choose to consider the infinite set of dynamical equa-
tions in a functional space comprising all the phase-space variables like
A(2). At first sight the merits of such a new formulation seem questionable,
and can really be appreciated only after the introduction of additional tools,
like the projection operators discussed in Chapter 3. A first advantage
which is, however, immediately apparent in this framework is that the new
equations of motion turn out to have a formal structure which is /inear in
the infinite set of phase-space functions. This result is obtained by introduc-
ing the Liouville operator associated with the Hamiltonian of the system.
According to classical mechanics, the equation of motion of a dynamlcal
variable such as A(f) can be written in the form

dA ()
dt

where the symbol { , } denotes a classical Poisson bracket (Goldstein
1980) and the Liouville operator of the system is defined by

e () (2)- (B ) o

For the Hamiltonian specified by eqns (1.1), (1.2) we deduce that

o Bt e

,J#l

= {A(¢),3¢) =iLA(?) .21

where v; = p;/m is the velocity of the ith particle. The linear equation
(1.21) can be formally integrated to yield

A(t) = exp(iLt)A (1.24)

where A = A(0). The results (1.21) and (1.24) bear a close resemblance
with those for the time evolution of quantum-mechanical operators in the
Heisenberg picture. This similarity is not fortuitous, since the Poisson
bracket of two variables 4, B is known to be the limiting form of the com-
mutator (1/ih)[A4,,, B,] of the corresponding operators in the ‘classical
case’ h— 0.

In the cases of interest the formal solution (1.24) is of little practical use
because of the complicated structure of L. Nevertheless, we shall see in
Chapter 3 that eqns (1.21) and (1.24) turn out to be quite useful as a starting
point of formalisms from which we can develop powerful approximation
schemes.

As is customary in the mathematical treatment of functional spaces, it
is convenient to associate with any pair A, B of phase-space functions a
complex number, denoted by (4, B) and referred as the ‘inner’ (or ‘scalar’)
products of the two elements 4, B. For our purposes, a convenient and
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mathematically sound choice for (4, B) is provided by the statistical average
(A*B), where A* denotes the complex conjugate of A. In this functional
space the Liouville operator is found to be Hermitian, in the sense that

(A,LB) = (B,LA)* (1.25)

(see Appendix A) . A first consequence of this property is that the operator
exp(iLt) appearing in eqn (1.24) is unitary: as a result, the ‘length’ (4, A) is
constant and the time evolution of :A(¢) can be viewed as a rotation in the
functional space.

A second consequence has even more interesting implications. Choosing
a well defined form of the scalar product in the functional space, the
Liouvillian can in principle be ‘diagonalized’ with respect to this choice.
Since the Hermitian character of L guarantees that its eigenvalues are real,
eqn (1.24) yields a simple oscillatory time-dependence for the mutually
orthogonal eigenvectors of L. Pursuing the argument even further, we may
expect that the time evolution of any dynamical variable can be expressed
as a combination of these oscillatory eigenmodes (‘normal modes’).

If this were the case, we would of course have solved the full dynamical
problem. However, the actual situation is different as is clear from the
frequent recourse made previously to terms like ‘formally’ and ‘in principle’.
Indeed, only a very limited number of eigenmodes of L can be known and
exploited in the analysis. Typically, these eigenmodes correspond to
dynamical variables having a zero eigenvalue, namely such that A(?) = A(0)
at all times. As a matter of fact, some of these ‘conserved variables’ can
immediately be recognized on a purely physical basis, such as the total

‘number of particles, the total momentum and the total energy of the

system. Usually, these conserved quantities have a collective character and
can be written as A(0) = A@) = E,-aj(t), where the summation runs over
all the particles of the system. We may consider a simple generalization of
these special dynamical variables by defining the new quantities

Ak, 1) = Y a;(2) exp(ik - 1;(7)). (1.26)

Except in the case &k = 0, in general the variables A(k, ¢) are neither con-
served quantities nor exact eigenmodes of the Liouvillian. Even so, it is
reasonable to expect that if & is sufficiently small with respect to the inverse
of some microscopic length, the time evolution of A(k, ¢) is slow enough
that this variable can be considered as ‘quasi’ conserved. In liquids, this
small k£ behaviour is typical of the so-called hydrodynamic variables, which
probe the dynamics over length scales distinctly larger than the interatomic
distances and over time-scales which are much longer than the proper
microscopic interaction times (typically, mean collision times). If we focus
our attention on this limited set of quasi-conserved variables, we may expect
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to obtain some important information on the dynamics of the fluid
over a ‘gross’ quasi-macroscopic scale. As we shall see in detail in the
following, the fact that these few slow variables are only approximate
eigenmodes of L is reflected in their ‘eigenvalues’, which now have a small
imaginary part. In turn, the latter provides for the quasi-conserved modes
a damping mechanism, which is physically due to the coupling to the
multitude of the other microscopic modes which have been ignored in the
analysis.

The previous considerations indicate that the discussion of quasi-
conserved modes is a convenient starting point for the study of the
dynamics of the liquid state. A further advantage is that quantities like
A(K, ) in eqn (1.26) happen to play an important role even in experimental
situations where the ‘wave vector’ k is not vanishing and the dynamics is
not ‘slow’. As a result, our analysis will eventually provide a comprehensive
account of most time-dependent quantities which are experimentally
accessible, ranging from the gross hydrodynamic features down to the
genuine microscopic dynamics. In this context, we shall now begin our
study by adopting the traditional distinction between single-particle and
collective dynamical variables.

1.4 SINGLE-PARTICLE PROPERTIES

1.4.1 The self-intermediate scattering function

The simplest time-dependent quantity we may envisage is associated with
the probability that at time ¢ a tagged particle has moved a specified
distance from its initial position. (The latter may be chosen arbitrarily, for
example in the origin of the reference frame, because of the homogeneity
of the system.) To this end, for the ith particle we introduce the dynamical
variable

n, (R, 1) = (R —r,()) 1.27)

usually referred as the ith single-particle (or self-) density at the point R
and time 7. As it stands, eqn (1.27) is merely the definition of a scalar field;
the interpretation of ng;(R,¢) as a ‘density’ follows by integrating
eqn (1.27) over the full range of R (typically chosen as the volume V of the
system). The resulting normalization condition {dRr,;(R,?) =1 simply
means that at any time the tagged particle is ‘counted’ as being certainly
somewhere in the volume V. As is clear from its definition, n (R, ?) is
expected to change very rapidly with both R and ¢. A convenient ‘gross’
measure of this variable is provided by its statistical average, which after
eqns (1.5)-(1.8) reads
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<ns,i(Ra t)) = (ns,i(Rs 0))

= [Qu(V, )] [dr¥6 (R — 1) exp [~V (x%)] = 1/V
(1.28)

where the first line follows from the invariance of the average with respect
to the choice of the time origin. In turn, this ‘stationarity’ property is a
general consequence of the absence of an explicit time-dependence in the
Hamiltonian (1.1) of the system. The final result of eqn (1.28) is consistent
with the previous interpretation of #, ; as a number density for one particle.

Rather than dealing directly with n, ;(R, ¢), in the following we shall
find it convenient to consider its space Fourier transform

ni(k, 1) = | dRexp (k- R)n, (R, 1) = exp[ik -r,(1)].  (1.29)

The equation of motion for this new variable reads
A
dng ;(k, 1)/dt = ik - v;(t)n, ;(k, ). “(1.30)

For k = 0, we clearly deal with a ‘conserved’ variable, a consequence of the
fact that the tagged-particle cannot be annihilated. From the discussion in
the previous section, the time evolution of n, ;(k, ) can be expected to be
‘slow’ if k is small enough.

The time correlation associated with n; ;(k, ¢) is usually referred as the
self-intermediate scattering function:

Fs(k’ t) = <n::i(k’ O)ns,i(k’ t)) = <exP[ik' (l',-(t) - l',(O))])
(1.31)

and is one of the basic quantities in any theory of the dynamics of liquids.
Coming back to the space domain, from F,(k, f) we obtain the so-called
self-correlation function (van Hove 1954):

G,(r,t) = (27:)‘3§dkexp(—ik-r)Fs(k, t)
= (d(r — (r;(2) —r,(0)))). (1.32)

This time-dependent quantity probes the dynamics of a single particle in
terms of its displacement from an initial position, namely just in the way
mentioned at the beginning of this section. In particular, G,(r, 0) = (r)
and [drG,(r,t) = 1.

Alternatively, one may transform F(k,t) with respect to the time
variable to obtain its frequency spectrum

-]

Sk ) = (1/21) | dt exp(~iwt)F,(k,1), (1.33)

—
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which has a direct experimental relevance because of its connection to the
incoherent part of the inelastic neutron scattering cross-section (see
Chapter 2).

Besides providing a justification for the ‘intermediate’ character
attributed to F,(k,t), the previous considerations do not throw much
light on the behaviour expected for this time correlation function. Some
of these features can straightforwardly be deduced from the general proper-
ties of any time-dependent average in a classical system (see Appendix B). In
particular, by this kind of argument we may establish that in a fluid
F,(k,t) is real (real-valued), and even both in k and ¢ (such that
F,(k,t) = F,(—k,t) and F,(k,t) = F,(k, —t)). Moreover, at sufficiently
short times F,(k, ?) may be expanded as

F,(k,?) = F,(k,0) [1 = {w})s(£7/2) + {wi)s(¢*/41) + - -]
(1.34)

where the initial value F,(k, 0) = 1 after eqn (1.30). The quantities (@}
are clearly related to the derivatives of F,(k, ) evaluated at ¢ = 0. Alter-
natively, {(w?), can be identified with the nth frequency moment of the
spectrum S,(k, w):

(wl), = 5 dw w"S,(k, ). (1.35)

As is implicit in eqn (1.34), all the frequency moments with odd n vanish
because of the even character of F,(k, t), which implies that in eqn (1.33)
S,(k, w) is an even function of w.

By definition, the frequency moments convey information on the short-
time dynamics of the system, as probed by the correlation function under
consideration. In practice, only the first few moments are amenable to a
direct evaluation; such a task is made easier by a repeated use of the result
(B.17), by which a single time derivative in a correlation function can be
‘shifted’” from one variable to the other one, the net result being only a
change of sign. Thus, denoting a time- derivative with a dot we write

(wi)s = - (n:i(k9 O)ﬁs,i(ky 0)) = (h::i(k’ O)hs,i(ka 0)) (1.36a)
<w2)s = (n:i(k’ 0) ﬁs.,i(k’ 0)> = (ﬁ:,t(k’ O)ﬁs,i(ka 0))- (1°36b)

The evaluation of the second moment {w?2 ), from eqn (1.36a) is straight-
forward. Indeed, using eqn (1.30) we immediately obtain (a, f = x, y, 2):

(w%)s ={(k-v;)*) = Zﬂkakﬁ<vi,avi,ﬂ>

= {Z ki} (v,.)*) = % k*(v}) 1.37)

|
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where in the last line we have exploited well-known properties of the
Maxwellian velocity distribution, such as the statistical independence of
different cartesian components and their inherent isotropy. Finally, using
eqn (1.10) we find

(03, = (ks T/m)k?. 277 P77 38
Because of its kinetic origin, the result (1.38) is valid for all classical
systems, irrespective of their interatomic potential.

Although comparatively more involved, the evaluation of (w%), from
(1.36b) is typical of several liquid-state calculations and we shall report it
in some detail. Noting that 7, ;(k,0) = [— (k- v;)* + i(k - V)] exp(ik ' 1;),
we have to evaluate

(wids = {(k-v)*) + (k- ¥)*) (1.39)

since the mixed contributions cancel each other. The first term at the right-
hand side of (1.39) is purely kinetic and can be expressed as

((k"'i)4> = ;} kakﬂkyk6<vi,avi,ﬁvi,yvi,d)
afy

= Y KD + D, KB

ﬁ(v%’avﬁﬁ> (1.40)

a,p+a
where the summations over the cartesian components have been split in all
the possible ways yielding nonvanishing averages in the velocity space.
Since (vi,) = 3(kgT/m)* and (vi,vip) = (v}, <v}z) = (kyT/m)* for

a # B, we finally obtain
(k- v))*) = 3(kgT/m)? Y k2K = 3(kp T/m)%k*. (1.41)
af

The second contribution in eqn (1.39) involves the acceleration v; =
(1/m)F;, where F; = — (dV,/0r;) is the total force acting on the ith particle.
The resulting statistical average in the configurational space can be written as

aVy avV,
(k%)) = — 2kk< N ”)
4 ar,aar,p

1 aVy av,
Zkkﬂjd”,”  exp(~BVi)

- ZQN( V,T) L,

szN( oV T) 2k k,!dr e (V) (14D

where the last step follows from a partial integration. We now write the
total potential energy Vy in terms of pairwise contributions (eqn (1.2)),
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and exploit the independence of the average on the labelling of the particles.
As a result,

ks T(N —
AL =B ) dr,d dr;---d —pBV,
((k-v;)%) m0n (V T)Ek kﬂ§ I l'zalaalﬂs r3° ryexp(—BVy)
n kB 3¢ (ry2)
= kokg\ dr,dr r
MmN Z ﬁj 1dn 50 12a3"12ﬂg( 12)
kg T
=2 Zk ke f ey 2 0(ra) ) (1.43)
0r3,q0r2, 8

where we have used the definition (1.12) of g(r), introduced relative coor-
dinates r;; = r; — r, and finally exploited the homogeneity of the system.
Since in an isotropic fluid g(r,;,) only depends on the magnitude of r,, the
angular integrations implicit in the last step of (1.43) can be performed
immediately, with the result that only the terms with a = /3 yield a non-zero
contribution. Consequently, we may write

vy =285 [ P00 o)
_ nksT
T 3m?

where we have again made use of the isotropy of the system and finally
introduced

jdrv2¢(r)g(r) (1.44)

V2¢(r) Ezaz¢(2r) —QS ( )+2¢ (r)

@ Org

(1.45)

Summing the results found for both contributions on the right-hand side
eqn (1.39), we finally obtain

(0}, = kB 2" k2 [{3':: ]kz +92} (1.46)

where Q, is the so-called Einstein frequency defmed by

o

Lo i

)\ (n/3m) jdertb(r)g(r) (1.47)

A first consequence of these results is that, in contrast to (w 2y,, th
fourth moment {w}), depends on the interatomic potential ¢(r). Be51des
the explicit appearance of V2¢(r) in eqn (1.47), this dependence is due to
the presence of g(r), which is itself a function of ¢(r).

In the limiting case of free particles (¢(r) = 0) we obtain
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(wids = 3 (kg T/m)%k*. (1.48)

In such a case we find that (w}), = 3¢{w%)2. This relation between the
second and the fourth moments is exactly satisfied for a Gaussian spectrum
S,(k, w) centred at w = 0. To confirm that this is actually the correct
shape, we insert in eqn (1.32) for G, (r, ?) the free particle dynamics r;(¢) =
r;(0) + v;t. Performing the statistical average in the velocity space,

we find L
_ Bm 372 _ﬁer
G.(r,t) = [Zntz} exp| —7—|- (1.49)

To obtain the intermediate scattering function we use a Fourier transform
in the space. domain, giving

2,7
F,(k,t) = exp[zkl;] (1.50)

namely a Gaussian both in the wavevector and in time. Finally, a second
Fourier transform in the time domain yields the spectrum

_ 172 _ 2
S (k, @) = [;Zfz} exp (%} . (1.51)

which is indeed a Gaussian function of the frequency w.

Summarizing all these simple results, life with free particles is found to
be easy, but rather trivial. Much more interesting is to see under which con-
ditions real interacting systems can approach this limiting behaviour. In the
present single-particle case such a trend is always present at sufficiently
short times, where r;(¢) = r;(0) + v,z + O(¢?). The initial time decay of
F,(k, t) is indeed ruled by {(w?), which is not affected by the interactions
among the particles. In addition, the exact fourth moment (1.46) reduces
to the free-particle one for wave vectors such that

k> Qy(3kg T/m) =12 (1.52)

At these large k, F,(k, ¢) is thus expected to probe a dynamics of essen-
tially noninteracting particles. The condition (1.52) can be written as k/ > 1,
where the length

= (3kgT/m)"20Q;". (1.53)

The factor (3kz T/m)"’? on the right-hand side is the average thermal speed
of a particle. From eqn (1.47) the time Q,! is seen to depend on the pair
potential, and to become very large for dilute systems. As a consequence,
it is reasonable to interpret €2, as the average interaction (or ‘collision’)
frequency for the tagged particle (see Section 1.4.2 for a more detailed
discussion). Then the length / plays the role of an effective mean free path,
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and the condition k/ > 1 simply means that the particles appear to behave
as free when probed over a spatial range (=2n/k) much shorter than /.

It is also instructive to discuss the opposite case, k/ < 1. Such a condition
is verified when the dynamics of the tagged particle is probed over a length
scale involving many collisional events. Although initially the particle again
appears as free, at finite times a new situation emerges. In particular, at
times much longer than 24! we approach a quasi-macroscopic description
of the dynamics, in which the number of collisions experienced by the parti-
cle is so large that the microscopic details of each of them effectively
become irrelevant. An indication of the kind of dynamics probed in this
low k regime is provided by the exact result

lim {- L [i’zi-("—’)]} = 1v(0) - vi()) (1.54)

k=0 k? ds?

where we have exploited the isotropy of the system. The time correlation
on the right-hand side is referred to as the velocity autocorrelation function
for the tagged particle. In view of its relevance in liquid state dynamics,
this time-dependent quantity deserves a separate discussion, which is the
subject of the following subsection.

1.4.2 Mean square displacement and velocity autocorrelation function

The best way to appreciate the physics underlying (v;(0)-v;(¥)) is to
introduce a closely related dynamical quantity, the mean square displace-
ment of a particle. This is defined as

or2(1) = ([r,(0) — r,(1)]?) = Sdrrst(r,t). (1.55)

The relation between dr(¢) and (v;(0)* v,-(t))> is readily obtained noting
that r;(t) = r;(0) + §5d¢’ vi(t’), so that

t t
ar(r) = [ar [arr w(e') - wile")). (1.56)

0 0
The double integration appearing on the right-hand side may be reduced
to a single one by exploiting the stationarity of the average in (1.56) and

by performing a partial integration in the variable ¢” — #’. After some
algebra we eventually obtain

or3(t) = 2§dr(t — 2){v,(0) - v;(7)). (1.57)

Alternatively, we may verify that
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vi(0) -vi(8)) = 4 , d2[or?(n)]

a2 (1.58)

At short times, the decay of the velocity autocorrelation function from
its initial value (v?(0)) = 3kg7/m can be expressed as

(vi(0) - v;(2)) = (v} (0)) — (¥2(0)) (¢3/2) + - - -. (1.59)

The evaluation of {(¥?(0)) involves the same steps previously seen for the
potential part of {w§),, and leads to (V%) = (3kg T/m)Q3. The normalized
correlation function w(¢) = (v;(0) - v;(t) »/{v}(0) ) consequently reads

w(t) =1—Q3%3(¢%/2) + - (1.60)
The insertion of these short-time results into eqn (1.57) leads to
ori(t) = (BkgT/m)t* — (kg T/4m)Q2%¢%. (1.61)

Equation (1.61) shows that initially the mean square displacement increases
quadratically with time, as if the particle were free. However, after a time \\
of the order of Q24! the particle experiences a collision and its motion is
drastically modified, leading to a considerably smaller value of dr3(¢).

From eqn (1.54) it is straightforward to verify that the results (1.60),
(1.61) follow from those previously obtained for the short-time dynamics
of F,(k, t). In the particular case of the velocity autocorrelation function,
eqn (1.60) shows that the initial decrease of w(¢) is ruled by the Einstein
frequency. The collisional nature of this decay mechanism has been
anticipated in the last subsection, and can be further clarified by a simple
analysis of the definition (1.47) of Q2%. To this purpose, we shall assume
that the pair interaction ¢(r) can approximately be written as a generalized
Lennard-Jones potential '

-l bl -] o

where p and g (>p) are the exponents pertinent to the attractive and
repulsive portions of ¢(r), respectively. With this representation, ¢(r) is
characterized by a negative potential well of depth ¢ located at r = r,. The
usual Lennard-Jones parameter o is defined by ¢(r = ¢) = 0, and follows
from (o/ry)?~? = p/q. In several cases of interest, both p and ¢ are
distinctly larger than 1; for example, the choice p = 6, ¢ = 12 is known to
give a fairly good approximation for the pair potential in inert gas fluids.
Inserting (1.62) in the definition (1.47) we obtain

o _ 4nner, pq * e 1 (V7 — (5 — 1) (7*)-P1e(r*
8= S| ¥ @ = DN = = D) 71el)

(1.63)
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Table 1.1 Values of several quantities of interest for single-particle motion
in two monatomic liquids slightly above the melting point. Liquid Ar is
cons1dered at a temperature 7 =86.5K and a number density n =
0.0213 A~3; the potential parameters are &/ky = 120K and ry = 3.82 A
For liquid Rb at 318K, n=0.01 A2, e/kp = 402K, and ry = 5. 16 A.
The quoted values of Q32 are deduced from the simulation data of Leves-

" que et al. (1973) for Ar and of Rahman (1974) for Rb. The quantities / (eqn
(1.53)) and ;! provide ‘natural’ length scales and timescales for the
microscopic dynamics. Note that / < r,.

e/mr} nerg/m Q3 ! ;!

nry o (psTY) s (s (A) (s)
Argon 1.19 0.170 0.202 59.3 0.301 0.130
Rubidium 1.43 0.147 0.210 37.2 0.498 0.164

where r* = r/r,. Since at liquid density g(r) has a first sharp peak at
r = r,, the leading contribution to the integral is provided by values
r* = 1. Thus 3 can approximately be written as

Q2% = Cnri(e/mr3)pq (1.64)

where typically the dimensionless constant C =~ 4 in all hqulds characterized
by close-packed arrangements of atoms.

The result (1.64) expresses £, in terms of the natural frequency unit
(e/mr,)"’? and shows that, other things being equal, £, is larger in systems
where ¢(r) has a harsh repulsive portion. In Table 1.1 we report the values
of the relevant quantities for two typical systems, liquid argon and liquid
rubidium. As already mentioned, in Ar the actual ¢(r) is satisfactorily
modelled by eqn (1.62) with p = 6 and ¢ = 12. On the other hand, effective
pair potentials in alkali metals are characterized by a considerably softer
repulsive portion, as well as by small damped oscillations at large separa-
tions (Rahman 1974). Whereas the latter are relatively unimportant in the
present context, in the relevant r range ¢(r) can be satisfactorily modelled
by eqn (1 62) with p=6 and g =7. As a result, eqn(1.64) predicts
that (22),./(2%)ro = 1.65, in satisfactory agreement with the actual
ratio = 1.59 deduced from Table 1.1.

Another consequence of (1.64) is that 23 is predicted to be proportional
to the curvature of ¢(r) at its minimum, namely to ¢”(ry) = (e/rd)pgq.
This circumstance is intuitively expected in a solid-like picture in which the
tagged particle performs a localized oscillatory motion as a result of the
interactions with its near neighbours. Such a picture is in fact analogous
to the model initially proposed by Einstein to account for the lattice
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vibrations in a crystal, a circumstance which justifies the name traditionally
used for Q,.

In a liquid, this simple representation of single-particle dynamics turns
out to be valid only at short times. Indeed, a tagged particle initially
experiences the local disorder inherent to the liquid state only in an average
sense, and its. motion is not basically different from the one that would be
performed in a crystal lattice. However, at longer times the neighbours are
themselves affected by a continuous dynamic rearrangement, which
ultimately leads to a disruption of the original shell of atoms and to the
actual ‘escape’ of the test particle from the ‘cage’ of its initial neighbours.
In such a physical situation, the solid-like analogy is clearly untenable, and
after its initial ‘attempts’ to oscillate the particle is expected to move in a
way which rapidly becomes uncorrelated with any short-time feature.
Ultimately, the particle is indeed found to perform a diffusive motion.

To see how this new kind of dynamics emerges from the previous equa-
tions, we go back to the result (1.57) for the mean square displacement.
If we now consider times ¢ so long that the velocity v;(¢) of the particle is
totally uncorrelated with the initial value v;(0), eqn (1.57) can be approx-
imately expressed as

t

6r2(1) = 2jdr<v,.(o) vi(2))t (1.65)
0

where the upper integration limit can safely be extended to infinity since
at such long times the velocity autocorrelation function is negligibly small.
Equation (1.65) is usually written in the form

or*(t) = 6Dt (t— ) (1.66)

where we have introduced the diffusion coefficient

D=} j de (v,(0) -vi(x)). (1.67)

Equation (1.67) is the simplest example of a Green-Kubo relation '

expressing the transport coefficients of a fluid in terms of time integrals
of suitable microscopic correlation functions (Green 1954, Kubo 1957;

Helfland 1960). The establishment of this connection is one of the most |

important successes of statistical mechanics. Also, by this link we may
better appreciate the physical factors ultimately relevant to the variation of
transport coefficients in different systems, as well as their dependence on
the state parameters.

The typical time dependence of the mean square displacement dr(¢) in
a liquid is illustrated in Fig. 1.4. It is apparent that the parabolic increase
associated with free-particle behaviour is valid only for very short times;
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Fig. 1.4 Typical time dependence of the mean square displacement ori(t) of a ,

particle in a monatomic fluid near melting. The full line is the result of a simulation

study of liquid Cs at 308 K (unpublished data by A. Torcini, 1992). The insert shows

the short-time portion of these data, along with the behaviour expected for free
particles (dotted line) and the predictions of eqn (1.61) (dashed line).

even the inclusion of the additional ¢* term (cf.(1.61)) leads to a rather
modest extension of the time region which is possible to account for. The
bulk of the results are instead seen to be consistent with the linear time
dependence typical of the diffusive regime (1.66).

After eqn (1.54), all these dynamical features-are expected to have impor-
tant consequences on the time dependence of F,(k, t) at sufficiently small
wave vectors. In the present context, we shall limit ourselves to a simplified
discussion; a more rigorous derivation of the final result is reported in
Section 3.4. At the lowest order in k we may use eqn (1.54), which can be
integrated to give

F(k )= —1 jdr<v (0) - v;(2)). (1.68)

This result is valid at all times provided that k¥ — 0. As ¢ increases, the right-
hand side of (1.68) approaches —D, and a second integration yields

F,(k,t) = 1 — kDt (1.69)

which is valid provided that k = 0, ¢ = o (with the k limit taken first, in
such a way that k2Dt < 1). Equation (1.69) is the limiting form of the
correct result for F,(k,¢) in the diffusive regime

Y
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/‘ F,(k,t) = exp(-—Dk2|t|) (1.70)

While the presence of |£]in (1. 70) ensures the correct even character of
F,(k, t), it is immediately apparent that the results (1.69) and (1.70) violate
the exact short-time behaviour as given by eqn (1.34). This is hardly surpris-
ing, as in the derivation we have explicitly assumed that the time ¢ is long
enough to encompass all the microscopic dynamics probed by the velocity
autocorrelation function. Otherwise stated, we effectively deal with two
distinctly different time-scales. The first one concerns short times, and is
truly microscopic in the sense that the underlying dynamics can be
accounted for by simple averages, directly related to the microscopic
Hamiltonian. In contrast, the second tlme-scale probes dynamical processes
(diffusive behavrour in the present “case) which comprise such
number of mlcroscoplc events (free motlon coll' sions,_etc.). to prev
detailed déscrip them. C
of time-scales will frequently be met in the following. Once that the underly-
ing physics is clear, this feature can be exploited to yield a comprehensive
account of a complicated dynamical problem.

1.4.3 A closer contact with typical single-particle data

To conclude this section, we report the results of several tests of single-
particle dynamics in monatomic liquids. Part of these results (as well as of
those reported in the following for collective dynamics) are actual experi-
mental data, obtained, for example, by inelastic neutron scattering. The
reader is referred to Chapter 2 for a detailed account of this and other
experimental techniques of common use in this field.

In some cases, however, it is difficult or impossible to perform a direct
measurement of the property of interest. In such a circumstance, the tradi-
tional remedy is to resort to computer simulation techniques, with the
implicit assumption that for the property under consideration the simulated
system is sufficiently ‘realistic’ to mimic with a good approximation the
behaviour of the actual liquid. These ‘numerical experiments’ will be briefly
discussed in Section 2.7.

Typical neutron-scattering results for the spectrum S;(k, w) are reported
in Fig. 1.5, which refers to liquid argon (Skold et al. 1972). It is apparent
that at all wave vectors S,(k, w) exhibits a monotonous decay with fre-
quency. As a result, the relevant physical information is provided by the
spectral width I',(k), which is found to increase with k. This trend can be
qualitatively understood starting from the low wave vectors typical of the
d1ffus1ve reglme Here, a Fourier transform of eqn (1. 70) yields ‘

o Dk
w? + (Dk*)*’

S, (k,w) = (1/x) 1.71)
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Fig.1.5 Spectral shapes of S,(k, w) at several wave vectors as obtained by
inelastic neutron scattering in liquid Ar at 85K (after Skold et al. 1972).

namely a Lorentzian spectrum with a halfwidth at half maximum
I,(k) = Dk?. At least in this low wave vector domain, the spectra are thus
expected to become considerably broader as k increases. Although with a
weaker k dependence, a similar broadening effect can be predicted in the
opposite limit of large wave vectors, namely for k/ > 1 (cf. eqn (1.52)).
Here S,(k,w) should eventually approach the free-particle spectrum
(1.51), with a corresponding halfwidth given by I',(k) = 21n2 ks T/m)"*k.
No exact result for I',(k) is instead availaBle in the (rather large!) ‘transi-
tion region’, roughly specified by &/ = 1.

The experimental width I',(k) is usually reported as ‘normalized’ with
respect to its small-k value Dk?. The typical features of this wave vector
dependence are illustrated in Fig. 1.6, which again refers to liquid argon.
Along with the neutron data of Skéld et al. (1972), we also report the results
obtained in a previous simulation study in ‘Lennard-Jones’ argon (Levesque
and Verlet 1970). At the lowest wave vectors accessible, both sets of data
indicate for I',(k) a k dependence somewhat weaker than the one implied

by a k? law. This tendency increases with the wave vector up to

k~2A~1 a value near the position of the main peak of S(k) in this
system. After a maximum decrease of =~10% with respect to the diffusive
prediction, I',(k) rapidly becomes larger than Dk? by as much as 20% in
the real liquid. Only for k> 6 A~! does the ratio I,(k)/Dk* begin to
approach the limiting 1/k behaviour appropriate for the free-particle
regime. The oscillations of I',(k)/Dk? are a clear indication that at increas-
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Fig. 1.6 Wavevector dependence of the ‘normalized halfwidth’ I“S(k)/Dk2 in

liquid argon. The open circles are the neutron data of Skold et al. (1972), and the

triangles denote the simulation results of Levesque and Verlet (1970). The dashed
line is the limiting free-particle behaviour.

ing wave vectors a variety of dynamical processes are effectively probed.
As anticipated, an important role in this respect is played by the ‘mean free
path’ /: for liquid argon, the value of /~! = 3.3 A ! gives an approximate
measure of the extent of the initial k range where I',(k) < Dk>.

Coming back to the self-intermediate scattering function, the results
(1.69) and (1.50) show that F(k,¢) is a Gaussian function of k£ both
in the diffusive regime (k/ < 1) and in the free-particle limit (k!> 1).
This circumstance suggests that we look to determine whether such a
simple k& dependence is valid even for intermediate wave vectors. If this
Gaussian ansatz (assumption) were correct, F,(k, t) could be written as
exp[—k2a(t)], where the quantity a(f) can be inferred from the exact
results found in the two limiting situations. Proceeding in such a way, it
is straightforward to deduce that .

F,(k,t) = exp[ -1 k%6r*(¢)]. 1.72)

This ‘Gaussian approximation’ has been tested against computer simulation
data for Lennard-Jones fluids at different densities (Nijboer and Rahman
1966). In the liquid range, the discrepancies are found to be rather small,
and mainly occur in the intermediate range of wave vectors and times,
as expected. The same features are apparent from Fig. 1.7, which reports
a similar comparison for a liquid alkali metal near melting. The overall
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Fig. 1.7 Comparison between the predictions of the Gaussian approximation

(1.72) for F(k, t) (dashed line) and the computer simulation data (full line) for

liquid Cs at the wavevector k = 1.42 A ~! where S(k) has its main peak (Balucani

et al. 1992). To make the test more crucial, the mean square displacement or? @)

to be inserted in eqn (1.72) has separately been evaluated in the same simulation
runs (cf. Fig. 1.4).

fair agreement with the data has made the use of eqn (1.72) attractive in
several physical situations, some of which will be discussed in Chapter 5.
In early works, the Gaussian approximation has been complemented by
choosing a simple ‘ad-hoc’ form of or(¢), and used to obtain a convenient
analytical expression for the shapes observed in the experimental spectra
of S,(k, w) (Egelstaff and Schofield 1962).

The other important probe of single-particle dynamics is provided by the
velocity autocorrelation function. Its frequency spectrum Z(w) can in prin-
ciple be deduced from measurements of S;(k, w) at sufficiently small wave
vectors, since '

=]

Z(w) = (21)7 | dr exp(—iw)¢vi(0) - vi(1))

— o

=3 ’ltin}) @S, (k, w)/k?, (1.73)

where in the last step eqn (1.54) has been used. In practice, however, the
accuracy of the procedure is intrinsically limited by the finite wave vectors
accessible in conventional neutron spectrometers. Although much smaller
wave vectors are instead involved in light scattering, this technique typically
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probes collective properties, rather than single-particle ones (see Chapter
2). As a result, we are in a situation where only computer simulations may
provide accurate information on this basic time correlation function.

Figure 1.8 reports the results of such simulations for the two typical
classes of monatomic liquids, the ‘Lennard-Jones’ rare-gas liquids
(Levesque and Verlet 1970) and the liquid alkali metals Na, K, Rb, and
Cs (Balucani etal. 1992). In the latter case, satisfactory pair potentials
¢(r) are density dependent, and only available in a numerical form;
the simulations of Fig. 1.8(b) were performed with the potentials
implemented by Price et al. (1970), which turn out to be both simple and
sufficiently ‘realistic’. To emphasize the analogies and the differences
between the two classes of liquids, in Fig. 1.8 all the data are reported
in dimensionless units. In particular, the normalized velocity autocorrela-
tion function w() = (v;(0)-v;(?))/{v?) is plotted in terms of the time
unit 7= (mo?/e)"?, where ¢ and o denote, respectively, the well depth
and the first zero of the pair potential appropriate to each system.
Note that, in these units, all the data for the liquid metals coincide to an
excellent approximation, even if, in contrast with the Lennard-Jones case,
this sort of ‘scaling’ is not a priori evident from the expressions of the
different ¢(r).

The most noteworthy feature in Fig. 1.8 is in both cases the appearance
of a negative correlation region. This is pictorially interpreted as being
due to the ‘rebound’ of the tagged particle against the ‘cage’ formed by
its nearest neighbours. In this respect, the feature appears to be consonant
with a solid-like picture of the dynamics, and indeed this cage effect
is found to be present only in very dense fluids and at low temperatures.
A comparison between the actual findings for the two classes of systems
shows that the magnitude of the negative correlation in the Lennard-Jones
case is smaller than the one found for the liquid metals; also, in the
latter systems even a few secondary oscillations are discernible at longer
times. These features indicate that the liquid alkalis appear to be more
‘solid-like’ than, say, liquid argon. In turn, this peculiar behaviour of
liquid metals stems from the softer repulsive portion of ¢(r) (cf. Section
1.4.2), which eventually leads to a more symmetric potential well and to
smaller ‘anharmonicities’ (Lewis and Lovesey 1977).

On the other hand, from the discussion in the previous section we expect
that even for liquid metals such a solid-state picture is realistic only for
rather short times, and that ultimately a diffusive behaviour should prevail.
This is already clear if we compare the features of the mean square displace-
ment r’(¢) as reported in Fig. 1.4 with those expected for a harmonic
crystal. In the latter case, the displacement of an atom from its equilibrium
position R; in a Bravais lattice is conveniently expressed in terms of
phonon creation and annihilation operators a', a according to
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Fig. 1.8 Computer simulation results for the normalized velocity autocorrelation

" function w(¢) in two typical classes of monatomic liquids near the melting point:

(a) ‘Lennard-Jones’ rare-gas liquids in the state specified by the reduced units

no> = 0.85 and kg T/e = 0.76 (redrawn from Levesque and Verlet 1970); (b) liquid

sodium at ng® = 0.895 and kgT/e = 0.80 (Balucam et al. 1992). In both cases, the
time unit 7 = (maz/e)
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r(t) - = kZ (A/2mNwy,)'? exp (ik - R;) [a,,(2) + @t (£)] e,
a

(1.74)

(e.g Bruesch 1982) Here a;,(¢) = a,,(0) exp(—iwy,?), where wy, is the
frequency of the phonon with wave vector k and polarization index a, and
e, the corresponding dimensionless polarization vector. In such a system,
the mean square displacement can be expressed as

([r:(2) = r:(0)1%) = {[r:(£) —R]*) +([r;(0) —R;]?)
—{[r(2) =R;] - [r;(0) —R;])
—{[r;(0) —=R;] - [r:(2) ~R,]) 1.75)

where the first two terms on the right-hand side are actually identical
because of stationarity. At sufficiently long times and finite temperatures,
the presence of small anharmonic effects ensures that the remaining two
terms in (1.75) decay to zero. As a result, for long times we find that

([r(2) = (0)]*) > 2<[r.-(0) - R;]%)

- 2m Wrg [2<al'rcaaka) + 1]

L2 Z ks T (1.76)

ka mw ka

where the last step follows from the consideration of the ‘classical limit’
(a,,aaka) = kpT/hw;, > 1. As a consequence, in a crystal the mean
square displacement approaches a constant value. This is in marked con-
trast with the situation reported in Fig. 1.4 for the liquid, and implies a
vanishing diffusion coefficient for the crystal, in accord with physical
intuition.

Similar conclusions can be drawn by considering the spectrum Z(w) of
the velocity autocorrelation function (eqn (1.73)). In the crystal, from the
time derivative of (1.74) we obtain

(vi(0) -v;(2)) = 12 hidra [2{a},ara) + 1] exp(icwi,?)

N 2m
=~ kB—T 1 Z exp (iwy, ) 1.77
where we have exploited the equation of motion &,(f) = —iw,a,(?),
and finally performed the classical limit. As a consequence
Z(w) —EP—Tl Za(w Ora)» (1.78)
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a result which shows that the spectrum of (v;(0) - v;(¢)) is proportional to
the phonon density of states. For our present purposes, the latter quantity
can be approximated by a simple Debye model, with the result that

Z(w) =

(2R =12
{SkBT/m) (2n°ncd) ' w < wp (1.79)

CU>COD

Here, ¢, is an average sound velocity, and the cutoff frequency wp is
related to the Debye temperature 6, by hwp = kgfp. The quantity Z(w)
is reported in Fig. 1.9 with a choice of parameters appropriate for sodium.
The comparison with the Fourier transform of the corresponding () in
the liquid (cf. Fig.1.8) shows clear differences, which are particularly
noteworthy in the low-frequency region (w — 0) where the Debye model
is more reliable. Since Z(w = 0) = (3/7n)D (eqns (1.73) and (1.67)), the
discrepancies in this range are again associated with the absence of diffusive
processes in the crystal.

All these results reinforce our previous statements about the limited
validity of a solid-state picture to understand the features of single-particle
dynamics in liquids. This state of affairs occurs particularly when features
are explored over long times (or low frequencies), namely when the tagged
atom has already suffered a significant number of collisions with the other
particles. It is then worthwhile to consider an alternative picture in whith
these long-time, collision-dominated features are emphasized. In this
respect, the simplest situation is provided by a model in which the only
effect of the collisions is to yield an exponential decay of the velocity
autocorrelation function:

(vi(0) -vi(2)) = (3kzT/m) exp( -7, l7]), (1.80)

where the decay constant p, is expected to be connected with the collision
rate. Equation (1.80) is found to describe rather well the situation occurring
in a fluid at moderate densities. As a matter of fact, the result (1.80) turns
out to be correct in two limiting cases. '

(i) A dilute system of ‘hard spheres’, where the collisions can be regarded
as binary and mutually uncorrelated. This is the celebrated Enskog model,
which will be discussed in some detail in Chapter 3. Note that for this
artificial system the apparent violation of the short-time expansion (1.59)
is due to the pathological form of the pair potential, ¢(r < d) = o and
o(r > d) = 0, where d is the hard sphere diameter (e.g. McQuarrie 1976).

(ii) A particle immersed in a ‘bath’ made of much lighter molecules. Due
to the collisions with the latter, the massive particles undergoes a zigzag
motion, with a mean square displacement increasing linearly with time
according the diffusive law (1.66). The physics behind this Brownian
motion is actually a typical example of a situation frequently met in the
dynamics of interacting systems (see Chapter 3).
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Fig. 1.9 Spectrum Z{(w) of the velocity autocorrelation function in liquid Na as
obtained by a Fourier transform of the data reported in Fig. 1,8. The dashed line
is the result deduced from eqn (1.79) taking ¢, = 2300 m s~ ! and 0p = 150K.

The result (1.80) implies a simple relation between the collisional decay
rate y. and the diffusion coefficient, which after eqn (1.67) reads

D = kg T/my,. (1.81)
In addition, the spectrum Z(w) of the velocity autocorrelation function
(1.80) can be written as
3ksT  y.

Z(w) = mm w?+ y?’
C

(1.82)

The comparison with the actual Z(w) of the liquid shows at low frequencies
the expected improvement with respect to the result for the crystal (see
Fig. 1.9). Even in this region, however, there are evident shortcomings,
which are mostly due to the failure of eqn (1.80) to reproduce the long-
lasting negative correlations in w(¢). More subtle discrepancies are found
to occur even at lower densities, where the absence of ‘cage effects’, yielding
a w(¢) > 0 at all times, should a priori make reasonable the use of (1.80).
In this case, at long times w(¢) appears to exhibit a slow #~%? decay rather
than an exponential one (Alder and Wainwright 1970; Levesque  and
Ashurst 1974).

Summing up, the previous results provide a first indication of the features
which a comprehensive theory of single-particle dynamics should be able
to explain on a quantitative basis. As is clear from the above, this task is
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made nontrivial by the variety of phenomena likely to occur over a wide

range of distances and times. Similar problems are expected to arise if we

consider dynamical variables having an explicit collective character; this will
be the subject of the remaining sections of this Chapter.

1.5 THE RELATIVE MOTIONS OF ATOMIC PAIRS

1.5.1 The time-dependent pair distribution function

When viewed in the ordinary space-and-time domain, all the previous
single-particle properties can be derived from the knowledge of the self-
correlation function G,(r, ?) as given by (1.32). In a classical and homo-
geneous system, one may equivalently consider the quantity

Gi(RO; R’ 1) = (3(R = r,(0)) 6(R’ — r,(£))) (1.83)

which measures the joint probability that ith particle is in the position
R at r=0 and in the position R’ at time ¢. With this definition,
G,(|lR—-R’|,?) = {dRG,;(RO; R’ 7).

A first step in the direction of probing the liquid on a more collective
scale is provided by the quantity (Bloom and Oppenheim 1967)

G,(r0;r’ t) = (1/N) Z (6(r—r;(0))o(r —ry(2))

LJj(#1)

= 3} (8(r = r;(0)3(r" — ry(1))

Jj(#1)
= (N = 1){8(r = 1p(0))8(r" —rpp(2))).  (1.84)

According to this definition, G,(rO0;r’¢) is proportional to the joint
probability that two different particles are separated by r at ¢t = 0 and by
r’ at time ¢. Initially one has that

G,(r0;r’ 0) = ng(r)é(r—r’), (1.85)

a result which accounts for the name time-dependent pair distribution
function often given to G,(r0;r’ t). In the opposite limit of long times,
the averages in (1.84) may approximately be factorized, yielding (cf. (1.11))

G,(r0;r' t > o) = (N—1)"'ng(r)ng(r’). (1.86)

For future purposes, it is convenient to introduce a quantity g,(r0; r’ ¢)
which may be interpreted as a conditional (rather than joint) probability.
This is defined according to
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G,(r0;r’ t) = Z (3(r = 1;(0))) g,(r 0;r" 2)

J(#1)
= ng(r)g,(r0;r’ ¢). ' (1.87)

Clearly, g,(r0;r’ 0) = d(r —r’) and g,(rO;r’ t = ) = (N — 1)~ ng(r’).

The merits of G, as a basic dynamical quantity are immediately
apparent if we note that its knowledge makes accessible an important class
of time correlation functions, namely those explicitly associated with the
relative dynamics of a pair of particles. As a matter of fact, denoting by
{A(r;(0))A(r;(z)) ) an arbitrary member of this class, it is immediately
found that

=3 (A (0) A () = [ar[dr A(MA()G(r0sr 1), (189
Niizi

Several examples of such dynamical correlations—some having direct
experimental relevance —will be met in the following; for the time being,
we shall limit ourselves to a discussion of the general properties of
G,(r0;r’ t). Introducing a suitable J-function into the statistical average,
G, can readily be written as

Ga(r0;x' 1) = 3, [ RS (r = 1,/(0)) (R — (r,(r) — 1,(0))

(R —r" +r— (r;(1) —r;(0)))). (1.89)

This formal result shows that G, actually probes the dynamics of each
particle in the pair with a weight associated with their initial separation.
Since this occurs inside the average, possible fluctuations and correlation
effects are automatically taken into account. It is interesting, nevertheless,
to discuss the implications of (1.89) in the case when all fluctuations are
ignored. Then, the statistical average can be factorized yielding

Go(r0;x 1) ~ ng(r)[dRG,(R, )G,(IR =1’ +1[,1).  (1.90)

In such a case, the motions of the two particles would be essentially
uncorrelated, with the factor ng(r) only providing a time-independent
initial probability distribution. Whereas the approximation (1.90)
reproduces the correct initial value (1.85), at short times it predicts that each
particle propagates as though it were free. As a result, in this domain w
obtain :

e Bu \¥*  —Bu(r’ —x)?
G,(r0;r' t) = ng(r) [27“2} exp T

(1.91)
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where the presence of the reduced mass y, = m/2 appears natural in the
context of relative motions. Similarly, exploiting the long-time result (cf.
eqns (1.32) and (1.70))

G,(R,t) = (4nD|t|) ~3*exp(—R*/4Dt), (1.92)
eqn (1.90) predicts that in the diffusive regime (f = o)
G,(r0;r’ t) =~ ng(r) (4nD,|t|) > exp[ —(r’ —r)?/4D,t] (1.93)

where the relative diffusion coefficient D, = 2D.

. Generally speaking, all these results derived from the convolution
approximation (1.90) are expected to be accurate if the separations r, r’
are large enough that mutual correlations may be neglected. For example,
in the liquid range eqn (1.90) is likely to be valid for separations beyond
the first few peaks of g(r). On the other hand, when both r and r’ lie in
the nearest neighbour range new dynamical features are expected. This
situation is of considerable interest, both by itself and in connection with
eqn (1.88), especially in those cases where the ‘weight’ A(r) is short ranged
in space. ’

These aspects of the dynamics of the time-dependent pair distribution
function have been addressed in several simulations studies (Haan 1979,
Balucani and Vallauri 1980a, b). The analysis is simplified by considering
suitable ‘projections’ of the full G,(r0;r’ ¢). By symmetry, G, depends on
r and r’ only through the magnitudes r, r’ and the angle 6 between r and
r’; as a result, it is convenient to introduce ‘radial’ and ‘angular’ portions
defined as

1

Gra(r 1) = | dar [ d(cos®)Go(rosr'e)  (1.99)
: (@b -1 .
and
Grumglcos8, 1) = | drdr' r2Gy(rosr' ) (1.95)
’ (a,b) 0 :

where in both cases the initial separations have been selected to lie within
a suitable range (a, b). As expected, the simulation data indicate that the
approximation (1.90) yields satisfactory results if (a, b) is chosen outside
the range of r with important structural effects. At increasing times, the
angular distribution G, ,,, is found in any case to spread from its initial
sharp peak at 6 = 0 (cf.(1.85)) and eventually to approach an uniform
distribution of angles. On the other hand, for small separations the
dynamics of G, ,,4 turns out to be strongly affected by the choice of the
range (a, b). For Lennard-Jones liquids this situation is illustrated in
Fig. 1.10, which refers to two narrow ranges of initial separations. For the
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Fig.1.10 Time evolution of the radial distribution function (1.94) in a Lennard-

Jones fluid with n* = no>® = 0.95 and T* = kgT/e = 1.32. (a) An initial separa-

tion range centered at r = 1.044, while in (b) 7 = 1.50. In both cases, the dashed

and the full curves, in the case of argon, refer respectively to ¢ = 0.145 ps and
1.44 ps. Redrawn from Haan (1979).

first one (centred on the position of the main peak of g(r)), G,, .4 appears
to be relatively stable even for rather long times. On the other hand, the
second range (a, b) comprises ‘unfavoured’ separations around the first
minimum of g(r); as a result, the initial structure of G, .4 is rapidly
washed out, and eventually the spread becomes so large that the shape of
G, 1.a resembles the one appropriate for the equilibrium pair distribution
g(r’). This trend is in qualitative agreement with the asymptotic result
(1.86), but cannot be accounted for by the simple approximation (1.93).
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It is therefore evident that the structural effects have a dynamical
counterpart which is relevant both at short and long times. In the first
case, the correct expansion turns out to be G,(x0;r’ ) = G,(xr0;r’ 0) +
G, (r0;x’ 0)(#2/2) + - - -, where the first term follows from eqn (1.85) and

G,(r0;r' 0) = — (2/mB)nv,- V.. [g(r)é(r — r’)] (1.96)

(Balucani and Vallauri 1980a). The result (1.96) is to be compared with the
one predicted from the approximation (1.90):

G,(r0;r' 0) = — (2/mB)ng(r)V,-v,.[6(r — 1’)] 1.97)

which is seen to be correct only for large separations where g(r) = 1.
Starting from eqns (1.85) and (1.96) and performing two partial integra-
tions, it is straightforward to deduce that at short times the correlation
function (A(r(0))A(r(?))) decays as

(A(r(0))A(r(2))) = (A%*(r)) — (n/Bu,) fdr[V,(A(r))]2
g(r)(#¥/2) +--- (1.98)

a result important in all interaction-induced phenomena, where it estab-
lishes the short-time dynamics of atomic pairs (see Appendix J).

With some recourse to intuitive arguments, even the discrepancies
occurring at long times between the data and the results of eqn (1.93) can
be partially eliminated. As is verified from (1.92), in the convolution
approximation the conditional probability g,(r0; r’ f) satisfies a standard
diffusive equation

3;2_2 = 2DV’ g, (1.99)
at : .

with the initial condition g,(r0;r’ 0) = d(r — r’). The neglect of correla-
tions has the unwanted effect of yielding a uniform spread of g, at long
times. To account for the structural features gradually emerging in the time
evolution (cf. Fig. 1.10b), the leading correlation effects are approximately
taken into account by introducing an effective interaction potential &(r)
between the two particles of the pair. Physically, &(r) is expected to coin-
cide with the true pair potential ¢(r) only in dilute systems; at higher den-
sities the presence of structural effects yields a sort of ‘renormalization’,
which can be accounted for by the choice (e.g. Haan 1979)

&(r) = — (1/8) Ing(r). (1.100)

The consequence of the introduction of this potential of mean force is that
eqn (1.99) for free diffusion is replaced by the one appropriate for diffusion
in a force-field (‘Smoluchowski equation’), with the latter being given
by —V@®. As a result, the new diffusive equation reads
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3g,/9t = 2DV,. - [V, g, — 8,89, D(r')]. (1.101)

In contrast with (1.99), eqn (1.101) has the merit of providing a stationary
solution proportional to g(r’), consistently with the asymptotic result
(1.86). Moreover, the numerical solution of (1.101) is found to reproduce
satisfactory the gradual approach to the stationary solution apparent from
the data of Fig. 1.10. Various attempts to merge these long-time features
with the correct short-time behaviour (1.96) have also been proposed (Haan
1979; Balucani and Vallauri 1980b).

1.5.2 Transfer of momentum among the particles

Denoting by v; = v; — v; (j # i) the relative velocity of two arbitrary par-
ticles, the corresponding velocity autocorrelation function reads

(v(0) - vy (£)) = 2{v,(0) - vi(#)) — 2{v;(0) - v;(8))  (1.102)

where the cross correlation on the right-hand side describes the transfer of
velocity (or momentum) between the ith and the jth particle of the system.
This quantity can be written as

(vi(0) -v;(2)) = (N — 1)“<vi(0) ) v,(t))

J#i

= v- 17 {00+ | Zu0 - w0 )

=(N-1)"! [<Vi(0) . Zvj(0)> - {v;(0) 'Vi(t»]
= (N —1)7'[Kv}(0)) — {v:(0) - vi(£))] (1.103)

where the condition Ejvj(t) = ):}jv,-(O) expresses the conservation of the
total momentum of the system. As a result, the effects of the cross correla-
tion are of the order 1/N, making virtually negligible in the present case
any difference between the relative dynamics and the single-particle one.

The situation becomes more interesting if, rather then considering two
arbitrary particles, we focus our attention on pairs having a specified range
of initial separations, a < r;(0) < b (for example, we may be interested in
knowing how momentum is transferred between a ‘central’ particle and its
immediate neighbours). Such a specification clearly requires the introduc-
tion of a restricted statistical average. If two particles have an initial separa-
tion in the range (a, b), the appropriate relative velocity autocorrelation
function can be written as

{v;(0) - v;(2)6(ry(0) — a)6(b — r;(0)))
(0(ry(0) — a)6(b — r;(0)))

(v (0) - v (1)) ey = (1.104)
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Fig. 1.11 The cross correlation function 9U(a, b)<v;(0) - v; (£)) g/ (v?) (full line)
as obtained by computer simulation in liquid rubidium (Balucani et al. 1984). The
range (g, b) of initial separations comprises the first shell of neighbours. The dashed
line is the normalized velocity autocorrelation function y(t) = (v;(0) - v;(¢)>/¢ v,2 ).

where the step function 6(x) is 1 for x > 0 and 0 for x < 0. The restricted
average can be split as in eqn (1.102), yielding

(Vij(o) ‘ vij(t))ab = 2(Vi(0) ‘Vi(t))ab - 2<Vi(0) 'Vj(t))ab- (1.105)

Here the single-particle velocity autocorrelation (v;(0)-v;(t)),, differs
from the ordinary one because the contributions from each particle are
weighted by the number of neighbours actually found in the range (a, b),
which in principle may vary from one particle to another. In monatomic
liquids, however, the arrangement of particles is sufficiently close packed
that we may safely neglect any fluctuation in the number of neighbours
around the average value

N (a, b) = {6(r;(0)— a)8(b — ,,(o))>-47mjdrr g(r). (1.106)

In such a case, {v;(0)*v;(¢))z = {(v;(0):v;(¢)), and the difference bet-
ween relative and single-particle dynamics is entirely due to the cross cor-
relation (v;(0) * v;(¢)) .. The latter quantity has been evaluated in several
simple liquids by computer simulation techniques; Fig. 1.11 reports the
results found for liquid rubidium for a range (a, b) which comprises the first
‘shell’ of neighbours (Balucani efal. 1984). The data show an increase of
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the cross correlation as the central particle ‘loses’ its initial momentum to
the immediate neighbours and {(v;(0)-v;(t)) decays. If this transfer of
momentum were complete before any further spread to outer shells, at
times where the initial decay has made (v;(0) - v;(¢)) = 0 we would expect
a peak of the cross correlation with an amplitude

(vi(0) - v;(£))a = [9U(a, b)] ~1(v(0)) (1.107)

indicating a uniform spread over the atoms of the first shell. The results
of Fig. 1.11 almost support this simple picture on a quantitative basis (more
than 80% of the initial kinetic energy is transferred to the first shell). At
longer times (v;(0) - v;(¢)),, decreases, mostly because of further spread of
momentum over more distant shells. The subsequent oscillations of the
cross correlation have a clear phase relationship with those of {(v;(0) - v;(¢)),
and indicate that in this liquid a non-negligible portion of the initial
momentum is ‘given back’ to the central particle, bouncing back and forth
for some time before the eventual spread over the system. Similar overall
results have been reported for Lennard-Jones liquids (Balucani ef al. 1983),
with a more marked spread of momentum outwards and no evident ‘bounc-
ing’ oscillations.

1.5.3 Pairs, triplets, and quadruplets

In liquid state dynamics one meets several time correlation functions which
probe relative motions involving clusters of particles, rather than a simple
atomic pair. Typically, these quantities involve a collective variable of
the form }; i.j+1A(;), with (A(r;)) = 0. As a result, the time correla-
tion can be split into three different contributions of increasing complexity:

< S A(r,(0) 3] A(r,,,,(t»> =23 Y A (0)) A (5 (1)))

Lji Lm#1 i oj®i

+43, %, 2 (A (0)A(ri(1)))

i j#FEil+i,j

+200 2 2 {Alr(0) A, (1))

i j#il+ij m+iji
(1.108)

where the terms on the right-hand side involve respectively atomic pairs,
triplets, and quadruplets. If the system is dilute, the correlations involving
three or four different particles are expected to be much less important than
the pair term because the presence of triplets and quadruplets of particles
sufficiently close together is unlikely. This is clearly not the case at liquid
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densities, where typically the three contributions turn out to be of the same
order of magnitude. Moreover, it is often found that their signs are such
that a considerable cancellation occurs. This circumstance magnifies any
errors due to an approximate treatment of each term, and eventually makes
a reliable evaluation of the total correlation function very difficult.

As a consequence, even if it is possible to introduce time-dependent
distribution functions for triplets and quadruplets as in the pair case, the
advantages of such a procedure appear to be rather limited, and often it
is more convenient to deal directly with the full correlation function on the
left-hand side of eqn (1.108). In this case we face a typical collective pro-
blem, and it is worthwhile at this stage to discuss the basic dynamical quan-
tities appropriate for such an analysis. This will be the subject of the last
section of this Chapter.

1.6 COLLECTIVE PROPERTIES

1.6.1 Density fluctuations and longitudinal and transverse currents

In close analogy with the approach followed for single-particle properties,
even in the collective case it is convenient to introduce a scalar density field
n(R, t) as the leading dynamical variable. An extension of eqn (1.27) leads
to the definition

n(R, ) = Z}a(R—r,.(z)). (1.109)

Noting that

(n(R,#)) = (n(R,0)) = V ’I‘,’ n, (1.110)

it is natural to interpret n(R, ¢) as the number density variable at point R
and time ¢. For our purposes, it is also useful to consider density fluctua-
tions defined as

AR, 1) = n(R, 1) — (n(R, 1)) =?n(R, f)—n.  (L111)

The space Foﬁrier transforms of the variables (1.109) and (1.111) read
n(k,t) = Y exp(ik-r;(¢)) (1.112)

and

Ak, t) = Z]exp(ik-r,.(t)) — (27)%né (k). (1.113)

Collective properties 43
The equation of motion of n(k, ¢) is readily written as
3’%‘—”_ ik - Zv(t) exp (ik - 1;(2)) (1.114)
where the vectorial variable
j(k,t) = Zvi(t) exp (ik - r;(¢)) (1.115)
.~

is known as the current associated with the overall motion of the particles.
A first noteworthy feature apparent from eqn(1.114) is that for small
enough wavevectors n(k, t) — 0; as a consequence, n(k — 0,¢) may be
considered as a ‘slow’ variable in the sense discussed in Section 1.3. This
result (which parallels a similar one found for the single-particle density
n, ;(k, t)) follows from the conservation of the total number of particles
nk =0, ¢t) = N, and gives to (1.114) the typical structure of a ‘continuity’
equation.

Rather than the full current, eqn (1.114) only involves the component of
j(k, r) parallel to the wavevector k. In more formal terms, the current can
be split according to

ik, ) = kk.j(k, 1) + (1 — k&) .j(k, ¢)
E.iL(ks t) +jT(ks t) (1'116)

where k& =k/k, | is the unit tensor, and the last step defines the
longitudinal (j.) and transverse (jr) components of j(k, ¢) with respect to
k. Then, eqn (1.1 }4) may be simply written as Ak, t) = ikj (k, £), where
ik, 1) = juk, Dk. '
The equation of motion of the full current j(k, #) reads
dj(k, #)
dr

= 2 [ik-v;(2)v;(¢2) + v;(£)] exp(ik-r;(2)). (1.117)

For sufficiently small wavevectors, both terms in square brackets give a
vanishing contribution (the second being proportional to the total force
acting on the system, which is zero by Newton’s third law). As a result, even
the variable j(k, ) becomes ‘slow’ in the limit & — 0. Since k is fixed, the
same is also true for the separate longitudinal and transverse components
of the current. Thus, in the collective case we a priori deal with several

‘quasi-conserved variables (another one, the energy density fluctuation, will

be met in Section 1.6.4), some of which being mutually connected. Such
a situation should be contrasted with the one found for single-particle
properties, where n, ;(k, t) is the only natural quasi-conserved variable.
As k — 0 the collective correlation functions may consequently be expected
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to provide much more information than F,(k,?). Before discussing the
physical implication in this low-k ‘hydrodynamic’ regime, in the two next
subsections the collective dynamics will be studies on a more general basis.
As in the single-particle case, a convenient starting point is the analysis
of the short-time behaviour of the correlation functions at arbitrary
wavevectors.

1.6.2 The intermediate scattering function

The time correlation function associated with the dynamics of k-dependent
density fluctuations is defined by

F(k,t) = (1/N){a*(k, 0)A(k,t))

= (1/N) )} {explik - (;(£) = £;(0)]) — (27)°n5 (k).
(1.118)

In close analogy with the analysis seen in Section 1.4.1, we may Fourier-
transform F(k, {) back to the space domain to obtain the van Hove correla-
tion function

G(r,t) = (1/N) 2 {6 (r +1,(0) — 5,(1))) — n. (1.119)

The summation over j in eqn (1.118) or (1.119) can be split into a ‘self’-
contribution with j = i which accounts for the single-particle properties,
and a ‘distinct’ part with j # i responsible for collective properties. In par-
ticular, for the initial values F(k, 0) this spligting yields

F(k,0) =1+ (1/N) 3 {exp(—ik-ry)) — (21)’nd (k)
=1+ [drexp(—ik-r) [g(r) = 1] =1+ [S(k) — 1]
' (1.120)

where we have exploited the definition (1.14) of the static structure factor.
As a result

F(k,0) = S(k) ' (1.121)

Alternatively, from F(k, t) we may proceed with a time Fourier transform
to obtain the spectrum

S(k, w) = (1/27) j dtexp( —iwt)F(k, ) 1.122)
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usually called the dynamic structure factor (or the ‘coherent scattering law’

because of its connection with neutron scattering experiments; cf. Chapter

2). In turn, because of its ‘mixed’ character with respect to G(r, ¢) and

S(k, w), F(k,t) is referred to as the intermediate scattering function.
The short-time properties of F(k, t) follow from the expansion

F(k, 1) = F(k,0) + E(k,0)(¢/2) + F (k,0) (+*/41) + - - -
= S(k) — wi(t¥/2) + wli(t*/4!) + - - -
= S(k)[1 — 2 (1/2) + ) (t/41) + - -+]  (1.123)

where only even powers of time appear, because of the even character of
F(k, t) (cf. Appendix B). The quantities w} are given by

e (o [0

- L0= [ dowrs(kw)  (.124)

—

and called the nth frequency moments of S(k, w). In the last step of (1.123)
we have introduced ‘normalized’ frequency moments defined as

(w}) = w}/S(k). S (1.125)

As in the single-particle case, the evaluation of the first few frequency
moments is expected to provide some useful information on the collective
dynamics actually probed at the various wavevectors (i.e. over different
length scales). Again, the calculation is accomplished via the use of the
stationarity of the statistical averages and the consequent possibility of shif-
ting the time derivatives inside the average from one variable to the other.
Thus

7= — (1/N)(#* (k, 0)7 (K, 0))
= (1/N){#* (k, 0)#*(k, 0))

= (1/N) 234 (k- v;) (k- v;) exp (—ik - r)). (1.126)

Since the average over the velocities vanishes unless i = j, we obtain

wi=Al]Z((k-v,~)2) =%Tk2. (1.127)

As only single-particle contributions are relevant in the result (1.127),
clearly w? coincides with the corresponding self quantity {w?2),. However,
in the collective case the last member of eqn (1.123) shows that the short-
time decay of F(k, t) from its initial value is ruled by the normalized second
moment
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2 B 2
= s 1.12

rather than simply by w?. The presence of S(k) at the denominator of
(1.128) has important consequence on the qualitative features expected for
the collective dynamics. In particular, the differences between the dynamic
structure factor S(k, w) and its self counterpart S;(k, w) are anticipated as
being large in the low wave vector region, where in the liquid range
S(k) = S(0) < 1. Indeed, we shall see that in this hydrodynamic regime
S(k, w) exhibits well-defined inelastic peaks associated with the propagation
of sound-like excitations.

Even beyond the low-k range, the short-time dynamics of density fluctua-
tions is affected by the oscillatory behaviour of the static structure factor.
As k increases and the length scale 27z/k becomes more and more
microscopic, the liquid is not able to support any collective excitation, and
both F(k, t) and S(k, w) should decay monotonically. In such a case, the
quantity {(w32)'/? gives an approximate measure of the spectral width of
S(k, w). The more interesting situation occurs for wave vectors near the
position k, of the main peak of S(k), where the marked decrease of
{w?%)y implies a considerable narrowing of S(k, w) and a slowing down of
F(k,t) (de Gennes 1959). Physically, the long decay time of F(k, ¢) for
k = k, can be understood by arguing that the sharp peak of S(k) at k
reflects a high probability of occurrence of density fluctuations with k in
this range; as a result, the latter cannot easily be destroyed by collisional
mechanisms and their lifetime is very long. At even larger wave vectors,
correlation effects lose their importance, until eventually S(k) = 1. Here
any distinction between collective and single-particle dynamics is expected
to disappear, with both F,(k, t) and F(k, t) approaching the limiting result
(1.50) appropriate for free particles.

In close analogy with the analysis of Section 1.4.1, the dynamics of den-
sity fluctuations can be explored at a more detailed level by evaluating the
fourth moment

— 1

t= N (1.129)

(A*(k,0) 2 (k, 0)) = = (A" (k, 0)7 (k, 0))
The calculation of w? proceeds along lines similar to those previously
reported for (w}),, starting from 7A(k,0) =), [-& v,)’+ik-¥,)]
exp (ik'r;). Then

_z——Z({(k vk V)2 +i[(k-¥) (k- v)? = (k- v)2(k-V;)]

+ (k-v;) (k- v;)} exp(—ik - ry)) (1.130)

T

T ——

|
;s
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In the summation over j, the ‘self’-contribution with j = i reproduces the
single-particle result (w$), (cf. eqn (1.39)). The ‘distinct’ part of w? with
)i j+: comprises three kinds of contributions. In the first one, all the
averages can be factorized yielding

< Z ((k vi)* (k- v;)* exp( =ik ry)) = ((k-v;)* )2 2 (exp(—ik- 1))

:j#t ,j#-i
= (kg T/m)*k*[S(k) — 1] (1.131)

where in the last line we have used (cf. (1.118), (1.121))
= Z (exp(—ik-r;)) = S(k) — 1 + (27)*n6(k)

t,j#x

(1.132)

with the last term giving a zero contribution to (1.131). The other two con-
tributions to eqn (1.130) are evaluated by expressing the accelerations v;
and v; in terms of derivatives of the total potential energy ¥V, and by

exploiting the result
av, N
<f( Ny N) kBT<af(r ))
Tia ar i,a

(1.133)

Equation (1.133) is valid for any variable f which is a regular function of
the atomic coordinates, and is readily verified by performing a partial
integration (cf. (1.42)). As a result, the distinct part of the two terms in
square brackets in (1.130) reads

= Z Gl(k¥) (k-v;)2 = (k- v;)2(k-¥;)] exp(—ik-r;))

kB 11’,;, (i[(k-v;) = (k-v;)] exp(—ik - 1))
2
- % [kBTTJ k4i,j2¢i (exp(~ik - ry))

[k" } k*[S(k) —1]. (1.134)

Finally, using (1.133) the last term in eqn (1.130) with i/ # j can be written as

= Z (k- %;) (k- ¥;) exp(—ik - 1))
11#1
kg T 3%Vy IVy
—W N JZ$' Zka 5<|:ari,aarjﬂ+ kﬂa :'exp( —ik - l',j)>



48 The basic dynamical quantities

kgT 1 62¢(r;j) ]
_——m N, Z* azﬂ: : ,,([-— ary,aarij,p+kBTkakﬂ exp(—ik - ry)
(1.135)

where in the first term in square brackets ¥y has been expressed in pair-
wise contributions, and in the second we have again exploited (1.133).
Then, introducing the pair distribution function (1.11) and using (1.132),
we obtain

—Z ((k-¥;) (k- ¥;) exp( —ik - r;))

t}#:l

nkB Zk kﬂjd exp(—lk r)g(r)

[kB J k[S(k) —1]. | (1.136)

Summing up all the contributions with j # i, all the terms with the factor
[S(k) — 1] are seen to cancel. Adding now the ‘self’ part with j =i we
eventually find that

“‘;:%k [ ke T 2o+ (1.137)
with the definition
k kot . @
0= 2 S5t arZ20 exp(-ik-r)a(r)
m aﬂ
2<:S(
jd ) exp( 1kz)g(r) (1.138)

where in the last step we have exploited the isotropy of the system and
chosen k along the z-axis of the laboratory frame. The angular integrations
in (1.138) are readily performed by using

2
30(r) _ g ()" '” ¢’ (') (005 — (rers/r)]  (1.139)
and we eventually obtain

| 023t () Litie) — 2istie)

+(2/r) ¢" (1) Lio(kr) + jo(kr)]}g(r) (1.140)
where jo(x) =sinx/x and j,(x) = 3/x?) [(sinx/x) — cosx] — sinx/x

P
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are the spherical Bessel functions of order O and 2, respectively. Since
Jnix—0) = x"/2n+1)!!, for small wavevectors the quantity £,
approaches the Einstein frequency Q,.

Equation (1.140) can be further simplified if, as in Section 1.4.2, we
exploit the fact that in most simple liquids the integral is dominated by
separations r near the position r, of the main peak of g(r). Moreover,
adopting the representation (1.62) of the pair potential with p, g > 1, the
leading contribution to the integral is provided by the term with ¢ ”(r) and
we eventually obtain

Q% = Qf Lio(kro) — 2j,(kro)]. (1.141)
For future use, it is convenient to introduce the quantity
wi {wi)
wi(k) =— = 1.142

which has the dimensions of a squared frequency. In view of the results
(1.127) and (1.137), we find that

w3 (k) = 3kB §d 2¢()

[1 — exp(—ikz)]g(r)
__3kB 202 o2
=2k + Q- 0}

3"3 BT 2 0211 = jy(kry) + 2, (kry)] (1.143)

where the last step follows from the approximation (1.141).
__As in the single-particle case, it is interesting to explore the behaviour of
w} in the two limiting cases of very small and very large wavevectors. For
large k, the phase factor exp (—ikz) in (1.138) oscillates so rapldly that the
integral vamshes, making w% approach the self value (w 4. For k— o
both w? and (w}), eventually yleld the free-particle result 3(kg 7/m)*k*;
in this limit, S(k) = 1 and {(w}) = 3{w2%)?, as expected for a Gaussian
spectrum centred at w = 0.
In the opposite limit of small wavevectors, expanding 22 up to the
order k? it is readily found that
3kB n
w? (k) = 2y o far

= c2k? (1.144)

where the quantity ¢; has the dimension of a velocity. Since w% =
(kg T/m)k?, for small k w? is found to vanish as k*. This result is to be

, |
: i—(zr) 2’g(r) - k?
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contrasted with the k — 0 behaviour of {w$),, which vanishes as k2. The
ultimate origin of this difference is the quasi-conserved character in the
collective case of both the variables 7i(k — 0,¢) and j (k—0,?) (cf
~ Section 1.6.1).

1.6.3 The correlation functions of the currents

The partitioning (1.116) of the current j(k, ¢) naturally suggests the intro-
duction of two distinct autocorrelation functions, respectively associated
with flows of particles parallel and perpendicular to the external wavevector
k. Taking again the latter along the z-axis, ‘longitudinal’ and ‘transverse’
current correlation functions are defined as

Cu(k, ) = (1/N){jr(k, 0)jc (k, 1))
= (1/N) (K, 0)j,(k, 1)) (1.145)
and
Cr(k, 1) = (1/2N)(ir(k, 0) - jr(k, 1))
= (1/N) i (k, 0)j.(k, 1))
= (1/N){j,(k, 0)j,(k, £)) (1.146)

where the last steps follow from the isotropy of the fluid.

There is a considerable difference between the physical phenomena probed
by these two dynamic correlations. Since n(k, t) = ik j(k, t), the longitu-
dinal current correlation function can be written as

Cu(k,t) = — (1/k2)ﬁ(k t) 1.147)

As a result, no really new information on collectlve dynamics is provided
by C.(k,t). For example, the longitudinal current spectrum is simply
given by

C.(k, w) = (1/27) 5 dt Cp(k, t) exp( —iwt)

-0

= (w*/k*)S(k, w). | | (1.148)

Thus, at any wavevector, Cy (k, ) starts from zero and has at least one
peak at finite frequencies. Similarly, the short-time behaviour of C; (k, ¢)
can easily be deduced from that of F(k,¢). In particular, C; (k,0) =
(1/k¥)w? = kg T/m, and Cp(k,0) = — (1/k*)w?. Hence, the normahzed
second frequency moment of Cj (k, w) reads

—[ &, (k,0)/CL(k,0)] = 02 (k), | (1.149)
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a result which justifies the notation chosen in the definition (1.142). Even
if the physics behind the longitudinal correlations is not new, in some cases
their explicit consideration turns out to be particularly useful. An example
in this respect is provided by those physical situations in which S(k, w) has

" hardly discernible peaks (or ‘shoulders’) at finite frequencies. In view of

eqn (1.148), these features are naturally emphasized in the longitudinal cur-
rent spectrum, thus permitting a more reliable extraction of any associated
physical information. -

In contrast with j; (k, #), the transverse current jr(k, ¢) is not directly
coupled with the density fluctuations. Thus, the transverse current correla-
tion function Cy(k,t) is expected to provide information on new
dynamical events occuring in the fluid. Broadly speaking, the transverse
character of the flow of particles indicates that Cr(k, ¢) probes any ‘shear
mode’ possibly propagating in the fluid at the given wavevector. Performing
even in this case the usual analysis of short-time features, we find that
Cr(k,0) = kgT/m, whereas

&1k, 0) = - 5 G2k, 07k, 0)) = = ZLA(K), (1150

where w%(k) is the normalized second frequency moment of the trans-
verse current spectrum Cr(k, w). The quanuty wi(k) can be evaluated
in a way similar to that previously seen for w$ and w? (k). The final result
is

w6 = 22T+ (w/m) [ar 2D (1 — exp (i)l
= l‘-"m—Tk2 + Q% — (2})> (1.151)
Here
(002 = ?fj arr2 (6" () Lio(kr) +ja (k)]
+ 240 (ojo(kr) - o) e ()

= Q% [jo(kro) + jy(kry)] (1.152)

where the last step is valid within the same approximations asineqn (1.141).

In the limit of very large wavevectors, where both 2% and (£/)? vanish,
Cp(k,t) and Cr(k,t) are expected to approach their free-partlcle expres-
sions, respectively given by
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T k kg T
CL(k,t)=k37[l B kth} p[—;—mkztz], (1.153)

T
Cr(k,t) = ’-‘f—nzexp [— %k’tz] . (1.154)
The corresponding spectra read
{ m 172 ()2 —mw?
=|—| -— —|, 1.155
Gk, @) [2nkBT] 2 P 2kp TH? (1.155)
kg T |2 —mw?
= |0—s —| . 1.156
Cr(k, @) [ankz] P | 2ks TH? (1.156)

Thus, whereas in this limit Cr(k, w) has a Gaussian shape as S(k, w) =
S,(k, w), CL(k, w) is peaked at frequencies w = =+ (2kzT/m)"*k, of the
same order as the halfwidth I',(k = =) (cf. Section 1:.4.3).

Like w?(k), the quantity w3(k) is found to vanish as k> for small
wavevectors, as a result of the quasi-conserved character of jr(k, ¢). Equa-
tion (1.151) gives

wt (k) = k2

jdra ¢>(2r) 2 (r) - K2
2m ax

=c2 k2, (1.157)

Comparing the two velocities ¢, and c; as deduced by eqns(1.144)
and (1.157)

2¢° (r)

i ]g( ), (1.158)

jd [3¢ (r)+

2
c
T m

2’"‘ jd {qb”(r) 20 (')] (r (1159

and noting that the term with ¢’(r)/r usually gives a small negative con- -

tribution, we find that ¢? > 3c%. Even if it is tempting to interpret ¢; and
cr as the longitudinal and transverse velocities of some ‘sound-like’ collec-
tive excitation, the fact that these results were obtained by a short-time
analysis indicates that such an interpretation is only appropriate for the
instantaneous response of the liquid. As in the case of single-particle
properties, this short-time (or high-frequency) description over-emphasizes
the solid-like features of the liquid. In particular, for small k this picture
is certainly bound to fail if C.(k, ¢) or Cr(k, t) are probed over timescales
comparable or longer than the typical collisional times. Eventually, one
approaches the genuine hydrodynamic regime, explicitly discussed in the
next subsection.
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1.6.4 The dynamical variables relevant in the hydrodynamic regime

When probed over sufficiently large distances and long times, both the
single-particle and the collective dynamics of a fluid can be discussed in
terms of a quasi-macroscopic framework in which the relevant variables are
treated as though the system were a continuum. To illustrate the procedure,
consider, for example, the microscopic number density n(R, #) as defined
in eqn(1.109). The presence of the d-function clearly implies a highly
discontinuous character of this variable, depending on whether R coincides
or not with the instantaneous position of an atom. If, however, the
dynamical phenomenon under consideration is known to be associated with
slow enough variations both in space and in time, we may not bother with
any violent dependence on R and ¢, and replace n(R, ) with a suitable
average over all the microscopic spatlal and temporal ‘detalls “Albeit a

priori a précise assessiient of this ¢ coarse-gralmng procedure is far from
trivial, it is intuitively clear that we eventually approach a quasi-
macroscopic dynamical variable n,,(R, ), which can be considered as a
continuous and slowly varying function of both R and .

As a result, the dynamical behaviour of the system is ultimately phrased
in terms of several variables A4,,(R,?), or A,,(k,?), fluctuating around
their equilibrium values. In several cases of interest, the departures from
static equilibrium conditions are comparatively small, justifying a pertur-
bative treatment in the magnitude of the corresponding fluctuations. In
fluids, such a linearized framework is conventionally referred to as ordinary
hydrodynamics. Rather than providing an extensive account of these
macroscopic approaches (which can be found in several excellent textbooks,
e.g. Landau and Lifshitz (1959)), we shall simply report the final output
for the relevant time correlation functions, denoted with the suffix ‘hyd’ to
remember that they involve the appropriate coarse-grained variables rather
than the microscopic ones. The detailed results can be summarized as
follows:

[F,(k, )] nya = exp(—k?D[1]), (1.160)

[F(k, )]ya = [F(k, 0)]1yal[1 = (1/7)] exp[ —k*(x/nc,) |¢]]
+ (1/y) exp(—k2I|t|) [cos (v,kt) + bksin(v,k|¢|)]},
| (1.161)
[CL(k, )]nya = — (1/K?) [F(K, )] 1yas (1.162)
[Cr(%, )] bya = [Cr(k, 0)]syaexp[ —k*(n/nm)|¢]]. (1.163)

The quantities appearing on the right-hand side of eqns (1.160)-(1.163) fall
into two distinct categories. Specifically, we deal with:

—
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(i) equilibrium (or thermodynamic) quantities, such as the initial values of
F and Cy, the ratio y = cp/cy between the specific heats at constant
pressure and at constant volume and the adiabatic sound velocity v,;

(ii) transport properties, such as the diffusion coefficient D, the thermal
conductivity k, the shear viscosity coefficient # and the bulk viscosity coef-
ficient #,. In the equations above, these quantities appear either explicitly
or through

r=3[(y - 1)(x/ncp) + (m./nm)] (1.164)
and
b= (1/yv,) [3T — (n./nm)] (1.165)
where )
n=3in+n (1.166)

is the so-called “‘longitudinal viscosity’ coefficient.

Far from being a mere matter of terminology, this distinction contains
important physical implications. Indeed, all the equilibrium quantities in
eqns (1.160)-(1.163) can in principle be expressed by ordinary thermo-
dynamic approaches. For example, using thermodynamic fluctuation
theory one readily establishes that (Landau and Lifshitz 1959)

[F(k 0)]hyd = nkB TXT (1.167)

where xr is the isothermal compressibility. Also, the adiabatic sound
velocity can be expressed as

v, = (y/nmyr)"2. (1.168)

On the other hand, similar simple results for the transport coefficients can-
not be established within a purely macroscopic approach. Rather, one relies
on the fact that the hydrodynamic equations provide a highly successful
description of most phenomena observed in conventional fluid dynamics.
As a result, the transport coefficients are simply regarded as ‘parameters’
which can reliably be determined by matching the predictions of the equa-
tions with the actual experimental findings. Since the latter are typically in
the frequency domain, the above procedure is accomplished by considering
the Fourier transforms of eqns (1.160)-(1.163), namely

1 Dk
n w? + (Dk?)?
nks Tyr (1 [ Tk* + bk (@ — v,k) +rk2+bk(w+usk)]
n (0 ~ v,k)? + (Tk?)? ((o+vsk)2+g\(1"k2)2

N (1 _lJ (re/ney) k2 } (1.170)

v) w?+ [(k/ncy)k?]?

[S,(k, @)]pya = (1.169)

[S(k, @)]nya =
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. w2
[CL(k’ w)]hyd =F [S(k’ w)]hyd’ (1.171)

kg T (n/nm)k?
mn w?+ [(n/nm)k?]*’

[Cr(k, @)]hya = (1.172)

Summarizing all these results, eqns (1.160) and (1.169) are the continuum
version of single-particle motion (often referred to as the Fick’s law), and
appear to be identical with the ‘microscopic’ equations reported in Sections
1.4.2 and 1.4.3 for the diffusive regime. At the collective level, the
time correlations (1.161)-(1.163), along with the corresponding spectra
(1.170)-(1.172), are the final results of Navier-Stokes hydrodynamics. In
particular, the density fluctuation spectrum (1.170) is characterized by the
presence of a Lorentzian component centred at w = 0 (the so-called
‘Rayleigh spectrum’) which turns out to be associated with slowly varying
temperature fluctuations, and of two inelastic ‘Brillouin’ contributions. In
the domain of applicability of hydrodynamics, the wavevector & is suffi-
ciently small that the three components are well separated, with spectral
widths of the order of k2. As a result, the inelastic components are sharply
peaked at frequencies w =~ + vk, and the terms with b can be neglected,

yielding for the Brillouin portion two Lorentzians centred at w = + v,k

with a halfwidth I'k2. The inelastic peaks account for the presence in the
fluid of longitudinal sound waves propagating with the ordinary adiabatic

velocity v,. In contrast, eqn(1.172) shows that, according to hydro-
‘dynamics, the fluid does not support the propagation of transverse sound
waves. At a macroscopic level, this result reflects the well-known inability N

of fluids to resist shear forces.

As stated in Section 1.1, the ideal goal of a microscopic theory for the
time-dependent properties of liquids is to use statistical mechanics to
account for dynamical phenomena occurring over arbitrary length and time
scales. In particular, the framework should be able to yield an independent
derivation of all the previous results of ordinary hydrodynamics, to provide

physical criteria for the validity of such a description, and finally to suggest

possible extensions (if any) of the hydrodynamic equations beyond their
strict limits of application. As a by-product, the general statistical frame-
work should also provide'microscopic expressions for the transport proper-
ties, thus making an important step in the direction of their theoretical
prediction. A first result in this respect has already been seen in Section
1.4.2 with the ‘Green-Kubo relation’ (1.67) for the diffusion coefficient. In
the same context, it was also argued that a reasonable criterion for the
validity of a quasi-macroscopic descrlptlon is prov1ded by the large-

distances and long-times conditions ¥ < /™! and ¢ > Q7.

In Chapter 3 we shall arm ourselves with the theoretical equipment (the
memory functions’) approprlate for providing a definite answer to the
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previous points. In particular, all the results of ordinary hydrodynamics will
be deduced in Section 3.4. The discussion about a possible extension of such
a framework (referred to as generalized hydrodynamics) is postponed until
the beginning of Chapter 6. For the time being, it is convenient to introduce
some additional dynamical quantities which will be relevant in the subse-
quent developments of the theory. Since in hydrodynamics one is concerned
with slowly varying phenomena, a basic role is naturally played by the
variables n;;(k, t), nlk, £) ‘and j(k, t) which are quasi-conserved as k — 0.
Also, since the total energy of the system is conserved, it is appropriate to
introduce in the same respect an energy-density variable. In the wavevector
space, this is defined by

e(k, 1) =4} [mv}(s) + Z) ¢ (ry(1))] exp(ik-r,(1)). (1.173)
i J(#i

Noting that ¢e(k, t)) = (e(k, 0)) = [(27)*/V]1(3C)J(k), we may introduce

energy density fluctuations defined as &(k,?) = e(k,?) — (e(k,0)).

Because of their quasi-conserved character, the equations of motion of the

variables n, ;(k, ?), fi(k, ?), j(k, t) and &(k, #) have the general form of a

‘continuity equation’, i.e.

fgi(k, t) =ik {v;(¢) exp[ik - r;(#)]], (1.174)
Ak, t) =ik-j(k, 1), (1.175)
j(k,8) = (i/m)k-o(k, ), (1.176)
é(k,t) = ik-q(k, 7). 1.177)

Here o(k, t) = exp(iLt)0o(k) is the k-dependent microscopic stress tensor
at time ¢. Writing the total potential energy as‘a sum of pairwise contribu-
tions, it is easily found that the cartesian components of O(k) read

Oy p(k) = Z my; v, E (7", ,,,,/r,,]Pk(r,,)} exp(lk r;)

(1.178)
where !
P(r) = g () 122D (1.179)
Note that
(Gap(K)) = (22)n6(K) (ks T8, — £ [ r(rarp/ )" (Pg(r)]

= (27)%0 (k) [nkg T — 1 n? 5 dr(r2/r)¢’ (r)g(r)1, .
(1.180)
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Exploiting again the isotropy of the system, the quantity in square brackets
can be written as

P=nkyT — %nzgdrrdw’ (r)e(r), (1.181)

which is the well-known virial theorem for the pressure P of the fluid
(Hansen and McDonald 1986). Thus the averaged diagonal components of
the microscopic stress tensor are proportional to the pressure.

On the other hand, eqn (1.177) involves the microscopic energy current
q(k, t) = exp(iLt)q(k). The cartesian components of q(k) read

@) =+ {m + 360l

J#i

-7 Z Z (vi5 + v;,5) [1y,am, u,ﬂ/ru]Pk(ru)} exp(ik - ;).
j*l
(1.182)

In contrast with n,;(k,?), fi(k,?), jk,¢) and é(k,?), the variables
Jik, ) = v;(t)explik - 1;(¢)], o(k,?) and q(k, ) are not conserved in the
limit £ — 0. Therefore the corresponding time correlation functions are not
expected to exhibit any slow character even for vanishing wavevectors. As
we shall see in Chapter 3, the time integrals of these correlation functions
are closely connected to the transport coefficients of the fluid.

1.6.5 Collective dynamics: experimental and simulation data

In the last two decades, the dynamic structure factor S(k, w) has been
measured in several monatomic liquids by inelastic scattering either of elec-
tromagnetic radiation or of thermal neutrons. As we shall discuss in
Chapter 2, the portion of the (k, w) domain which is in practice accessible
in these measurements depends strongly on the nature of the experimental
probe. For example, the shortest wavelengths A = 2n/k explorable by con-
ventional light scattering turn out to be some 10° A, much larger than
both the interatomic distances and the values of / typical of the liquid range
(cf. Table 1.1). Consequently, light scattering usually probes the dynamics
of density fluctuations under quasi-macroscopic conditions, making an
interpretation of the data in terms of ordinary hydrodynamics reasonable.
In contrast, coherent inelastic neutron scattering turns out to be best suited
to investigate the genuine microscopic regime, where the quantities k/ and
w/8, are comparable with (or even larger than) 1. As a result, the two
techniques may be thought as being almost complementary with a possible

. gap in between, depending both on the experimental setup and on the

particular fluid. The ‘closure of the gap’ (i.e. the study of the transition
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Fig. 1.12 The dynamic structure factor S (X, w)/S (k) in liquid Ar as measured by

inelastic neutron scattenng (Skold et al. 1972). Curves a, b, and c refer respectively

tok=1,2,and3 A —1 At these wavevectors the values of S(k) are 0.07, 2.70 (the

main peak), and 0. 69. In the insert, we report the corresponding light scattering
spectrum at kK = 0.002 A ~! (Fleury and Boon 1969).

between the two regimes) is a very active field of research, particularly from
the neutron side (‘Brillouin neutron scattering’, e.g. Bafile et al. 1990).

As for single-particle dynamics, important pieces of information have
been provided even in the collective case by computer simulation
‘experiments’, performed both in simple model fluids (e.g. made of hard
spheres) and in systems where a more realistic form of the interato@c
potential is available. As far as S(k, w) is concerned, the (k, w) domain
usually investigated in the simulations overlaps substantially with the one
explorable by the neutron experiments. In some cases, the use of large-s1ze
systems and the performance of long simulation runs have improved con-
siderably our understanding of the dynamical features occurring in the
above-mentioned transition region. ‘

Figure 1.12 reports the results obtained for the density fluctuation spectra
S(k, w) in liquid argon at different wavevectors. The insert shows the data
with the smallest k value, obtained by light scattering (Fleury and Boon
1969). A typical Rayleigh-Brillouin structure is clearly visible, and the
analysis of the various spectral features gives results which are consistent
with the hydrodynamic predictions. The other data in Fig.1.12 were
instead obtained by Skold et al. (1972) by inelastic neutron scattering, and
do not show any trace of inelastic peaks even at the smallest wave-
vector explored in the measurements, k£ =1 A~!. Simulation data in
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Fig.1.13 The dynamic structure factor S(k, w)/S(k) at different wavevectors as

measured by inelastic neutron scattering in liquid Cs at 308 K (Bodensteiner ef al.

1992). The curves a, b, and c refer respectively to k = 1, 1.4, and 2 A ~!. At these
wavevectors the values of S(k) are 0.136, 2.814 (the main peak), and 0.598.

Lennard-Jones liquids (Levesque et al. 1973) have indeed indicated that in
argon a broad inelastic peak is discernible only for k < 0.26 A1, i.e. up
to about 1/8 of the wavevector k,, =~ 2 A ~! where S(k) has its main peak.
For larger wavevectors, S(k, w) continues to exhibit a monotonous decay,
the only noteworthy feature being the expected ‘de Gennes narrowing’ as
k = kg (cf. Section 1.6.2). Eventually, at the largest values of k where
S(k) = 1, S(k, w) approaches the ‘self’ spectrum S;(k, w).

These argon results are to be compared with the neutron scattering data
recently reported by Bodensteiner ef al. (1992) for liquid cesium (Fig. 1.13),
and with similar findings previously obtained in liquid rubidium (Copley
and Rowe 1974). In marked contrast with argon, clear inelastic peaks have
been detected up to k = 2 k,, for both alkali metals, implying that some
well-defined longitudinal excitation is supported in these liquids even over
truly microscopic distances. A consistent theory should of course account
for this different behaviour, as well as provide an understanding for the
nature of the excitation and give a quantitative interpretation of the
wavevector dependence of its frequency wp,(k), i.e. of its ‘dispersion’. In
this respect, the data indicate that the corresponding ‘velocity’ e k) /k
is somewhat higher than the ordinary hydrodynamic sound speed. The
presence of this positive dispersion at finite wavevectors contrasts with what
we would naively expect from solids, where in the same k range the phonon
dispersion curves bend downwards. Thus the effect should clearly be
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Fig.1.14 The transverse current spectrum Cr(k, w)/ Cr(k,t = 0) at different

wavevectors as obtained by simulation data in liquid Rb at 332K (Balucani et al.

1987). The curves a-d refer respectively to reduced wavevectors ko = 0.766, 1.53,
4.594, and 7.66 (o = 4.405 A).

associated with some important dynamical process typical of the liquid
state.

Finally, we shall discuss the data available at different wavevectors for
the dynamical correlations of the transverse current. In contrast with F or
C., Cr(k, t) is not accessible by inelastic neutron scattering experiments,
and computer simulation data are the only direct source of information.
Broadly speaking, all the liquids are found to share the same qualitative
behaviour, illustrated in Fig.1.14 for liquid rubidium. At the lowest
wavevectors the transverse current spectra appear to decay monotonically,
in substantial agreement with the hydrodynamic prediction (1.172). As k
increases, however, Cr(k, w) begins to exhibit a more and more defined
inelastic peak, which persists up to wavevectors even larger than k,,. The
associated peak frequency initially increases with k, and only for large
wavevectors does its dispersion relation flatten as the peak begins to become
broader. This feature can tentatively be associated with a transverse sound-
like wave, but of course we would like to understand the physics behind
the onset of this excitation not predicted by ordinary hydrodynamics. The
situation becomes clearer only at very large wavevectors, where Cr(k, )
approaches the free-particle form (1.154).
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2

The experimental side

2.1 THE REAL ‘SIMPLFE’ LIQUIDS

In Chapter 1 we have provided some intuitive arguments for restricting our
attention to a limited class of liquids, namely those approximately described
by the Hamiltonian (1.1), (1.2). Such a picture of ‘simple’ liquids deserves
a more detailed discussion if we wish to make contact with the real liquids
which can be investigated experimentally. In principle, a liquid can be
described as a state of matter occurring in a limited range of pressures and
densities, where it exhibits peculiar macroscopic properties (absence of a
definite shape, very low compressibility, fluidity, etc.) well known from
everyday experience. Microscopically, we deal with a system of interacting
particles (henceforth referred to as the ‘molecules’). In a first idealization,
we may assume that the molecules are individually characterized by a well-
defined set of properties, independent of the overall state of the system.
This assumption has important consequences even from an experimental
point of view, since it implies that collective properties can be studied by
assuming that the relevant ‘single-molecule’ parameters (such as the dipole
moment or the polarizability) can be used as a basic set, independent of
the thermodynamic conditions such as temperature and pressure.

A similar simplifying assumption can be made for the interactions among
the different molecules. Besides being mathematically simple, the inter-
molecular potential should ideally be state-independent and its essential
features should easily be obtained from low-density experiments in the gas
phase. If this is the case, the same interactions can be assumed to determine
the behaviour of the system even in its condensed phases.

In practice, the assumption that the interaction potential is not dependent
upon the state of the system (e.g. its density) is rather well established for
several liquids of interest, at least in the normal conditions of existence of
the liquid phase (namely, the region of the PV plane between the saturation
line, the melting line, and the critical isotherm). By itself, the possibility
of establishing from dilute gas data a potential valid for the liquid phase
is consistent with the pairwise approximation (1.2). As already mentioned,
the observed density-dependence effects are rather small, and if necessary
can be accounted for by adding phenomenologicalily a slight, irreducible,
three-body contribution.
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Even within this framework of simple ‘molecular’ liquids, one has to deal
with manifold degrees of freedom. In fact, any molecule may translate
with the molecular centre of mass, may rotate rigidly around any of the
three principal axes of inertia, and may vibrate according to any one of
its internal normal vibrational modes. Moreover, some molecules may
even change their internal structure and experience the so called ‘frame
distortion’ by which some of the chemical bonds lose their angular rigidity.
Of course, in investigating the dynamical properties of the liquid state, one
is willing to separate the features of the collective motion from the internal
molecular structure. This is easily done by the theory, where model systems
can be invented which obey some very peculiar Hamiltonian. From the
experimental point of view, however, the choice is much more restricted.
Since the liquid should be simple, its molecular constituents should be as
simple as possible. Monatomic liquids are then selected as a first choice.

Traditionally, liguid noble gases represent the favorite selection for a
simple real liquid that can be studied experimentally. Even with these
systems, however, not all the difficulties are overcome. In some special
case, a particular combination of the atomic mass and the parameters of
the potential may yield for the actual liquid state a range of temperatures
where quantum effects become sizeable, and new complications arise. This
is the case of helium which is a good example of a quantum liquid. In this
case the quantum effects are so large that they prevent the system from
becoming solid under normal conditions: crystalline helium is only obtained
by a slight pressurization. Neon too shows non-negligible quantum effects:
these are, however, considerably smaller than for helium, and may be
treated as a perturbation of a substantially classical behaviour. Quantum
corrections can be instead safely neglected in the other noble gas elements:
for example liquid argon, since the old days, has been considered as the
prototype of a simple classical liquid. Moreover, this liquid has the unique
peculiarity that the pairwise approximation (1.2) appears to be valid to
the best accuracy of present measurements, so that on a strict experi-
mental basis one can paradoxically state that the conventional approaches
developed for simple liquids are really theories of liquid argon. As a matter
of fact, even if liquid krypton and xenon:can be considered as good
examples of simple classical liquids in many respects, most of the
experimental work has been devoted to argon for the simple reason that
this is the most abundant of the three and may be easily obtained, to a very
high degree of purity, without too many efforts.

Within these limitations, the previous considerations support the basic
characterization of a simple liquid made in Section 1.1. However, taken
literally, they would exclude from the present study the class of liquid
metals. In particular, liquid alkali metals are found experimentally to
exhibit several features of considerable interest for the dynamics of the
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liquid state. In fact, although all these monatomic systems are simple in
many respects, their liquid phase is characterized by the presence of nearly
free electrons. Besides being directly responsible for the electrical conduc-
tivity of the system, these electrons affect the interaction between the ions
by introducing screening and polarization effects. A discussion of these
features is beyond the scope of this book (see March (1990) for a com-
prehensive account), but the net result is that most structural and dynamical
properties of these liquids can be described in terms of an effective, density
dependent pair potential between screened ‘pseudo-ions’. Clearly, this
potential has nothing in common with the interactions occurring in the gas
phase, where we deal with an assembly of essentially neutral atoms. On the
other hand, the effective potential in the liquid metal is expected to share
many features with the one in the corresponding crystal phase, making
possible a satifactory determination of the potential parameters by suitable
fitting procedures, for example to phonon dispersion curves. Having this
in mind, we shall adopt a less conservative point of view by including liquid
metals in our study of the dynamics of simple monatomic liquids, the latter
being characterized by an interparticle pair potential which it is possible to
access experimentally from independent measurements.

2.2 THE AVAILABLE EXPERIMENTAL PROBES

In planning an experiment to investigate the microscopic dynamics of a
liquid, one has to face the two-fold problem of which are the space and
time ranges of interest. An ordinary liquid has a number density » which
is three orders of magnitude larger than that of the gas in standard condi-
tions. For example, the density of liquid argon at the triple point (83.8K)
is 35.41 mol litre™! corresponding to n = 0.021 atoms A~3 (to be com-
pared with the density of the gas in normal conditions =4.46 x 10~2mol
litre™"). The average interatomic distance n~'/? is therefore 3.6 A, slightly
larger than the hard core diameter o =~ 3.4 A. These figures give an order
of magnitude of the spatial resolution which is necessary to resolve any
microscopic structural feature. .

As far as the timescale is concerned, the important parameter is the-
duration of a collision. At liquid density the usual distinction between the
two timescales, namely the collision time and the time between collisions,
is not very meaningful, since the intermolecular distance is practically the
same as the size of a single molecule. This subject has been discussed in
Section 1.4 and a ‘natural’ timescale has been defined which is of the order
of a fraction of a picosecond. Also, Table 1.1 shows that in typical simple
liquids the natural length scale for collisions is some 10~! A,

The particle mean free path and the collision time give an order of
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magnitude for the lower limit of the space and time range of a possible
experimental probe. In contrast, the definition of an upper limit is more
difficult. As discussed in Chapter 1, depending on the particular phenom-
enon we wish to explore, space or time correlations may be limited to a few
molecular diameters (and to a few collision times), or they may extend to
long distances and times, as for example in hydrodynamics. Therefore, the
" ideal probe should cover a range of times which extends from fractions of
a picosecond (to resolve the collision process in the time domain) up to,
say, the relaxation times (around several nanoseconds) associated with the
damping of a hypersonic wave. In space, the corresponding length scales
should range from a few tenths of an angstrom up to almost macroscopic
distances of the order of the hypersound attenuation lengths (~1073cm).
No single experimental probe can cover such a large space-time interval.

Since we are particularly interested in the dynamical processes occurring
at a microscopic level, we shall not discuss those experimental techniques
which probe liquids uniquely as they were effectively continuous media.
Ultrasonic experiments are typical examples of such a kind of measure-
ments (see Litovitz and Davis 1965). On the other hand, light scattering
techniques deserve a detailed discussion because, as we shall see, they can
in principle provide information on dynamical events occurring both at a
quasi-macroscopic level and in the typical collisional domain. Summing up,
for our main purposes the upper limit in time and space may be fixed in
the range where the continuum description starts to break down and the
molecular characteristics start to emerge. Broadly speaking, this occurs
when the hypersonic frequency becomes comparable to the damping, that
is for wavelengths A ~ 10> A and frequencies v ~ 10" Hz.

To cover the wavelength and frequency ranges useful to probe the
dynamic properties of liquids, either particles or radiation can in principle
be used. Since we are interested in the bulk properties of the system, the
penetration of the probe should be long enough to minimize surface
problems. This eliminates from the possible choices the use of charged
particles (e.g. electrons). Moreover, the experimental probe should be
characterized by the minimum possible interference with the system so that
the equilibrium properties of the liquid can be studied without being
substantially changed by the interaction with the probe. Therefore, among
particles, the choice reduces to low-energy neutrons. For the same reasons,
the energy of the electromagnetic radiation that can be used should be
limited to a range such that no electronic transition is excited.

Finally, it is worthwhile to make a few remarks about the intensity of
the probe. Depending on the strength of the interaction between the probe
and the system, there exists a limit in the intensity of the flux of the incident
particles (neutrons or photons) below which only the linear term in the
amplitude of the perturbation is important. This is the regime in which the
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Fig. 2.1 A typical scattering configuration. The z-axis is the vertical direction of
the laboratory reference frame. The incident particles, either neutrons or photons,
are characterized by their energy Ey, momentum #k,, and polarization vector e,.

The same quantities for the scattered particles are denoted by E;, kk;, and e,. The
scattering angle is denoted by 6.

linear response theory applies (Kubo 1957). Within this limit, the scattering
cross section does not depend on the intensity of the incident flux and the
intrinsic properties of the system are probed as if it were unperturbed.
Nowadays, no neutron sources exist such that corrections to the linear
response theory have to be taken into account. However, when using
the intense light beam generated by a laser, some care should be used in
order to make sure that the experiment is performed within the limits of
applicability of the linear response theory. This point is particularly impor-
tant when using pulsed lasers as photon sources.

2.3 A TYPICAL SCATTERING EXPERIMENT

When probing the properties of a sample by means of a scattering experi-
ment, the typical experimental setup is the one depicted in Fig.2.1. The
incident particles (either neutrons or photons) are characterized by their
initial energy E,, momentum £k, and polarization e,. The sample is
placed in a small volume around the origin of the laboratory reference
system; the scattered particles with selected final energy E,, momentum
Ak,, and polarization e, are finally collected relatively far from the sample
by a suitable detector.

Within the limits of the linear response theory, the scattering cross section
yields information on the dynamics of the unperturbed sample as a function
of the momentum transfer Ak and the energy transfer #Aw. The quantities
k and w are defined by the conservation relations:
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k=k, — ki, .1
how=E, — E,. 2.2)
Squaring eqn (2.1) we obtain
= k% + k} — 2kok, cos 0 2.3)

where 8 is the scattering angle (cf. Fig. 2.1). The kinematically allowed
region in the plane (k, w) is not the same for neutrons and photons. For
neutrons, the relation which connects energy and momentum is

E; = r2k?/2m, 2.49)
where j =0, 1 and m, is mass of the neutron. Hence eqn (2.3) becomes
(k/ky)?> =1+ [1 = (hw/Ey)] — 2cos8[1 — (hw/Ep)]V%.  (2.5)

As a result, for a fixed incident neutron energy not all the plane (k, w) is
accessible. In particular, due to the square root, iw can never exceed E,,
which consequently is the maximum energy which the neutron can transfer
to the system. This imposes an experimental limit to the extension of the
scattering spectrum for positive energy transfers (the ‘Stokes’ side). Figure
2.2(a) illustrates the allowed kinematic region in reduced units for a neutron
scattering experiment at several scattering angles.

If scattering of photons is instead considered, we deal with the
energy-momentum relation

E; = hck; (2.6)
where c is the speed of light. Equation (2.3) consequently reads
(k/ky)* =1+ [1 — (hw/Ey)]* — 2cos 0 [1 — (hw/Ey)]  (2.7)

and no mathematical limitation appears on the magnitude of Aw, even
though the physical limitation still holds. The allowed kinematic region for
a photon scattering experiment is depicted in Fig.2.2(b) for the same
scattering angles as in (a). :

A comparison between neutron scattering and photon scattering,
however, should be performed with care. In fact, even if the two plots
of Fig. 2.2 show a very similar behaviour for the kinematically allowed
region in units of k, and E,, the picture is drastically changed on an
absolute scale. For example, neutrons thermalized at 300 K have an average
energy E,=25.8meV and a characteristic wavevector k, = 3.5 Al
while photons in the green region of the optical spectrum (wavelength
Ao = 5000 A) have E, = 2.48¢V and k, = 1.26 x 107? A-'. As a result,
totally different regions in the (k, w) plane are actually sampled. This situa-
tion is illustrated for the two probes in Fig. 2.3, where absolute values are
reported for the energy and wavevector scales. In the figure, the scattering
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Fig. 2.2 (a) The allowed kinematic region, in reduced units, for an experiment of

neutron scattering according to eqn (2.5); (b) the same region for an experiment of

light scattering (eqn (2.7)). The scattering angles are (from bottom to top) 6 = 5°,
10°, 20°, 45°, 90°, 120°, 150°, and 180°. ’

angles are the same as in Fig. 2.2, and again the portions (a) and (b) refer
to scattering experiments performed with neutrons and with light, respec-
tively. Whereas energies are expressed in the units usually employed in these
two techniques, namely meV for neutrons and cm~! for photons, the
reported range of Aw is the same in both cases. It appears that, while for
neutron scattering one has to convert, with a considerable effort, constant
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Fig. 2.3 The allowed kinematic region, in absolute units, for an experiment of

(2) neutron scattering and (b) light scattering. In both cases, the scattering angles 8

are (from bottom to top) 5°, 10°, 20°, 45°, 90°, 120°, 150°, and 1§0°. The

incident neutrons have an energy corresponding to 7 = 300K (A = 1.78 A), while

the photons have a wavelength of 5000 A (green light). In (a) and (b) the actual values
of hw are the same, even if the units are different.
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scattering-angle data to constant momentum ones, this procedure is not
necessary for photons, where the exchanged momentum is constant for a
fixed scattering angle. This is a direct consequence of the much smaller range
of k probed by the light scattering experiment which, as already mentioned,
is three orders of magnitude smaller than for neutron scattering.

From Fig. 2.3(b) it is also apparent that, in practice, for light scattering
the physical limitation on frequency never becomes effective, the frequency
shift w always being much smaller than the frequency E,/h of the
incoming photons. In other words, for light scattering, Aw < E,. As a
consequence, eqn (2.7) reduces to

k* = 2k3(1 — cos 8) = 4k3sin®(6/2) 2.8)

which is valid, for all practical purposes, for a photon scattering experiment
which involves frequencies higher than those of the near infrared region.

Before closing this subsection, it is important to spend a few words on
the so-called detailed-balance principle. This is effective on any energy-
dependent cross section o(w) and states that

o(—w) = o(w) exp(—hw/kg T) 2.9

Equation (2.9) can be rigorously derived from a quantum-mechanical
calculation of the cross section and originates from the difference in the
initial population of the energy levels of the sample. For any energy-
dependent process, o(w) is in fact proportional to the product between the
population of the initial state of the system (given by the Boltzmann factor)
and the actual transition probability of the process. The latter quantity is
proportional to the square matrix element |(0[3C’|1)|* of the effective
scattering Hamiltonian JC’ between the initial (|0)) and the final (|1))
states of the combined system (sample + probe). Due to its symmetry, the
transition probability is unchanged if the sample gains or loses energy.
However, depending on the actual initial state of the sample, the ratio
between the weight of the two processes is given by the factor
(&0 — &) —(Ey— E) —hw

exp T = exp " = exp T (2.10)

where &, and &; denote the initial and final energies of the sample, and we -
have made use both of the energy conservation relation ¢, + Ey = ¢, + E,
and of eqn (2.2).

The presence in eqn(2.9) of the detailed balance factor (or ‘Stokes
factor’) exp(—hw/kgT) has important consequences from the experi-
mental point of view. First, the relation (2.9) must always be verified, and
its fulfilment gives a first check on the reliability of any measured energy-
dependent cross section. Second, it is apparent that, especially at low
temperatures, the cross section for negative energy shifts (the ‘anti-Stokes’
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Table 2.1 Detailed balance ‘Stokes factor’ for different energy shifts
(in various units) as a function of temperature.

w T(K)

(m™) (@meV) (GHz 10 20 50 100 300 1000
0.1 0.01 3.0 098 0993 0.997 0.999 0999 1.000
0.2 0.02 6.0 0972 098 0.994 0.997 0.999 1.000
0.5 0.06 150 0931 0965 0.986 0.993 0.998 0.999

1 0.12 30.0 0.866 0.931 0972 0.98 0.995 0.999

2 0.25 60.0 0750 0.866 0.944 0.972 0.990 0.997

5 0.62 1500 0.487 0.698 0.866 0931 0.976 0.993
10 124 299.8 0237 0487 0.750 0.866 0.953 0.986
20 248  599.6 0.056 0237 0.562 0.750 0.908 0.972
50 620  1499.0  0.001 0.027 0.237 0.487 0.788 0.931
100 12.40  2997.9 0.000 0.001 0.056 0.237 0.619 0.866
200 2480 59959  0.000 0.000 0.003 0.056 0.383 0.750
500 62.00 14989.6 0.000 0.000 0.000 0.001 0.091 0.487

spectrum) decreases much faster than for the positive side (the ‘Stokes’
spectrum). Moreover, the ratio between the intensities of the two spectra
is independent both of the sample and the experimental probe.

A closer look at the Stokes factor (see Table 2.1) in several cases of
interest is quite instructive. For example, in liquid argon (7 = 100K) the
anti-Stokes spectrum at hw =~ 6 meV is seen to be reduced by a factor of
two with respect to the Stokes counterpart. In liquid neon (7T = 20K) the
same situation occurs already for shifts %w = 1.5-2meV. Therefore in
simple rare-gas liquids it is immediately seen that one cannot rely too much
on the anti-Stokes side of the spectrum, despite the absence of boundaries
in Figs 2.2 and 2.3. In these liquids, the dynamic range of thermal neutrons
is consequently limited even for negative energy shifts because of the strong
decrease of the cross section. On the other hand, photons do not suffer any
limitation on the Stokes side, and their use would in principle be of great
help. This situation is to be contrasted with the one occurring in liquid
metals, where the probed temperature range is so high (room temperature
and above) that the Stokes factor becomes ineffective and neutrons can be
used to their maximum efficiency. Moreover, in these metallic systems one
may also take advantage of the good transparency to neutrons, a property
which is unfortunately not shared by photons.

2.3.1 Probing liquidé with thermal neutron scattering

The interaction between neutrons and ordinary matter is, in general, very
weak. A neutron of thermal energy may penetrate very deeply before being
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scattered or absorbed in its path. For example, neutrons may travel as long
as 24 cm in liquid argon before their number is reduced to one half the
initial value by absorption or scattering processes. Except for a few known
cases, the variation of the neutron cross section with the nuclear species is
not dramatic, and the previous figure can be considered as providing a
typical order of magnitude.

The de Broglie wavelength of neutron of energy E is given by

A = h/(2m,E)"? 2.11)

which means that a thermal neutron, with an energy corresponding to
300K, is associated with a wavelength of 1.8 A. This is the typical order
of magnitude of the intermolecular spacings occurring in condensed
systems. Moreover, from Planck’s law

v =E/h, 2.12)

the frequency associated with the same neutron is found to be v = 6.25 THz.
The corresponding period of 0.16 ps compares well with the collision times
given above. However, from Fig. 2.3 it is apparent that any extension of
the accessible frequency range is limited, on the Stokes side, by the low
“energy of the incident neutrons and on the anti-Stokes side by the detailed
balance condition, which is particularly restrictive at low temperatures.

2.3.2 Neutron-scattering cross section

For a neutron scattering experiment, the nuclear cross section can be easily
evaluated in terms of the Born approximation (van Hove 1954). If |s5)
and |s;) are the initial and final states of the system, then for the differen-
tial scattering cross section per unit solid angle and per unit energy change
of the scattered neutron we obtain

2

dg ;EI = ANS(k, ») @.13)

where

_ (27)’m Ky
A== e W), @.14)
2 -
8(k,w) = N1 Ep(so)z <s° Eexp(ik ‘1) s,) o [w + Eo_hﬂ] ,
So §1 Jj
2.15)
and
2

w(k) = [5 dr V(r) exp(ik-r):] . 2.16)
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In eqns (2.15)-(2.16) the operators r; represent the position vectors of the
N particles in the scattering volume, p(s,) is the probability of finding the
system in the initial state |s,) and V(r) is the interaction potential between
the neutron and the nucleus. If the true interaction, which is not known, is
replaced by the corresponding ‘Fermi pseudopotential’ (e.g. Lovesey 1987)

V(r) = (h*/2rnm,)bS(r) 2.17)

where b is the so-called scattering length of the nucleus, then eqn (2.14)
becomes

bk,
A=—— 2.18
7k (2.18)
and therefore
d20' b2k1
=——N8(k,w). 2.19
dQdE,  hk, (k, ) @.19)

As shown by van Hove, the ‘dynamic structure factor’ S(k, w) (also referred
to as the ‘scattering law’) can be written as
S(k,w) = (1/27) | defdrexpli(k-r— w)}g(r,1), (220

—o0

namely as the double Fourier transform of the space-time pair correlation
function

g(r,t) = (27) ‘3(1/N)Z 5 dk exp (ik - r) {exp [ —ik - r;(0)] exp[ik - r; ()]}
’ @.21)

which contains the Heisenberg position-operator of the ith atom at time
t =0, r;,(0), and that of the jth atom at time #, r;(¢). The angled brackets
in eqn (2.21) stand for a quantum-statistical average. Finally, it is useful
to introduce the ‘intermediate scattering function’ F(k,?) as the space
Fourier transform of the correlation function G(r, ¢):

F(k, t) = (1/N) D {exp[ —ik-r;(0)] exp[ik - r;(#)]).  (2.22)
i,J i
To make contact between the definitions (2.15), (2.20), and (2.22) and the
quantities S(k, w), G(r,t), and F(k,t) introduced in Section 1.6.2, it is
sufficient to note that for a classical system the quantum-statistical averages
are replaced by their classical counterparts, and that in a isotropic system
such as a fluid all these quantities depend only on the magnitude of the
vectors k and r. Consequently, apart from constant terms which ultimately
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give rise to trivial contributions «d(w) in the spectra, in a classical
fluid one may establish the direct correspondence S(k, w)— S(k, w),
§(r, t) = G(r, t), and F(k, 1) > F(k, t).

In the above formulation, for simplicity we have considered the sample
as composed of identical spinless nuclei. This assumption has allowed us
to extract the nuclear scattering amplitude b from the quantum-statistical
average in eqn (2.19). However, in general, the sample is made of a mixture
of different isotopes; in this case, we actually deal with a different
‘intermediate scattering function’, namely

L(k, 1) = (1/N) Y, <b} byexp [ —ik - 1,(0) exp [k - ;(1)])  (2.23)

where the subscript n stands for ‘neutrons’, b; represents the scattering
amplitude for the ith nucleus, and the angled brackets now mean a
composite average both on the nuclear internal states and on the configura-
tional degrees of freedom.

For practical purposes, it is finally convenient to write the differential
cross section (2.19) in a slightly different way. Under conditions of
‘quasi-elastic’ scattering one has that k;, = k;, and eqn (2.19) can easily be

\ntegrated over E; to yield

o

% = NB? L dw $(k, ) @2.24)
where
]o de(k,w)=(1/27c)]3 dts(k,z)of do exp ( —iwt) = (k, 0).
h h h 2.25)

In a classical fluid one has F(k, 0) = F(k, 0) = S(k), and the differential
cross section can be expressed as

de bk .S(k,w)]
—deEl~N—i—1——k—0S(k) {S(k) (2.26)

where the term in square brackets represents the scattering spectral shape
normalized to unit area, and the static structure factor S(k) gives a measure
of the overall intensity of the spectrum at different wavevectors.

2.3.3 The coherent and incoherent neutron-scattering cross section

The intermediate scattering function for neutrons (2.23) involves the
scattering length of the ith nucleus, which is independent both of its
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position r; and of time. As a result, the average in eqn (2.23) can be split
into a ‘nuclear’ part, which involves variables as the isotopic composition
and the nuclear spin orientation, and into a proper statistical average
involving the phase-space variables. On the other hand, the presence of the
double summation in (2.23) affects both these averages, and leads to a
natural separation between ‘self’ and ‘distinct’ contributions to the total
correlation function.

In the case of a one-component system, with only one isotopic species,
the involved nuclear averages can be written as {b; b;), where the indexes
i and j may label either the same or two different atoms. Then, according
to whether i = j or i # j we have

®roy = (b2 = <|b]?, @.27)
BF by = (b Y{b;) = (bY*(b) = |(b)|* (2.28)

The latter result is valid only if there is a negligible quantum correlation
between the different nuclei, as is the case for monatomic systems in ordinary
conditions. On the other hand, if the de Broglie wavelength becomes com-
parable with the atomic size (as in superfluid helium), quantum exchange
effects are non-negligible and the above assumption should be critically
revised.

Equations (2.27) and (2.28) can be merged together to give

(B by = [{b)|* + 6, [{|B]*) = [<B)|?]
= (1/4xn) [0, + 6;a] (2.29)

where the quantities o, and o; are respectively referred to as the ‘coherent’

" and ‘incoherent’ scattering cross sections for the nucleus under considera-
tion (Lovesey 1987). Inserting (2.29) into the expression (2.21) of I (k, ?),
we find

L(k,t) =1, (k, 1) + I, ;(k, 7). (2.30)

Here

Ll 1) = 25k, 1), | @3
1ol 1) ——n—(zexp[ k5 (0)] explik- 5 (1))

= % <exp[ —ik -, (0)]exp[ik - r; (t)]> (2.32)

where the index 1 labels any one of the atoms of the system. Thus in a
classical fluid we simply have that
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Lk 1) = ~F(k 1) ' (2.33)

where F,(k,t) is the self intermediate scattering function introduced in
Section 1.4.1.

Owing to the variation of the scattering length with both the isotope and
the nuclear spin, the splitting (2.30) occurs even in a monatomic system with
a single isotope, provided that this has a non-zero spin (Lovesey 1984). The
first contribution I, .(k, #) (referred to as the coherent component) stems
from the correlation between atom i, at time ¢, and atom j, at time 0. In
contrast, the incoherent component I, ;(k, ¢) only involves single particle
dynamic correlations. In a classical fluid, these two components are
respectively proportional to F(k, t) and F,(k, t), with amplitude factors
determined by the appropriate coherent and incoherent scattering cross
sections, g, and o;. Typically, a single neutron scattering experiment on
a monatomic system produces a well defined combination of the two
contributions, which are weighted by the scattering cross sections pertinent
to the natural isotopic composition of the system. However, if a second
experiment is performed, only changing the isotopic composition of the
sample, it is in principle possible to extract both contributions, thus allowing

\t separate determination of both F(k, ¢) and F,(k, t) (see Section 2.2.4).
For a proper experimental design, standard textbooks (e.g. Lovesey 1987)
report the values of the quantities o, and g; (as well as those of the
neutron absorption cross section) for the different isotopes.

2.3.4 Deep inelastic neutron scattering

With the recent availability of pulsed neutron sources, very energetic
neutrons can be used for spectroscopic purposes. In this case, the amount
of the transferred energy and momentum is so high that the effect of the
neighbours of the target nucleus can be neglected. The sample may then
be considered as being composed of a collection of isolated atoms and only
the free particle motion modulates the scattering cross section. The effect
is the neutron equivalent of the Compton scattering of very energetic X-rays
on electrons. Since there is no correlation between the different nuclei,
eqn (2.23) simplifies to: ‘

I,(k,t) = (1/N) <Z | b;|2exp [ —ik - r;(0)] exp[ik - r,-(t)]) (2.34)

and, for a monoisotopic sample, this further reduces to
I, (k, t) = b*(exp( —itk - p;/m)) (2.35)

where due to the high energy of the incoming nucleus, the system is
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approximated by an ideal gas, in which p; is the initial momentum of the
ith nucleus, and b its scattering length. The energy dependence of the scat-
tering law can be written as

S(k,E) = [dpn(p)3(E — E, - hk-p/m) (2.36)

where n(p) is the momentum distribution of the scattering centres and
E, = h*k*/2m is the recoil energy. If, as in a classical liquid, we deal with
a Gaussian momentum density of the form

n(p) = Cexp(—p*/63) 2.37)
then S(k, E) reads
S(k, E) = Cexp[ —m(E — E,)*/2E,c2]. (2.38)

As a result, the scattering cross section has a simple Gaussian shape whose
width, as a function of the energy, is directly related to the width of the
momentum distribution of the atoms of the sample, namely to the average
kinetic energy.

Clearly, the application of this experimental technique to simple
monatomic classical liquids (where the momentum distribution is well
known and the average kinetic energy is simply $kp7) is trivial. In
contrast, when applied to quantum liquids, the technique provides direct
information on typical quantum features, such as the amplitude of the zero-
point motion, or the condensation fraction in a Bose liquid. At these low
temperatures where the average kinetic energy turns out to be virtually
independent of T, the technique has been exploited to investigate its density
dependence (Herwig et al. 1990; Sosnick et al. 1990).

2.3.5 Probing liquids with radiation

Electromagnetic radiation can be used to probe the bulk properties of
non-conducting liquids, provided that the energy lost by the photons is not
sufficient to excite the first electronic state. For the atoms of rare gases,
the energies E, of the first electronic level are reported in Table 2.2 along
with the corresponding wavelengths A,. It appears that, in order to avoid
absorption of the electromagnetic radiation, wavelengths longer than the
so called vacuum ultraviolet (VUV) are necessary. In this respect, optical
wavelengths, lying in the range 4000-7000 A, can be safely used, along with
the corresponding available laser radiation.

An obvious drawback is that, in any case, these wavelengths are too large
with respect to the scale characteristic of the intermolecular distances. This
difficulty can be circumvented by using photons of higher energy, with a
correspondingly shorter wavelength. The typical range of intermolecular

T R S T 5%
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Table 2.2 Energies E; of the first electronic level in the
atoms of rare gases. The corresponding wavelengths
Ay = he/E; are also reported.

E, ), L

V) (A)
Helium 19.8 620
Neon - 16.1 770
Argon 11.8 1050
Krypton 9.9 1250
Xenon 8.7 1430

distances is then reached in the X-ray domain, and indeed X-ray diffraction
is a standard tool to probe the structure of condensed matter at the
microscopic level. On the other hand, for X-rays the previous requirement
of a negligible excitation of electronic states is obviously not met. As a
matter of fact, the energy of photons is so high that the binding energy of
the electrons can be considered negligible. Therefore, even if X-rays, being
scattered from the local distribution of electrons around the nuclei, carry
information upon the instantaneous local atomic distribution, their use to
probe dynamic properties of condensed matter may appear doubtful for the
simple fact that they would destroy the electronic equilibrium of the sample.
However, in a scattering experiment the important parameters, rather than
being the absolute values of the energy and momentum of the probe, are
the fraction of these quantities which is exchanged with the molecular
system under study. Therefore, for a given choice of the energy-momentum
relation of the probe, it is possible to find a scattering angle small enough
that the energy and momentum transfer is below any preselected limit.
If this condition is fulfilled, even X-ray scattering can be used to probe
the dynamic behaviour of a liquid. In fact, the recent development of
synchrotron machines for the production of high-energy radiation has
provided very intense X-ray sources that can be used for this purpose.
Even if many technical problems are still to be solved, preliminary results
show the feasibility of X-ray inelastic scattering experiments to probe the
dynamics of the liquid state (Burkel 1991). For the time being, however,
short-wavelength photons are essentially used only for structural studies;
in practice, any information on dynamic properties is obtained using
photons of much longer wavelength (i.e. in the optical region).

It is common opinion that ordinary light scattering, whose range of
1is ~5000 A, could be used only to probe very long wavelength correla-
tions, such as those associated with hydrodynamic modes. However, this
is not completely true. In fact, in the following we shall see that in
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well-specified experimental conditions ordinary light scattering can actually
probe intermolecular correlations occurring on length ranges much shorter
than A, namely those associated with collisional events.

2.3.6 Photon-scattering cross section

' The cross section for a photon-scattering experiment by a many-body system
is obtained by a generalization of the well-known Kramers-Heisenberg
result for a one-electron atom, which reads (Louisell 1973):

do e’ V| (w

0= [mecz] [[J:J IM,,,IZ] (n, +1). (2.39)
Here m, and —e are the mass and the charge of the electron, w, and w,
are the respective frequencies of the incident and the scattered photon,
n, is the photon population of the final state (accounting for stimulated
scattering effects), and M, is a matrix element for the electronic transition
from an initial eigenstate |@) to a final one |b). Denoting respectively
by e, and e, the polarization unit vectors of the incoming and scattered
photon, and by |7) a general intermediate electron eigenstate, it turns out
that M, can be expressed in terms of the matrix elements of the electron
momentum operator p,; and py as follows:

_ . 1 (€0 Por) (€1-Pr) | (€1 Por) (€0 Pra)
My = (e- )3, "—Z[ —E, + hw, | E —E,— hay |’
(2.40)

The square-bracketed factor in eqn (2.39) has to be evaluated taking into
account the energy conservation of the total system (atom + electromagnetic
field), that is

Wy = Wy — (Eb - Ea)/h. (2.41)

Equation (2.39) explicitly involves only the electronic term of the
Coulomb interaction with the electromagnetic field; the nuclear contribu-
tion is smaller by more than three orders of magnitude, and can safely be
neglected. Denoting by d the ‘size’ of the atom, the disappearance of the
electron coordinates in (2.39) is a direct consequence of the ‘electric dipole
approximation’ A > d, which is well satisfied for optical wavelengths. On
the other hand, the nuclear position would appear in a phase factor which
is contained in |M|? and results from averaging the electron coordinates
in the electromagnetic field. In a single-atom problem, this phase factor is
actually irrelevant, and in eqn (2.39) has been ignored by assuming that the
nucleus is in the origin of the reference frame.

If the atom has more than one electron, only the matrix element
expression (2.40) changes, and a definition of ‘atomic polarizability’ is
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introduced. However, the structure of eqn (2.39) remains unchanged and,
in the expression for |M|? only the centre of the electronic distribution
(for a monatomic system, the nuclear position) appears in the phase term.

When a system of interacting atoms (or molecules) is considered, the
problem can be made manageable by exploiting the ‘Born-Oppenheimer
approximation’, which assumes that the electronic eigenstates depend
onl; parametrically upon the nuclear positions. As a result, the nuclear
and the electronic eigenstates can be factorized. A derivation of the
cross section for light scattering from a system of interacting atoms is
given in Appendix C, where explicit results are derived for a monatomic
system. '

The approach can be easily generalized to a molecular system, provided
that the basic approximations remain valid. In particular, for a system
of simple molecules (i.e. molecules composed of a few atoms), the light
scattering cross section can be written in ‘a form analogous to (2.39)
(cf. eqn (C. 43) in Appendix C). However, now the phase factor appears
explicitly in the expression of the matrix element:

| M, |2 = wg(mﬁ/e“)(Z [eo-A;-e;][eo- A;-e ] exp { —ik: (r; — rj)}>.
LJ
(2.42)

Here A, is a second-order tensor which represents the polarizability of the
ith molecule, while r; is the position of the ‘centre of polarizability’ which
can be roughly assumed as coincident with the molecular centre of mass.
In eqn (2.42) the vector k is the momentum transfer defined by (2.1), and
again the angular brackets indicate a statistical average over the initial
configurations of the molecules.

In deriving eqn (2.42) the scattering has been approximately considered
as being quasi-elastic. This approximation holds quite well for light (and
for photons in general), provided that the scattering process probes the
genuine collective properties of the system. In fact, the dynamics of a
dense medium 1is ruled either by short-range collisions, which typically
last some fraction of a picosecond, or by collective modes of hydrodynamic
or phonon origin. When translated into a wavenumber domain, this
gives a range which extends up to a few hundreds cm ™! from the exciting
wavelength. As an optical photon in the green region of the spectrum
(1 = 5000 A) has a frequency of 20000 cm ™!, the scattering can indeed be
considered as quasi-elastic. However, this approximation would eventually
fail if large frequency shifts were detected, as for example in molecular
Raman scattering of very light systems.

In analogy with the neutron scattering case, we may define an inter-
mediate scattering function for light scattering as
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1
L(k,t) = ]TIZ {(ey- A;(0) - el)*(eo'Aj(t) ‘e)
,J

exp { ik [r;(0) — r;(1)]]), (2.43)

whose time Fourier transform is proportional to the spectral distribu-
. tion of the scattered intensity. The comparison of eqn(2.43) with the
corresponding quantity (2.23) for neutrons shows the similar structure of
the two results. However, there are several important differences:

(i) In contrast with the scattering amplitudes for neutrons, the corre-
sponding quantities for light scattering are position-dependent. As a matter
of fact, whereas in neutron scattering we deal with the Fermi pseudopoten-
tial (2.17), in light scattering the same role is effectively played by the
molecular polarizability tensor A, which in general depends on the coor-
dinates of all molecules of the system (cf. Appendix C).

(ii) The magnitude k of the momentum transfer is very different in the
two cases, being of the order of a few A~! for neutrons and about three
orders of magnitude smaller for light scattering.

(iii) The two functions are not even dimensionally consistent. In fact, while
the neutron function I, (k, 7) has the dimensions of the square of a length,
the corresponding function for light scattering I; (k, ¢) has the dimensions
of the square of a polarizability (cm®, cgs units).

2.3.7 An analysis of light scattering

In the case of light scattering, eqn (2.43) involves the polarizability tensor
A; = A(i) of the ith molecule. This is a second-order tensor with nine
linearly independent components which, in general, can be decomposed
into three parts associated with different symmetry properties:

A(i) = A9(i) + AD(i) + AP(i). (2.44)

More precisely, the tensor A is split into a scalar part A® (one compo-
nent), an antisymmetric term A" (three components), and a symmetric,
traceless, term A® (five components). In practice, the antisymmetric term
turns out to be important only in rather specific systems (for example,
in the case of solutions of sugar molecules in water). Dealing with simple
molecular systems, we may consequently restrict our attention only on the
first and the third contributions on the right-hand side of eqn (2.44).

As already discussed, rather than being a single-molecule observable,
the polarizability tensor A(i) depends also on the positions of neighbouring
molecules. In particular, we may express this dependence in terms of
‘cluster’ contributions as
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A(i) =a, + Z a(r, 1) + Z Q(r;r,r)+ -0 (2.45)
J(#D) J(,I(i,))
Here, a, is the polarizability of the isolated molecule, which is indepen-
dent of its position. The irreducible pair polarizability a,(r;, r;) is the extra
polarizability of the /th molecule induced by the presence of a neighbouring
molecule j, and depends on both the positions r; and r;. Finally, the
irreducible triplet polarizability Q;(r;;r;,r;) is the extra polarizability
arising from the presence of a pair of molecules in the vicinity of the ith
molecule; the summation is extended to all possible pairs (j, /), with j # i
and / # i, and with j # /.
Equations (2.44) and (2.45) can be combined to give, for the scalar part:

AO(G) =al + )} aP@(r,r) + D, aP(rir,n) + -+ . (2.46)

J(D) NCHRICIN

Here oy = (1/3) Tr{Q,]} is the scalar polarizability of the isolated molecule,

‘whereas @ and af” are the scalar components of the irreducible pair and

triplet polarizability, respectively. The corresponding result for the traceless
symmetric tensor A®@()) is

A (i) = qP D (p. 1. D(p. 1. .

(i) = af +j(§) a (r;, 1)) +,~(¢i)§#,,-) aP (r;; 1, 1) + @.47)
where we remind the reader that the lower index labels the ‘order’ of the
cluster, while the upper one (in brackets) labels the spherical rank of the
tensor.

We shall now focus our attention on a system of monatomic molecules
(e.g. the liquefied rare gases); at a price of some additional complications,
most of the results which we shall find are valid even for polyatomic
molecules. For a monatomic system, however, some simplifying relations
make more straightforward both the theoretical treatment and the actual
setup of experiments. In this case, the isolated molecule polarizability is a
scalar quantity, which in the absence of electronic transitions is simply a
molecular constant. As a result, a{®’ = 0 and eqn (2.47) becomes

AP(i) = a@(r,r)+ 2, aP(isr,m)+ - -. (2.48)
J(#D) FICNICIN)]

Finally, we make some remarks on the magnitudes of the induced
polarizability terms which appear in eqns (2.46) and (2.48). As a matter of
fact, both from the experiments and from theory it turns out that in
eqn (2.46) the induced terms, with Q,, Qs, etc., give a much smaller con-
tribution to the scattering cross section than the single-molecule term. Also,
we may expect (and the experimental observations confirm) that in any case
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the triplet terms contribute much less than the pair ones. As a result,
the leading contribution to (2.46) is provided by the single-molecule
polarizability, while in (2.47) this role is played by the pair term.

2.4 THERMAL NEUTRON SCATTERING"

Neutron-scattering experiments can be classified into two broad categories,
namely diffraction and inelastic experiments. In the first case, no energy
selection is performed on the scattered particles and energy-integrated
information is collected. In the second class of experiments, information
on the microscopic dynamics can instead be obtained. Being mostly
concerned with dynamic problems, in the following we shall focus our
attention on the second class.

An inelastic scattering experiment on a liquid may give information
on a number of energy transfer processes. Broadly speaking, these can be
classified either as characteristic of the particular molecular species (intra-
molecular processes such as internal vibrations in a polyatomic molecule)
or affected by the interactions among the different molecules. We are
mostly interested in this second class of processes which are directly related
to the many-body dynamics. In turn, the latter can be probed either by
focusing on single-particle aspects (S;(k, @)) or by looking at genuine
collective properties (S(k, w)). For a liquid, the region where S;(k, w) and
S(k, ) show the most interesting features is at relatively small w; that is,
quite close to the energy of the excitation probe (‘quasi-elastic scattering’).
Due to the intrinsic isotropy of the system, both S,(k, w) and S(k, w)
depend only on k£ = |k|; also, the collective features embodied in S(k, w)
which can be probed by a scattering experiment are directly associated
only with a specific part of the dynamical response (longitudinal collective
modes’). a

In Chapter 1 we have seen that a measure of the quantities S;(k, w) and
S(k, w) at increasing wavevectors provides information on a variety of
dynamical situations occurring in the liquid. In:particular, in the limit k¥ - 0
the liquid effectively behaves as a continuum, in which the basic dynamical
features that are observed are diffusive processes (in S;) and propagation
of longitudinal sound waves (in S). In this regime, the molecular structure
influences the dynamics only through a few macroscopic quantities,
which are related both to thermodynamic and to transport properties
(cf. Section 1.6.4). At increasing wavevectors, the dynamics of the liquid
is effectively investigated on a shrinking length scale, and genuine micro-
scopic effects become more and more important. Eventually, at very large
values of k the system behaves as a collection of essentially free particles,
and any distinction between S;(k, w) and S(k, w) tends to disappear.
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As seen iy/Section 2.3, the wavevector range that is accessible to a
thermal neutron scattering experiment cannot be much smaller than a
fractiog of 1A', which corresponds to a wavelength in the range
10-50 A (cf. Fig.2.3(a)). This is a range of distances where the micro-
scopic aspects are already fully effective. In contrast, a light-scattering
experiment probes a k& range which is three orders of magnitude.smaller
and therefore well within a hydrodynamic description of the liquid (see
Fig. 2.3(b)).

2.4.1 A typical experiment: inelastic neutron scattering in liquid argon

The previous considerations can be illustrated in some more detail by
reporting the results obtained by inelastic neutron scattering in the prototype
simple liquid, namely liquid argon. This offers the possibility of discussing
some typical procedures used by experimentalists to analyze data.

Quasi-elastic neutron scattering experiments on liquid argon at the triple
point (85.2K) have been carried out by Skold efal. (1972) in the range
of k=1-44A"' and w =0-10.6meV. A separate determination of
S,(k, w) and S(k, w) was made possible by performing two independent
experiments with samples of different isotopic composition (cf. Section
2.3.3). At all wavevectors both the scattering functions show a monotonic
decrease with w; the corresponding widths are of the order of a few meV,
and show an overall increase with k£ (see Figs 1.5 and 1.12). Skold etal.
analysed their spectra by fitting the low-frequency part to a Lorentzian
shape, and looking at the deviations of the experimental data from the
predictions of such an idealized model. As far as the single particle spec-
trum is concerned, the overall spectral shape of S (k, w) appears to be
dominated by simple diffusive motion (Fig. 2.4(a)). The spectrum is in fact
very close to a Lorentzian (particularly at low frequencies, w < 2meV),
the only signature of a deviation being an excess intensity in the wings
(2 < w < TmeV). On other hand, the collective spectrum S(k, w) shows a
more marked wavevector-dependence (Fig.2.4(b)). Again the low-
frequency region may be approximated by a Lorentzian, but the behaviour
in the wings is less regular, showing a much larger excess scattering for
almost all values of k. An exception is the data at the position k, = 2 A™!
of the main peak of S(k) where some intensity appears to be missing with
respect to the Lorentzian prediction.

More recently, the dynamic structure factor S(k, w) of liquid argon has
been measured by van Well et al. (1985) at a higher temperature, T = 120K,
covering a range of k = 0.42-3.90 A~! and w = 0-20ps~! (i.e. up to
13.16 meV). The new data, which are in substantial agreement with the
old, give more extensive information on the features of liquid argon. In
particular, the determination of the width of S(k, w) as a function of k is
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Fig. 2.4 (a) Deviation of the self spectrum S (k, w) from a Lorentzian of the
same width at different wavevectors: k = 1.4 A~! (dots), 2 A~! (open squares) and
4.4 A~ (asterisks). A similar trend is observed even at the other wavevectors. (b)
The same for the collective spectrum S(k, w). Both graphs are deduced from the
neutron scattering data of Skold ef al. (1972) in liquid Ar. The behaviour at other
wavevectors is similar to that of the k = 1.4 and 4.4 A~! data.
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Full width at half maximum

k (A7D)

Fig.2.5 Full width at half maximum of S(k,w) (in ps~') in liquid argon at

T =120K and n = 0.0176 A~3. The dashed line is the hydrodynamic result

(tc/nc,,)k2 for the Rayleigh part of the spectrum (cf. Section 1.6.4). The chain and

the solid lines denote the results 2Dk” and 2Dk2/S(k), which are appropriate

within a simple and modified ‘Vineyard approximation’ in the diffusional limit (see
text). The dots are the experimental data by van Well ef al. (1985).

much more accurate. These data are reported in Fig. 2.5, along with the
results of va(ious simple theoretical models:

(i) the hydrodynamic prediction (x/ncy)k? for the width of the Rayleigh
peak (cf. Section 1.6.4). Even if no trace of inelastic peaks is found in the
observed S(k, w), the poor results of this model indicate a clear breakdown
of the ordinary hydrodynamic expressions.

(ii) the results of the Vineyard approximation, S(k, w) = S(k) - S,(k, w).
This rather crude model for the collective dynamics has the only merit of
incorporating the correct zeroth moment of S(k, w) (namely, the initial
value S(k) of F(k,?)). In the diffusional limit for S (k, w), the model
predicts for S(k, ) a full width 2Dk?2, where D is the diffusion coefficient
(cf. eqn(1.71)). Figure 2.5 indicates that the overall results of this
approximation are unsatisfactory.

(iii) the results of the so-called modified Vineyard approximation
S, (k, w) = S(k) - S,(k/~S(k), w). This ad-hoc model accounts even for the
correct second frequency moment {w2) of S(k, w) (cf. (1.128)). In the
diffusional limit for S,, the full width of S(k, w) is now predicted to be
2Dk?/S(k). The results of this approxim‘ation are seen to reproduce several
features of the experimental data (in particular, they account rather well
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for the ‘de Gennes narrowing’ near 2 A‘l), even if on the whole the quanti-
tative agreement is still rather poor.

As in the previous experiment, at not too high wavevectors the intensity
in the wings of the spectra was found to be larger than that of a Lorentzian
shape centred at w = 0. This excess intensity was interpreted as a remnant
. of an inelastic peak which should become resolved for lower values of &
(de Schepper et al. 1983, 1984). Accordingly, S(k, w) was fitted by the sum
of three Lorentzians, which represent the high-k limit of the (overdamped)
Rayleigh-Brillouin triplet characteristic of the hydrodynamic regime
(cf. Section 1.6.4). A plot of the fitted position of the peak of the Brillouin
doublet as a function of k (‘extended sound dispersion’) reveals several
unexpected features (Fig. 2.6(a)). To begin with, in the k-interval between
0.4 and 1.3 A™! the peak position is found to be higher than the extra-
polated sound frequency vk, where v, is the hydrodynamic sound
velocity. This behaviour is in the opposite direction with respect to the one
usually found in phonon dispersion curves (which bend downwards at
increasing k), and will be discussed in detail in Section 6.2.3. At even larger
wavevectors the ‘extended sound’ frequency passes through a maximum,
and then rapidly decreases. At k = 1.7 A~! the fitting procedure yields
a vanishing value for the peak position, a feature which persists even
beyond 2 A“ (the approximate position of the main peak of S(k)). Finally,
at larger k the ’extendend sound’ frequency is again found to increase.
This striking behaviour opened a debate about the actual existence of
this ‘propagation gap’ (cf. Section 6.1). In Fig. 2.6(b) we report a similar
‘extended sound’ dispersion as obtained in liquid argon at the same
temperature as in Fig. 2.6(a), but at a much higher pressure (Verkerk 1985;
Bruin et al. 1985). Here the density corresponds to that of the liquid at the
triple point, and no sound ‘propagation gap’ appears. Again, there is a
marked decrease of the effective sound velocity in the k-region around
1.3 A°!, but now this is followed by a broad minimum in correspondence
to the peak of S(k). Aside from these controversial aspects, the three-
Lorentzian fit can be regarded as a convenient tool of data analysis in a
wavevector region where the conventional hydrodynamic expressions start
to break down.

2.4.2 Neutron Brillouin scattering

In inelastic neutron scattering there have been several attempts to extend
the wavevector range to smaller values, in order to resolve the Rayleigh-
Brillouin triplet and possibly to. fill the gap between neutron- and light-
scattering techniques. With the exception of quantum liquids such as
superfluid helium (Henshaw and Woods 1961) and liquid para-hydrogen
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Fig.2.6 The extended sound dispersion of liquid Ar. In (a) where (7 = 120K and

n=0018 A3 a propagation gap is visible in the region 1.7-2.2 A~!. In

(b) where T = 120K and n = 0.0216 A~3, the density being very similar to that of

the liquid at the triple point, no propagation gap appears, but only a slowing down

of - the effective sound velocity. The lines represent the hydrodynamic
dispersion relation w = vsk. (van Well et al. 1985).
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(Carneiro etal. 1973), well-defined excitations propagating at finite &
accessible by neutron scattering have been detected only in some liquid
metals. In particular, in the case of molten alkali metals clear inelastic peaks
were detected in liquid rubidium (Copley and Rowe 1974) and more recently
in liquid caesium (Bodensteiner et al. 1992).

In contrast, in the liquified rare gases the detection of sound-like peaks

"is a difficult task to achieve by neutrons. For example, in liquid neon Bell

etal. (1973) were able to observe broad Brillouin peaks only at very small
wavevectors (0.06 A~' < k < 0.14 A™"), where the difficulty of working
at small scattering angles was augmented by the weakness of the signal
related to the small values of S(k) in this range (cf. eqn (2.26)). Experi-
ments in liquid argon, on the other hand, have never been extended
to sufficiently low wavevectors to detect clear Brillouin peaks in S(k, w).
Well-defined collective modes were instead observed at room temperature
in compressed gaseous argon (pressure P = 462 bar) by Postol and Pellizzari
(1978) and more recently by Bafile et al. (1990) at P = 200 bar. Also, well-
defined inelastic peaks were detected in compressed gaseous neon at a
density of about one-third that of the liquid (Bell et al. 1975), as well as
in a more recent experiment on gaseous nitrogen (Egelstaff et al. 1989,
Youden et al. 1992).

It appears, therefore, that in insulating fluids the transition from the
microscopic to the hydrodynamic regime can be more easily observed by
neutron scattering if one works at densities smaller than those typical of
the liquid range. Experimentally, there are in fact two advantages of dealing
with gases. First of all, due to the higher compressibility of gases, at small
wavevectors the static structure factor S(k) (i.e. the cross section for
coherent neutron scattering) is considerably larger than at liquid density.
Moreover, as n decreases the sound velocity decreases as well, and the
Brillouin peak is pushed toward lower energy shifts. As a result, once the
experimental scattering angle has been set to a minimum value, in a gas it
is easier to fulfil the requirements of eqn (2.5) by using ‘cold’ neutrons with
the lowest possible value of E,. In contrast, in a liquid, due to the higher
sound velocity the only possibility of obtaining values of A in the Brillouin
range is to decrease the wavevector k. This would be feasible only by further
reducing both E, and  beyond the previous ‘minimum’ values. As a conse-
quence, the detection by inelastic neutron scattering of the Brillouin portion
of the spectrum is by no means an easy task in the liquid range.

2.5 POLARIZED LIGHT SCATTERING

2.5.1 Probing the hydrodynamic regime

Both the scalar and the symmetric components of the polarizability (namely
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A® and A® in eqn (2.44)) give rise to polarized light scattering. However,
as discussed in Section 2.3.7, the contribution coming from A® is of the
same order of magnitude as the first induced term which was neglected in
eqn (2.46). Therefore, for polarized light scattering the leading contribution
comes from the first term in eqn (2.46), namely from the polarizability of
an isolated molecule. For a spherically symmetric molecule, this reduces to

AQ (i) = al (2.49)

where | is the unit tensor of the second order and ¢, is the scalar
polarizability of the molecule. If we assume that both the incoming and
scattered photons are polarized along the z direction, the intermediate
scattering function (2.43) becomes

I (k,t) = a3 F(k,t) (2.50)

which is formally identical to eqn (2.31) for coherent neutron scattering.
This correspondence should not, however, be taken too literally. In fact,
as has been thoroughly discussed in Section 2.3, two completely different
regions of the plane (k, w) are explored by these two techniques.

In order to understand better the sort of information provided by
polarized light scattering in a classical fluid, it is essential to realize the
implications set by the allowed kinematic region (Fig.2.3(b)) on the
quantities F(k, t) and G(r, ¢). In a typical light-scattering experiment with
photon wavelengths A, = 5000 A, the value of the momentum transfer k
may range in the interval between 0.0002 and 0.0026 A! (cf. eqn (2.8)),
with a corresponding spatial interval (27z/k) which ranges between 2500 and
30000 A . According to the definition (1.32), the van Hove correlation func-
tion G(r, t) is bound to vanish unless the difference |r;(0) — r;(¢)| becomes
close to this value. Since no single-particle correlation may survive up to
these large distances in a dense medium, a first consequence of the kinematic
restrictions is that only the distinct part of G(r, ¢) with i # j is effective.
Secondly, we see immediately that a huge number of molecules lies between
the two correlated scattering points. Since the wavelength of the optical
photon, is of the same order as 2n/k and all molecular dipoles oscillate with
the same phase as the electromagnetic field (i.e. the scattering is coherent),
we are justified in moving from a microscopic picture to an hydrodynamic
description where the fluid can be considered as a continuum.

‘The hydrodynamic limit of the intermediate scattering function, as well
as its time Fourier transform, the dynamic structure factor, have already
been given in Section 1.6.4 (cf. eqns(1.161) and (1.170)). A typical
polarized-light-scattering spectrum is reported in Fig. 2.7, which refers to
liquid argon at 7 = 84.97 K (Fleury and Boon 1969). In this experiment
the magnitude of the wavevector transfer is & = 0.00173 A1, and there-
fore the Brillouin doublet appears as completely resolved.
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Fig. 2.7 Polarized light scattering in liquid Ar at 7 = 84.9K. (Redrawn from
Fleury and Boon 1969) The radiation probe is provided by the beam of an argon-ion
laser operating in a single TEMy, mode with an average power of 100 mW. The
radiation scattered at § = 90° is analysed by a Fabry-Perot interferometer and
detected by a cooled photomultiplier. The central elastic peak is related to non-
propagating temperature fluctuations (Rayleigh component) while the two inelastic
side peaks are associated with propagating density fluctuations (Brillouin compo-
nents) which are shifted in frequency of the amount + vk, and are characterized
by a halfwidth I s (cf. Section 1.6.4).

o . B
2.5.2 The transition between the hydrodynamic and the microscopic
regime in light scattering

As we have seen in Section 2.4, the standard condition for a neutron-
scattering experiment is to probe the microscopic regime of the liquid,
owing to the similarity between the transferred wavevector k¥ and the
reciprocal of the average intermolecular distance. There are, at present,
attempts to extend the applicability of thermal neutron scattering toward
the hydrodynamic region by designing new neutron spectrometers which
would allow us to explore liquids in the low-k region. However, for the
time being, a contact with hydrodynamics has only been obtained by
decreasing the density and carrymg out experiments on compressed gases
(cf. Section2.4.2).

In parallel, for a long while, there have been similar attempts, on the side
of light scattering, to close the gap between the ‘natural’ hydrodynamic
regime and the microscopic one, again by decreasing the density of the
fluid. More precisely, if the mean free path becomes comparable with the
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wavelengths typical of light scattering, one should be able to go from one
regime to the other. In this case, the fluid is clearly more similar to an ideal
gas than to a strongly interacting system such as a liquid. However, for the
sake of completeness, we briefly. discuss the features of this crossover as
observed by light-scattering experiments.

The first systematic study of this transition in a monatomic system dates
back to Clark (1975). In this experiment, the large polarizability of xenon
was exploited to perform accurate measurements of the Rayleigh-Brillouin
spectrum of this system in the very dilute gas phase. Specifically, the experi-
ment was carried out at room temperature and at pressures between 0.02
and 0.6 atmospheres. The observed spectra show very clearly the crossover
between the hydrodynamic regime and the microscopic one. In particular,
a well defined Rayleigh-Brillouin triplet was detected at the highest
pressure, whereas only a Gaussian-like spectrum is observed at the lowest
densities. In these dilute gas conditions, the natural theoretical tool to study
the dynamics of the fluid is provided by conventional kinetic theory
(e.g. Huang 1987). In the whole density region explored by Clark, the
kinetic model solution of the Boltzmann equation was indeed found to
account for the evolution of the spectrum, including the Rayleigh-Brillouin
structure observed at high densities, where the kinetic and the hydro-
dynamic results nearly coincide. As the density decreases, one notices devia-
tions between the spectra predicted by kinetic theory and those obtained
by the Navier-Stokes equations; however, these discrepancies can be readily
accounted for by a simple ‘generalization’ of the hydrodynamic framework
(Selwyn and Oppenheim 1971).

The crossover between the kinetic and the hydrodynamic regimes has
subsequently been detected in helium, neon, and argon gases (Ghaem-
Maghami and May 1980). A specific aim of this work was to study the
validity of an approximate ‘scaled version’ of the Boltzmann equation
(Sugawara ef al. 1968). In particular, the scaling assumption is equivalent
to saying that the spectral shape S(k, w) can be expressed in terms of two
reduced variables, namely the ‘reduced frequency’

x = w/2kv, _ (2.51)
and the ‘uniformity parameter’
2nmu,/3nk (2.52)

where v,-= (kgT/m)'?> and 7 is the shear viscosity coefficient. Strictly
speaking, the scaling relations (2.51) and (2.52) do not follow from a
rigorous solution of the Boltzmann equation; however, the expected
discrepancies are so small that they are commonly accepted as a convenient
scheme when dealing with the Brillouin spectroscopy of gases. In any case,
their validity has been tested by Ghaem-Maghami and May by comparing
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the experimental data for the three gases helium, neon, and argon in a wide
range of densities. The experiment was carried out at room temperature and
in a range of pressures such that a wide common range of y (from 1 to 20)
can be covered for the three gases. Again, a strong density-dependence of
the Rayleigh-Brillouin triplet structure was observed, with a narrowing
~of all the features at increasing density. The covered wavevector range
was wider than in previous work on xenon, both for the choice of larger
scattering angle (8 = 90° rather than 10°) and for the use of a higher
incident frequency (A, = 5145 A rather than 6328 A). In contrast with
Clark’s experiment (where y ranged from 0.1 to 6), the limiting case of a
Gaussian spectrum was not reached. As far as the validity of the scaled
model is concerned, the main conclusion of the work by Ghaem-Maghami
and May is that a perfect scaling of the spectra is never observed, even in
the low-density region. This failure of the model is rather unexpected.
Indeed, the effects of the different potentials in the collisional term of the
Boltzmann equation should tend to decrease with density; moreover, it is
a well-recognized fact that the best pair interaction potentials for the
.rare gases scale to within a few per cent (Scoles 1980). The origin of the
discrepancy is likely to be connected to a different relevance of quantum
effects in the three gases, owing to the large difference of their atomic mass
(Barocchi et al. 1987).

2.6 DEPOLARIZED LIGHT SCATTERING

When the polarization vectors of the incoming and scattered radiation are
set perpendicular, only the symmetric component of the polarizability
(namely A®) contributes to the scattering. Again, if only the leading term
in eqn(2.48) is retained, this component appears to be governed by the
excess polarizability which is produced by the interactions of pairs of
particles. In this case, the intermediate scattering function (2.43) becomes

I, (k, ) = (1/N) D) 2] (a@[r,(0),1;(0)]

i#j l#m

a@le,(2), ta ()] exp{ —ik - [r,(0) = r()]}) (2.53)

where, as indicated by the superscript (2), only the symmetric traceless
component (i.e. the spherical component of rank 2) of the polarizability
tensor is to be considered. In eqn(2.53), the labels ‘xy’ denote any two
perpendicular components of the laboratory frame, and we have dropped
the subscript 2 from the alphas since, for the time being, interactions of
order higher than pairs shall be neglected.

It is worthwhile focusing our attention on the k-dependence of eqn (2.53).
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As already discussed in Section 2.3.7, in a typical light-scattering experi-
ment the transferred wavevector has a magnitude k¥ = 10°cm~!, which
corresponds to a length scale of some 10° A. In addition to the k-dependent
factor, the statistical average in eqn (2.53) involves the correlation between
two independent pairs of molecules, such as (i,j) and (/, m). Noting that
the field scattered by the ith particle at time ¢ = 0, modulated by the
presence of its neighbours (j), has to be correlated with the field scattered
by the /th particle at time ¢, which in turn is modulated by its neighbours
(m), we conclude that, due to the molecular interactions, the coherence of
the fields is lost if particles i and / are more than a few molecular diameters
apart. This means that the distance |r;(0) —r,(¥)| which appears in
eqn (2.53) cannot exceed a few molecular diameters; in view of the
magnitude of k, the exponential factor can consequently be set equal, to
unity. The validity of this approximation at a quantitative level can be
assessed by using the Rayleigh expansion of the exponential factor in
spherical harmonics (cf. eqn (J.11) in Appendix J). It turns out that to
within an overall accuracy of a few parts in 10000, eqn (2.53) can simply
be written as:

b )= (1UN) 33 3 (a@[n(0),5,(0)]a (1), ()])
, ’ (2.54)

where any k-dependence has disappeared. Hence, in this case the restriction
over k, which stems from momentum conservation and is so relevant in
polarized light scattering, is seen to play a different role because of the
specific character of the dynamical variables in the statistical average. Since
the ultimate origin of the effect is the interaction among the molecules,
the phenomenon is traditionally referred to as interaction-induced (or,
somewhat less properly, collision-induced) depolarized light scattering. As
we shall see later in more detail, the correlation function (2.54) involves
clusters of particles of increasing complexity steming from different combi-
nations of the labels (7, ) and (/, m) (cf. eqn (1.108) in Section 1.5.3).

From the previous considerations it emerges clearly that the depolarized
scattering of light can effectively be used to test the dynamic properties of
simple liquids at a microscopic level. In fact, only interactions among
neighbouring molecules rule the time behaviour of the correlation function
for this phenomenon, and therefore the spectral shape of depolarized light
scattering directly probes the dynamics of molecules at a microscopic level.
To see in more detail which kind of dynamic correlations are involved
and how the result is related to the well-known van Hove time-dependent
pair correlation function, it is convenient to write eqn (2.54) in a more
manageable form.
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We start by considering an isolated pair of atoms and writing the total
polarizability of the pair as

a(r;, 1) = [ag(i) + ag())]1 + ay(r;, 1)) (2.55)

where a, is the single-atom scalar polarizability, and Q,(r;, r;) represents
the excess pair polarizability which is induced by the interactions within the
'pair. The determination of models for a,(r;, r;) has been the subject of
several investigations, dealing with both first-principles calculations and
with empirical expressions based on depolarized light scattering (DLS) on
low-density rare gases (e.g. Gelbart 1974; Tabisz 1979; Frommbhold 1980;
Birnbaum 1982, and 1985; Meinander et a/. 1986). In a first approximation,
the excess pair polarizability can be considered as originating from the so
called ‘dipole-induced-dipole’ (DID) interaction; that is, from the.same
phenomenon which produces the long range r ~¢ portion of the interaction
pair potential in Lennard-Jones systems. The excess contribution (usually
referred to as the irreducible pair polarizability) can conveniently be
expressed by choosing as the z-axis the line joining the centres of mass. In
this ‘principal axis’ reference frame, Q,(r;, r;) takes the diagonal form

a(rr)=| 0 a,(ry) O (2.56)
0 0 azz(rij)

where the dependence of each matrix element on the (scalar) distance
between the atoms has been explicitly written out. For obvious symmetry
reasons, the (xx) and (yy) matrix elements turn out to be equal; conse-
quently, only two components of the matrix are relevant, namely
@, = a, = a,, and @; = a,,. These can in turn be expressed in terms of
the ‘trace’ and the ‘anisotropy’ of the matrix; that is, a; + 2a, and
ay —a,. Whereas for polarized light scattering the pair irreducible
anisotropy is nearly negligible with respect to the single particle term, it
yields the dominant contribution in the case of depolarized scattering
(cf. Section 2.3.7). '

For notational simplicity, we define the anisotropy of the pair in-its own
reference frame as '

ﬂ(ru) = azz(rij) - axx(rij) (2-57)

After some straightforward manipulations, the DLS intermediate scattering
function (2.54) becomes:

I pep(2) - L > Y (BLry(0)1B1rm(2)] Pl cos 8(ij, 0; Im, 1)]).
ISN i, j(#i) I,m(+l)
2.58)
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Here P,(x) = +(3x2 — 1) is the second-order Legendre polynomial, with
an argument which is the scalar product between the unit vectors f'ij (time
t = 0) and 7, (time ?).

An equivalent way of writing eqn (2.58) is

Loer (1) = & [ ar [dr BB )P [(rx) /1 1G (017 1) (2.59)

where we have introduced the time-dependent correlation function
G 0;r’t) defined as:

§(ro;r'1) = (1/N) ;'” (Z,) ([ry(0) = rlo[rm (1) — r']).
o (2.60)

As a consequence, depolarized light scattering is ruled by a four-point
correlation function which represents the joint probability that two particles
of the liquid are separated by a distance r at time ¢ = 0, and two indepen-
dent particles are separated by a distance r’ at time ¢.

If the particles referred to at the later time ¢ are the same as the two
original particles, the dynamics of a single pair is described. If only one
particle of the second pair is identical to either one of the two original
particles, then we are concerned with the dynamics of a triplet. Finally,
if all the four particles are different, we are dealing with the dynamics of
a quadruplet. o

These three cases have an experimental counterpart. The broad
depolarized wing which appears on either side of the quasi-elastic Rayleigh
spectrum is determined by eqn (2.58); that is, by the sum of contributions
from -pairs, triplets, and quadruplets of particles (cf. Section 1.5.3).
This is the typical interaction-induced depolarized spectrum observed in
rare-gas fluids (e.g. McTague and Birnbaum 1971). On the other hand, the
depolarized wing observed near an allowed molecular Raman line is another
interaction-induced effect, determined only by the sum. of pair and triplet
contributions. In fact, owing to the phase independence of the Raman
transitions, for a non-vanishing scattering at least one particle should be
common to the sets (#,7) and (/, m) (Le Duff and Gharbi 1978). Finally,
there is the possibility of detecting even interaction-induced phenomena due
only to the same particle pair. This situation is clearly the dominant one
at low densities, where the occurrence of correlated triplet and quadruplet
contributions becomes negligible. At higher densities, a purely pair-
interaction-induced spectrum can only be observed in rather unusual cases,
such as a simultaneous Raman transition.of two molecules. Despite the
difficulties in its detection, this situation would provide direct information
on the dynamic correlations of pairs in a dense fluid, thereby making



98 The experimental side
0
liquid Ar
_2_
O
-
& -t
2
<
_6_
_8 1 1 1 1 ]
0 20 40 60 80 100 120

o (cm™)

Fig. 2.8 Depolarized light scattering spectrum in liquid Ar at T = 89 K (Redrawn
from An et al. 1976). Note the logarithmic scale on the ordinate axis.

experimentally accessible the time-dependent pair distribution function
G,(r0;r’ ¢) discussed in Section 1.5.1.

Aside from these limiting cases, the depolarized light scattering spectrum
as observed in simple liquids (Fig.2.8) is proportional to the Fourier
transform of eqns(2.58). As is clear from the alternative representation
(2.59), in DLS one effectively probes some averaged dynamical features
of Q(r0;r’ ¢), with suitable weight factors being provided by the scalar
polarizability anisotropies 8(r), 8(r’) and by a purely orientational term
(the Legendre polynomial P,). The problem is clearly much more compli-
cated than those met in connection with neutron-scattering experiments,
and can only be dealt with by an approximate analysis of the many-particle
contributions embodied in G(r0;r’¢). Some of these approaches are
discussed in detall in Appendix J.

2.7 THE TWOFOLD ROLE OF COMPUTER
SIMULATIONS

Since their invention in the 1950s, computer simulation studies have had
an increasing impact on our understanding of the physics of liquids
(Ciccotti et al. (1987) give a collection of the pioneering works in this area).
Presently, the subject has developed to a such an extent that computer
simulation experiments can be regarded as a widely used tool to investigate
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several aspects of the physics of disordered systems, ranging from the
simplest one (a collection of ‘hard spheres’ in a specified thermodynamic
state) to more and more complex molecular systems of physico-chemical
interest. In the following we shall limit ourselves to an extremely short
account of these techniques, trying to stress their ‘intermediate’ character
with respect to both theory and ‘real’ experiments rather than attempting
a discussion of the basic technical details behind the actual ‘setup’ of a
computer simulation study. For the latter aspects, we refer the reader to
the comprehensive book by Allen and Tildesley (1987).

Broadly speaking, we deal with two classes of computer simulations. The
first, referred to as the Monte Carlo method, dates back to the work by
Metropolis efal. (1953) and is uniquely devoted to the study of time-
independent properties. Typically, equilibrium averages are evaluated by
starting from an arbitrary set of space coordinates of the interacting
particles, and performing random ‘moves’ to generate new configurations.
The latter can be either accepted or rejected, according to well-defined
criteria which depend on the statistical ensemble of interest. Eventually, one
obtains a more or less accurate ‘sampling’ of this ensemble in the configura-
tion space, permitting the evaluation of statistical averages. Since time does
not enter explicitly, the technique is intrinsically restricted to the calculation
of static equilibrium quantities. Usually, one wishes to sample a canonical
ensemble in which a fixed number of particles interact with a specified
potential, and the system is assumed to be in thermal equilibrium (constant
temperature).

For our purposes, the really important simulation data are, however,
provided by a second technique which deals with both structural and
dynamical quantities of a classical systems. The approach was originally
developed by Alder and Wainwright (1957) for a hard sphere fluid, and
subsequently extended by Rahman (1964) to encompass systems with a
continuous interparticle potential. The core of this technique (traditionally
referred to as molecular dynamics (MD) simulation) is the numerical
solution of Newton’s equations of motion for a system with a limited
number of particles (N = 100-10 000). The particles are usually enclosed in
a cubic box, whose edge L is chosen in such a way that N/L? reproduces
the actual number density of the real system which one wishes to simulate.
Unwanted surface effects arising from the finite size of the box can be, to
some extent, minimized by the use of periodic boundary conditions.
Initially the particles are assumed to be in well-specified positions (e.g. in
a periodic arrangement inside the box) and with a velocity distribution such
that (i) there is no net total momentum of the system, and (ii) the average
kinetic energy per particle, (1/N) };;%+ mv?, is 1kyT, where T is the
temperature of the real system of interest. The particles are then allowed
to interact through a specified potential, and their equations of motion
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solved by appropriate numerical algorithms (see Allen and Tildesley 1987).
After a certain number of time integration steps ¢ (in which possibly the
kinetic energy of the system needs to be scaled in order to keep its effective
temperature as close as possible to 7), the simulated system can be
considered to be in an equilibrium state. Then a repeated stepwise integra-
tion of the equations of motion generates a whole set of ‘phase-space
" configurations’ of the system at different times for the entire duration 7yp
of the simulation run. Typically, ot = 1-10fs and 7yp = 10*-10° 4¢.
The static and dynamical correlations of interest can now be evaluated
by replacing the corresponding ensemble averages by time averages (ergodic
assumption). In the notation of Section 1.3, if A(?) = ACN@®), pV(®)) and
B(t) = B(eN(¢), pV(¢)) are two dynamical variables of the system, this is
equivalent to assuming that

(A(0) B(2)) =A(7) B(t + 1))

= lim (1/T) [ deA(2)B(r + 7) 2.61)
. 0

where we have exploited the stationarity of the ensemble average. The
second line of eqn (2.61) defines the time average, which in the MD simula-
tlon is approximately replaced by

™D ’

j dr A(7)B(t + 1) - L™ Z A(né-c)B(t+n5‘r) (2.62)
TMD 0 ’ nvp

where Nvp = tMD/Jr is- the total number of integration steps of the
simulation run in equilibrium conditions. :

In the above representation, the statistical ensemble naturally sampled
in the simulation is a constant-energy microcanonical ensemble. More
sophisticated algorithms have been developed to deal directly with other
ensembles, such as constant-temperature (canonical) or constant-pressure
(isobaric) ensembles. Strictly speaking, the averages evaluated with
different ensembles coincide.only in the thermodynamic limit (N - o),
where the effects of fluctuations become negligible. Consequently, in
some cases reliable results can be obtained only after a careful -analysis
of the MD data in systems with different number of particles (Allen and
Tildesley 1987).

Since the early 1960s computer simulation techniques have played a very
important role in liquid state physics, and their relevance can be expected
to increase in the future. Indeed, simulation data have often been the
only link between the oversimplications of the theoretical models and
the experimental findings. From one side, one can in fact use computer
simulations' as a powerful experimental technique to provide ‘data’ on
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model systems against which the theoretical predictions on the same models
can be tested with no ambiguity. On the other hand, once a model of the
microscopic interactions of a real system has been assumed, computer
simulations can be used as a theoretical method to evaluate the quantities
actually measured in a real experiment, and ultimately to test the vahdlty
of the original assumptions on the interparticle potential.

In Chapter 1 we have seen some examples of MD computer simulations
used as an ‘experimental’ tool to obtain data which need to be accounted
for by a theory of liquid state dynamics. This first application of simulation
techniques is of widespread use, and becomes particularly important when
the property under consideration is of very difficult experimental access
(as in the case of the velocity autocorrelation function), or even cannot be
directly obtained by real experiments (as in the case of the transverse current
autocorrelation function).

A second application of computer simulation techniques is more directly
connected with experimental work. In this case, the role of a simulation
becomes similar to that of a ‘theory’, in the sense that the MD results can
be compared with the findings of real experiments. While a satisfactory
comparison between the two sets of data means that the simulation is suffi-
ciently ‘realistic’, the presence of discrepancies indicates that the model
system needs to be improved. Clearly, this second use of the simulation
techniques is particularly interesting in all the cases where the quantity
under consideration cannot be evaluated, within the requested accuracy, by
a genuine theoretical approach. As already mentioned, the typical example
of such an application is the study of all those properties closely related
to a specific intermolecular potential (which is often too complicated to be
amenable to ab initio calculations). A repeated comparison between the
MD findings obtained by a well-defined empirical potential model (which
is possible to improve) and the experimental data is quite helpful to
establish a reliable connection between the simulated system and the real
one. A second example is the MD evaluation of quite complex many-
particle correlation functions, such as those involved in depolarized light
scattering (cf. Section 2.6). Some important results in this respect are
discussed in Appendix J.
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3

The general theoretical framework

Since their introduction in the 1960s (Zwanzig 1961; Mori 1965a), projec-
tion operators and memory functions pervade many theoretical approaches
dealing with the dynamics of strongly interacting systems. In particula.r,
their presence is nearly ubiquitous in the microscopic treatments of liquid
state dynamics. Indeed, the idea of describing a many-body system by a
limited number of ‘relevant’ variables characterized by a relatively simple
dynamics appears to be extremely appealing. Moreover, an analysis of the
formally exact expressions of the memory functions can shed light on the
nature of the physical processes involved and their relative importance.

Physical intuition plays a very important role at several stages of th-ese
approaches. In a correct physical framework, the results of the formalism
are particularly rewarding because of their simple mathematical form,
which may encompass several ranges of dynamical situations. Unfor-
tunately, the latter aspect has sometimes led to a misuse of the formalism,
which has been exploited as a tool in the art of ‘lineshape engineering’. As
we shall see, in a few cases even this improper use may be of some heuristic
value, while in other situations the results may be entirely misleading. In
any case, these kinds of results cannot be claimed to be the output of a
real theory firmly rooted on physical intuitiog and reasoning.

In this chapter we shall discuss the general aspects of the memory func-
tion approach, which follow merely from a formal rephrasing of the
dynamical equations. The actual interest of the framework can only be
appreciated by restricting it to some physical situations; in this respect,
several simple examples relevant for liquid state dynamics will be discussed.
The overall formalism will be used in Chapter 4 as the backbone of a
general theory of classical fluids, encompassing both single-particle and col-
lective features.

3.1 THE MEMORY FUNCTION APPROACH

Let us consider a classical system of N interacting particles, each with mass
m. The Hamiltonian 3C of the system depends on the coordinates
(t;,...,ry) and momenta (p,, ..., py) of all the particles, but is assumed
to have no explicit time dependence. Suppose that we consider a set of
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n < N dynamical variables denoted by A4,, A,, ..., 4,, or synthetically by
an n-dimensional column vector A. The time evolution of each A,
(v=1,...,n) is ruled by the equation of motion (cf. eqn(1.21))

da, (1)
dr

= {4,(2), 3} = {4,,3])(¢) =iLA,(2) 3.1

where the Liouvillian L is formally defiried as in eqn (1.22). We recall the
expression (1.23) of L, valid in the case that the potential part of JC can
be written as a sum of pairwise central contributions ¢(r;):

. a ap(ry) 8
iL=(1/m E: it — — —_— 3.2
( ) i P o, iz O ap; 3-2)

Equation (3.1) is formally integrated to yield"
A, (1) = exp(iLt)A, 3.3)

where A, = A,(0). The operator exp(iLt) is referred to as the time pro-
pagator associated with the dynamical variables of the system.

As already remarked in Section 1.3, for an interacting system the formal
solution (3.3) is in general too complicated to be useful in practice. An
exception is the case in which the system can naturally be characterized by
some ‘small parameter’ whose presence would suggest some kind of pertur-
bative treatment of the part of JC or L which is effectively small. For exam-
ple, in a dilute fluid the deviations from the ideal gas behaviour can be
found by a ‘virial expansion’ in the number density »n, a quantity which is
effectively present in eqn (3.2) through the double summations of the poten-
tial term. Unfortunately, this convenient framework does not work in a
dense (i.e. strongly interacting) system such as a liquid, where no perturba-
tion scheme is a priori evident (for example, from Table 1.1 it is apparent
that in typical simple liquids the dimensionless density parameter nrj = 1).

In such a situation, a frequently adopted strategy is to rephrase the
problem in a different way, still avoiding any approximations. Strictly
speaking, this new description is again formal and no real progress has
apparently been made. However, in practice the establishment of the alter-
native framework is strongly biased by a number of physical arguments,
with the ultimate expectation that practicable approximation schemes may
now be much more apparent. A well-known example of this logical
procedure is the theory of lattice vibrations in a crystalline solid, where
the original awkward description in terms of atomic sites is abandoned
in favour of a new one with lattice waves as the central variables.
Mathematically, this formal rephrasing is nothing more than a space
Fourier transform; physically, the choice of this new description is guided
by the recognition of the role of translational symmetry -and by the
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non-localized character of the vibrations. On this basis, it is relatively
straightforward to arrive at the final picture of nearly independent har-
monic oscillators, slightly perturbed by comparatively small anharmonic
~ interactions.

' From a purely formal point of view, a convenient starting point for the
memory function approach is the introduction of the scalar product (A, B)
between two dynamical variables A, B of the system, a quantity which
has already been mentioned in Section 1.3. Mathematically, (4, B) is a
c-number which is required to have all the formal properties of the ordinary
scalar product in a (possibly complex) vector space. In particular, we
demand that ‘

(4,4) =0 (3.42)
(4,B) = (B,A)" (3.4b)
[A’ ZCVBVJ = ch(Ava) (340)
[Z chv’Bj = Z (CV)*(A,,,B) (3.44d)

where the c, are arbitrary constants. As is easily verified, all these proper-
ties are satisfied by identifying the scalar product with the ordinary
statistical average; that is, by letting

(A,B) = (A*B). (3.5)

A physical justification of (3.5) is based on linear response theory applied
to a classical system, with the final result that (4, B) = (4* B) — (A™*)
(B)Y (Mori 19654). In the following we shall assume to deal with dynamical
variables with zero average; if this is not the case, a variable A is implicitly
replaced by its fluctuation A — (A) around the average.

Let us now come back to our physical system, and focus our attention
on the n dynamical variables A,, ..., 4,. These variables are assumed to
be independent, in the sense that a given A, cannot be expressed as a
linear combination of the other n — 1 variables of the set. As an extreme
case of this independence, the (4,) may be mutually orthogonal, a situa-
tion expressed by (4;,A4,) = 0 for any 4 # v, with a clear analogy with
the meaning of the scalar product in ordinary vector spaces. Pursuing this
analogy, we may think of the set (4,) as spanning an n-dimensional
subspace comprising all the dynamical variables which can be expressed as
linear combinations of A, ..., A,. The correspondence can be pushed
even further if we deal with an orthonormal set in which (4;, 4,) = d;,,,
so that each A, can be interpreted as a ‘unit vector’. Starting from a given
set of independent variables, by well-known procedures it is always possible
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to obtain the associated orthonormal set; this construction, although not
strictly necessary for the development of the approach, leads to simpler
expressions in the applications to specific cases.

After these formal definitions, the central point of all the framework is
the introduction of a projection operator ®. When applied to an arbitrary
dynamical variable, @ has the property of extracting the ‘portion’ lying in
the subspace spanned by the set (4,) . A more explicit definition of @ is
conveniently given in terms of the n-dimensional column vector A4:

®=(A,..)(4,4)"'4 3.6)

where (4, A)~! is the inverse of the n X n matrix (4, A). Clearly ®4 = A,
and ®24 = ®A = A, the latter relation being a particular example of the
‘idempotent’ property ®” =®(m =1,2,...) typical of all projection
operators. The scalar version of eqn (3.6) reads

°=3 Az [(4,4)71], A, 3.7

In particular, if we deal with an orthogonal set we have [(A, A)™!];, =
0;.v/(A;,A;) and eqn (3.7) becomes

® = ;(AA, L)/ (A, A) A, (3.8)

Let us now consider the equation of motion of 4(#) = exp(iL¢)A and insert
the identity operator ®@ + (1 — ®) after the propagator exp(iLt) on the
right-hand side. We obtain
dA(t)/dt = exp(iLt)[® + (1 — ®)]iLA
=iQ-A4(¢t) + exp(iLt) (1 — ®)iLA 3.9

where we have introduced the n X n proper frequency matrix iQ =
(A4, iLA)- (A, A)~! whose matrix elements are given by

iQ,, = ; (A;,iLA;) [(4,4) '], (3.10)

Here iLA; = [dA,;(¢)/dt];~,. In the case of an orthogonal set
iglv = (Av,iLAA)/(AA,AA). (3.11)

The stationarity of the system (cf. Appendices A, B) implies that
(A,, iLA;) =<(A,)*iLA; ) = —(({LA,)*A,) =—-(LA,, A;). In partic-
ular, (4,,iLA;) =0. Thus all the diagonal elements of the frequency
matrix (3.11) vanish; in particular, if the set (4,) comprises only one
variable, there is no proper frequency term in the last member of eqn (3.9).
The other term in eqn (3.9) can be rearranged by writing
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exp(iLt) = exp(iLt)S(¢t) +exp[i(l — ®)Lt] (3.12)

where S(¢) is determined by solving the equation dS(#)/dt = exp(—iL?)
i®L exp[i(1 — ®)L¢] with the initial condition S(0) = 0:

S(1) = [arexp(~iLo)i®Lexpli(1 - ®)Lz]. (3.13)
0

As a result of these manipulations, the last term of eqn (3.9) splits into two
contributions :

exp(iLt)i(1 — ®)LA = jdrexp[iL(t — D)]iCLf(z) + f(1) (3.14)

where the quantity
f(t) =expli(1 — ®)Lt]i(1 — ®)LA (3.15)

is referred as the fluctuating force. By construction, the time evolution of
() from its initial value (1 — ®)iLA is ruled by the anomalous propagator
exp[i(1 — ®)Lt] rather than by the usual one exp(iLt). The presence of
(1 — ®) has the important consequence that

(4,£()) =0 (3.16)

or (A;,f,(t)) =0 in a scalar notation. In other words, the fluctuating
force is orthogonal to A at all times; that is, it evolves in a subspace intrin-
sically different from the one spanned by the set (4,).

The first term on the right-hand side of eqn (3.14) can be written in a
more convenient form by exploiting for two arbitrary dynamical variables
A, B the relation (4, LB) = (LA, B) which fellows from eqns (1.25) and
(3.4b). Since PLf(7) = (A, Lf(7)) - (A, A)~' A, we have that

i(4, Lf (7)) = i(LA4, (7)) =i((1 — ®)LA, (7))

= = (£(0),£(1)). (.17
As a result, the equation of motion (3.9) can be written as
1
d/:igt) =i0-A(1) - [deK(e) - A(t = 1) + £(0) (3.18)
0

where we have introduced the quantity
K(?) = (£,.£(2)) - (4,4) ! (3.19)

referred as the memory matrix (or the memory function in the case in which
the set (A4,) reduces to a single variable, i.e, for n = 1).
From eqn(3.18) it is straightforward to obtain the corresponding
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equation .of motion for the ‘correlation matrix’ C(¢) = (4*(0)A(?)) =
(A, A()). Exploiting the orthogonality of f(¢f) to A we obtain
t
dc(¢)/dt =iQ-C(¢) —SdtK(r)-C(t—r) (3.20a)

0

or, in scalar notation,
' t
‘ dCAv(t)/dt=i;}9u,cA,v(t) —;SdrKM/ (1)C, (1 — 1) (3.20b)
0

where C,,(¢) = (4, A(#)),, = (A4,, A,(t)). Equations (3.18) and (3.20) are
respectively referred as the generalized Langevin equation and the memory
equation. No approximation has been made in their derivation, so both
equations are still equivalent to the original formulation in terms of
eqn (3.1). In particular, the formal structure of (3.18) is still linear in the
variables of interest A(?), and the same is true of the eqns (3.20) for the
corresponding time correlation matrix C(¢). o

The linear integro-differential equation (3.20a) is solved by introducing
the Laplace transforms

C(z) = j dtexp(—zt)C(2) (3.21a)

K(z) = j dtexp(—zt)K(2) (3.21b)
yielding

C(z) = [z —iQ + K(z)]~'-C(0) (3.22)

where | is the unit matrix. Since the elements (3.10) of the proper frequency
matrix Q are in principle evaluable in terms of equilibrium statistical
averages, the solution of the dynamical problem has ultimately been shifted
from C(¢) to K(#). On the other hand, from its definition (3.19) the memory
matrix K(¢) appears to have a time dependence ruled by the anomalous pro-
pagator exp[i(1 — ®)L¢], even more complicated than that of C(¢), so that
at this stage the merits of the new formulation seem rather academic.
Suppose, however, that we have been so ‘clever’ to include in the set
{A,]} all the dynamical variables with a time dependence much slower
than any microscopic timescale predictable from the Hamiltonian JC. Since
the previous formalism gives no particular hint for the selection of the
variables of the set, the choice of which variables are actually ‘slow’ is
largely guided by our physical intuition. For example, if we are dealing with
wavevector-dependent dynamical variables, we should certainly include in
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the slow set {A,] all those variables which become conserved as kK — 0. In
any case, assuming that a careful selection has been made, the orthogonality
(3.16) of the fluctuating forces to all the variables of the set 4 now means
.. that the random forces f(¢) evolve instead in a ‘fast’ portion of the full func-
tional space of dynamical variables. As a consequence, all the elements of
the memory matrix K(z) are likely to be characterized by decay times con-
siderably shorter than those associated with the elements of the correlation
matrix C(¢). Pursuing the argument to its extreme, we may assume that over
the timescale of C(¢) the decay time of the memory matrix is so short that
K(¢) may be approximately written as proportional to a J-function in time:

K(t) = 2I6(2) (3.23)

where

r={ark() =K(z=0) 62
0

As a result of the ‘ansatz’ (3.23) (often referred to as the Markov-approx-
imation), eqns (3.18) and (3.20a) can respectively be written as

dA()/dt =iQ - A(r) — - A(¢) +f(t) (3.25)
dc(¢)/dt = (iQ — r)-c( (3.26)

In both cases, it is seen that the extreme separation of timescales implicit
in the Markov approximation yields a complete loss of ‘memory effects’ in
the dynamical equations, in which only the instantaneous values of A(¢) and
C(¢) now appear. Equation (3.26) is easily integrated to give

c(¢) =exp[(iQ — M) |¢|1-C(0). (327

This result shows that the ultimate effect of the rapidly varying fluctuating
forces is to provide a damping mechanism for the slow oscillations of C(¢)
at the proper frequency Q. At this stage, the actual evaluation of the relaxa-
tion matrix I from eqn (3.24) is still an open problem, but at least the
framework provides a simple answer for the time-dependence expected for
the correlation matrix C(¢). By itself, the Markovian result (3.27) does not
require any perturbative assumption about the magnitude of the elements
of I with respect to those of Q; in particular, eqn (3.27) still retains its
validity if Q vanishes, as is indeed the case if we deal with a physical situa-
tion in which only one ‘slow’ variable is effectively relevant. In such a
circumstance, eqn (3.27) reduces to

c(s) = C(0) exp(—T|¢]) (3.28)

showing that the correlation of the slow variable decays exponentially. As
a result, the corresponding frequency spectrum is a Lorentzian with
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halfwidth I". In fact, the ubiquity of exponential time decays and Lorentzian
spectral shapes in many areas of physics reflects in most cases our ability to
probe the dynamics of a system only through variables which relax slowly
with respect to the appropriate microscopic times. For the liquid state, some
examples of this typical situation will be discussed in the next subsections.

Needless to say, nature is not always so gentle (or our understanding of
the problem so deep) that clear criteria of selection between slow and fast
variables are available. Also, the distinction becomes meaningless in the
cases where we are really probing the microscopic dynamics of the system.
Since the memory function framework remains valid even in these cases,
it is worthwhile to discuss possible strategies and remedies in such ‘unplea-
sant’ situations.

The first recipe is, of course, to learn as much as possible about the
general properties of the memory functions. For example, in Appendix D
we report the information deducible for the elements K;,(¢) on the basis
of several symmetry requirements. In addition, even in this case it is useful
to ascertain the short-time behaviour of K(¢). The initial value K(0) is
readily obtained either from (3.19) or by performing a time derivative of
the memory equation (3.20a) and evaluating the result at 1 = 0. Exploiting
the relation iQ = €(0) - [C(0)]~' we find that

K(0) = — €(0)-[c(0)]'-Q-Q. (3.29)

Furth;r differentiating (3.20a) with fespect to time, we may relate the initial
behaviour of K(¢) with the higher derivatives of C(¢) at ¢ = 0. Introducing
the frequency moments of the corresponding spectrum C(w)

— 7 1 [d"c(¢)
o= dow'C(w) ==
_L (@) =5 [ e }mo (3.30)
along with their ‘normalized’ counterparts (®”") = " [C(0)]"!, it is
easily found that Q = & - [C(0)]~! = (®), and

K(0) = (@?) — (@) -{w) (3.31a)
K(0) =i[{@®) — 2(e?) -{0) + (@) - {(w) ()]  (3.31b)
K(0) = - {0*) + 2(0*) - (o) - {0?) () (o)

+ (@) (0?) + () () (o) (o) (3.31¢)

?nd so on. In all these equations, the appearance of odd frequency moments
is due to the presence of non-diagonal elements in the matrices C(¢) and
K(?). The expressions are, of course, simplified in the single-variable case,
where C(f) = (A™A(¢)) is an even function of time and all odd frequency
moments vanish. In such a case, the initial behaviour of the memory func-
tion is found to be
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K(t) = K(0) + K(0)(£2/2) + - - - =K(0)[1 — (¢/%)* + - - -] .
| | (3.32)

Here K(0) = (w?), K(0) = — {w*) + {(w?)?, and we have introduced the
initial decay time

o= [-_K'_(Qr” _ [((w‘) - <w2>2)]—vz
[ 2K (0) - 2{w?) .

Thus, the short-time dependence of the memory matrix can be expressed
in terms of the lowest frequency moments of C(w); that is, of equilibrium
averages which are usually amenable to a direct evaluation. Using
eqn (3.21b), the knowledge of K() as ¢ — 0 is seen to be equivalent to that
of the Laplace transform K(z) for large z. When inserted into eqn (3.22),
these results provide some exact ‘constraints’ for €(z) which should be
fulfilled in any further development. Yet, up to now we are still at the level
of a short-time expansion of C(¢), which is in general not sufficient to
obtain a reliable account of the dynamics. On the other hand, we may
include even long-time information by demanding that the memory func-
tions should vanish as ¢ = o, like any other time-dependent correlation. In
practice, this paves the way for attempting a solution of the problem by
simple ‘guesses’ of the functional form of K, (f), chosen in such a way
that the short- and long-time requirements are both satisfied. In the single-
variable case, a simple example of this ad-hoc procedure for the memory
function is provided by the Gaussian ‘ansatz’

K(#) = K(0) exp[ — (#/7,)?] (3.34)

which is clearly consistent both with the short-time expansion (3.32) and
with the requirement that K(¢) — 0 for long times. Equation (3.34) is readily
Laplace—transformed to obtain K(z), and the latter is inserted into eqn (3.22)
for C(z). The spectrum C(w) is finally found from

C(w) = (1/n) Re C(z = iw) - (3.35)

where Re denotes the real part. :

In the absence of any additional information, these (or other equivalent)
procedures are of course respectable, once it is clear that they are adopted
for heuristic purposes, rather than for providing a ‘theory’. In other cases,
we may instead have some partial physical insight into the phenomenon.
For illustrative purposes, consider again the case of a single variable, and
assume that only one physical mechanism is suspected to be relevant as a
decay channel for the memory function. If the decay rate is large enough,
the decrease of K(#) can reasonably be described in terms of the single time
7, of eqn (3.34), and some arbitrariness in the functional form of K(¢) pro-
viding the fast decay can be tolerated. An extreme case of this situation

- (3.33)
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occurs when we approach the Markovian limit (3.24), in which the detailed
shape of K(#) becomes ultimately irrelevant, and the only important quan-
tity is the area K(z = 0) under the memory function.

As an alternative, we may instead explore the dynamics of K(¢) at a more
refined level by looking at higher-order terms in its short-time expansion.
This can be done systematically by exploiting results similar to (3.31), even
if the calculation of higher-order moments (®") rapidly becomes very
cumbersome. The advantages brought from the additional information are,
however, limited if we remain at the level of a series expansion. Some help
is provided by looking at the mathematical structure of eqn (3.22), in which
K(z) appears at the ‘denominator’. Intuitively, this indicates that the limited
short-time (or large z) information can be exploited in a way which is more
rapidly convergent than a series expansion. Thus, it appears worthwhile to
see whether it is possible to make use of this feature even at a higher level.
The problem has been solved on a rigorous basis in a second paper by Mori
(1965b). One starts by noting that the equation of motion of the fluctuating
force (3.15) can be written as

P _ i1 - o)s(o) (336

Formally, eqn (3.37) is analogous to the original equation of motion for the
components of the set 4, with the ordinary Liouvillian L being replaced
by the ‘anomalous’ one L; = (1 — ®)L. We may then introduce a new pro-
jection operator @, which projects on the subspace spanned by the set (f,)
of the random forces, and formally repeat all the previous manipulations.
Eventually, we arrive at a result which can be interpreted as a generalized
Langevin equation for f(¢)

T _i0,-10) —]arxl(r) Se-D)+h @3
where
iQ, = (f,iLf) - (£.0) 7, (3.38
fi(t) = exp[i(1 = @,)L,2]i(1 — @,)L,£(0), (3.38b)
K, () = (£1(0).£1()) - (£.)~". , (3.38¢)

Note that since ®,®, = ®,®, =0, the new random force fi(¢) is
orthogonal both to f and to A. From eqn (3.38) we eventually arrive at a
formally exact equation for the memory matrix K(¢) = (f, f@))-A, "

dl;(tt): iQ, - K() - !drK,(r) K - 7). (3.39)
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This can be Laplace-transformed to give
K(z) = [z —iQ, + K,(z)] ~'-K(0). (3.40)

Inserting this result into eqn(3.22), it is readily seen that the previous

mathematical structure is shifted to a higher level. Repeating the entire pro-
cedure for the fluctuating force fi(t) and iterating, we ultimately arrive at
an expression for é(z) in terms of a continued fraction. This representation
is frequently adopted in the single-variable case, where all the quanties
Q, 2,, ... vanish because of time-reversal symmetry (cf. Appendix B). In
this case C(z) can be written as

C(z) _ 4, -1
—{z+z+A2/(z+...)] (3.41)

where the coefficients 4,,4,,... can be expressed in terms of the
normalized frequency moments of the spectrum C(w). In particular,

4, = K(0) = {w?, (3.42a)

4, =K,(0) = —% =§—:’T§—- {w?), (3.42b)
_ _ _Ki(0) 1 [{0®) ({a®)?

4 =K(0) = — 26y = 7, [[«»»J B [«»—J ] @.429)

In view of the self-reproducing structure of the right-hand side of (3.41),
all the considerations previously made for the first memory function K(¢)
can in principle be repeated at any ‘level’ of the continued fraction. In liquid
dynamics, this procedure has indeed been followed (e.g. Machida and
Murase (1973)). As the level increases, the main’ problems usually met in
these approaches are the difficulties of a reliable evaluation of moments
such as (w®%),..., as well as the progressively more obscure physical
meaning of the higher-order memory functions K,(z). ‘

Because of its general character (including a straightforward extension
to quantum systems), the Mori framework since 1965 has been applied to
an impressive number of physical situations. In the next sections we shall
discuss three applications of increasing complexity which are particularly
relevant for the dynamics of liquids.

3.2 A SIMPLE APPLICATION: BROWNIAN MOTION

Let us consider a ‘heavy’ particle of mass M immersed in a fluid (the ‘bath’)
made of N classical particles of mass m < M. Denoting by R and P the posi-
tion and the momentum of the heavy particle, the Hamiltonian of the
composed system can be written as
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3o = D) [(p2/2m) +<,Z) ¢ (ry)] + (PY/2M) + 1 v(|R - x])
i j#i i :
(3.43)

where the last term at rhs accounts for the interactions (assumed as pair-
wise) between the heavy particle and light ones. The corresponding total
Liouvillian reads

Liw=Lo+ L, (3.44)

where

. 1 d ap(r;) o o0 a
Lo= (— — . — — TNy, T R .
0= I)Z [m P o, jZi o ap; i 7 or; dp; 345

is the Liouvillian of the fluid (including the action exerted on it by the heavy
particle), and ~

1 3 ]
Li=(=i)|—P -— . )
v= () [M? aRTF aPJ 3.46)
is the Liouvillian of the heavy particle. Here the quantity
B w(|R-r])
F=- E;: IR (3.47)

is the total force acting on the particle as a result of its interaction with
the fluid.

Historically, the interest in the dynamics of such a composed system dates
back to 1829, when the botanist Robert Brown observed by a microscope
the irregular motion of a pollen particle suspended in a fluid. The
phenomenon (referred to as Brownian motion) has much more general
implications, investigated theoretically by Einstein and by Langevin at the
beginning of this century. Equations (3.43)-(3.47) provide a convenient
basis for a microscopic theory of Brownian motion as well as for a simple
application of the Mori framework. For this purpose, let us take as a basic
set of variables the three components (P,, P,,P,) of the momentum
of the heavy particle. Since (P,, Pg) = (P, Pp) = MkgT .4, the set is
orthogonal and the projection operator (3.6) over P can be expressed as

® = (MksT)~' ), (P,,...)P,. (3.48)

We shall now apply the formalism of Section 3.1 to write a generalized
Langevin equation for the variable P(¢). Since P and P have opposite
time-reversal symmetries, all the elements of the proper frequency
matrix Q,; = (iMkp T)“(Pﬂ, P,) vanish and the above equation can be
written as



116 The general theoretical framework
t
(1) = — [dark(e) - P(r = 7) +£(0) (3.49)
0

-with the random force "
£(¢) = expli(l — ®)L,.t1£(0). (3.50)

Hére £f(0) =il — @)L\ P =iL P = iL, P =F. The elements of the
memory matrix are given by )

Kaﬁ(t) = (fﬁ’fa(t)) (Pa’Pa)_l = (MkBT)_l<fﬁfa(t)>- (3°51)
We shall now exploit the identity

exp[i(1 — ®)Ly,t] = exp[iLyt] + igdtexp [i(1 = @)Ly (2t — 7)]

x [(1 = @)Lt — Lol exp(iLo7) (3.52)

where
(1-@®)Ly— Ly = (1 = ®)L, — ®L,. (3.53)

As a result, the random force (3.50) can be written as

1(0) = F (1) +i] drexpi(1 - @) Lua(t = D] [(1 — @)L, — CLOIF(7)
° (3.54)

where F(t) = exp(iLy?)F is the force acting on the Brownian particle with
a time evolution associated with the dynamics of the particles of the bath.
In practice, the latter is sufficiently ‘large’ that its dynamics is virtually
unaffected by the the presence of the particle, and L, can be assumed to
describe the ‘unperturbed’ dynamics of the fluid.

Equations (3.49)-(3.54) are still exact. Now we take advantage of the fact
that the mass m of the bath particles is much smaller than M. As a conse-
quence, the Brownian particle has an average thermal velocity = (kg 7/M )'“ 2
which is a factor (m/M)"? smaller than that of the molecules of the fluid.
This means that the position R(¢) of the heavy particle is slowly varying
over the typical bath timescales. Also, after a ‘collision’ the heavy particle
suffers an average momentum change ~ (mkpT)"?, smaller than its
average momentum = (MkgT)"? by the same factor (m/M)'"%. Thus,
even P(¢) can be considered as a slowly varying variable in the same sense
as R(?). These intuitive results can be formalized in the Liouvillians L, arllg
L, by scaling the momenta p; and P respectively according to .(kaT)
and (MkzT)"2, and by adopting units kg7 for the pair potentials ¢ and
v. Denoting L{ and L{ the scaled Liouvillians, it is readily seen that. Ly =
(kg T/m)"2L§ and L, = (kg T/M)"">L{. As a consequence, we obtain
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kBT 172 m 172 .

L= |— Li+|—| L{ .
tot [ - J o+ M 1 (3.55)

which shows that the effects of L, are a factor (m/M)"/? smaller than those
of Ly. This confirms that the time variation of R(¢) and P(¢) is much
slower than that of the corresponding quantities r;(#) and p;(¢) for the
bath particles. Thus, in the limit m/M < 1 we expect the occurrence of
distinctly different timescales. ' '

To see the formal consequences of these results, we go back to eqn (3.54).
Since the slowness of the Brownian dynamics implies that the force F(¢) is
already a (m/M)'/? effect, in the second term on the right-hand side of
(3.54) we may neglect any higher-order contribution in this perturbative
parameter. At leading order we find that

(1 = ®)L, = O[(m/M)"?] (3.56)

and

ICLF(7) = (Mkp T) ™' 3} (P,iLoF (7)) P,

= (MksT) ™' ), [{P,iL,F(1))P, + O(m/M)] (3.57)

where the symbol (- --), denotes a statistical average performed with
respect to the dynamical variables of the fluid. Now, (P,L,F(7)), =
{LoP,F(1))o = 0 since L, acts only on the bath variables. As a result, in
(3.54) the entire contribution of the term with the integral is of higher order
in m/M, and we may write that

£(¢) =F(){1 + O[(m/M)"?]} = F(¢) (3.58)

Inserting this results into eqn (3.51) for the memory matrix, and con-
sistently replacing the exact statistical average with the one taken with
respect to the bath variables, we find that

Kop(t) = (MkgT) ' {F3(0)F,(¢))o
= (MkB T) - <Fa(0)Fa(t)>05a,ﬂ (3°59)

where in the last step we have exploited the isotropy of the fluid. Note that,
as a result of the perturbative treatment, the elements K,4(¢) are expressed
in terms of ordinary time correlation functions associated with the ‘fast’
dynamics of the bath. Since P(t — 7) = P(¢) + O[(m/M)"?], in the limit
m/M — 0 any memory effect in eqn (3.49) disappears and the Markovian
approximation (3.23) becomes exact. Then eqn (3.49) can be written as

P(s) = — I'P(¢) + F(r) (3.60)
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where

(-]

I'= (3MksT)" | dz¢F(0) - F ()Y, (3.61)
0

with the upper integration limit extended to infinity bgcause of the rapid
decay of K(¢) over the timescale of the heavy particle. ‘After its proposer,
eqn (3.60) is referred to as the ‘ordinary’ Langevin equation for Brownian
motion. The presence of the bath is seen to be ‘felt’ by the Brownian particle
both directly through the rapidly varying fluctuating force F(#) and by the
‘viscous’ term —I"P(z) which damps the motion. Equation (3.61) shows that
the two effects have ultimately the same microscopic origin (a result usually
referred to as the fluctuation-dissipation theorem). As a matter of fact, a
more general statement of the same interrelation has already been met in
Section 3.1 for non-Markovian situations (cf. eqns (3.18) and (3.19)).

Coming back to the Langevin eqn (3.60), as in Section 3.1 we may now
exploit the orthogonality of f(#) = F(¢) to the momentum P to obtain a dif-
ferential equation for the dynamic correlations of interest. In particular,
the time correlation function of the velocity V = P/M of the Brownian
particle is readily found to be

(V(0)-V(£)) = (3kg T/M)exp(—TI|t|). (3.62)

Recalling eqn (1.57), this result can be used to obtain the mean square
displacement dR%(¢) of the Brownian particle:

SR2(f) = ZSdr(t — 2){V(0) - V(7))

= (6kg T/MI?){I't — [1 —exp(—I¥)]}. (3.63)

At short times ¢ < 1/I, eqn (3.63) yields the result appropriate for free
particles, 6R*(¢) = (3kz T/M)t>. In the opposite limit ¢ > 1/I', the mean
square displacement is seen to increase linearly with time (cf. eqn (1.66)):

OR*(t) - 6Dt (3.64)

with a ‘diffusion coefficient’

D =14 [dr(v(0) - V(2)) = ks T/ML. (3.65)

0 .

These long-time results were established in 1905 by Einstein using a dif-
ferent approach. The irregular motion of the pollen particle observed by
Brown are in fact associated with this diffusive regime: as a result of the
innumerable ‘collisions’ with the molecules of the fluid (accounted for by
F(z)), the pollen particle performs a ‘random walk’ with a mean square
displacement given by eqn (3.64).
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3.3 MEMORY FUNCTIONS AT WORK: THE VELOCITY
AUTOCORRELATION FUNCTION

The previous microscopic theory for Brownian motion relies heavily on a
clearcut separation of timescales brought about by the smallness of the ratio
m/M. 1t is therefore expected that such a perturbative framework falls into
ruins when we deal with a monatomic fluid in which all the particles have
the same mass. Indeed, the data reported in Figure 1.8 for the velocity
autocorrelation function in two typical simple liquids show evident
discrepancies with respect to the exponential decay predicted by eqn (3.62),
which clearly cannot account for the ‘cage effect’ discussed in Section 1.4.3.

In reality, for a fluid made of particles with the same mass the situation
is better than one would expect from the breakdown of the previous pertur-
bative criterion. After all, the Markovian approximation (3.23) only implies
the existence of two distinctly different timescales, with the shorter one
associated with the decay of the memory function. The separation in
timescales may actually occur for several physical reasons, the Brownian
criterion m/M < 1 being only a particularly simple example. In this section
we shall discuss a ‘heuristic’ model which qualitatively accounts for the main
features of the velocity autocorrelation function of a monatomic fluid at
any density. In particular, the model is useful to establish the physical con-
ditions of possible validity of the Markovian approximation even in this
‘non-Brownian’ case. ,

Let us start from the memory equation appropriate for the normalized
velocity autocorrelation w(z) = (v;(0) - v;(¢)>/{v?) of an arbitrary parti-
cle of the fluid. Because of the isotropy of the system, in such a case we
effectively deal with a single-variable set, and no proper frequency term is
present in the memory equation. Thus the latter is simply written as

w(t) = — sdt'K(t')y/(t— ) = - jdt'K(t —t)w(t'). (3.66)

The simplest way to explore the consequences of a non-Markovian memory
function is to assume that the decay of K(¢) from its initial value occurs
through a single relaxation time 7. For mathematical convenience, Berne
etal. (1966) assumed that the decay was exponential:

K(t) = K(0)exp(—t/1). (3.67)

Substituting into eqn(3.66) and introducing the auxiliary function
v1(¢) = w(?) exp(¢/1), one arrives at an ordinary second-order differential
equation

w1 () — (1/2) v, (¢) + K(0)yi (1) =0 (3.68)
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which is easily solved for w,(#). The corresponding solution for w(¢) is
obtained by exploiting the initial conditions y(0) = 1 and (0) = 0. Let-
ting A2 = 1 — 4K(0)7?, we eventually obtain

—t At 1 At
= _— — — —sinh—/. 3.69
w(t) = exp [ 21] [cosh ;g Sin ZJ (3.69)
The dynamical features predicted by this simple model for y(¢) are con-
trolled by the sign of A2. In this quantity, the initial value of the memory
function is given by the normalized second moment of the velocity au.tocor-
relation function (cf. eqn (3.42a)). Hence, after eqn (1.60) we obtain

K(0) = Q3. (3.70)
Then we have the following cases:

(i) A% > 0, that is (1/7) > 22,. In such a case, the memory function K(¢)
decays faster than (), whose initial decay rate is = €y/~/2.According to
eqn (3.69), this situation yields a monotonic decay of w(#). In the extreme
case that (1/7) > 2Q,, eqn (3.69) predicts that

w(t) = exp[ — (237)1]. (3.71)

Since this limiting condition corresponds to an essentially Markovian situa-
tion, the result (3.71) is expected.

(i) A2 < 0, that is (1/7) < 292,. Now the decay rate of K(¢) may be com-
parable with the one appropriate to y(#) at short times. In this case the
quantity A is imaginary, A4 = i[(2Q,7)> — 1]/* = ia, and the result (3.69)
can be written as

-t at ., at
v(t) =exp [ ZJ (cos e + L Sin 21} (3.72)
which indicates a damped oscillatory behaviour. In the extreme situation
2Q,7 > 1 (which corresponds to a memory function nearly constant over
the initial timescale of w(#)), eqn (3.72) predicts for y(¢) long-lived oscilla-
tions at a frequency which essentially coincides with the Einstein frequency
Q,.

0The physics behind the predictions of the model in these two regimes
becomes clearer once we realize the meaning of the time 7 which rules the
decay of the memory function according the ansatz (3.67). The processes
affecting the dynamics of K(¢) are more transparent at short times, where
the comparison between Newton’s second law v(t) = (1/m)F;(¢) and the
generalized Langevin equation '

(1) = £,(1) = [ K(¢ vt — ) (3.73)
]

Memory functions at work 121
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0

Fig. 3.1 Schematic illustration of the situation occurring for y (¢) in a low-density

fluid (27 = 0.3) according to the model (3.67). The full line denotes the result

predicted by eqn (3.69), and the dashed line is the Markovian approximation (3.71).
The dotted line refers to the parabolic law (3.74).

shows that the basic information over the initial dynamics of K(¢) is
provided by the force autocorrelation function Z(¢) = (F;(0)- F;(#)). On
the other hand, the main short-time effects in Z(¢) are felt during a colli-
sional event, where the interatomic forces are likely to undergo rapid varia-
tions. In view of this, it appears natural to interpret v as the duration of
a ‘binary’ collision. Intuitively, we expect that the magnitude of 7 depends
strongly on the details_of the pair potential, and is instead much less
affected by macroscopic quantities such as the density of the fluid. This
behaviour is to be compared with the one expected for the quantity ,,
which gives an approximate measure of the frequency of the collisional
events. Even , depends on the ‘shape’ of ¢(r) (cf. (1.63)); however, in
contrast with 7, it increases strongly with the density as the occurrence of
collisions becomes more and more likely.

As a result, for a relatively dilute fluid we expect that Q, is small
enough that the condition 1/7 > 2Q, is satisfied. In such a case, initially
the velocity autocorrelation function exhibits the usual parabolic decrease

w(t)=1-102s (3.74)

which is common to all densities (cf. Section 1.4.2). This situation lasts only
for a very short time = 7, being rapidly taken over by a regime ruled by
the exponential decay (3.71), which according to the model should account
for virtually all the dynamical features of w(¢) (see Figure 3.1). Hence, for
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not too dense fluids it appears natural to characterize the overall decay of
w(?) as being ruled by a time constant (2%7)~! rather than by the initial
decay time = Q7'. In this respect, a limiting case is provided by those
systems in which the pair potential is approximately modelled as harshly
repulsive (e.g. as ¢(r) = r~? with g > 1). In such a case, the spatial range
over which the interaction (‘collision’) takes place becomes smaller and
smaller as q increases, and the same occurs for the effective duration 7 of
the collision. Consequently, the time domain over which the parabolic
behaviour (3.74) is observed shrinks more and more as g becomes larger.
In the limiting case g — o0, we deal with a ‘hard spheres’ system where the
binary collisions are instantaneous (z = 0), and the initial decrease (3.74)
is not observed. On the other hand, the quantity Q3 tends to increase with
the exponent g, so that the decay rate Q37 predicted for w(¢) is expected
to be much less affected by the hardness of the repulsive potential. These
intuitive considerations are confirmed by a detailed calculation by Schofield
(1974), which shows that as g increases 7 vanishes as q~!, whereas Q3 is
dominated by a binary contribution which diverges as g. As a result, the
quantity 227 remains finite even for hard spheres (g — ). In this limiting
case, because of the instantaneous character of the collisions the simple
model (3.67) predicts that the Markovian result (3.71) is exact at all times.
The exponential decay of w(¢) is in fact consistent with the results of a
kinetic approach firstly developed by Enskog for hard sphere fluids
(Chapman and Cowling 1970). More precisely, in this theory the decay rate
Q%7 is usually written as 2yg, where the quantity

e = 4(nkg T/m)"*nd*g(d) (3.75)

is referred to as the ‘Enskog collision rate’. In eqn (3.75), d is the hard
sphere diameter and g(d) represents the pair distribution function at con-
tact, which in terms of 7, = nnd?/6 is approximately expressed as g(d) =
A —3ns)/Q1 - na)’- )

In practice, for low-density fluids the predictions of the Markovian
theory are found to be satisfactory. The Enskog results, supplemented by
some reasonable choice for the diameter d, have in particular extensively
been used by experimentalists to test and/or predict the state dependence
of several dynamic properties. In the present context, the relevant quantity
is the diffusion coefficient

o T L -1 -
p="T [ dry(o) = ke T { { de(r)} (3.76)
m 0 m 0
which following eqn (3.67) is predicted to be
Ky T
= . 3.77
b mQit 3-77)
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For hard. spheres, the corresponding result of Enskog theory reads

_ T b o 3T
Dy = o i drexp(—3}ygt) = 2myg
3 (D)2 1
T 8n ( m J nd’g(d)’ (3.78)

Some defects of the Markovian predictions are already beginning to
appear at intermediate number densities (roughly, one half of those typical
for liquids near the melting point). As anticipated in Section 1.4.3, the
discrepancies are associated with the appearance in w(f) of a non-
exponential ‘tail’ ocz=3/2, which occurs at rather long times. Since in this
range the decay of y(¢) has already been quite substantial, the quantitative
relevance of the discrepancies is not dramatic and is mostly felt on the diffu-
sion coefficient, which is found to be larger because of the slower decay
implied by the =2 law. Nevertheless, the occurrence of these flaws is
disturbing, and cannot be eliminated even using the more ‘refined’ model
(3.67) rather than the Markovian scheme. Even more embarassing is the
fact that the discrepancies are observed even in the hard sphere case (Alder
and Wainwright 1970); that is, just where the Markovian results should in
principle be ‘exact’. These findings provide a first indication that as the
density is increased the memory function K(¢) is affected by additional
dynamical processes, presumably of much longer duration than the fast
decay channel associated with ‘binary’ collisions.

This suspicion is reinforced as we enter the density range appropriate for
typical simple liquids. Here, the previous discussion leads us to conclude
that the collision rate (=£2,) has increased so much with n to become
eventually comparable with 1/7. In such a situation typical of the liquid
state, a particle appears to be always ‘colliding’ and any physical distinction
between the duration of a collision and the interval between two consecutive
collisions tends to disappear. Clearly, for such a regime the appropriate
prediction of the model is provided by (3.72). Since the Einstein frequency
is readily evaluated from eqn (1.47) in terms of ¢(r) and purely structural
data, to arrive at quantitative results we need some procedure to estimate
the time constant 7. A phenomenological recipe proposed by Berne efal.
(1966) exploited the result (3.77) of the model and determined 7 from the
value of D actually observed for the liquid under consideration. With this
choice, the theoretical w(¢) (eqn (3.72)) is obviously forced to have the same
area as the ‘true’ w(¢) obtained by suitable simulation experiments.

The results of such a procedure for liquid caesium are reported in
Fig.3.2. It is apparent that the short-time features of w(¢) are well
reproduced by the model, which is even able to account qualitatively for
the subsequent negative region (cf. Section 1.4.3). However, the model
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Fig. 3.2 Test of the prediction (3.72) (dashed line) against the simulation data for
w(t) in liquid Cs at 308K (full line; cf. Fig.1.8b). The Einstein frequency
Qo = 4.384 ps~! has been evaluated according to its definition (1.47). Following
the original prescription by Berne et al. (1966), the time constant T has been
estimated from the actual diffusion coefficient of the liquid (cf. eqn (3.77)). In the
present case, from D = 2.11 x 1075 cm®*s™" we find 7 = 0.472 ps.

tends to grossly overestimate both the actual magnitude of this ‘cage effect’
and the oscillations present in w(¢) at longer times. The same remarks apply
to the ‘Lennard-Jones’ liquids, where the quality of the comparison is even
worse (the model again yields damped oscillations, whereas the actual w(?)
only shows a long-lasting negative region; cf. Fig. 1.84). It is of course
possible to assume for K(¢) anotlier functional shape, at the price of obtain-
ing results for w(f) not expressible in simple analytical terms. Several
attempts in this sense have been made (see Boon and Yip (1980) for a
detailed discussion), but there is no significant improvement as long as the
decay of K(¢) is assumed to be ruled by a single process with a rate fixed
in order to reproduce the correct D.

Still within the simple model (3.67), we may finally decide to evaluate
the decay time of K(¢) theoretically, by assuming that 7 can be deduced
from the initial dynamics of the memory function. Strictly speaking, the
ansatz (3.67) violates the short-time expansion (3.33), but we may provi-
sionally consider these shortcomings as minor ones, and simply evaluate the
decay time 7 according to eqn (3.33). The details of such a calculation are
reported in Appendix E. For liquid caesium, the resulting y/(¢) is shown in
Fig. 3.3 along with the previous simulation data. Although now the com-
parison appears more favourable as far as the amplitudes are concerned,
on the whole the results are still unsatisfactory. The theoretical values of
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Fig. 3.3 The same comparison as in Fig. 3.2, except that the chain line is the result
(3.72) with the time constant 7 = 0.29 ps, as deduced from the initial decay of the
memory function K (¢). The predicted diffusion coefficient ~ 3.4 x 107> cm?s™ .

7 (which now really represents a collision duration) are always found to be
considerably shorter than those obtained by the previous phenomenological
procedure. As a result, the predicted diffusion coefficients are much larger
than their actual values. According to eqn (3.76), this means that.the model
(3.67) underestimates the area under the memory function. Since now the
short-time dynamics of K(z) is essentially correct, we again infer that some
long-lasting decay channel has not been taken into account.

On a purely empirical basis, these conclusions are supported by the fact
that the simulation data for y(¢) in Lennard-Jones systems are well
reproduced by using the three-parameter memory function (Levesque and
Verlet 1970) '

K(t) = Q3 exp(—a*?) + Bt*exp(—yt). (3.79)

The form of (3.79) reproduces the correct initial value K(0) = Q22 and is
chosen in such a way that at short times the leading contribution is provided
by the first term on the right-hand tide. As the parameter a is related to
the quantity 1/7 ruling the initial decay of K(¢), this first term can be inter-
preted as the previous collisional decay channel. On the other hand, the
physical meaning of the second contribution on the right-hand ride of (3.89)
cannot be ascertained at the present stage of our analysis. This task will
be accomplished in Chapter 5, after the development of a theoretical
framework much more general (and elaborate) than the simple model
discussed in this section.
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3.4 HYDRODYNAMICS AND TRANSPORT PROPERTIES

Let us apply the memory function formalism to an orthogonal set {4, (k)}
of dynamical variables which become ‘quasi-conserved’ in the limit of small
wavevectors. As a result, the ordinary equation of motion of A4,(k, ¢) can
be written as

A).(k’ t) = ik'jl(ks t) (3°80)

‘where j, (k, t) is the ‘current’ variable appropriate to A, (k, t). On the other

hand, for A, (k, t) we may also write the generalized Langevin equation
t

A ) = 3 (10,004,060 — [ar K (6,04, = )} + 40
v 0

(3.81)

Provided that the elements (4,(k), A,(k)) are finite as k = 0, the proper
frequency matrix elements

iQ,, (k) = (4,(k), 4,(K))/(4,(k), 4, (k) (3.82)

are seen to vanish as k in the limit X = 0. Then the components of the fluc-
tuating force

fi(k, 1) = expli(1 — ®@)Lt]{ A, (k) —D}i2, (k)A4, (k)] (3.83)

v

are also proportional to k for small wavevectors. As a result, all the
elements of the memory matrix

K (1) = (f,(k), f1(k, )/ (4,(K), 4,(k)) (3.84)
vanish as k2 as k — 0. Noting that (cf. eqns (3.12), (3.13))

expli(1 ~ @)Lr] = exp (i) — | drexp[iLt(t - o) liPL exp[i(1 ~ @) L1]
0

(3.85)
it is found that
filk, 1) =expli(1 — ®)Lt]f (k)
: (o (A,(K),iL5 (K1)
= exp(iLt) f (k) —Z idt (Av(k),At,(k)) A,(k, t—1)
. (. (A,(K), £ (k7))
= exp(iLt) f(k) —Ev: !dr (A,,(k),ilvk(k)) A, (k, t—1)

(3.86)
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where in .the last step we have exploited the hermiticity of the Liouvillian.
As k — 0, the second contribution on the right-hand side is of the order
k% and can safely be neglected in comparison with the first one (which is
O(k)). Therefore for sufficiently small wavevectors the anomalous time
propagator ruling the dynamics of f; (k, #) may be replaced by the conven-
tional one. It follows immediately that in the limit & — 0 the elements (3.84)
of the memory matrix become ordinary time correlation functions. Since
all these elements are proportional to k2, it is convenient to introduce the
quantities

K}.v(ka t)

Ly(1) = Jim =25

(3.88)

In the following subsections we shall make explicit use of all these results
to derive by a microscopic framework all the equations of hydrodynamics
in its linearized version (cf. Section 1.6.4). In particular, we shall find that
the conventional transport coefficients can naturally be expressed as simple
time integrals of the quantities I, (¢).

3.4.1 Single-particle motion

As already remarked in Chapter 1, in the single-particle case we deal with
only one quasi-conserved variable, the self density of a tagged particle
density (k) = exp(ik - r;). The dynamics of this variable is ruled by the
equation of motion

i i(k, 1) =ik §; ;(k, ?) (3.88)

where j, ;(k, ) = v;(¢) exp[ik-r;(#)] is the ‘current’ associated with the ith
particle at the wavevector k. We are ultimately interested in writing
a memory equation for the self intermediate scattering function F,(k, t) =
(n;': /(k,0) ng;(k,2)>. This is easily done by introducing a projection
operator over n, ;(k, 0) = n, ; (k),

® = (ni(k),...) (n,(k), n, (k) "' ng i (k) = (ng;(k) ... )y (k)
(3.89)

and repeating all the steps seen in the general treatment of Section 3.1. Since
there is no proper frequency case in the single-variable case, the memory
equation for F,(k, t) is simply written as

E(k,1) = = [deK,(k, D)F, (k1 = 7). (3.90)
. 0

Here the memory function K(k, ¢) reads (k = k/k):



128 The general theoretical framework
K, (k1) = {[A,;(k)]* exp[i(1 = ®)Lt] 1, i (K))
= K[k ji, (k)] * exp[i(1 — @) Le]k-J,,i(k))

= k*D(k,1). (3.91)
The Laplace-transformed version of eqn (3.90) is
Fk2) = [z+ K (k2] = [z +KD(k2)]7. (.92

All these results are valid for arbitrary wavevectors. Consider now the
case k — 0, in which the dynamics of the fluid is probed over an essentially
macroscopic length scale. The quasi-conserved character of n ;(k, t) in
this limit has two important consequences:

() The memory function K (k,¢) can be evaluated at the lowest non-
vanishing order; that is, up to terms O(k?). This implies that the quantity
D(k, t) can be evaluated by setting k = 0 everywhere. For consistency, we
must also replace expl[i(1 — @)L¢] with exp(iL?), since we have seen that the
difference between the two propagators is of higher order in k. As a result

K, (K, t) = k¥(k-v,) exp(iL?) (k- v;))
= kz(vi,z(o)vi,z(t)) (3.93)

where, without any loss in generality, the direction of the wavevector k
has been chosen along the z-axis. Thus, as kK — 0 the quantity D(k,?)
approaches the ordinary velocity autocorrelation function.

(ii) Whereas F,(k, ¢) becomes a slowly varying function of time as kK — 0,
the decay rate of K;(k,?) remains finite even in this limit at a v.alue
(93,)/¢v},> = Q}. Ultimately, we approach a.typical Markovian situa-
tion where ‘

-

F(k~0,0) = k[ drD(k—>0,7) F(k~0,0).  (3.94)
0
Here
D= [ drD(k=0,7) = | dr(v,-(0)v;,.(x)) (3.95)
0 0

is the diffusion coefficient. In the Laplace domain, the Markovian limit
corresponds to approximate in (3.92) the ‘generalized diffusion coefficient’
D(k, z) with the constant D(k — 0,z = 0) = D.

As a result, in the case of small wavevectors and long times from
eqn (3.95) we obtain

F,(k,t) = exp(—Dk?*|t|) (3.96)
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which coincides with the previously quoted result (1.160) obtained from
ordinary continuum hydrodynamics.. As is clear from the derivation, the
k — 0 limit should be taken first. Besides having the merit of providing a
microscopic ‘Green-Kubo’ expression for the diffusion coefficient, the
present framework is able to establish the conditions k < Q,(kp T/m)~ '/
and ¢ » 1/Q, as broad criteria for the validity of the result (3.96), both in
the wavevector and in the time domain.

3.4.2 Transverse current

Turning our attention to the quasi-conserved collective variables, we must
in principle consider a five-component set comprising the density fluctua-
tions 7A(k), the vector current j(k) (three components) and the energy
fluctuations (k). However, from the microscopic equations of motion
(1.175)-(1.179) it is immediately seen that the variable 7(k, ¢) is directly
coupled only with the component of j(k, ¢) directed along k (longitudinal
current). For isotropy arguments, the same is true even for the variable
é(k, t) at sufficiently small wavevectors (cf. the expression (1.182) of the
microscopic energy current). As a result, a convenient ‘choice’ of variables
for dealing with the hydrodynamic regime is made by splitting the original
five-component set into two separate subsets, the first of which comprises
the three variables 7(k), j;.(k) and (k) and the second the two com-
ponents of the current perpendicular to k (transverse currents). As far as the
latter are concerned, because of the isotropy of the system the final results
should be the same for the two components. Again choosing k along
the z-axis, in this subsection we shall consider the transverse current
component

Jx(k, 1) = D3;,(¢) explik - r;(1)] (3.97)
whose equation of motion can be written as (cf. eqn (1.176))
di(k,t) _ .k
TR (k, t) (3.98)

where
o?%(k) = E my; v, , — % Z [zijxij/r%,-]Pk(r,-j)} exp(ikz;) (3.99)
i J(d)

is the zx-component of the microscopic stress tensor (1.178). Now we
introduce the projection operator over the single variable j,(k):

® = (ju(k), ...) (x(K),ju(k)) " (k) = (m/NkgT)(Gi3(k) ... ) (k)
(3.100)
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and write down in the usual way a memory equation for the transverse cur-
rent correlation function Cr(k, ) = (1/N){jx(k,0) j,(k,?)>. We finally
obtain

Cr(k, 1) = = [drKe(k, )Crlk, t = 7). (3.101)
! )

Here the memory function Ky (k, t) reads

Kok, £) = (L (k)1 exp[i(1 — @) Le]j (k) (L (k)] % (k)

= Nﬁk,;r(["”“"]* expli(1 — ®)Lt] o™ (K))

k2
E%”(k’ t) (3.102)

where the last step is a mere definition of the quantity 7(k, ¢). Note that,
similarly to the previous quantity D(k, t), n(k, ) is not an ordinary time
correlation function because of the presence of the anomalous propagator.
This implies, for example, that in general D(k, ¢) and n(k, t) cannot be
directly determined by suitable computer simulation techniques.

The situation changes when we limit ourselves to wavevectors k — 0.
Since eqns (3.101) and (3.102) have a formal structure entirely analogous
to the previous results (3.90),(3.91), for k >0 we may repeat all the
simplifying arguments seen in the single-particle case. In particular, for
sufficiently small wavevectors the memory function Ky(k,t) can be
expressed as

K (6 exp(iLt)a™)

Nmky T P

Ki(k,t) =

_ k1
" mkyTN

(¥ (0)a** (1)) (3.103)

where

1

o =oc"(k =0) =Z [mvi,zvi,x -3 (2) (zijxij/rij)d)/ (ry):l .
i J(&Fi
(3.104)

Clearly o** = g**. Moreover, because of the inherent isotropy of the
fluid, the (now ordinary) time autocorrelation function S.x(t) = (1I/N)
(o**(0)a**(t)) is independent of the particular combination (zx) of the
Cartesian indexes, which can equivalently be replaced by (xp) or (¥z). Then
the quantity
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ST(t) = Szx(t) = Sxy(t) = Syz(t) = (kBT/n)”(k_’ O: t) (3'105)

is tout court referred to as the transverse (or shear) stress autocorrelation
Junction. Since they only differ by a factor (k3 7/n), the same name is fre-
quently used even for the quantity

n(t) =n(k—0,t) = (kgTV) " {a**(0)a**(2)). (3.106)

Even in this case, the marked slowing down of C;(k, ?) as kK — 0 implies
that in this limit we eventually reach a Markovian situation. Consequently,
eqn (3.101) simplifies to

Cr(k—0,8) = — (k*/nm) [ s drn(kﬂO,r)] Cr(k—0,1¢) (3.107)
0

where the square-bracketed factor has the typical Green-Kubo form of a
transport property. Indeed, comparing the solution of (3.107) with the
hydrodynamic result (1.163), this quantity is identified with the ordinary
shear viscosity coefficient n. Thus we have

ks T
Cr(k~0,1) = == exp [—1&# |t|] (3.108)
where
n=[den() = [ drtom (e, (109
] ks TV} ' '

From eqn (3.108) wé deduce that for k — 0
~ kg T -1
Crlk,z) = 2~ [z + —’Lkz} (3.110)
m nm
whereas the corresponding transverse current spectrum Cr(k, w) = (1/7)
Re[Cr(k, z = iw)] is a Lorentzian:

_ksT (n/nm)k?
Crlkw) =22 —— [/ T (3.111)

Note that at arbitrary wavevectors the Laplace transform of (3.101) can
be written in the form

éT(k,Z) _ 1 _ 1
ksT/m ~ z + Ky(k,z)  z+ (k*/nm)fi(k,z)’

(3.112)

From this result we see that the features of the spectrum Cr(k, w) outside
the £k — 0 Lorentzian regime are controlled by the (generally complex)
quantity #j(k, z = iw), which can formally be interpreted as a wavevector-
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and frequency-dependent shear viscosity coefficient. These kinds of
arguments, which even at finite wavevectors insist on expressions formally
similar to those valid'forf k — 0, are at the basis of the so-called ‘generalized
-hydrodynamics’ approaches (see Chapter 6). ' '

3.4.3 Density fluctuations

As remarked in the previous subsection, the three collective variables 7 (k),
JjL(k) and é(k) are to be considered together in a separate subset of quasi-
conserved variables. The algebraic manipulations are consequently expected
to be more involved than in the previous single-variable examples. It is
therefore convenient to deal with an orthogonal set {4, (k), A,(k), A;(k)},
where the scalar product (A4; (), A, (k)) vanishes unless A = v. It is readily
seen that j; (k) is orthogonal to both 7 (k) and 2(k) because of its different
symmetry under time reversal. On the -other hand, 7A(k) and é(k) are
not orthogonal, and it is advantageous to replace (k) with the new
variable

(A(k), e(k))
(A(k), Ai(k))

By this definition, (A(k), £(k)) = 0. Hence, a convenient orthogonal set is
built with the following quasi-conserved variables

A (k) =A(k) A (k) =ju(k)  A(k) =8(k) (.14

With this choice, we introduce a projection operator over the variables of
the set (cf. eqn (3.8)): ‘ oo :

g(k) = e(k) — A(k). (3.113)

® = zv:_—_(/(l‘:l(vk(;(,);l;.(.l()))/l:(k)' (.115)

Here
(A,(k), 4,(k)) = (A*(k) A(k)) = NS(k), - (3.116)
© (Ay(k), A;(k)) = Ut (k) ju(k)) = NkgT/m, @.117)

(43(k), 45(K)) = (&% (k) &(k))
= (&* (k) &(k)) — (A*(k) &(k))/NS(k). (3.118)

Recalling (1.175)-(1.177) and choosing k along the z-axis, the micro-
scopic equations of motion of the three variables read

B0 g0, G119

Gk t) K zik, 1), 1
O mo‘ (k, 2) (3.120)

Hydrodynamics and transport properties 133
~dé(k,t) A*(k)é(k))y] . o .
TR ik {Qz(k, t) - {—NSW)_ Ju(k, f)} . @12

With all these ingredients, for each component A4, (k) of the sé,t it is now
possible to write down a generalized Langevin equation of the form (3.81).
Here all the diagonal ;elements of the proper frequency matrix (3.82) vahish
because 4, (k) and A4;(k) have opposite parities under time reversal. On
the other hand, the non-diagonal elements £,,(k) are at least proportional
to k in view of the quasi-conserved character of the variables. In particular,
after some straightforward calculations we obtain ‘

0, (k) = L AK) _

GHOVAC - em
. AR (K) (k) | —(A*(K)jL(K)) | ikksT
i€2,1 (k) RGO NS(k; = rInSFk)’ (3'123‘)
i, (k) =iQ; (k) =0, (3.124)
. k) L alk)
0, (k) = VL) _ —GE(K) 8K)) _ ike” (k)

GER ) = NepT/m - NegT 0129

where
a(k) = (€*(k) a%(k)) — [ksT/S(k)]1(E* (k) A (Kk)). (3.127)

The components f;(k) of the random force at ¢#=0 follow from
eqn (3.83). Exploitinig eqns (3.129)-(3.126) we find

fi(k) =0, © (3.128)
£(K) = i(k/m) {aa(k)—ﬁf—ﬁm a(k) su«)}

S(k) ~(EF (k) 8(k))
=i(k/m)(o’)%(k), (3.129)
fi(k) =ik[g, (k) — (NkgT)~'(&* (k) 0% (k))*j.(k)]
=ik(q’).(k). ~ - (3.130)

Asa result, the non-vanishing elements of the memory matrix (3.84) read
Kn(k,t) = (m/NksT){f3(k) exp[i(1 — ®)Lt]/,(k)),  (3.131)
Ky (k. t) = (8" (k)&(k)) '(f3(k) exp[i(1 — @)Lt]£,(K)), (3.132)
Ky (k,t) = (m/Nkg T){f3(k) exp[i(1 — ®)Lt]f;(k)), (3.133)
Ky (k, 1) = (8% (k)&(k)) ' {f3(k) exp[i(1 — ®)Lt]f3(k)). (3.134)



134 The general theoretical framework

In view of its experimental relevance, we are interested in the intermediate
scattering function F(k, t) = (I/N)}XA* (&) fi(k, £)) =(1/N){ATK) A, (k, 1)).
To obtain its Laplace transform. F(k, z), we multiply by A(K) the three
generalized Langevin equations for A;(k, ?), A,(k,t) and A;(k,?), take
the average, and perform a Laplace transform. In such a way we arrive at
a linear system of three equations which can be readily solved for (A T(k)
A,(k,7)) = NF(k,z). Eventually it is found that (Mountain 1976;
Lovesey 1987): o

F(k,z) “lzs k[ ks T/mS(k)] -1
S(k © 19y (k) — K3 (k,2)] [i —Ky, (K,
“ e+ Rl 2) — 12210 K(zk+ 2][&)(") Ry (k,2)]
(3.135)

Even though this result is valid for arbitrary wavevectors, the empbhasis
put on the choice of variables which become quasi-conserved as k=0
qualifies eqn (3.135) as a typical result of ‘generalized hydrodynamics’. In
particular, if the wavevector is sufficiently small we may exploit all the
limiting results discussed at the beginning of this section. Namely, in the
memory functions (3.131)-(3.134) the anomalous propagator is replaced by
an ordinary one, and at the same time the results are evaluated at leading
order in k2 (which implies that the fluctuating forces (3.129), (3.130) are
taken at the order k). In this respect we may neglect Ky (k,?) and
K, (k, t), which turn out to be of higher order than k? because of the dif-
ferent symmetry of f,(k) and f3(k) under time reversal. Finally, as k=0
the Markovian approximation for the memory functions Kj(k, ?) and
Ky;(k,t) becomes exact, and in eqn (3.135) the Laplace transforms
Ky (k,2) and K3 (k, ) may be replaced by their values at z = 0. Thus the
limiting form of eqn (3.135) in the k = 0 regime can be written as

F(k—0,z) z+k2[kBT/mS(k—>0)] -

= 3.136
S(k=0) .. FB (3.136)
z 27 24 kL
Here
2p = _ 2 la(k=0)|
KB = (k=02 (k= 0) = k" G e (k= 0) 8k = 0))
(3.137)

kL = Ky (k= 0,2 = 0)
= 2 (Nmky )" | at([(0")=(k = 0)] exp(iLA)[(0")*(k = O)1),
0 .
(3.138)
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kL = Ky3(k— 0,2 = 0)

= K2[(8* (k= 0) 8(k =0))] " | dr(g;(k =0) exp(iLt)g; (k = 0)).

(3.139)
_ Splitting eqn (1.136) into simple fractions, we find that the behaviour of
F(k,z) as k — 0 is dominated by three simple poles at

vt

%= - mlsskzs (3.140)
z, = =i(vi + B)'? —%[122-{-—23——133] k2, (3.141)
vr+ B
where we have let
v: = kg T/mS(0). - (3.142)

Since S(k, w) = (1/m) Re F(k,z = iw), in the frequency spectrum the
imaginary part of a pole corresponds to the position of a peak, whereas
the real part determines the halfwidth. Also, since a simple pole is
equivalent to a Lorentzian spectrum, we find that as kK — 0 S(k, w) consists
of three Lorentzians, peaked respectively at @ = 0 and w = = (v + B)'?
and with halfwidths o &2 whose magnitude is determined by the integrals
122 and I33 .

This structure is clearly reminescent of the Rayleigh-Brillouin spectrum
(1.170) as obtained in ordinary hydrodynamics. To explore this analogy in
detail, we evaluate the quantity B which enters into the predicted position
of the inelastic peak. Noting that €k — 0) = R =30 — (), a simple
calculation of statistical averages in a canonical ensemble shows that for
a variable A = ) ;A(r;, v;)

Ak _ _ lAT _ a<A> _ 2 6<A>
(e*(k=0)A) = (A) B =kgT [ BT]V (3.143)
where the ‘constant volume’ suffix has been added to make contact with
the usual thermodynamic notations. As a consequence,

aP) {av )
— T2V — -
“ VL'WM«?TL | @149

where for the pressure P we have used the result (¢%(k = 0)) = PV (cf.
eqn (1.180)). Moreover,



136 The general theoretical framework

(8*(k = 0) 8(k = 0)) = (&*(k =0)3) = ks T* («'L(_@J = kg T°Ncy
| 4

aT
(3.145)

where ¢y is the specific heat per particle at constant volume. Introducing
the isothermal compressibility x; and the isobaric thermal expansion
coefficient fp

1 (oV 1
=——|= =— | .14
XT v [BP] . B v [3T}P’ (3.146)
after some algebra we obtain
N _ :
p=—L Thr_r-1 (3.147)

nmyrCy nXr nmMxr

where we have exploited the well-known thermodynamic relation

2
Z& =Cp—Cyp (3.148)

and introduced the ratio y = cp/cy between the specific heats at constant
pressure and at constant volume. Recalling the relation (1.15) between S(0)
and x, we see that the inelastic peaks in S(k, w) are predicted to be at the
frequencies : -

w(k) = £ (nmy7)~V2[1 + (y = D]k = = (y/nmxs) k.
(3.149)

The corresponding collective excitation is a longitudinal sound wave, pro-
pagating with a velocity

v, = (y/nmyr)"* = [yks T/mS(0)]"* | (3.150)

whose value coincides with the one found by ordinary hydrodynamics
(eqn (1.168)). Looking back at eqns (3.136)-(3.137), it is seen that the
‘renormalization’ of the sound velocity from the isothermal value vy to the
actual adiabatic value v is ultimately due to the coupling to energy fluc-
tuations. At the small wavevectors of interest in the present context, these
effects are simply proportional to the quantity (y — 1).

3.4.4 Collective transport properties

Although the microscopic derivation of (3.150) is quite instructive, it would
not be worthwhile building up a new framework only to derive results
already obtainable from ordinary hydrodynamics. In the small-k region, the
real advantages of the microscopic approach lie in the ability to provide

Hydrodynamics and transport properties 137

detailed Green-Kubo expressions for the transport coefficients, which in
the hydrodynamic treatments appear as purely phenomenological para-
meters. The identification of these coefficients is readily obtained if we
compare the results (3.140), (3.141) for the poles

2= — (1/y) k2 (3.151)

2. = ivk — 3 {Ip + [(y — 1)/y]1L3}42, (3.152)

with those obtained at the same order in k& by Laplace transforming the
hydrodynamic result (1.161), namely

(20)nya = — (x/ncp)k?, (3.153)

(2 e = +ivik — £ [(mp/nm) + (y — 1) (k/ncp)1k%.  (3.154)

It follows immediately that the thermal conductivity x and the longitudinal
viscosity coefficient #, are, respectively:
neyly = (ke T2%) " [ dt (g} (k = 0) exp(iLt) g/ (k = 0)),

0

K

. (3.155)
nL =130+ ny=nmly,

(kgTV) ™! s dt{(a’)*(k = 0) exp(iLt) (¢’ )% (k = ‘0))

(3.156)

.These results can be further simplified by looking at the detailed
microscopic expressions (3.129), (3.130) of the variables (o’)¥*(k) and
g; (k). In the latter case, eqn(3.130) shows that g, (k = 0) differs from
q,(k = 0) by a term with j  (k = 0) = };v; ,(0). This contribution is pro-
portional to the overall momentum of the system in the z-direction, which
can always be made to vanish by a suitable choice of the reference frame.

As a result, letting g,(¢) = exp(iL?)gq,(k = 0), the thermal conductivity
may also be expressed as

k= (ks T?%) " [ g, (0)g.() (3.157)
0
where from eqn (1.182)
q. = %Z [mv} + Z ¢(ry)lv,.— 1 Z vi 1z /ry) o’ (ry).
i iEi

J*i
(3.158)

) The case of the longitudinal viscosity 7, is s]ightlyvmore delicate. Accor-
ding to (3.129), for k = 0 the variable (6’)%¥(k) has a non-zero average
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(o' & = 0)) = (c%(k =0)) = PV. This would lead to the undesirable

feature that the Green-Kubo integrand in (3.156) tends to a plateau, with

dramatic consequences on 7. The difficulty stems from the fact that, as

it- stands, the expression (3.131) of Kn(k, ?) is not correct. According to

the Mori framework, the appropriate expression of this memory function

is written as

Kn(k, ) = (4;(K), 4,(k)) 7 (f5(k), exp[i(1 = @)Lt]f(K)).

(3.159)

As remarked in Section 3.1, the identification of the scalar product (4, B)
with the correlation function {(A*B) is correct only if at least one of the
variables A, B has a zero average. Otherwise, on the basis of linear response
theory the appropriate correspondence is (Mori 1965a)

(4,B) = (A*B) — (A*)(B) = ([4* — (4] [B-(B)]) = (A*B)
(3.160)

Since it is readily shown that <exp[i(1 — ®)Lt1/,(K)) = { f,(k)), the cor-
rect expression of Ky (k,t) in terms of correlation functions reads
Kk, 1) = (A2(0) 4, (k) (F3(K) expi(1 — @) Le1f>(K))
= k*(Nmky T) = ([(8")% (k)] * exp [i(1 — ®)Lt] (37)* (k)
(3.162)

where (67)% (k) = (¢’)%(k) — PVd o- As a consequence, the correct result
for the longitudinal viscosity coefficient can be written as

= (kaTV) ™ | dt¢[(a")=(k=0) = PV] exp(iLt)

[(¢")% (k=0)—PV]). (3.162)

Recalling the definition (3.129) of (6’)*(k), it is interesting to note that
the explicit expression of the Green-Kubo integrand in eqn (3.162) depends
in general on the statistical ensemble adopted to evaluate the average. In
the simplest case of the microcanonical ensemble normally used in the
simulation work, there is no fluctuation both in the number of particles and

in the energy; as a result,
(6")%(k = 0) = 0%(k = 0) =), [m(vi,z)z -1 (&/n)e’ <r,,)]
i Jj*i
' (3.163)

(cf. eqn (1.178)). In the case of a canonical ensemble, we must instead ke.ep
the term in (3.129) with £k = 0), whereas both the contributions with
fi(k = 0) and £(k = 0) should be retained for a grand-canonical ensemble
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(Zwanzig 1965). The final outcome for # should of course be the same in
any case.

From eqn(3.162) and the previous result (3.109) for #, it is of
course possible to deduce the value of the bulk viscosity coefficient
Ny = L — +n. It is, however, instructive to discuss an independent deriva-
tion, which starts from the consideration of the general correlation function
of the stress tensor

Sas,v5(t) = (1/N){a*(0)a”(2)) (3.164)

where 6% = g% (k = 0). According to all the possible combinations of the
indexes a, B8, y, 6 = (x,y,z), we have in principle 34 = 81 correlation
functions. Exploiting the symmetric character of the stress tensor
(6% = g?*), the actual number of different functions is reduced to 36. An
aid for the visualization of the latter is provided by the so-called ‘Voigt
convention’ of indexes:

xx—>1 yy—2 zz—3
Zx—4 xy—5 yz—6 (3.165)

As a result, the 36 functions S;,(¢) where A,v =1,...,6 can be arranged
in a 6 X 6 square matrix. Because of the stationarity and its even character
in time, the matrix (S;,(z)) is symmetric, and the number of independent
functions is decreased to 21. Further reductions are possible only if the
Hamiltonian of the system exhibits additional local symmetries. This is
always the case in crystals having unit cells with symmetry higher than
triclinic. In particular, choosing the axes x, y, z along the cell edges, for
cubic lattices it is readily seen that

811(2) = S (t) = S5(1), (3.166a)
S12(2) = Si3(2) = Su(1), (3.166b)
Su(t) = Sss(2) = Ses(2), (3.166¢)
S, (2) = Su(2)d,, (1=4,5,6). (3.166d)

In such a case, the independent quantities are reduced to three, namely
85, (#), S1,(), and S, (¢). In an isotropic system such as a liquid, a further
constraint comes from the fact that the invariance is not restricted to the
particular angles of the cubic point group. Requiring that, for example,
811() = Sg x(t) is unchanged under a rotation by an arbitrary angle
around the z-axis, we eventually find that

In the standard theory of elasticity, the initial values S,,(f = 0) are
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actually referred to as the elastic constants of the medium, and eqn (3.167)
at ¢ = 0 is known as the ‘Cauchy isotropy-condition’.

All the previous symmetry arguments remain unchanged by replacing
the tensor components ¢% with (&’)%, where (8')* = (¢/)* — PV and
(6')* = o for a # B. Letting S¢g,5 = (1/N) <(8)%(0) (67)7(1)),
consider in an isotropic system the quantity g

S’ (t) = %Zséa,ﬂﬂ(t)'= % [Zsé,aa(t) +2 Z St;a,ﬁﬂ(t)jl
ap a a,pf>a

= 184 (8) + 280(2) = Siu(8) — $54(2) (3.168)

where in the last step Si,(#) has been eliminated by using the primed ver-
sion of eqn (3.167). Since from eqns (3.162) and (3.106)

o

[ arsi(e) =m, (3.169)
0

N
kg TV

] drSL(2) =, (3.170)
0

ks TV

we deduce that a convenient Green-Kubo representation for the bulk
viscosity coefficient n, = m — 41 can be written as

_ N
VT kgT

n Vof drS’ ()

0

kBA;Vi dt{[4Tro’ (0)] [+ Tro’ ()1 (3.171)

where Tro’ = ) ,(0')*.

Summing up, the Green-Kubo expressions of the transport properties
show that a large amount of microscopic information is actually hidden in
these few coefficients. The integral character of the relationships seems to
indicate that a relatively simple account of the dynamics behind the
integrands may be sufficent. However, in several cases both short- and
long-time features turn out to be equally important. To be more specific,
the presence of a long-lasting ‘tail’ in a Green-Kubo integrand may have
a substantial relevance on the value of the corresponding transport coeffi-
cient, even if by itself the tail has a relatively small amplitude. In dense
fluids, the simultaneous occurrence of fast and slow decay channels is so
frequent to justify an extension of the conventional kinetic approaches to
encompass both these dynamical features. This will be the subject of the
forthcoming Chapter.
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4

Generalized kinetic theory

4.1 THE MICROSCOPIC DYNAMICS OF PHASE-SPACE
DENSITIES '

4.1.1 Phase-space densities and their correlation functions

Up to the early 1970s, a ‘kinetic approach’ to the time-dependent properties
of fluids was synonymous with a framework based on statistical mechanics
in which a central role is played by those dynamical events referred to as
uncorrelated binary collisions. Although the details of these collisional
events depend on the specific form of the interatomic potential, in most
cases the relevant effects are due to the harsh repulsion prevailing at small
separations, often modelled as a ‘hard sphere’ interaction. As a conse-
quence, a collision may usually be considered as an event strongly localized
both in space and time. Because of this character, it seems reasonable to
assume that two subsequent collisions are mutually uncorrelated. This
assumption is actually one of the cornerstones of the traditional kinetic
frameworks since their invention by Boltzmann more than a century ago.
If we explore at a deeper qualitative level the physical content of the
uncorrelated-collisions assumption, we arrive at the conclusion that this
ansatz is indeed justified for dilute fluids, where the collisional events are
comparatively rare so that, in a sense, a particle has available an amount
of space and time sufficient to “forget’ a collision before the occurrence of
another one.

On the other hand, the assumption is expected to be on shaky grounds
for dense fluids or liquids, where the collisions are so frequent that they are
likely to interfere with each other. The uncorrelation ansatz is clearly
equivalent to a loss of memory, or to a ‘Markov approximation’ in the
language of Section 3.1. As a result, for dense fluids the conventional
kinetic approach should be critically revisited to allow for the presence of
non-Markovian effects. Since the revised framework should ideally encom-
pass all the successful low-density results of the old one, its formal structure
is initially phrased in a quite similar way.

The bases for such a generalized kinetic theory were set during the 1970s
and the early 1980s by several independent workers, who arrived at
essentially similar conclusions despite some minor differences and/or
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emphasis on particular aspects. For example, the explicit form of many
res!.llts depends upon the individual choice of dealing with hard-sphere
ilulds (tv.vhose treatment is more rigorous) or with systems characterized
y continuous potentials (which are certainly more realisti i
co t stic,
additional approximations). put reduire
. In any case, the basic ingredients of any kinetic framework are the
ynefn'ucal var.lables known as ‘phase-space densities’. If we consider a
specified particle at a position r;(#) and with momentum p;(¢), the
self-phase-space density is defined as o

Soi(tps ) = 8(r — xi(£))o(p — pi(2)). 4.1
Its equilibrium average reads
(foi(mps 1)) = (£, i(xp; 0)) = (1/V)f,(p) 4.2)

where (d(r ~r;)) = 1/V and
(6(p — p)) = /,(p) = (B/2nm)*? exp(—Bp*/2m) 4.3)

is the normalized Maxwell distribution of momenta. Note that in
the therm_odynamic limit (N— o, Voo, with N/V=n finite)
<_fs,i(l'l'; 1) ).—> 0. The single-particle density n;(r,?) (cf. eqn(1.27)) is
§1mply the integral of (4.1) over the field momentum p. We shall now
introduce the time correlation funtion of Js,i(rp; t), defined as

Ci(rp,x'p’58) = (£, (x'p"; 1)1, (rp; 1)). 4.4

The l}omogeneity of the system requires that C,(rp,r’p’;¢) depends on
the dlfference r —r’. In particular, the initial value of (4.4) is

C(rp,r’p’;0) = (1/V)fo(p)o(r —r')é(p — p’). @.5)

fui(k,p; 1) = [drfs,;(m; 1) exp(ik -r)

= exp[ik - r;(¢)]6(p — pi(2)) (4.6)
as well as the correlation function
Ci(k,pp’;t) = fd(r —r1’)C(rp,r’p’; t) exp[ik- (r — r’)]

= (1/V){fei(k,p";0)f, :(k, p; 7)) @.7)

where in the last step we have exploited the k i
. . -space version o -
geneity requirement f the homo
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ik p30)f ik, m5 1)) = fai(k, 075 0)fs, i (k, 25 1))y i

= (873 /V)(fLi(k,p’;0)f,:(k,p; 1)) (k—K').
(4.8)
Clearly,

C.(k,pp’;0) = (1/V)fo(p)o(p —p’). ~ 4.9

Quite similar quantities can be introduced for collective dynamics. Here
we define a phase-space density

frp; 1) = Zé(r - r(1))o(p — pi(2))
= 2 failrps 1) 4.10)

where
(f(rp; )Y = {f(rp; 0)) = nfo(p). @4.11)

Since now 'the equilibrium value is finite even in the thermodynamic limit,
it is convenient to introduce a phase-space density fluctuation

flrp; ) = f(rp; t) — nfy(p) @.12)

along with the corresponding time correlation function
C(rp,1'p’;t) = {F(r'p’;0)7 (rp; 1)) 4.13)

which is again a function of r.— r’. After the definition (4.10),
C(rp; r’'p’; t) comprises a self part NC,(rp; r'p’; ¢) as well as a contribu-
tion associated with particle pairs. In particular:

’;0) = nfy(p)o(r —r")é(p —p’)
+n*g(|r=r1'|) = 11f6(P)f(p’)  (4.14)

where the appearance of the pair distribution function follows from
2o —r)d(r—n))y = D (6(r —r)o(r' —r—ry))
Lj+i i,j*i

(1/V)Nng(|r —r'|) =n?g(|r =r'|).
(4.15)

In analogy with the single-particle case, we may define even here the
corresponding quantities in k-space, namely

C(rp,r'p
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Fik,p;t) = !drf(rp; t) exp(ik-r)

= Yexp[ik-1,()]16(p — (1)) — 2)’nfo(0)fo(p"),
(4.16)

C(k,pp’s 1) = [d(r = ¢')C(rp, r'p"; 1) explik- (r — 1')]

= (1/V){f*(k, p’;0)f (k, p; 1)). 4.17)
In particular,
C(k,pp’;0) = nfy(p)o(p —p’) + n[S(k) — 11 4()fi(p’) (4.18)

where we have used the definition (1.14) of the static structure factor. The
quantities C,(k, pp’;¢) and C(k, pp’; ¢) can formally be viewed as matrix
elements in the continuum space of the field variables p and p’. The
elements of the corresponding inverse matrices are defined by

jdp”C(k,pp”;t)C“(k,p” 'st) = sdp”C"‘(k,pp”;t)C(k,p”p’;t)

=d(p—p’) (4.19)

and by a similar equation for C;. In the following, we shall make use of
the quantities C;!(k, pp’; 0) and C~!(k, pp’; 0). In view of (4.19) and of
the results (4.9), (4.18), it is readily found that

C;'(k,pp’;0) = [nfo(p)] 'o(p — p’) (4.20)
C~'(k,pp’;0) = [nfo(p)] '6(p — p’) — c(k) 4.21)

where in the structural theories of fluids the quantity c(k) = (1/n) X
[1 - (S(k))~'] is referred to as the direct correlation function in k-space
(Hansen and McDonald 1986). ’

After this flood of definitions, it is worthwhile to make a short pause

" to discuss the relevance of these dynamical variables and of the corres-

ponding correlation functions. Although rather heavy in the notations,
the phase-space description is a necessity if we wish to understand the
basic dynamics of collisional processes without having every time. to deal
with the different ‘details’ proper of a particular dynamical variable. At
the end, a gratifying consequence of this comprehensive character will be
that the time correlations of practical interest can simply be expressed by
integrals involving the ‘fundamental’ correlation functions of the appro-
priate phase-space densities. For example, the velocity autocorrelation
function can be written as
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(vi(0) - vi(2)) = (1/m?)<p;(0) - p:(2))

= (1/m2)§drdr' Sdp dp’ (p’-p)Ci(rp,r'p’; 1)

= (V/m)[dpdp’ (p"-p)Cu(k = 0,pp50).  (4.22)

Similarly, in the collective case the intermediate scattering function and the
transverse current correlation function can respectively be expressed as

F(k,t) = (l/N)jdp dp’ (f*(k,p’;0)f (k, p; 1))
= (1/n)§dp dp’ C(k,pp’; ) (4.23)
Cr(k,1) = (1/Nm?)|dpdp’ (0"),x (7* (k, 075 0)F (K, p3 1))

= (1/nm?){dpdp’ (p"), P, C(k, pp'; 1) (4.2

where in writing (4.24) we have chosen k along the z-axis and exploited the
result {dpp, fo(p) =0

The first step to be made in order to understand the events ruling the
dynamics of the basic quantities C,(k, pp’; ¢) and C(k, pp’; ¢) is clearly to
write down their exact equations of motion. As remarked at the beginning
of this section, we are particularly interested in exploring physical situations
where the uncorrelated-collision approximation becomes suspect. The
memory-function framework appears to be the natural approach to assess
from the very start the presence and the relevance of non-Markovian
effects, as well as to possibly suggest better approximation schemes. The
next subsections are consequently devoted to the establishment of such a
framework for phase-space variables (‘generalized kinetic theory’), as well
as to the discussion of important limiting situations which emerge in the
course of the analysis.

4.1.2 Generalized kinetic theory: the exact equations of motion

Like any other dynamical variable, both the self-phase-space density
fs,i(k, p; 1) and its collective counterpart f (k, p; ¢) satisfy equations of
motion of the general form f(@) = iLf(¢), where the Liouvillian (3.2)
of the system comprises both a ‘free-streaming’ part ),;(p;/m)- (3/dr;)
and an ‘interaction’ contribution which depends on the interatomic poten-
tial ¢(r;). For a given wavevector k, we shall now introduce suitable
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prOJectlon operators over the sets (f;;(k,p)} = {f ;(k,p;?=0)} and
[f &,p)} = {f (k,p; £ = 0)} where p is now a continuous variable. The
appropriate generalizations of eqn (3.7) read

@, = (1/¥) [dp’ dp" £, .k, 0" )< fui (s ") ++ ) €71 (k, p"p's £ = 0)
(4.25)
and

® = (1/V){dp’ dp” F(k, p')<F (K, ") -+ - YC (K, p"p’5 £ = 0)
4.26)

v/ghere it is readily verified that @ f, ;(k, p) =f; ;(k, p) and (S’f k,p) =
Sk, p).

After the usual manipulations of the Mori approach, we arrive at
the following memory equations for the two phase-space correlations
Ci&k,pp’;?) and C(k,pp’; ?1):

C.(k,pp’5) =i [dp” @,(k; pp")C, (K, p"P’; 1)
t

~ [acfap” M,(k, 00”5 D) (Kp7p75 1 — 1), @27)
0

C(k,pp’;1) = ijdp” 2(k; pp”)C(k,p"p’; 1)
t
- [arfap” Mk pp7s ) D7D 1 - 1), @.28)
0

Here the elements of the proper frequency matrices read

i2,(k,pp’) = (/)] dp” (/2,0 0") £,k 2)YCT (Ko 0707 7 = 0),
4.29)

i2(k,pp’) = (1/V)[dp” ¢ f*(k, p”) (k, p))C~ (K, p"p’; £ = 0),
' (4.30)

whereas those of the memory matrices are given by
M, (k,pp’5 1) = (1/V)[dp" <[(1 = @), (k, p")]* expli(1 — @,)L¢]

[(1 = @)Lk, p)DC (K, p"p 52 = 0), (4.31)
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M(k,pp’; 1) = (1/V)[dp"<[(1 - ®) 7 (k,p")]* exp[i(1 ~ ®@)Lt]

[(1 - ®) /(k,p)]YC' (k,p"p’; 1 = 0). @.32)

The final step of the memory function formalism is the introduction for
all the time-dependent quantities of the corresponding Laplace transforms
F(z) = | dtexp(~2)F(1) 4.33)

0

to eventually write eqns (4.27) and (4.28) in the form
2C,(k,pp’52) — Cy(k, pp’; £ = 0) =i [dp” 2, (k; pp”) &, (k, p"p'; 2)

~ [ dp" 31, (k, 00”3 2) &, (k.00 2),
(4.34)

zC(k,pp’;z) — C(k,pp’; t =0) = isdp” 2(k;pp”)C(k,p"p’;2)

Sdp”M(k pp”;z)C(k,p"p’;2).
(4.35)

By means of these memory equations (first obtained by Akcasu and
Duderstadt (1969)) it is relatively straightforward to make contact with all
the basic results of previous kinetic treatments. First of all, one needs the
proper frequency matrix elements Q,(k; pp’)‘and Q(k; pp’). These can be
calculated exactly, the final result being (see Appendix F):

iQ(k;pp’) = };} (k-p)o(p—p’), (4.36)

00k pp') = - (k*p)o(p — p’) — = (k- D)nfy(p)e (k). (4.37)

Here the contributions proportional to d(p — p’) stem from the ‘free-
streaming’ portion of the Liouvillian, a fact which explains their identical
form for the self and the collective cases. In the latter, the additional
contribution proportional to c¢(k) accounts for the static correlations
occurring between different particles because of the interatomic forces. In
eqn (4.37), the latter are taken into account in a typical ‘mean-field’ way,
with the relevant particle separations at a given k being determined by the
equilibrium structure of the fluid (cf. eqn (F.8)).
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By themselves, the results (4.36), (4.37) alone are not expected to provide
an acceptable description of the dynamics of the phase-space correlations.
This is fairly obvious for the self case, where Q,(k, pp’) only accounts for
free motion because the average force on a particle vanishes. Even in the
collective case, the mean-field result (4.37) ignores completely the intricate
time-dependent effects of the interatomic forces (i.e. the dynamics of
‘collisional’ events). All these features are clearly ‘hidden’ in the memory
functions M, and M in eqns (4.27) and (4.28).

Before exploring the latter quantities in detail, it is gratifying to realize
the progress inherent to a purely mean-field description with respect to
another simple scheme known as the ‘Vlasov approx1matlon This is easily
derived from the exact equation of motion for f (k, p; ¢), which reads
(cf. eqn (F.5)):

Flk,pt) - ;;— (k-p)f(k,p;?) = D) explik-r;(7)]

iLj*i

s 6¢(ry(t))
aplo(@ = ()] [W}
4.38)

Here the pair force on the right-hand side can formally be expressed as

BLICG) N T P

5, (1) (1))

3¢ (r)

= —(2n)‘3§dk’exp(—ik’ . U(t))jdr exp(ik’ -r)

(27) = [ dk” exp ( —ik” - 1, (£)) ik (k") (4.39)

where the pair potential ¢(r) is assumed to be sufficiently regular to have
a definite Fourier transform ¢(k’). Inserting (4.39) into (4.38) we obtain

Flmi1) = = () f0, B ) =

a - ’ ! ” ’ ”
~(2m)7 3 [ak g [0k -k pi )] -k S (k) [dp” 1,07, p7310)
LjEi
(4.40)
where the integral over p” has been inserted in order to reproduce the
structure of a phase-space density. Equation (4.40) is exact, and the

appearance on the right-hand side of the product of two phase-space
densities reflects the typical hierarchical structure of many-body systems.
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In order to make the problem tractable, the quantity };;f; ;(k — k', p; £)
is replaced by its average value (27)’ nfo(p)d(k — k), the final result being
the Viasov equation

Flm30) = = (k2 0 35 1) = = = (k- P)fo() [ B8 (K)]

sdp 7 f(k,p”; 1) (4.41)

where we have used [3f,(p)/dp] = — (8/m)fy(p)p. The result (4.41) was
originally deduced by a suitable factorization of non-equilibrium distribu-
tion functions, followed by the assumption that the departures from
equilibrium averages are sufficiently small to be treated perturbatively (e.g.
Friedman (1985)). The latter hypothesis is equivalent to the linear-response
approach adopted in the memory-function framework (Mori 1965). Multi-
plying (4.41) by f *(k, p’; 0) and taking the average we obtain

Clk,Bs 1) — - (k- B)Ck pB73 1) = = (k- ) () [ 56 (K)]

§dp "C(k,p"p’s1).  (4.42)

This result can be compared with the one predicted by eqn (4.28) in the
absence of any memory effects. In the latter case, the insertion of (4.37)
yields

Cllk,pp’31) = = (k-p)Ck,pB'51) = = - (k- B)fo(p)e(k)

[dp” C(k,p7p731), (@.43)

indicating that the quantity —B¢(k) is replaced by the direct correlation
function c(k). This represents a substantial improvement, because at small
separations the pair potential ¢(r) usually has a strongly repulsive part
which makes questionable the definition of the Fourier transform ¢(k).
Whereas the Vlasov approximation neglects any correlation effects between
the particles, the mean-field result (4.37) incorporates the fact that two
atoms cannot be found at arbitrarily small separations. As a result, the
effective ‘renormalization’ of the bare potential ¢(r) with the quantity
—(1/B8)c(r) is physically sound both for small r (where the effects of the
repulsion are taken into account) and for large r (where the correlations
become very small, and the two results coincide).

In any case, both the results (4.42) and (4.43) are usually referred to as
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‘collisionless approximations’ because they ignore any dynamical effect of
the collisional processes. The ultimate goal of kinetic approaches is instead
to account for these time-dependent features in some definite approxima-
tion scheme. The simplest physical situation occurs at low densities, where
a Markovian approximation for the memory functions M, (k, pp’; t) and
M(k, pp’; t) becomes rigorous in the low wavevector limit (Mazenko 1972).
For example, eqn (4.35) in this limiting case can be written as

2C(k,pp’32) — C(k,pp’5 ¢ = 0) = [ dp” [i2(k, pp”)

—I'(pp”)1C(k,p"p’;2). (4.44)
Here

I'(pp”) = lim lim lim M(k, pp”;z). (4.45)
z=0 k=0 n—0

When written in the time domain, eqn (4.44) has the typical ‘relaxation’
form of the most famous result of conventional kinetic theories, the
Boltzmann equation for the approach of the phase-space distribution
to equilibrium. Within the usual linearization schemes implying small
departures from equilibrium, the result (4.44) is actually found to coincide
with the Boltzmann equation (Mazenko 1972). The detailed expression
of the ‘relaxation rate’ I'(pp’) is reported, for example, by Boon and Yip
(1980); an immediate consequence of the density expansion implicit in
eqn (4.45) is that I'(pp’) = noy(pp’), where o,(pp’) involves the typical
quantities relevant for an isolated binary collision, such as the momenta
before and after the collision and the ‘scattering cross section’ which
depends on the form of the pair potential ¢(r). In the particular case of
hard spheres, these low-density results form the backbone of the framework
conventionally referred to as Enskog theory. Implemented by a suitable
criterion of choice of the hard sphere diameter d, the Enskog results have
been used quite successfully to account for several properties of real gases
at moderate densities, including all the transport coefficients (e.g. Reed and
Gubbins 1973).

As remarked at the beginning of Section 4.1.1, the troubles arise as
soon as we consider dense fluids, where the predictions of the Boltzmann
equation begin to fail in several respects. The most evident defect is that
the larger probability that two particles have to collide at increasing
densities cannot be accounted for by the simple proportionality to n of the
quantity I'(pp’). Indeed, as n becomes larger a certain amount of structure
begins to build up at the close distances relevant for the binary encounter;
the effect becomes more and more marked at increasing densities, as
indicated by the progressively higher first peak of the pair distribution
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function g(r). The development at small separations of these structural
features yields an additional increase with z of the probability of occurrence
of a binary collision; as a result, the density-independent quantity a,(pp”’)
must be replaced by a new one, o(pp’), which takes into account the onset
of structure and increases with n. While these qualitative considerations are
valid for any fluid, rigorous results accounting for this effect have only been
obtained for a hard sphere fluid (Blum and Lebowitz 1969; Mazenko et al.
1972; Konijnendijk and van Leeuwen 1973). As far as the structural effects
are concerned, the relevant modification with respect to the low-density
Enskog result is the appearance as a factor in o(pp’) of the pair distribution
function at contact g(d), which provides the expected increase with n
(cf. the result (3.76) for the collision rate). From a theoretical point of view,
this generalized Enskog theory represents an important milestone and its
predictions are found to extend substantially the validity domain of the
previous Boltzmann-Enskog results. The improved theory still assumes that
two subsequent binary collisions are uncorrelated, and therefore retains
the original Markovian character. Note, incidentally, that the meaning
of attributes like ‘subsequent’ and ‘binary’ is really unambiguous only for
hard sphere systems where the collisions are instantaneous. Somewhat
improperly, these terms are often used in a broad sense even when dealing
with fluids having continuous potentials.

Unfortunately, even the predictions of the generalized Enskog theory are
found to become increasingly incorrect as the hard sphere packing fraction
approaches the values typical of the liquid state. As already remarked in
Section 3.3, these shortcomings are anticipated at lower densities by the
appearance of a ¢~32 tail in the velocity autocorrelation function w(?).
However, it is mostly in the very dense hard sphere fluids that the
theoretical results become really unsatisfactory. In particular, the theory is
intrinsically unable to account for the appearance of a negative region in
w(?), a feature which implies a substantial reduction of the diffusion coeffi-
cient with respect to the Enskog value (3.79). Also, computer simulations
performed in dense hard sphere fluids indicate the presence of propagating
shear waves in the transverse current spectra Cr(k, w) at finite wave-
vectors (Alley et al. 1983). This behaviour is quite unexpected on the basis
of the generalized Enskog theory, which in the entire ¥ range does not
predict any inelastic peak in Cr(k, w).

The inescapable consequence of this failure is that for dense hard sphere
fluids the collisions cannot be considered any more as uncorrelated, or
equivalently that the memory functions M, and M develop an increasing
non-Markovian character. Because of the instantaneous character of the
binary collisions, the Enskog framework is expected to be accurate over a
short timescale (of the order of yg!, cf.(3.76)), and/or for large enough
frequencies. By itself, any correlation effect between the collisions requires
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instead some time to develop. As a consequence, we argue that in dense
hard sphere fluids a more appropriate form of the Laplace-transformed
memory functions can be written as

M,(k,pp’;z) = M, g(k,pp’) + M’ (k,pp’;2), (4.46)
M(k;pp’;z) = Mg(k,pp’) + M’ (k,pp’;2), (4.47)

where the suffix E refers to the Markovian results of the generalized
Enskog theory, and the primed quantities (which account for the effects
of correlated collisions) are expected to be relevant for small z. Physically,
the simplest sequence of collisional events leading to a non-Markovian
behaviour consists in an initial collision between, say, particles 1 and 2,
followed by a collision between particle 2 and another particle 3 and by a
final ‘recollision’ again between particles 1 and 2. Similarly, one may
envisage more complicated intermediate sequences involving additional
particles. In any case, the occurrence of the final recollision is affected by
the previous ‘history’ of collisional events, leading to a situation where
memory effects are important. Whereas the occurrence of these sequences
of correlated collisions (or ‘ring collisions’) is unlikely in’ a dilute system,
they are expected to be frequent at sufficiently high densities.

As noted before, in a dense fluid described in terms of a continuous
interatomic potential no clearcut separation can in principle be traced
between the collisional events, which are now characterized by a finite
duration. Nevertheless, the collisional times are quite short (=10~s) on
the timescale of several dynamical phenomena of interest in the liquid state.
Correlated-collision sequences similar to those previously described are less
precisely defined than for hard sphere systems, but can easily be imagined
to have an important role even in this case, especially if their dynamical
effects are long-lasting with respect to the collisional times. As a result, even
in this case the memory functions can conveniently be separated into a ‘fast’
collisional part (referred to as ‘binary’ to keep some analogy with the
hard sphere case), and in an addditional contribution associated with a
considerably longer decay time. More precisely, in the time domain the
memory functions M, and M can be split as follows:

M (k,pp’;t) =M, z(k,pp’; ) + M, (k,pp’; 1), (4.48)
M(k;pp’;t) = Mg(k,pp’;t) + M’ (k,pp’; ). (4.49)

Here the suffix B stands for ‘binary’ and the non-instantaneous character
of the collision has been accounted for by giving the binary contributions
an unspecified time dependence rather than the typical d(¢) form of the
Markovian scheme. Besides the previous qualitative remarks, eqns (4.48)
and (4.49) still appear rather formal (note, however, the analogy of this
splitting of the phase-space memory functions with the empirical resuit
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(3.80) for a Lennard-Jones fluid). It is now time to discuss in a more
quantitative way the actual information conveyed by the memory functions,
with the final objective of ascertaining both the physical content and the
mathematical form of the splittings (4.48), (4.49).

4.2 THE PHASE-SPACE MEMORY FUNCTIONS

Let us come back to the definitions (4.31) and (4.32) of the elements
M,(k,pp’; t) and M(k,pp’;¢) of the memory matrices. To express these
quantities in detail, we need the components at ¢ = 0 of the respective
‘fluctuating forces’. In the collective case, the latter after eqn (4.38) can be
written as

(1-@)f(kp) = (1- 0)[(6/61’)' 2 ¢( ”) exp (ik - r;)d(p -p.)]

i, j#i
] 09 (Ry,)
=(1-¢@) [EE'SdR] dPIdRZdPZT
exp(ik-R;)d(p — p1)f2(R/Py, Rsz)} (4.50)

where the free-streaming term (i/m) (k * p) f (k, p) has been omitted since
1-@ f (k, p) = 0 by definition. In the last step of (4.50) we have intro-
duced the variable

LH(RPLRP) = D) 6(R, —1)d(P, — p)d(R, — x;)6(P, — py)
INEY:
4.51)

which can be viewed as a higher-order phase-space density. To simplify
somewhat the notations, in the following we shall often adopt the conven-
tion of writing the combinations of field variables (R, P,), (R;,P,), ...
simply as 1, 2, .... Also, when appropriate, the phase-space variables of
the ith particle at time ¢ will be denoted as g;(¢) = (r;(¢t), p;(¥)); as always
in this book, the absence of any indication for time # in a dynamical variable
means that the latter is evaluated at ¢ = 0. From the result (4.50) we deduce
that the memory function (4.32) can be written as

3o (Ry,) . d[s(p” —P,)]
R, ap”

1 .
M(k,pp’; t) =T/§dp”§d1 d2d3 d4exp(—ik-R,)

3¢ (Rs4)

x G(12, 34;t) exp(ik - R;) aR,

[o(p —Ps)]

C ik, p"p’). 4.52)
ap -
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Here we have defined
G(12,34;1) = (f}(1,2) exp[(1 — ®)Lt]f1(3,4))  (4.53)

where fz' = fy —{f;) denotes the fluctuation of the variable f;=
(1 — ®@)f,. Recalling the result (4.21) for the elements of the inverse
correlation matrix, we obtain

sy 1 - 8¢(R12).6[5(p’—P1)]
M(k, pp ,t)_Nfo(p,)jdl 423 d4 exp( ~ik-R)) =0 -~
x G(12, 34; ¢) exp (ik - R;) a¢;£34) .6[5(])6; Py)] 4.54)
3

since the term —c(k) in (4.21) gives zero contributions to (4.52). As a result,
the memory function ultimately depends on the dynamics of G(12, 34;¢)
weighted by suitable ‘interaction vertices’ which depend on the pair forces.
From (4.51) it is readily seen that the quantity G describes the motions of
up to four different particles in phase-space, with all the possible correla-
tion effects included.

A similar calculation can be performed for the self-memory-function
M (k,pp’; t), the final result being identical to eqn (4.54) without the
factor (1/N) and with G (12, 34; ¢) replaced by

G,(12,34;1) = {fi2(1,2) exp[i(1 — ®,)Lt] £} ,(3,4)). (4.55)
Here fs’i,z is the fluctuation of the variable f;, = (1 — ®;)f;; ,, and

fu2(1,2) =6(1-q) ) 6(2—q). (4.56)
J(#1i)
The quantity G, describes the correlated motions of a tagged particle and
of the other particles of the fluid. For example, sequences of correlated
collisions like those of the previous subsection are included to all orders
in the description of the dynamics brought about by G,.

The variety of dynamical events accounted for by the presence of G and
G; in the memory functions is formally appealing, but by itself does not
contribute very much to make the problem more tractable. For example,
eqn (4.54) or its self counterpart are not of great help to improve our
knowledge of the dependence of M and M, on the momenta p and p’, and
how this dependence is ultimately reflected on their time decay. The
problem can be effectively bypassed assuming that the memory functions
depend on the momenta only through their initial values (which can actually
be calculated), whereas their time decay can be modelled by some suitable
ansatz. This procedure has in fact been adopted with some success in
the self case, at the price of introducing further assumptions for the
k-dependence of the relaxation time (Akcasu et al. 1970; Desai 1971).
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An alternative to the phenomenological approaches is to rephrase the
problem in such a way that the analysis of the relevant decay mechanisms
is easier. In this respect, a possible procedure is to expand the momentum
dependence of the phase-space densities in terms of a complete set of three-
dimensional polynomials H,(p): /

£t 31) = £3(p) T s, OB () .57

f(k, ;1) = fo(p) EA]AA(k, t)H,(p) (4.58)

where the polynomials are assumed to satisfy the following orthonormality
relations

[ dp (0 B, () H,. (B) = 6,1 4.59)

with the equilibrium distribution f,(p) playing the role of a weight factor.
A convenient -choice for the H, is provided by the three-dimensional
Hermite polynomials (Mazenko ef al. 1972); the first ones read

Hy(p) =1

H(p) = [;ﬁ-] 1/sz Hy(p) = [%] mpx Hy(p) = (%] mpy

wan=3ft ) -9

B B : B
He(p) = —p0r  Hi(p) =_pwp,  Hy(p) = p,p (4.60)
From eqns (4.57), (4.58) and the relation (4.59) with A’ = 0 we deduce that
Agi(k, 1) = [dp s, ik, 0 ), (p), 4.61)

Ak, 1) = [dp (K, p; 1) H, (p). 4.62)

As a result, the first few As are readily seen to have a familiar form. In
particular, the variables

Asi,O(k’ t) = exp[ik'ri(t)], (4°63)

Ao(k, 1) = Yexp[ik -5, (#)] ~ (27)°nd (k) (4.64)
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can respectively be recognized as the self-density n ;(k, #) introduced in
Section 1.4.1 and the density fluctuations A(k, ¢) defined in eqn (1.113).
Also, choosing the wavevector k along the z-axis, the collective variable

Ay (k, 1) = (B/m)"> Y, p; () exp[ik - r;(1)] (4.65)

is seen to be proportional to the longitudinal current j; (k, #), where as
A,(k, ) and A;(k,t) are similarly related to the components of the
transverse current jr(k,?). Note that all these particular As as k=0
become quasi-conserved variables for any system. Moreover, in the special
case of a hard sphere system, an additional quasi-conserved collective
variable is provided by

Ak, 1) = (1N6) 3 [(8/m)p(2) — 3] explik-r,(1)]  (4.66)

which accounts for k-dependent fluctuations in the kinetic energy (or in the
‘temperature’) of the system. On the other hand, in general the variables
Ak, ) for A > 1 and A4, (k, t) for A > 5 are not conserved.

The expansions (4.57), (4.58) for the phase-space densities imply a similar
decomposition for the corresponding time correlation functions

Ci(k,pp’;t) = §fo(p)fo(p’)Hl(p)Hp(p')Cs,u/(k, t), (4.67)

Cli,pp’3 ) = 3, /o(p) Sop' ) Eu(B) Hy (B7)Cuae (K 1), (4.69)

where the quantities
Conr (K, 8) = (1/V){ 45, (k,0) Ay ; (k, 1) ), (4.69)
Cu(k, t) = (1/V){A} (k,0)4;(k, 1)), (4.70)

may formally be regarded as matrix elements in the discrete space of the
indexes 4, A”. On the basis of the previous remarks, it is immediate to relate
some of these quantities with the time correlation functions discussed in
Chapter 1. In particular:

Cioo(k,t)= (1/V)F,(k, 1), 4.71)
Cou(k=0,8)= (1/V)y(e), 4.72)
Coo(k,2) = nF(k, 1), 4.73)
Cii(k, ) = nmpBCy (k, 1), (4.74)

sz(k, t) = C33(k, t) = nmﬂc'r(k, t). (4.75)
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Exploiting the results and (4.9) and (4.18), in the new representation the
‘matrices’ C,(k, f = 0) and C(k, ¢ = 0) are found to be diagonal

Cou(k,t=0)= (1/V)d,,, (4.76)
Cu(k, t=0)=n{1 + [S(k) —1]8,,0}d;,5 4.77)

"As a result
Ciiv(kt=0)=V3, ., ‘ 4.78)
Cit(k,t=0)= {(1/n) — c(k)3,,0}6, ;- 4.79)

Finally, in the discrete space the equivalents of the memory eqns (4.34) and
(4.35) read

zés,lv(k: Z) - Cs,}.v(k’ t= 0) =E [igs,u’ (k) _ils,U.’ (ks z)]és,l’v(k, Z),
Iy
(4.80)

zélv(k’ Z) - C).v(ka t= O) = ; [igl.}.’(k) - Mlﬂ.‘(k9 z)]é).’v(ks Z),
(4.81)

where the elements of the proper frequency matrices read (cf. Appendix F)

i0, 1. (k) = (i/m) [dp H, (p) (k- D)H, (0)Ao(0),  (4.82)

0, (k) = (i/m) | dp H,(p) (k- 0) Hy. (p)i (0)
— [ik/ (mB)"21 nc(k)d;,,0, o (4.83)

In turn, the elements of the memory matrices turn out to be

M, 14 (k,z) = [ dp dp’ H, (), (k, b0 s 2) Hy (p))fo(0"), (4.89)

My (k,2) = [dpdp’ H, (p)3(k, pp’; 2) . (p")o (') (4.85)

Inserting here the Laplace transforms of eqn (4.54) and its self counterpart,
we end up with

i, 13 (k,2) = [ d1 d2d3 dd exp(~ik - Ry) Ve, 6 (Ry;) - Ve, Hy. (P)

G,(12,34; 2) exp (ik * R;) Vg, (Rs4) - Vo, H; (P3),  (4.86)
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MA)."(k’ Z) = (I/N) j d1d2 d3 d4 exp( —ik - RI)VR1¢ (RIZ) . VPlHA’ (P])

é(lza 34; Z) exp(ik : Rs)VR3¢(R34) : VP3H).(P3)' (4.87)

Equations (4.86) and (4.87) are the starting point of the analysis of the
different collisional decay channels which are relevant for the time correla-
tion functions of physical interest. In particular, we shall now discuss how
it is possible to perform in G and G an approximate separation between

a ‘binary’ portion and a contribution which stems from correlated colli-
sions. For the latter, the new representation in terms of the variables
Ay ,(k,t) and A,(k, ) (usually referred to as the modes) will be con-
siderably useful to simplify the analysis.

4.3 BINARY COLLISIONS VERSUS CORRELATED
COLLISIONS

4.3.1 General analysis

Let us now examine more closely the dynamical processes embodied in the
many-particle quantities G, and G for dense fluids. Our discussion will
basically follow the analyses by Sjogren and Sjolander (1979) and by
Sjogren (1980b), dealing respectively with the self and the collective cases.
These works were anticipated by several approaches developed during the
1970s by different authors, notably by Mazenko and co-workers in the
so-called renormalized kinetic theories (for a review, see Mazenko and Yip
1977). Although all these contributions often differ in several technical
aspects, they share the same basic framework; more important, the physical
conclusions which can eventually be drawn turn out to be remarkably
similar. As already noticed, an important ‘technical’ distinction is connected
to the assumed pair potential. Hard sphere systems have often been
privileged because of the clearcut dynamical separation existing between
binary (Enskog) and correlated collisions. For these fluids, additional
important contributions have been provided by deSchepper and Cohen
(1980, 1982), Leutheusser (1982), and Kirkpatrick (1985). The previously
quoted works by Sjogren and Sjélander deal instead with ‘realistic’ fluids
with continuous pair potentials, for which the binary contributions are less
precisely defined than for hard spheres. Needless to say, hard spheres
or not, all these approaches are formally rather complicated, and in the
following we shall limit ourselves to the essential steps of the analysis.

To obtain some insight to the dynamics behind G, and G, we write
down for G a memory equation of the form
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2G,(12,34;z) — G,(12,34;¢t = 0) = sdl’ d2’ [i9,(12,172")

—1(12,1°27;2)]16G,(1727, 34; 2)
(4.88)

and for G a similar equation involving the corresponding quantities ©Q
and I". Using a short-hand notation, these two equations can be simply
written as .

G,(z) = [2I —iQ, + I,(z)]17'G,(t = 0) = R,(z)G,(t = 0), (4.89)
G(z)= [2f - iQ + I'(z)] 7'G(+ = 0) = R(z)G(¢ = 0). (4.90)

These formal results can qualitatively be interpreted as follows. For very
short times, the quantities fs(t) and I(¢) which account for the memory
effects of the collisions may approximately be neglected and the evolution
of G and G is largely determined by the proper frequency contributions.
This instantaneous response corresponds to a ‘binary collision’ event, where
the density effects are taken into account only as an average mean-field
background. However, the occurrence of this event causes fast rearrange-
ments among the neighbouring particles, accounted for by rapidly varying
parts of the memory functions fs and I'. As a result, a more comprehen-
sive physical picture of the collision is obtained by arguing that the latter
is ruled by an effectively time-dependent short-range interaction, whose
short lifetime is determined by the duration of the immediate structural
rearrangements. In more formal terms, the overall dynamics of these fast
events is conveniently described by the quantities

R, p(z) = [aI —iQ, + I, 3(2)] 7, (4.91)
Rp(z)= [ —i2 + ()] 7Y, 4.92)

where the suffix B stands for ‘binary’, and I'; s(#) and I'p(¢) account for
the previous rapidly varying effects. The remaining parts of the memory
functions are responsible for the correlation effects between the collisions.
Letting

Ic(z) =T(z) = T(z) =R;'(2) — R3E(2)
= = R3(2) [R(2) — R, n(2)]RS ! (2), (4.93)
Fo(z)=I(2) — I3(z) =R7'(z) — Rg'(2),
= — Rg'(2) [R(z) — Re(2)1R7'(2), (4.94)

we have that R (z) and R(z) can formally be decomposed into ‘binary’
portions plus an infinite sequence of correlated binary events:
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R.(z) = R,5(z) — Ry s (2) T, c(2)R.(2)
= ksB(Z) - Rs,n(z)f's,c(z)ﬁs,n(z) ‘ .
+ ks,n(z)fs,c(z)ks,n(z)f's,c(z)ks,n(z) + - (495)
R(z) = Ry(z) — Ry(2)Fc(2)R(2)
= Ry(z) — Rp(2)Ic(z)Rs(2)
+ Ry (2)Fc(2) Ry (2) Fc(2) Ry (2) + - - - (4.96)

Although the last step of these equations is very pictorial, no real step
forward has been made since I, .c and I still contain the exact quantities
R, and R, namely the full dynamlcs of the system. However, during the
short duration of the binary collision R, and R can be approximated by
their binary counterparts R, 3 and Rp. On the other hand, in the time
between the collisions the effects of. I'; « and I'c may be approximately
evaluated by assuming that the ‘disturbances’ created by the collision proceed
independently. This implies that in eqns (4.93) and (4.94) all the quantities
R, R, g, R and Ry may be replaced by their ‘disconnected’ portions in which
the many-body dynamics is factorized into two separate contributions. To see
what this approximation actually means, consider for example G,(12, 34; 2)
=R,(12, 34; z2)G;!(12,34;¢ = 0). In the time domain its disconnected
portion can be written as (Sjogren and Sj6lander 1979)

GP(12,34;1) = C,(13;1)C(24; 1) 4.97)

where C, and C are the phase-space. correlation functions defined in
eqns (4.4) and (4.13). Recalling the definition of G, (eqns(4.55) and
(4.56)), it is readily seen that the approximation G,=~ GP? is equivalent to
consider the tagged particle and the surrounding fluid as moving
independently. In more technical terms, this amounts to factorize the full
time-dependent average into the product of a self and a collective correla-
tion function, at the same time ignoring any effect due to the presence of
the projection operator ®,. In eqn (4.93) a ‘disentangling approximation’
s1m11ar to (4.97) is performed even for the binary contrlbutlon R, B(t) =
G, s()IG;(t = 0)]17'. In this case

GPa(12,34;1) = C,u(13;)Ca(241).  (4.98)

Here, one may proceed even further by noting that at this binary level the
decoupling of the tagged particle from the surrounding fluid simply means
that C; p(13;¢) describes the free motion of the particle. On the other
hand, the collective dynamics of the fluid is virtually unaffected by the
removal of a single particle: as far as eqn (4.98) is concerned, we may
approximately replace Cy(24; ) with the full C(24;¢).
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Similar approximations can be made for the collective case (Sjogren
1980b). Here R(z) = G(z)[G(t = 0)]~! in eqn(4.94) is replaced by its
disconnected portion, which follows from

GP(12,34;1) = C(13;1)C(24; 1) + C(14;1)C(23;¢).  (4.99)

~ Note that, in contrast with (4.97), the symmetric character of G allows
the possibility of two distinct decouplings. A similar approximation is
eventually performed even for G3, thus introducing binary correlation
functions like Cg(13;¢), etc.

When expressed in terms of disconnected quantities, the results (4.93)
and (4.94) may finally be inserted into eqns (4.95) and (4.96). After some
simplifications, for G,(z) and G(z) we find

G,(z) = G, 5(2) + V15(2) [GP(¢ =0)]
{GP(z) — GPp(2)} [GY(1=0)]7"¥(2),  (4.100)
G(z) = Gy(z) + Vi(z) [GP(r =0)] !
{G°(z) - GR(2)} [GP(r=0)]""P(z),  (4.101)
where the quantities
V,(z) = [RP(2)] 'R,(2)G,(t = 0), (4.102)
V(z)= [RP(z)] 'R(z)G(t =0), (4.103)

(along with similar definitions for f/s,B(z) and V3(z)) may formally be
interpreted as z-dependent coupling ‘vertices’. Although the z-dependence
of all these quantities has approximately beerg‘ worked out (Sjogren 1980b),
in the liquid range the dominant role turns out to be provided by the lowest
order results

V.(z) = ¥,5(z) = G,(1=0), (4.104)
V(z) = Va(z) = G(t = 0). (4.105)

These static vertex approximations simplify considerably the subsequent
treatment of the non-binary contributions. Substituting (4.104) and (4.105)
respectively in eqns (4.100) and (4.101), we obtain approximate expressions
for the quantities G,(z) and G(z). Restoring a more explicit notation, we
find that

G,(12,34;2) = G, 5(12,34;2) + §d1' d1” d2’ d2” d3’ d3” d4’ d4”

G,(12,1'2';¢ = 0) [GY(t = 0)] 13,172
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X g dzexp(—z¢)
0

[G2(1727,374";t) — GPx(1727,374";1)]
[G2(¢t =0)]34- 3.4 G,(374",34;t = 0). (4.106)

An entirely analogous result is valid for G(12, 34; z), with the various G;
on the right-hand side replaced by their collective counterparts G. The
inverse matrix elements appearing in these equations are evaluated by
means of (4.97) and (4.99), with the result that

[GP(t=0)]5hs = C71(13;0)C1 (245 0), (4.107)
[GP(t =0)1534 =1 [C71(13;0)C~1(24;0) + C~'(14;0)C~'(23;0)].
(4.108)

_ The final step is to substitute the approximate expressions obtained for
G;(12, 34; 2) and G(12, 34; 2) into the memory functions (4.86) and (4.87).
As a result, we see that the latter naturally split into two separate contribu-
tions. In the time domain we obtain

M, ;0 (k, 1) = Mg ;. (k, 1) + M, ;. (k, 1), (4.109)

My (k, t) = My 5, (K, £) + M. (k, 1), 4.110)

where the quantities Mg (k, ¢) and Mg(k, f) describe the fast dynamics
associated with single binary collisions. These contributions are expected to
decay as d(¢) in the limiting case of a hard-sphere system. On the other hand,
the contributions M;(k,¢) and M’ (k,?) account approximately for the
presence of correlation effects among the collisions. Equations (4.109) and
(4.110) have a form identical to the one envisaged at the end of Section 4.1.2
for the phase-space memory functions. While the expressions for the binary
contributions still remain somewhat formal, the establishment of explicit

results for M, and M’ shows a substantial progress. Exploiting (4.107) and
(4.108), the detailed expressions for these two quantities can be written as

M (k,t) = [d1d2d1” a2/l (k 12,1°27) [ 437 da” 4,(1727,3747;)
[asaav, ,(:374,34), @.111)
M, (k1) = (1/2N) [d1d2d1” d2'of, (k; 12, 1°27) [ d3” d4-

A(l’2’,3’4’;t)jd3d4v,1(k;3'4’,34). 4.112)

Here the quantities
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vs,1(k; 12, 34) = G,(12,34;¢ = 0)exp (ik - R;) Vg, ¢ (R34) - Vp, H, (P;),
(4.113)
v, (k; 12, 34) = G(12,34; ¢ = 0)exp (ik - Ry) Vg, ¢ (Rs34) - Vp,H; (P3),
4.114)

"represent effective interaction vertices, and we have used the conventions
ol (k; 12,34) = vy, (k; 34, 12) and v (k; 12, 34) = v)(k; 34, 12). Moreover,
we have let

4,(12,34;1) = [dTd2d3 43 ;' (1T;0)C(23; 0) [, (13 1) C(3F; 1)
— C,5(13;£)Cy(24;1)] C;1(33;0)C ' (44;0), (4.115)
A(12,34;¢) = jdi d2d3d4Cc1(1T;0)C~1(22;0) [C(13;¢)C(24;1)

— Cp(13;1)Cp(24;2)1C1(33;0)C~1(44;0). (4.116)

Despite the cumbersome appearance of all these results, an important
feature is already evident, namely that the memory functions of the phase-
space correlations ultimately depend on the same dynamical quantities
which we wish to determine. As a consequence, the overall framework has
the typical structure of a self-consistent approach.

4.3.2 Mode-expansion of the non-binary contributions

Before discussing any implications of the self-consistent structure of the
non-binary memory functions; it is worthwhile simplifying the expressions
(4.111) and (4.112) by exploiting the decomposition into ‘modes’ introduced
in Section 4.2. In particular, starting from the expressions

. o |
C(12;2) = C(R,Py, RoPy3 1) = o D fo(P)fo(P,) H,(P))H,. (P,)
uy’
[da G (g, exp(~iq- Ryr), @.117)

| 1 |
C™(12;1) = 5 2} H () Hy. (Py) [ da Gyl (a, t)exp(—ia " Ry),
, ! :
(4.118)

and similar ones for C,(12;¢) and C;!(12;¢), we may repeatedly use
the orthogonality of the Hermite polynomials as well as the relations
(4.76)-(4.79) at t = 0. After some algebra we. find
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. 1
M (k1) = o 2 !dq v (kk — q,q)
e , .
A% e (k — q, q;8) 0 3 (kk — q,q), (4.119)
11 ’
7 8 dq o (ks k — q,
2n 87[3 WZ&‘ 5 qvvc,l (k k q Q)

AG e (k— @, q;8) v, 1 (k;k —q,q), (4.120)

Ml{l’ (k’ t) =

where
o (ki k — q,q) = [d1d2d3 ddexp{~i[(k — q) ‘R, + a* R, — k- Ry ]}

JVG,(12,34;t = 0)
H,(P,)H;(P;)Vg,d(Rs,) - Vo, H; (P;), (4.121)

1 .
ch,a(k;k—q,q)=7/§dl d2d3 ddexp{—i[(k—q) ‘R, + q-R,—k-R;]}

G(12,34; 1 =0)H, (P,) H;(P,) Vg, 6 (Rs,) - Vo, H; (Ps),
4.122)

AR, (k—q,q:t) = [Cy (kK — q,1)Cy(a, 1) — Cp 11 (k — @, )
Cs,z (4, 1)1 C'(a,0)Cs % (q,0), 4.123)
Ay e (k—q,q5t) = [Cyyr (k — q,2)Cy (@, ) = Cp 10 (k — @, 2)
Gp, e (9,1)]1C' (k — q,0)Cx'(q, 0)
Cyy(k - q,0)Cs} (q,0). (4.124)

Inserting all these results into eqns (4.109) and (4.110), we obtain the
final expressions for M; ;; (k,?) and M;; (k,¢). As already remarked,
the binary parts of these memory functions are characterized by a rapid
time decay. On the other hand, through the quantities 4® and A4 the time
dependence of M, and M’ is determined by the superposition of an
infinite number of mode contributions, which comprise a variety of
different timescales. It is, however, reasonable to expect that the decay of
the memory functions at intermediate and long times is affected only
by those mode correlations which have the longest lifetimes. A natural
choice for these important contributions is provided by those modes which
correspond to quasi-conserved dynamical variables.

As a result, in the notation of Section 4.2 we expect that the summations
in eqns (4.119) and (4.120) can be restricted to the mode indexes 0, 1, 2, and
3. In the case of a hard-sphere system, we may even include the mode A,
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associated with temperature fluctuations and have a complete identification
of the relevant modes with the set of hydrodynamic variables. If we deal
instead with a liquid characterized by a continuous potential, the quasi-
conserved character of energy fluctuations cannot be accounted for within
a mode expansion in terms of Hermite polynomials. Fortunately, for
wavevectors beyond the strict hydrodynamic regime the relevance of the
‘couplings to energy fluctuations is found to be small (Sjogren 1980b), and it
is reasonable to neglect them in the intermediate- and large-k range usually
probed in neutron-scattering experiments and in computer simulations.

As the wavevector becomes larger, a significant contribution to the
collective dynamics stems from single-particle motion. To establish a
relation between the two descriptions, we consider eqns (4.80) and (4.81)
written in a matrix notation. These equations can formally be solved for
the correlation matrices C,(k, z) and C(k,z):

C.(k,z) = [zl —i(k) + M,(k,z)]"'-C,(k,0), (4.125)
C(k,z) = [zl —iQ2(k) + M(k,z)] "' C(k,0). (4.126)

In the term in square brackets on the right-hand side of (4.126) we may
extract a self-contribution by adding and subtracting the quantities i€, (k)
and M, (k, z). Exploiting (4. 125) and coming back with scalar notation,
we obtain

Cu(k,z) = Z C, a1 (k, O)Cs,u (k,z) C, (K, 0) + Z (i[9, (k)

gs,v'{(k)] [Mv f(k z) sv{(k’z)]}cév(k,z):l
* 4.127)
After using the results (4.77), (4.78), (4.82), and (4.83) we obtain

Civ(k,z) = N{1 + [S(k) — 1]6,,}C, 1, (k,2)
+ iVk(mpB) ~*nc(k)C, ;,(k, z) Cy (K, 2)

- VZCS Av’ (k z) [Mv §(k Z) s v’ ﬁ(k’z)]cév(k z)
(4.128)

To illustrate this result with an example of physical interest, let us
consider C),(k,z) which is simply related to the longitudinal current
correlation function (cf. eqn (4.74)). In this case, eqn (4.128) reads
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- - k2 o -
Ci(k,z) = NC; ;(k,z) + mnc(k)CS,u(k,z)C“(k,z)

- I/Z(js 1v’ (k Z) [Mv g(k Z) s, v{(k Z)]Cﬂ(k Z)

(4.129)
where we have used the result

2Co1 (k, z) = ik(mp) 2 Cyy (K, 2) (4.130)

which follows directly from (4.81) noting that Cy, (k, 0) = 0, i@y, (k) =

ik(mB)~125,. ; and My,;.(k, z) = O (cf. eqns (4.83) and (4.87)). If the last

term on the right-hand side of (4.129) were neglected, we would obtain
-172

Gk, z) = {[Nés,“(k,z)] - —nc(k)} 4.131)

This ‘mean-field’ result is expected to become increasingly accurate at large
wavevectors, where the dynamics evolves over a microscopic timescale;
eventually, both C;(k,z) and és,u(k, z) approach their common free-
particle limit and the ‘effective potential’ —nc(k)/p vanishes. At inter-
mediate wavevectors slower features begin to develop in the collective
dynamics, and the last term in eqn (4.129) can no longer be neglected. The
leading effects of this contribution, however, are approximately accounted
for by restricting the summations over the modes with v’, ¢ =0, ..., 3. The
result can further be simplified by noting that for v’ or £ =0 all the
memory functions vanish, and that the transverse modes with v/, £ =2, 3
give 'a zero contribution. As a consequence, eqn(4.129) can be cast in
the form

2
Cu(k,2) = { [NG, 1 (k,2)] - —,—n"ﬁ—zndk)

-1
+ = L83, (k, ) —Ms,u(k,z)l} R

The memory functions Ms,u(k, z) and M;;(k,z) can now be split into
binary- and correlated-collision contributions, following the results of the
previous analysis. In particular, in the static vertex approximation the
non-binary parts M; ;(k, z) and Mj, (k, z) are given by the Laplace trans-
forms of eqns (4.119) and (4.120). The final step is the evaluation of the
vertices v( 1 and v, ;, with the result (see Appendix G)

Uvsg,l(k;k —q,q) =i( V/ﬂm)qu[s(Q) - l]av,oae,o, (4.133)
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ve1(ksk — q,q) = —in(Bm)~"*{¢,S(|k — q|) [S(g) — 1]

+ (k — q).S(q) [S( |k - Q|) - 1]}5\»,055,0-
4.134)

Thus, the static vertex approximation automatically selects density modes
as the relevant decay channels for the ‘slow’ portion of the memory func-
‘tions. As already noted, this is generally true in the liquid range, owing
to the sluggishness of the structural rearrangements prevailing at high
densities. In less dense fluids, additional decay channels (particularly those
involving transverse currents) play an important role; in the present
framework, these features can be accounted for by suitable approximations
for the first few frequency-dependent vertices (Sjogren and Sjélander 1979,
Sjogren 1980a,b). As we shall see in Section 4.5, these dynamical events
occurring at intermediate densities can also be studied with much less effort
by a slightly different approach.

Coming back to the liquid range, we now insert the vertices (4.133) and
(4.134) into eqns (4.119) and (4.120). As a result, in the time domain the
final results for the memory functions appearing in eqn (4.132) can be
suminarized as follows:

M, (k, 1) = Mg 11(k t) + M, (k, 1), (4.135)

My (k,t) = My y,(k, 1) + M, (k, ), (4.136)
where, restoring the usual notation for the time-correlation functions
(cf. (4.71), (4.73)): :

M, (k1) = | dagic*(q) [F.( [k - a|, (g, 1)

3m
— Fy3(|k - q|,)F(q, 1)1, (4.137)
Miy( ) = pese [ da [g.e(a) + (k = a)e([k — a] )]
[F(|x —q], t)F(q,t)—FB(lk al,)F(q.1)].
(4.138)

The appearance in these equations of F and F,, whose second time
derivatives are essentially the quantities C;; and C,,;, makes clear the
complicated self-consistent structure which in principle is behind the
result (4.132).

4.3.3 The binary terms

It is now time to discuss in some detail the so far ignored ‘binary’ contribu-
tions in all the previous equations. Although their physical meaning is
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rather clear at a qualitative level, a satisfactory treatment of these fast
dynamical events in a dense fluid with a continuous potential is far from
simple. Fortunately, in most cases it turns out that a very detailed
knowledge of the functional forms of M, p(¢) and Mg(?) is not required.
Broadly speaking, it is reasonable to expect that the initial decay of the full
memory matrices M,(¢) and M(¢) is dominated by their binary portions.
Indeed, in all cases of practical interest it is possible to show that at
sufficiently short times the effects of the non-binary contributions are
at least of the order ¢* (Sjdégren 1980b) As a result, up to the order #?
included, the full and the binary memory matrices coincide, and the initial
decay of M, p(f) and Mg(¢) can be deduced by analysing the short-time
behaviour of M,(¢) and M(¢). By construction, the binary contributions
decrease ‘rapidly’ in all the situations where the full memory functions
develop long-lasting ‘tails’. As a consequence, the knowledge of the initial
decay can be exploited by making some simple ansatz about the functional
forms of M p(¢) and Mp(¢); ideally, the choice of this ‘shape function’
should- be largely irrelevant, provided that it assures a sufficiently rapid
decay with respect to the extent in time of the full memory functions.
Besides these obvious reasons of simplicity, there is an additional motiva-
tion for introducing some element of ‘reasonable phenomenology’ into the
subject. As previously remarked, the important contributions to the long-
lasting features of the memory functions are expected to stem from the
couplings to the ‘slow’ modes, typically those which are quasi-conserved.
On the other hand, the mode expansions (4.119) and (4.120) comprise a
wealth of couplings with other ‘fast’ (or ‘kinetic’) modes. If we focus our
attention only on the slow features, these additional couplings effectively
‘renormalize’ the purely binary contributions. As a result, even assuming
that the binary dynamics has been solved beyond the level of the initial
decay, this would not be the full story for the details of the fast decay of
the memory function. In such a situation, it is clearly wiser to assume a
more pragmatic attitude by adopting the previously mentioned ‘recipes’.

To illustrate these general remarks in a practical case, let us consider
eqns (4.135) and (4.136). The short-time behaviour of the full memory
functions can be written in the form (cf. (3.33))

M, (k,t) = M, (k,0){1 — [t/7,,, (K)]*+ -- -}, (4.139)
My (k, 1) = My (k,0) {1 — [t/7,(k)]* + - - -}, (4.140)

where the initial decay times 7, ,,(k) and 7,,(k) can be evaluated as in
eqn (3.34). At this order, the binary memory functions M ;,(k, ) and
Mjy 1 (k,t) have exactly the same short-time behaviour as their ‘full’
counterparts. This fact is conveniently exploited by assuming that the
overall time dependence of the binary portions can be written in the form
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Mg 11 (K, 1) = M, ;;(k,0)f(2/7,1,(k)), (4.141)
My i (k, t) = My, (k, 0)f (¢/7,,(k)), (4.142)

. where the shape function f(x) decays rapidly and is such that f(x) =

1 — x? for small x. Convenient choices satisfying these requirements may,
for example, be f(x) = exp(—x?) or f(x) = sech?(x).

" The initial values M ;;- (k,# = 0) and M,;. (k,z = 0) are in any case
obtained from a large z expansion of eqns (4.86) and (4.87). Noting that
G.(z) = G,(t = 0)/z and G(z) = G(t = 0)/z at the lowest order in 1/z,
after some lengthy but straightforward calculations we obtain

M, i (k, 1 = 0) = 7 @3 [ AP 1y (P)V, H, () -V Hy. (), (4.143)
1 |
Mll’(k’ t= 0) = %; [Q(Z)Ja,ﬂ - yaﬂ(k) + ﬁkakﬁnc(k):l
[ apsy(p) L) "’H*(P) 8D (ap sy (P )9%? @144

where Q, is the Einstein frequency, the summations run over cartesian
coordinates, and

’¢(R)
3R,0R,

Yo (k) = de exp (ik - R)g(R). (4.145)
The results (4.143) and (4.144) are exact. On the other hand, the expressions
for the short-time decay of the memory functions involve both pair and
triplet distribution functions, where the latter are usually approximated
within the simple ‘superposition scheme’ (1.17). We shall see some examples
of these evaluations in Chapters 5 and 6. '

The last point which remains to be discussed in the context of binary
quantities is how to deal with the ‘matrices’ Cz(¢) and Cy(¢) appearing in
eqns (4.123) and (4.124). In Section 4.3.1 we have already argued that in
the case of the self-memory functions (4.123) the elements of Cg(¢) can
be identified with those appropriate for free particles, whereas Cg(¢) coin-
cides with the full C(¢). When applied to eqn (4.137), these arguments lead
to the result

M, (k, 1) = gn?wjdqqicz(q) [F.(|k—al,) - Fo(|k - a], )] F(g,1)

Fo(lk"Q|,t)
Fs( k-qlat)

] Fs(lk_qlﬁt)F(q’t)
(4.146)

= SR?Bmqu qazc*(q) [l—
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where Fy(q, t) = exp(—q?t?/2Bm) is the free-particle expression of the
interniediate scattering function. Owing to the factors in square brackets,
Mk, ) t* at sufficiently short times. In dense fluids F, decays much
faster than F, as ¢ increases, and the square-bracketed factor in the last
step of (4.146) rapidly approaches unity. The true long-lasting ‘tail’ of
M, |, is consequently ruled by a decay channel involving the product F F.

On the other hand, the simple identification Cy(¢) = C(¢) is not
applicable to the collective case. In the case of (4.138), a simple recipe to
circumvent the problem while still maintaining the requirement of a rapid
decay of Fg(f) is to assume that (Sjogren 19800)

Fy(q,t) = [Fy(q,t)/F(q,t)]1F(q,1). (4.147)
quiation (4.138) can consequently be written as

Miy(k, 1) = e[ da [g.e(a) + (k= a).e(|k —a])]?

{1 _FO(Ik—Q|’t)F0(Qst)

Fk—a.0F(q.0) Tk -al.0F@).

(4.148)
Hence, the tail of M;,(k, ¢) is ultimately ruled by the product FF.

44 A GENERALIZED HYDRODYNAMIC DESCRIPTION

The relevant role played by ‘slow modes’ in the general kinetic framework
has been stressed on several occasions in the last subsections. This circum-
stance has clear analogies with the situation met in ordinary hydro-
dynamics, where the attention is focused on a small set of dynamical
variables whose time evolution becomes very slow as the wavevector k — 0.
As the first few modes are in fact identical with the microscopic hydro-
dynamic variables, we may ask ourselves whether it is possible to establish
a connection between the two descriptions. Since the validity of the kinetic
framework is not restricted to a particular range of wavevectors, the
correspondence will also establish a sort of ‘generalized hydrodynamics’,
which can be compared with the microscopic treatment discussed in
Section 3.4.

A convenient starting point for the analysis is the memory equation (4.81)
for the Laplace transforms C,,(z) of the collective correlations. Rather
than dealing with the full set of indexes A, v, we wish to rewrite eqn (4.81)
in such a way that only a limited number of modes appears explicitly.
This restricted set of H elements is chosen to comprise only those modes
which have a correspondence with the microscopic expressions of the
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hydrodynamic variables; in practice, we may choose the first four or five
modes, according to whether we wish to include explicitly temperature fluc-
tuations in the restricted set. Writing eqn (4.81) in the matrix form

z€C(k,z) — C(k, t = 0) =i[Q(k) — M(k, z)]C(k, z)
=o(k,z)C(k,z), (4.149)

the task of making explicit the appearance of only the H ‘hydrodynamic’
modes of interest can be accomplished by introducing a suitable projection
operator ®,,y which projects over this restricted set. Adopting a bra-ket
notation such that C;, = (4| C|v), etc., the completeness of the full set of
modes can be expressed by the relation };7_|v)(v| = 1. Then @4 =
V-4 vy¢v| = Y HZ§|nY<n|, where the H modes of interest have been
denoted with Latin indexes I, n, ... (n is of course not to be confused
with the number density). Conversely, the complementary operator
Ohya = 1 — @hya = Yiv=u| V> {v| projects over the ‘non-hydrodynamic’
modes, for which we keep the usual Greek-index notation. After a repeated
application of these projection operators on eqn (4.149), we obtain the
exact result (Forster and Martin 1970; Forster 1974; Mazenko 1974)
H-1
ZC[,,(k, Z) - Cln(ks t= 0) = Z [i‘QII’(k) - MI'(ka Z)

— iy (k,2)1Crrn(k, 2) (4.150)

where the quantities 7 (k, z) can be expressed as
iy (k, Z) ZH Z th(k, z) {thd[zl - thd&(ks Z)thd] _lthd}/m’

X &, (K, ). (4.151)

In other terms, all the couplings between the H variables of interest
and the non-hydrodynamic modes are transferred into the new ‘memory
functions’ 7y (k, z).

Let us now consider the density correlatlon Coo(k, t) = nF(k, t). In the
full formulation, its Laplace transform Coo(k, z) satisfies the equation

2Cio(k,2) = nS(K) = 3} 1160, (K) = Foy(1,2)] Gk, 2)

= ik(mB)~2Cy(k, 2) 4.152)

where in the last step we have used 1[)0,,(1() ik(Bm)~'25,,, and
Mo,,(k, z) = M”o(k, z) =0. The result (4.152) is simply the Laplace
version of the continuity equation for the number of particles. On the other
hand, from the opposite time-reversal symmetries of the modes A, and
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A, it follows that Cyy(k,?) = —Cg(k,?) (cf. Appendix B). Exploiting
eqn (4.130) we find that

z[2Co(k, 2) — nS(k)] = — (k%/mB)Cy, (K, 2). (4.153)
Let us now write the memory equation of C‘“(k, Z) according the new
formulation (4.150). If we choose H = 4 we simply obtain

zéll(k9 Z)—n= ino(k)ém(ka z) — [Mu(k, z) + mi(k, Z)]én(k, z)
(4.154)

where we have used iQ,; (k) = 0, and noted that the transverse modes A4,
and A; are effectively uncoupled. The superscript (4) reminds us that we
are dealing with a restricted set of four modes. We may now use (4.130)
to eliminate Cy, (k, z); noting that
1Q,o(k) ik(Bm)=* + ik(Bm) =V nc(k) = [ik/S(k)] (Bm) /2
(4.155)

we find that C;,(k, z) can be expressed as
Cu(k,z) = n{z + [k*/pmS(k)z] + [, (k, z) + mP(k,z)]} !

(4.156)
Substituting this result into eqn (4.153), we obtain
. k*/pmS (k)] -
Coo(k, z) = nS(k) {z + ~[ . (4157
” 2+ [My(k, z) + P (k, 2)] @137

We now compare eqn (4. 157) with a more conventional ‘continued-fraction’
representation of F(k, z) = Coo(k, z)/n, as discussed at the end of Section
3.1. Taking density fluctuations as the only Mori variable, in such a case
we would get

-~ _ (o) |
F(k,z) = S(k) [z + TR (D z)] (4.158)

where we have denoted by K (k, t) the second-order memory function of
F(k, t). Since {w}) = [kgT/mS(k)]k?, we immediately find that

KL(k,Z) My, (k, z) + m“"(k,z). (4.159)

Expanding this result for large values of z, at the lowest order in (1/z) we
find a similar relation for the initial values of the corresponding memory
functions. From eqns (3.42b), (1.142), and (1.143) we have that

Ki(k,t=0) = wi(k) — {(w})
k2

_i 2 _ 2
=Kt B Q- @16
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On the other hand (cf. (4.144))

k2
M (k, 1 =0) = QF — y,(k) + En" ne(k)

k2 ) s k2f
=—+ 02— Q- —- (4.161)
; pm ,BmS (k)
Equations (4.160) and (4.161) differ by a-term (2k2/Bm), which clearly
must come from couplings to variables not included in our original set of
four modes. Indeed, from a large z expansion of #{?(k, z) we obtain

mﬁ)(k’ t= 0) - Z [igly(k)]au,u’ [i‘Qﬂ'l(k)]

— 2 [19,, (k)] [i©2, (k)]. (4.162)

Noting that
iQ,,(k) =i2, (k) = ik(Bm)~"2[(N6/3)8,4 + (2/3)8, 5]

" (4.163)
we find
k2(6 4
m® =0) = — |2 + 2| =242 4.164
(k,t=0) m(9 3] 2k*/ Bm (4.164)

which is just the ‘missing term’ in eqn (4.161).

Coming back to the results (4.156) and (4.157), we may wish to explore
the collective dynamics at a more refined level by even including kinetic
energy fluctuations in the set of relevant modes. This amounts to splitting
the memory function m{P(k,z) into a term which explicitly takes into
account the coupling with the additional mode, plus a ‘remainder’
m{P((k,z) which deals with all the other variables with u > 5. After
some straightforward algebraic manipulations, for H = 5 it is found that
C,,(k, z) can be written as in eqn (4.156) with

iQy, (k) — [My4(k,2) + 2 (k,2)] | |

ok o |
P (k, z) = 7+ [My(k,z) + m(k, z)]

(5)(k z).
(4.165)

We finally insert this result into eqn (4.157). As Ch(k,t) = —Cy(k, 1),
we use the relation

|1914 — [My, + m] |2 = — {iQy, — [My, + M1} (i, — (M, + M1}
(4.166)
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to express. F(k, z) = Coo(k, 2)/n in the form
F(k,z) k[ ks T/mS (k)] -1
ECERN (2.4 (k) = W15 (o, 2)] [12,0) ~ IRk, 2)]
7+ M$)(k,z)

2+ M (k,z) -
(4.167)

where we have let M{) = M,,, + m{). With the appropriate corre-
spondence of indexes, eqn (4.167) closely resembles the previous result
(3.135) obtained in a ‘conventional’ framework. Since the first four modes
are also quasi-conserved variables, this similarity is hardly surprising. Note,
however, that in the present approach the fifth mode A, accounts for the
microscopic fluctuations in the kinetic energy rather than in the total energy
(the latter being the actual quasi-conserved variable). The dynamical
processes ruling the interchange between kinetic and potential energy are
dealt with by the quantity C,(k,z) which enters in the derivation of
eqn (4.165). As a result, the memory function M{)(k,z) appearing in
(4.167) contains a contribution which for k£ — 0 can be identified with the
ordinary thermal conductivity x (Forster 1974; Mazenko 1974).

Considerably simpler results are found for the Laplace transforms
Cx(k,2) and Cy;(k, ) of the transverse current correlation functions. In
such a case, for H < 6 we obtain

n

Ca(k2) = Cy(k,2) = — (M (k, 2) + ity (K, 2)]

(4.168)

Comparmg this with eqn (3.112), we see that the transverse current memory
function Kr(k, z) can simply be expressed as

Kr(k,z) = My (k,2) + iy (K, 2). (4.169)

Again, it is instructive to check this result at the level of the initial values
of the memory functions. Equations (3.42a) and (1.51) give

Kr(k,t =0) = wk(k) = (K*/Bm) + Q3 — (Q)* (4.170)

whereas from (4.144) we deduce
My (k, 1 =0) = QF -y (k) = Qf — () 4.171)
The ‘missing term’ (k2/fm) is again provided by the couplings with

non-hydrodynamic modes. In particular, a (1/z) expansion of #,,(k, z)
yields
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Ml t=0) = = 3 [2,001119,:09] = - 3} [i2,(]*

= — 3, [ik(Bm) =6, 6] = k*/pm. (4.172)

' 'The results (4.167) and (4.168) are formally exact, and at finite wave-
vectors provide a suitable generalization of ordinary hydrodynamics in the
framework of kinetic approaches. It is of course possible to go beyond the
level of this direct correspondence by choosing a larger set of ‘relevant
modes’. In practice, higher-order couplings are dealt with by some simple
approximation scheme, and the problem is formally reduced to the solution
of a finite system of linear equations. These techniques are usually referred
to as ‘kinetic modelling’ (Mazenko et al. 1972). ‘

When considered from the point of view of the conventional memory
functions such as K or Ky, the utility of the results (4.159) and (4.169)
stems from the fact that by a judicious selection of relevant modes any
long-lasting tail in these memory functions may be incorporated into the
‘direct’ terms ‘M,,,(k, t), or more precisely into their non-binary portions
M;,(k, t). The other contributions (comprising both the ‘indirect’ terms
my, and the binary portions Mj ;,,) are expected to account for the short
time features (including the correct initial value) of K (k, ) and Kq(k, ©).
For example, following these arguments, eqns(4.159) and (4.169) can
further be split as

Ky (k,t) = [Mg (K, 1) + my(k, 8)] + M (K, ?)

= [KL(k, )]s + Mii (K, 1), (4.173)
Kr(k, t) = [Mp »(k,t) + my(k, )] + Mi(k, 1)
= [KT(k’ t)]fast + M2’2(k; t) (4-174)

where the subscript ‘fast’ indicates that these contributions account for the
rapid initial decay of the memory functions K; and K.

As remarked in Section 4.3.2, these considerations can be pushed even
further by arguing that in the expansion (4.120) for Mj,(k, #) the modes
responsible for the long-lasting features are just the ‘slow’ modes of the
original set. For the tails, the results bear a close resemblance to those
deducible in an entirely different framework, originally introduced to
account for unexpected features in the dynamics of systems near the critical
point. We shall close this chapter with a brief discussion of these ‘mode-
coupling’ approaches.
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4.5 MObE—COUPLING APPROACHES: CONCEPTS AND
A SIMPLE APPLICATION

Let us consider a physical system specified by a given Hamiltonian, and
assume that we have good reasons to believe that a dynamical variable A4
(or, possibly, a limited set of variables) can be regarded as ‘slow’ in the sense
that its evolution proceeds over times considerably longer than those
associated with some typical microscopic timescale. By construction, the
corresponding fluctuating force f, is orthogonal to A at all times, and
evolves in a different dynamical subspace. As already remarked on several
occasions, if A4 is really slow we may expect a definite separation of
timescales between the dynamics of C,(r) = (AA(f)) and that of the
memory function K, (#) = (f4f4(t) )/(AA). The effects of the latter can
ultimately be accounted for by a Markovian approximation, and we have
made a big step in the direction of predicting a reliable C,(¢).

Unfortunately, these beautifully simple pieces of ‘conventional wisdom’
turn out to give incorrect results in several cases of considerable physical
interest. Paradoxically, the failures are found to be more marked just where
the slow character of 4 seems beyond any doubt. For instance, in critical
dynamics (where the decay of the relevant fluctuations is certainly
characterized by macroscopically long lifetimes) one observes spectral
shapes which are typically non-Lorentzian, in contrast with the Markovian
predictions. Outside the critical region, ordinary Navier-Stokes hydro-
dynamics surely deals with slow variables, and its results are accurate to
the order k2. However, the attempts to extend their validity by considering
higher-order terms in k3 or k* (the so-called ‘Burnett equations’) run
immediately into difficulties or even divergences, indicating a clear non-
analytic behaviour. Finally, the often mentioned presence of long-time tails
o 732 in many correlation functions definitely cannot be accounted for
by a simple Markovian scheme.

The answer given by mode-coupling theories to these disturbing problems
can be summarized in a few remarks. First, the orthogonality of the
fluctuating force to the slow variable A does not necessarily mean that f,
is orthogonal even to combinations of the form A4, 4AAA, etc. Second,
these nonlinear contributions should retain some slowly varying features;
thus, the assumed ‘fast’ subspace of the fluctuating forces may possibly
comprise a slow portion, whose presence is ultimately reflected in the
dynamics of the memory functions. Finally, the leading contributions to
these long-lasting features can be determined by extracting from f, the
parts which behave like the bilinear combinations AA. If these terms exist
(i.e. if the ‘coupling’ to this pair of ‘modes’ does not vanish), they should
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account for any tail occurring at sufficiently long times, and the other
couplings to AAA, ... can be considered as higher-order effects.

In practice, the simplest way to extract the dominant slow contributions
is to introduce another projection operator ®, which projects any variable
onto the subspace spanned by the product A4 (in the case of a set of slow
modes, AA may clearly involve a bilinear combination of different modes).

'As a result, the long-time behaviour of K,(¢) as predicted by the mode-
coupling framework turns out to be

[K4(6)Imc = {{®2fa(0)}* exp[i(1 — @)Lt] {@2£4(0)})/{A44)

= [{A44£,(0))| A4 exp[i(1-®)Lt] AA)/(AAY(AAAA).
4.175)

The ‘vertex’ {(AA f,(0) ) measures the efficiency of the coupling to the pair
variable AA. The time-dependent correlation function in (4.175) is approxi-
mately decoupled into the product of two simpler dynamic correlations
(AA()), at the same time replacing the anomalous propagator with the
ordinary one exp(iLt). Note that in Section 4.3.1 similar approximations
have been made by replacing the full G, and G with their respective
‘disconnected’ portions.

Rather than discussing in more detail the general features of mode-
coupling approaches (e.g. Keyes 1977), we prefer to illustrate how the
framework works in an important case. In this particular example, the final
result will be the emergence of the famous #~%? long-time tail in the
velocity autocorrelation function w(?).

Let us begin by considering the self-intermediate scattering function
F,(k,t). Its first-order memory function K(k, ¢) has been introduced in
Section 3.4.1, where it was shown that for.small wavevectors the ratio
K, (k, t)/k* approaches the velocity autocorrelation function. Since we
are dealing with a single-particle problem, a first slow mode is naturally
provided by the wavevector-dependent self-density fluctuations n, ;.
Owing to the symmetry of the fluctuating force k - v; exp(ik - r;) under time
reversal, the other slow mode is associated with the collective current j.
When applying the recipe (4.175), translational invariance requires that the
product of the two modes is of the form n, ;(q)j(k — q), where eventually
we have to sum over all the intermediate wavevectors q. Making the
decoupling approximations discussed above, we arrive at

2
o Jda [@2Cu(a. 1) + (1 - 82)Cx(a,1)]

x F,(|k —ql,?) (4.176)

(K (k. 1) me =
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where the external wavevector k has been chosen along the z-axis, and
g, = q./q. Therefore, making the limit kK — 0 the normalized velocity
autocorrelation function w(¢) is found to read as

fm

24n3n
Because of the mode-coupling arguments used in its derivation, this result
is expected to account only for the long-lasting tail of (7). In particular,
eqn (4.177) breaks down completely in the short-time region, where the
decay is known to be determined by fast and localized collisional processes
(cf. Section 3.3). A possible way of taking into account the effects of these
microscopic mechanisms has been devised by Gaskell and Miller (1978), the
final result being of the form (4.177) with a g-dependent ‘vertex’ f(q)
appearing in the integral. This ‘velocity field approach’ is discussed in detail
in Appendix H.

In the appropriate domain of validity of the result (4.177), namely for
sufficiently long times, the slow features of w(¢) are determined by the
contribution of the small wavevectors, where all the correlation functions
can be expressed in terms of a hydrodynamic description. In practice,
the slowest contribution turns out to be provided by the decay channel
involving the product Cr(q, t)F,(g, t). Inserting into (4.177) the hydro-
dynamic expressions (3.96), and (3.108), and performing the integral, we
eventually find that

1 ” -3/2
[W(t)]Mc=l—2;{ﬂ{D+E] t} (4.178)

which is the aforementioned ¢~ long-time tail. In dense fluids, the
amplitude factor in eqn (4.178) is usually dominated by the shear viscosity
term, which comes from the effect of transverse current correlations.
Physically, this implies the development around the tagged particle of
‘vortex patterns’ which in a sense may support its motion in a given direc-
tion. Both the %2 decay law and the presence of vortices has indeed
been observed in hard-sphere fluids at intermediate densities (Alder and
Wainwright 1970). In principle, the same effect is present even at higher
densities, namely in the typical liquid range. However, here the substantial
growth of the shear viscosity # decreases the amplitude factor in (4.178)
so much as to make this tail virtually unobservable. As we shall see in the
next chapter, in the liquid range the actual behaviour of w(¢) at intermediate
and long times (including the ‘cage effect’) is determined by decay channels
having an entirely different physical origin.

[w()ue = 555 da [CL(g, 1) +2Cx (g, )1, (g,1). @.177)
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5

Single-particle properties

S§.1 THE VELOCITY AUTOCORRELATION FUNCTION
REVISITED

In Section 3.3 we have seen that the dynamical processes underlying the
velocity autocorrelation function in the liquid range cannot be accounted
for by a simplified memory-function analysis. In particular, the assumption
that the decay of the memory function is ruled by a single relaxation time
must be significantly revised in view of the results of the kinetic framework
developed in the last chapter.

In this context, the relevant equations can be summarized as follows. The
normalized velocity autocorrelation function w(f) satisfies the memory
equation (3.66):

v(t) = —]dt'K(t')n//(t—t'). , 5.1)

In terms of Laplace transforms, eqn (5.1) can be written as

¥(z) = [z+ K(2)] . (5.2)

On the other hand, w(?) is readily expressed in terms of the phase-space
correlations of Section 4.2:

w(t) = VC, 11(k~0,¢) (5.3)

(cf. (4.72)). In turn, the Laplace transform C‘s,“(k, 7) satisfies a memory
equation of the form (4.80). Since we are presently concerned with the
k-0 limit of C,,, we may ignore the proper frequency terms in
eqn (4.80) which all vanish as k = 0 (cf. (4. 82)) Noting that C, ,;(k,
t =0) = 1/V, eqn (4.80) becomes

zés,u(k—>0,z)—(1/V) = _ZMs,lp(k_}O’z)és,pl(k_)o’z)'
" (5.4)

This is still an infinite matrix equation, with the summation running over
all the ‘modes’. Following the general approach of Chapter 4, the memory
function M, ,,(k, ¢) is split into two contributions
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S, lu(k t) = sB 1/1(k t) +Ms,,ly(k t) (55)

Here Mg 1,(k, ?) is a rapidly decaying function of time which describes
the effects of essentially uncorrelated binary collisions, whereas M ,,(k, ?)

- accounts for the coupling of self motion to long-lasting decay channels. In

view of the discussion made in Section 4.3.3, the binary contribution is
expected to be dominant at sufficiently short times, where M, (k, ¢) o 4
As a result, both the initial value and the. initial decay of M ,,(k, ?) are
entirely determined by the binary contribution. In particular from
eqn (4.143) we deduce that the initial value M, ,,(k,t=0) = Mg ,,(k,
t = 0) is given by (Q, is the Einstein frequency):

M, 1, (k,t = 0) = (m/B) 3 AP £, (P) Ve Hy (P) - Vo H,(P)

= (m/p)"*Q3 | dP £,(P) [H,(P)/P]

=235, (5.6)

where we have performed a partial integration involving [dfy(P)/dP,] =
— (B/m)fy(P)P,, and finally exploited the orthonormality of Hermite
polynomials. Owing to the fast character of the binary contribution, it is
reasonable to assume that Mg ,,(k, #) retains the diagonal structure (5.6)
even at later times (Wahnstrom and Sjgren 1982). Following the same
arguments leading to eqn (4.141), we may approximately write that

Mg 1, (k, 1) = Q3 f(t/15(k))d,,i. 5.7

In fluids with continuous potentials the exact details of the ‘binary’
dynamics are largely unknown, and the shape function f(x) in (5.7) is
chosen in such a way to ensure a fast decay of My and to satisfy the
requirement f(x = 0) = 1 — x2. In turn, the time tg(k) is determined by
expanding the memory function up to the order 2.

Turning now the attention on the ‘long-lasting’ contribution M ,,(k, ¢),
from eqn (4.119) we have that M, o(k, ?) = 0 because of the vanishing
of the vertex; moreover, any direct coupling to the transverse motions
vanishes for symmetry reasons, and M; ,(k, ) = M 1;(k, f) = 0. Since
the other direct couplings involving u > 4 are not expected to provide slow
decay channels, they are usually neglected, and we are simply left with
M; ;,(k, ). Adopting these approximations and using the relation (5.3),
eqn (5.4) reduces to

2p(z) = 1= — [Mg (k= 0,2) + M.,,(k>0,2)]¥(z). (5.8)

Comparing with (5.2), we find that in the time domain the memory function
of w(t) can be expressed as
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K(t) =Mg ; (k—0,¢) + M,;(k—0,¢)
= Kg(t) + K’ (2). (5.9)

Letting 75(k — 0) = 7 for notational simplicity, the binary contribution
after eqn (5.7) reads

K(t) = Q3f(¢/7). (5.10)
The binary time 7 has been evaluated in Appendix E lzy a short time expan-
sion of K(¢) (see eqn (E.20)). Physically, 7 = [—K{(0)/223] % can be
interpreted as the duration of a binary collision.

On the other hand, in the static vertex scheme the non-binary part
K'(t) =M, (k—~0,¢) follows directly from eqn (4.145). Thus

K' (1) = (nka T/87°m) [ da g3c*(q) {1 - [Fy(g,1)/Fi(q, 1)])

F(q,t)F(q,1). (5.11)

Performing the angular integrations, eqn (5.11) can be written as

(5.12)

Equations (5.9), (5.10) and (5.12) are the central results of the micro-
scopic kinetic theory of Chapter 4 for the memory function of y(z). We
shall now proceed to discuss the physical relevance of the separate contribu-
tions Ky(¢) and K’(¢) in different time ranges, having in mind typical
liquid-state conditions.

5.1.1 The binary memory function

As already remarked in Chapter 4, the binary contributions are physically
associated with collisional mechanisms with a strongly local character both
in space and in time. Consequently, K3(¢) should account for the fast
initial decrease of the full memory function. The quantity 7 provides a con-
venient' measure of the time extent of these processes, which typically last
for some 10~ "3s. The fact that in the liquid range the initial decay time of
the velocity autocorrelation function (= 24 ') becomes comparable with 7
is a clear evidence that at high densities a tagged particle appears to ‘collide’
all the time. However, the unsatisfactory results obtained in Section 3.3
indicate that the fast collisional processes are unable to account for the
subsequent dynamical features of w(z). At these intermediate times the
binary memory function has already decayed to negligibly small values; in
view of this rapid decrease, the uncertainties due to our poor knowledge
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Fig. 5.1 Short-time decay of the normalized memory function of y(¢) in liquid Rb

at 318 K. The dashed and the dot-dashed lines are respectively the results of the

approximations (5.13) and (5.14) for the binary memory functions with the

theoretical 7 = 0.205 ps. The full line denotes the simulation data for the full
‘memory function (Balucani et al. 1992).
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of the binary dynamics are not so crucial, making reasonable the ‘scaled’
form assumed for Kz(¢) in eqn(5.10). A judicious choice of the shape
function f(x) must be guided by the requirements of a correct initial
behaviour and of a sufficiently rapid decay. When compared with the
simulation data for K(¢) in Lennard-Jones liquids and in liquid alkali
metals, the Gaussian ansatz

Ku(t) = Q3exp(—1%/1?) (5.13)

is found to reproduce the initial decrease of the memory function found
in computer simulation studies fairly well (see Fig.S5.1), even if for an
improved agreement one has to adjust T somewhat by increasing its value
by 10-15% (Sjégren 1980a). The theoretical expression of T comprises a
dominant pair contribution and a comparatively smaller term involving the
triplet distribution function (see Appendix E). In turn, the triplet distribu-
tion function is evaluated by a superposition approximation, which may
well introduce some small error in the predicted value of 7. However, ;he
main source of the discrepancy is likely to be due to the Gaussian shape
function; in practice, Fig. 5.1 shows that the alternative choice

Ky (t) = Q%sech?(t/7) (5.14)
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leads to.a satisfactory reproduction of the short-time features of the
memory function without any need of adjusting the value of 7.

By itself, the finite decay time of the memory function may lead to
oscillations in w(¢). In particular, the simple analysis of Section 3.3 shows
that such a behaviour is indeed predicted at liquid densities, where the
values of Q5! and 7 are comparable and the condition 20, > (1/7) is
satisfied. However, the results in Figs 3.2 and 3.3 indicate that the finiteness
of 7 alone is insufficient to account for both the period and the phase of
these oscillations. As a matter of fact, Fig.5.1 shows that already at
intermediate times there is a substantial portion of K(¢) which cannot be
described by any simple ‘binary-collision’ approximation.

5.1.2 General remarks on the non-binary memory function

The dynamical features of the memory function K(¢) at intermediate and
long times stem from processes which have both a slower and a more collec-
tive character than the previous binary-collision mechanism. Generally
speaking, the physical nature and the relevance of these long-lasting decay
channels are expected to depend on the thermodynamic state of the fluid.
In dilute gases, binary collisions provide the overwhelming decay channel,
and K(¢) = Ky(¢) at all times. In the opposite extreme, that is in the liquid
range, non-binary contributions are instead found to be important. At these
high densities structural relaxation processes are slow, and any coupling
involving wavevector-dependent density fluctuations is likely to provide a
sizable ‘tail’ of the memory function K(#). One of the advantages of the
framework developed in Chapter 4 is to yield this important decay channél
automatically in the simplest coupling scheme, the so-called static vertex
approximation. The rationale for this simplicity is the specific symmetry
under time reversal of the dynamical variables appearing in the memory
function. If these ‘fluctuating forces’ transform in the same way as the space
coordinates, as in the present case, the leading relaxation channels involving
density modes can be found by considering the coupling in the lowest-order
‘static’ approximation. For K(¢), the final outcome of this procedure is
expressed by eqn (5.11); other examples will be found in Chapter 6 in con-
nection with the collective quantities.

This rather simple framework is expected to be convenient in all the cases
where density modes rule the long-time behaviour of the memory functions,
namely for ordinary and supercooled liquids. As the density decreases, the
situation is more complicated because of the intervening effects of other
decay channels involving collective flows of particles (i.e. the current
variables). In particular, in dense gases the dominant non-binary contribu-
tions stem from couplings involving slow transverse current modes, which
are ultimately responsible for the appearance of ¢~ tails in w(¢) (cf.
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Section 4.5). In view of the previous remarks, these couplings can be
accounted for by the general kinetic framework by considering dynamical
contributions to the interaction vertices (4.102), (4.103). This can actually
 be done, with some additional approximations (Sjogren and Sjdlander
1979; Sjogren 1980b). In general, the overall quantitative relevance of these
channels is small in the liquid range, and we shall not discuss in detail these
more complicated couplings. In principle, the inclusion of several kinds of
decay channels paves the way for a microscopic description of a fluid over
a quite extended range of states.

A noteworthy consequence of the kinetic approach of Chpter 4 is that
non-binary contributions initially increase from a vanishing value at # = 0,
and only at finite times exhibit the genuine long-lasting decay. In other
terms, the buildup of correlation effects among the collisions requires a
finite time. In the specific case of interest in this section, the initial increase
stems from the factor in curly brackets in eqn(5.11) which leads to a
K’'(t) < t*as t = 0. As shown in Fig. 5.1, in a still microscopic time range
a broad peak appears in the simulation data as a result of the competition
between the initial increase and the subsequent decay of K’(¢). On the other
hand, at liquid densities the free-particle contribution F, is expected to
decay quite rapidly with respect to the full self-correlation F;, which is
basically ruled by slow diffusive processes. As a result, beyond a com-
paratively short time interval K’(z) may be approximated by its genuine
long-lasting portion

nkB
87 3

As it stands, the result (5.15) should account for the main dynamical
features of the memory function K(¢) at intermediate and long times; very
long times—the realm of ¢ %2 tails—are not accounted for, but as noted
previously their relevance is negligible in the liquid range.

Equation (5.15) can also be obtained by a direct mode-coupling analysis,
assuming that the relevant decay channels are provided by a bilinear
mode combination of the form n; ;(q)# *(q). Denoting by ® the projection
operator over the ath cartesian component of v;, the full memory function
of y(¢) can be written as

(K’ ()] = - |dagic?(a)Fi(g, 0F (g, 0).  (5.15)

K(t) = I%,(i),-,aexp[i(l — ®)Lt]9,.). (5.16)

According to the prescriptions of Section 4.5, the decay channel involving
the modes under consideration is simply obtained by replacing K(¢) with

KMC(t) = <(@2 vt,a)*exp[l(l - (P)Lt] ((PZ vz a)) (5°l7)
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where @, is the projection operator over the product variable ns,,-(q)ﬁ*(q).
In eqn (5.17)

kT oL a*
C2ia = Ry 21 {1 5 q)} ni(@h*(@).  (.18)

Performing the usual mode-coupling approximations and exploiting the
translational invariance of the averages (cf. (B.21)), it is readily seen that

KMC(t) =%;”?z:zq¢21 {1 _ﬁ} Fs(q9 t)F(q’ t)

= ”A',‘; 2,45¢*(4)Fi(q, )F (g, 1) (5.19)
q

which is identical to eqn(5.15). Since mode-coupling approaches were
originally introduced just to account for long-lasting features, the
equivalence Kyc(#) = [K’(f)]ia is hardly surprising, and indeed is an
example of a general property valid for all the memory functions of interest
in our analysis. In view of this, we shall often refer to the long-time portion
of a memory function as its ‘mode-coupling’ contribution. Besides accoun-
ting for the latter, the kinetic framework of Chapter 4 has the practical
advantage of dealing even with the short-time features of the memory func-
tions (both in their ‘binary’ portions and in the initial increase of the
‘correlated-collision’ contributions).

Coming back to the mode-coupling techniques, the selection of the pro-
duct modes relevant for providing a slow decay channel is essentially guided
by physical considerations. Again, an important role in this respect is
played by the specific symmetry properties of the variables appearing in the
memory function. For example, in eqn (5.16) the relevant dynamical
variable #; , refers to a tagged particle and transforms in the same way as
the space coordinates, so that the choice of the product n, (@7*(q)
appears to be the simplest one. In such a way, the role of density fluctua-
tions is naturally emphasized from the very start, and the procedure has
a clear analogy with the one adopted previously within the static vertex
scheme.

Alternative starting points for the mode-coupling framework may be con-
venient in specific situations. For example, it is perfectly legitimate to apply
the analysis, rather than to K(¢), to the velocity autocorrelation function
w(?) (itself basically a memory function, cf.(3.93)). In such a case the
starting variable is the velocity of the tagged particle, with the result that
the s1mplest product modes which one may envisage are of the form
n, {(Q)j*(q). The consequent involvement of the currents in the decay
channel makes easier the deduction of long-lasting features explicitly
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associated with j(q), as indeed shown in Section 4.5 for the #~*? tails. The
analysis can be refined by considering the second-order memory function
of w(t), which involves ¥; , (Bosse et al. 1978). Since this variable has the
same time-reversal symmetry as v, ,, the leading product modes are again
provided by the combination r; ;(q)j*(q). The advantage with respect to
the simpler calculation of Section 4.5 is that now even some short-time pro-
perties of w(f) can be accounted for, leading to a much better description
of the overall features of single-particle dynamics.

5.1.3 An approximate treatment of the non-binary contribution

Strictly speaking, the presence of F,(g, t) and F(g,t) in the result (5.11)
indicates that a rigorous account of the features of K’(¢) is possible only
after a preliminary solution for the self and collective density correlations.
As we shall see later on, this fully self-consistent approach is in principle
feasible, although at the price of quite heavy numerical computations. On
the practical side, the self-consistent aspects turn out to be crucial only in
rather special situations, for example when a deeply supercooled liquid
approaches an amorphous phase characterized by an extremely long dura-
tion of all structural relaxation processes. The physics behind this ‘ideal
glass transition’ will be discussed in some detail in Section 6.3; for the time
being, we focus our attention on the ordinary liquid range, where the main
long-lasting features can be accounted for by suitable approximations for
F; and F.

In this more manageable context, the quantity K’(¢) has been evaluated
numerically by Sjdgren (1980a) for both liquid rubidium and liquid argon.
In an effort to perform a stringent test of all the theoretical results obtained
by Sjogren and Sjolander (1979), in both systems the analysis was not
limited to the simple decay channel (5.11) associated with density modes,
but even included additional couplings, in particular those involving the
longitudinal and the transverse currents. As a result of these numerical
calculations, the leading role of the density fluctuations channel appears to
be confirmed. In particular, for both liquids the coupling term involving
the transverse currents is found to be negligibly small for all the times of
interest, while the other contributions, although somewhat larger, cancel
each other to a significant degree.

Focusing our attention only on the decay channel involving the densities,
eqn (5.11) has been evaluated by Sjogren (1980a) adopting the Gaussian
approximation (1.72) for F,(q, ) and a refined version of the viscoelastic
model for F(q, t) (cf. Section 6.2), which is suitably parametrized in order
to reproduce the experimental data for S(g, w) in the two liquids. A clear
advantage of this semiempirical procedure is to provide a test of eqn (5.11)
free from any uncertainties due to inaccurate input data. The final results
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Fig. 5.2 Intermediate and long-time portion of the normalized memory function

of w(¢) in liquid Rb at 318 K. The full line denotes the data obtained by the same

simulation of Fig. 5.1 in a much larger time interval. The dashed line is the result

of eqn (5.11) as evaluated by Sjogren (1980az). The dotted line denotes the result

of a simplified approach (see text), in which the dominant role is provided by slow
density fluctuations with a wavevector g = g, .

obtained for K’(¢) in liquid rubidium are compared in Fig. 5.2 with the
simulation data for the full memory function at intermediate and long times
(namely in a range where the contribution of Kg(¢) has virtually disap-
peared). It is apparent that all the main features of K(¢) in this time interval
are quite well reproduced. In particular, both the position and the
amplitude of the peak at ¢ = 0.8 ps are correctly accounted for, as well as
the subsequent long-lasting decay of K(¢). In Fig. 5.2, the latter appears to
be ‘modulated’ by weak oscillations, present both in the simulation data and
in the theoretical results. The presence of this oscillatory behaviour can be
traced back to the existence in liquid alkali metals of well-defined inelastic
peaks in S(g, w) up to relatively high wavevectors (cf. Fig. 1.13). In liquid
argon, where these excitations are severely overdamped outside the strict
hydrodynamic regime, the modulation effects are instead found to be
virtually absent (Sjégren 1980a).

The success achieved by eqn(5.11) at a quantitative level definitely
establishes wavevector-dependent density fluctuations as the modes respon-
sible for the long-lasting portion of K(¢) in the liquid range. In this respect,
the largest contribution is expected to be provided by those density modes
having the slowest decay rate. A detailed analysis of the result (5.12) shows
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that hydrodynamic wavevectors g —> 0 have some quantitative relevance
only for very long times, where K(¢) has decayed to negligibly small values.
On the other hand, beyond the strict hydrodynamic regime F(g, ?) is known
-to exhibit a marked ‘de Gennes’ slowing down only as g approaches the
position g, of the main peak of the static structure factor (cf. Section
1.6.2). Introducing the quantity h(g) = S(g) — 1, eqn (5.12) becomes

K'(1) = 6’:’2’:] dg qc(q)h(q) ['l —%E‘Z’—;;]Fs(q’ f) F;?&;) '
0 B

(5.20)

Owing to the sharpness of the peak of S(g) for ¢ = gn, €qn (5.20) can be
rewritten in terms of the simplifying approximation h(g) = Ad(q — qn),
which implies nc(gg) = 1. Letting ¢ = (ks 7/6n> nm)Aqy,, we obtain

F(qu,?)
S(qm) -~

In practice, the amplitude factor ¢ can be determined from the state
parameters of the liquid supplemented by a limited knowledge of its struc-
tural data, such as the area under the main peak of S(q).

A test of the simple result (5.21) can again be made by accepting the
Gaussian approximation (1.72) for F;(gy,t), which is found to be fairly
good even at these relatively high wavevectors (cf. Fig.1.7). As far as
F(gm, t) is concerned, its long-lasting decay naturally suggests the validity
of a Markovian scheme (cf. Section 3.1). In terms of a memory function
representation, the Laplace transform F(q, 7) can be written as

I%‘(I(’S—) = [z+ M(q,2)]. (5.22)

For ¢ = q,, any residual oscillatory behaviour of F(g,?) has virtually
disappeared, and the slow decrease of density fluctuations can approx-
imately be accounted for by letting M(q,z) =~ M(g,z =0) = (q). As a
result, in the time domain we obtain

F(g,1)
S(q)
In this scheme, the leading slowing down effects as ¢ = g, stem from the
proportionality of the decay rate y(g) to the quantity
kT
—<r 4
mS(q)

which shows a pronounced decrease in the narrow g range where S(q)
attains its main peak. As we shall see in Section 6.2, at these wavevectors

K’ (t) =C[FS(Qmat) —Fo(qmat)] (5.21)

~ exp[—7(q)|?]]. (5.23)

M(g,t=0) ={w?) = (5.24)
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a satisfactory representation of the quantity y(q) is provided by a simplified
version of the viscoelastic model, with the result that

B 2{w?)
(9 = Gli(e) —q(wﬁ)]]‘” (5.25)

where w2 (q) is defined in eqn (1.143).

The simple form of the intermediate scattering function obtained by
the approximations (5.23) and (5.25) is eventually to be inserted into
eqn (5.21). The outcome of this procedure for K’ (¢) is illustrated in Fig. 5.2
(dotted line). The comparison with the previous results (which include all
g-dependent density channels) and with the simulation data is seen to be
still quite favourable. In particular, although the simple result (5.21) is
intrinsically unable to account for the aforementioned ‘modulation’ effects,
the underlying long-lasting decrease of K ’(¢) appears to be satisfactorily
reproduced. As a matter of fact, a detailed numerical calculation of the
relevance of the different wavevectors in the integral-(5.20) confirms the
leading role of the density modes with ¢ = gn for the overall decay rate.
However, it turns out that a non-negligible contribution to the actual height
of the initial ‘bump’ of K’(¢) is provided even by modes with g < gp,,
indicating that in this short-time range the approximation (5.21) is probably
too naive.

In its simplified version, the theory has been successfully applied to
several monatomic liquids near their melting point (Balucani ez al. 1990a, b
and 1992; Gonziles et al. 1994). In the case of liquid rubidium the analysis
has even been extended to moderately supercooled states, for which detailed
simulation data for K(¢) are available (Kinell and Lovesey 1986). Broadly
speaking, in these ‘quenched’ systems the binary part of the memory func-
tion is found to be virtually unchanged, while the amplitude and the lifetime
of the long-lasting tail are considerably increased with respect to the
ordinary liquid phase (see Fig. 5.3).

Summing up, it appears that a comprehensive account of all the features
of K(¢) can be achieved in simple terms by a suitable combination of short-
and long-time arguments. In principle, the approach can be made more
rigorous by incorporating the results obtained for F, and F by an analysis
based on analogous arguments (cf. Section 5.3 and 6.3). For illustrative
purposes, however, such a fully self-consistent framework is hardly neces-
sary and the use of few phenomenological assumptions can be tolerated.
Moreover, even this limited recourse to phenomenology can be minimized
if, rather than trying to account for all the details of K(z), we focus our
attention on the corresponding transport property, namely the diffusion
coefficient. This will be the subject of the next section.
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5.2 THE DYNAMICS BEHIND DIFFUSIVE PROCESSES
IN THE LIQUID RANGE

"Beyond a microscopic time interval A7 of the order of 1 ps, the motion of

a tagged particle in a simple liquid is known to be governed by diffusive
processes. As illustrated by the typical results reported in Fig. 1.4, in this
‘long-time’ regime the mean square displacement r2(f) of the particle
appears to be described by a simple linear law

or’(t) =6Dt + I (5.26)

where the small intercept I accounts empirically for residual finite-time
effects. Proceeding as in Section 1.4.2, it is readily seen that

D_—j dt (1) —LTH dtK(t)}“, | (5.27)

6ky T
I=—-=—8
m

5 dttw(e) == “ deeK(t) — 1] (5.28)
The ‘empirical’ character of the law (5.26) becomes apparent noting that
the asymptotic =32 tail of w(¢), albeit virtually not observable in the
liquid range, leads to a non-analytic behaviour of ¥(z) for small z, and
ultimately to a divergent value of I. As a consequence, while the diffusion
coefficient D is perfectly defined in any case, the intercept [ is only to be
viewed as a parameter which is conveniently introduced to describe the
available experimental or simulation data.

The results discussed in the previous section indicate that a microscopic
theory of the diffusion coefficient (5.27) requires the consideration of
dynamical processes occurring over different timescales. To begin with, as
a zero-order approximation we may assume that K(¢) = Kg(¢), implying
that the diffusive motion arises from the occurrence of essentially uncor-
related collisions. In such a case, eqns (5.14) and (5.27) yield for D the
‘binary’ result

_ kT
BT mQir

(5.29)

When compared with the values of the diffusion coefficient actually
observed in several simple liquids, the predictions of eqn (5.29) are found
in any case to overestimate considerably the real findings (see Table 5.1).
Even worse results are obtained for the parameter I, whose binary estimates
are more than one order of magnitude smaller than the values deduced from
the computer simulation data (Balucani ef al., 1990 b).
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Table 5.1  Comparison between the theoretical predictions for the diffu-
sion coefficient (Dy binary result, D value from full theory) with the
actual findings from molecular-dynamics simulations (Dyp) and from
experiment (D) in several simple liquids near the melting point (except
Rb 270, which refers to a supercooled state). The state parameters for
the systems under consideration are: (Na) n =0.024 A"', T = 380K;
(Rb 318) n = 0.010 A3, T = 318K; (Rb 270) n = 0.011 A, T = 270K;
(Cs) n =0.0083 A3, T~ 309K (Ar) n = 0.021 A‘3 T= 86 5K.

-DB D DMD Dexp
105 cm?s™! 1075 em?s™! 10~° cm?s™! 103 em?s™!
Sodium 6.30 4.11 4.06° 4.06-4.35%
Rubidium 318 3.89 2.46 2.40° 2.60°
Rubidium 270 3.26 1.57 1.61°¢
Caesium 3.33 2.13 2.11¢ 2.16°
Argon 2.47 1.50 1.75¢ 1.60¢

“Balucani et al. (1992)

% Ohse (1985)

¢Kinell and Lovesey (1986)
91 evesque and Verlet (1970)
€ Naghizadeh and Rice (1963)

These discrepancies are clearly too large to be attributed to our limited
knowledge of the binary dynamics. The inescapable conclusion is that the
diffusive motions in a liquid are also noticeably affected by the slow pro-
cesses embodied in the non-binary portion of the memory function. In other
words, rather than being given by eqn (5.29), the appropriate expression of
the diffusion coefficient reads
-1

D= [Dg‘ j dtK’ (t)] . (5.30)

kB

Since, in the liquid range, X ’(t) is essentially a positive quantity (cf.
Figs 5.2, 5.3), the net effect of the inclusion of this contribution is in the
correct direction of decreasing the theoretical value of D with respect to
the binary prediction (5.29). A quantitative deduction of the magnitude of
the effect can be made along lines similar to those discussed in the preceding
section. As the integral in eqn (5.30) is expected to be largely insensitive to
the minor details of the dynamics, we may use for K’(¢) the simplified
expression (5.21) and adopt the previous approximations for F(g,,, f) and
F5(gm, t). In particular, the appearance of 6r(f) in the Gaussian expres-
sion of Fs indicates that the additional contribution in eqn(5.30)
ultimately contains D, namely just the quantity which we wish to calculate.
In other words, in this scheme eqn (5.30) has the structure
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Fig. 5.3 Normalized memory function K (t)/Qo of supercooled liquid Rb at

T = 273K (the melting point is at 312K). The dots are the computer simulation

data of Kinell and Lovesey (1986). The dashed lines denote the separate contribu-

tions KB(t)/Q% and K ’(t)/.Q% as obtained from egns (5.13) and (5.21) (Balucani
et al. 1990a).

D= [Dg' +¢&(D)], (5.31)

where the function &(D) is basically inversely proportional to D. The argu-
ment can be cast in more precise terms, both taking into account the short-
time interval where dr%(¢) has not yet reached the diffusive limit (5.26) and
including the effects of the intercept (Balucani ‘et al. 1990b). The values of
the diffusion coefficient obtained for several monatomic liquids by such a
procedure are reported in Table 5.1. It is apparent that the theoretical
results are now in quite good agreement with both the simulation and the
experimental findings. The improvement with respect to the binary predic-
tions, important in all systems, is particularly striking in the case of the
supercooled liquid, as could be expected from the results reported in
Fig. 5.3. As a by-product of the calculation, one may also deduce new
theoretical values for the intercept I. Despite the ill-defined character of this
parameter, the results compare rather well with the values deduced from
the simulation data (for example, in ordinary liquid rubidium at 318 K one
finds 7 = 0.873 A%, to be compared with Iyp = 0.912 A? and with the
binary prediction I = 0.058 A?).

In a more general context, it is interesting to enquire whether a self-
consistent equation of the form (5.31) may imply a sort of ‘phase transition’
toward a physical situation characterized by a vanishing diffusion coeffi-
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cient (Sj6lander and Turski 1978). For this purpose, it is convenient to
extract from the integral in eqn (5.30) the true long-lasting portion of K’ (¢):

(-

D! =Dg! +A(to)+—§dtK’(t)
kg T

oo

=Di'+ 7 jduc'(t) (5.32)

Here the quantity A(#,) refers to the initial time interval ¢ < ¢, where K’ (¢)
increases; in practice, the time #,, is of the same order as At, the duration
of the initial transient of dr?(¢). In eqn (5.32), all these short-time events
already yield a first renormalization of the diffusion coefficient from Dy
to a lower value D,. However, the really important change is provided by
the contribution from the interval ¢ > ¢,, where K’(¢) can be approx-
imated by its mode-coupling expression (5.19). Adopting all the previous
approximation schemes we eventually obtain

m exp(—q%1/6) exp[ —b(D)t,]

D—l = -1
Do ke T b(D)

(5.33)

where b(D) = g% D + y(q,,). Equation (5.33) has the typical self-con51stent
structure sketched in (5.31).

Let us now assume that the temperature is lowered rapidly enough to
prevent any crystallization process. In such a case, the liquid enters a
metastable supercooled region characterized by a further slowing down of
structural relaxation and by smaller and smaller values of D. As these
two features are expected to be closely related, we may tentatively set
P(@y) < D. Then the result (5.33) assumes the typical form of a ‘mean
field’ equation, with a diffusion coefficient which is predicted to vanish at
some finite temperature. Broadly speaking, this is just what occurs in
several real liquids as they are rapidly ‘quenched’ from their ordinary state
above the melting point. In these systems, the supercooled liquid may even-
tually approach a metastable condition characterized by a structural arrest.
In many cases of practical interest, the lifetime of this non-equilibrium
situation may be long enough to exceed (often by several orders of
magnitude) the experimental times of observation. As a result, we effec-
tively deal with a new disordered (non-crystalline) ‘phase’, which can be
conveniently referred as an amorphous solid, or a glass. In the monatomic
systems we are concerned with, the quenching rates required to prevent
crystallization still exceed by two or three orders of magnitude the highest
ones available in practice, and the behaviour of the liquid in the supercooled
region can be explored only by computer simulation techniques (and even
so, with obvious difficulties related to the competing requirements of long
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Fig.5.4 Temperature dependence of the diffusion coefficient in supercooled liquid
Rb (R. Vallauri, unpublished computer simulation results). In all cases, the density
was kept constant at n = 0.01 A~3. The dashed line is a linear fit to the data.

runs and of no intervening nucleation events). Figure 5.4 illustrates typical
results obtained for the temperature variation of D in a system which
simulates  supercooled liquid rubidium. In this case, the data appear to
indicate a ‘transition temperature’ slightly less than 150K (well below the
melting - temperature, 312 K).

In this context, the simple approach of eqn (5.33) has the important merit
of emphasizing the role of long-lasting dynamical events as those ultimately
responsible for the transition. At a-quantitative level, even the behaviour
of the diffusion coefficient in a moderately supercooled liquid appears to
be satisfactorily reproduced (cf. Fig. 5.3 and Table 5.1). However, both the
Gaussian approximation (1.72) and the exponential ansatz (5.23) turn out
to be increasingly inaccurate as one considers deeply supercooled states. As
we shall see in Section 6.3, eqn (5.33) is too oversimplified to be able to
describe many important aspects of the approach of a system toward a
glassy phase.

Coming back to the diffusive processes occurring in ordlnary simple
liquids, the data reported in Table 5.1 indicate that the framework behind
eqn (5.33) is reliable at a quantitative level. As already remarked, in these
more conventional thermodynamic states the self-consistent aspects are not
essential. In fact, a satisfactory prediction of the diffusion coefficient can
already be obtained by a simple perturbative procedure which involves two
successive ‘renormalizations’ of the binary result Dy. The first one has
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been met in connection with eqn(5.32): Dy is effectively replaced by

= [Dg' + A(%)]"". The magnitude of the quantity A(f,) can be
determined by adopting a simple analytical form for the initial rise
of K’(t) and arguing that ¢, = 2n/0Q, (Balucani etal. 1990b). Recalling
that c(m/kgT) = Aqt /6n°n, it is eventually found that

Agql exp —27b(Dg)

D—l z~D_1 1
0 BT enn@, 2,

(5.34)

The second renormalization concerns the genuine mode-coupling contribu-
tions; neglecting the small effects of the intercept 7, from eqn (5.33) we
simply obtain

Agqy, exp[ —27b (Do)/go]
67t2n b(Do)

“1=Dpg! (5.35)
The circumstance that only a few structural quantities are required as input
data makes eqns (5.34) and (5.35) particularly convenient in the applica-
tions, even if the results for D are expected to be less accurate than those
reported previously. To give an example, in the same state of liquid caesium
considered in Table 5.1, the successive renormalizations of the diffusion
coefficient (in units of 10~°cm?s~!) are found to be: (i) Dy = 3.33 >

= 2.84 and (ii) Dy = D = 2.21. The final value is about 4% higher
than both the previous theoretical result and the actual findings (cf,
Table 5.1).

§.3 SINGLE-PARTICLE MOTION PROBED OVER
DIFFERENT LENGTH SCALES

Despite its importance, the velocity autocorrelation function gives only a
partial description of the motion of a tagged particle in a liquid. A full
account in this respect is instead provided by the self-intermediate scattering
JSunction

Fy(k, ) = (exp[ik- (r;(#) - r;(0))]). (5.36)

As discussed in Section 1.4, this comprehensive character stems from the
possibility of exploring the dynamical features of self motion over distinctly
different. spatial ranges simply by changing the external wavevector k.
Given a fluid at some specified state point, a physically relevant scaling unit
for k is provided by the inverse of the effective mean free path / of the
particle, where / is given approximately by eqn (1.53). In this respect, the
extreme situations are k/ < 1, where the self-motion is explored over a
quasi-macroscopic length scale, and k/> 1, where the tagged particle
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appears to behave as it were non-interacting. Between these opposite
regimes (respectively characterized by a diffusive random walk and by a free
streaming) we expect a full variety of situations which need to be inter-
preted. Pushing the argument somewhat, we may even state that these
‘intermediate’ features are just those which characterlze the actual
dynamlcal behaviour of the liquid state.

In this respect, a typical example is provided by the non-monotonic
wavevector dependence of I (k), the halfwidth of the spectrum of F,(k, ¢)
(see Figure 1.6, which refers to liquid argon). Similar behaviour of I',(k)
is present in many other simple liquids near the melting point. It is
immediately apparent that these data provide a rather severe benchmark to
test our theoretical models. Consider, for example, the simplest scheme
which we may adopt for F;(k, t) (cf. (1.72), (1.57)):

F,(k,t) =~ exp[ —% k?or*(1)]
=exp|: —%k’!dr (t——‘r)l//(r)]. (5.37)

This ‘Gaussian approximation’ is clearly exact both for small and for large
wavevectors, where it correctly describes the two physical regimes pre-
viously mentioned. Some discrepancies are instead apparent at intermediate
wavevectors; in particular, in the situation illustrated in Figure 1.7 (where
k is near the position k,, of the main peak of S(k)), the Gaussian result is
seen to overestimate the actual decay rate of F,(k, ¢). Even so, on the basis
of these direct comparisons the overall results predicted by the Gaussian
ansatz are quite acceptable, justifiying the frequent recourse to eqn (5.37)
as a simplifying a approximation in several problems in liquid-state
dynamics (cf., for example, its use in Section 5.1.3).

In spite of these merits, the Gaussian result is intrinsically unable to
account for several features present in the actual data for I,(k) in the
liquid range. As expected, the main shortcomings are found to occur at the
intermediate wavevectors, where the deviations may even reach about 20%.
The typical situation is illustrated in Figure 5.5, which reports the simula-
tion data obtained in a Lennard-Jones liquid near melting (Levesque and
Verlet 1970). A feature even more important than the precise magnitude
of the discrepancies is that the Gaussian approximation predicts an initial
increase of the ratio I',(k)/Dk?, while the observed behaviour is just the
opposite. In this wavevector range it is customary to write the quantity
I,(k) in the form D(k)k?, where D(k) is a k-dependent effective diffusion
coefficient. Then the initial trend of the data of Figure 5.5 implies that the
tagged particle has a lower probability to diffuse as its motion is explored
over shorter spatial ranges. This tendency is particularly evident as k&

Single-particle motion probed over different length scales 199

1.5F l

1.4

1.3

1.2

Fs(k)/Dk?

11

1.0

0.9} A

ko

Fig. 5.5 Normalized halfw1dth of the spectrum of F(k, t) versus wavevector in a

Lennard-Jones liquid with ne® = 0.844 and kgT/e = 0.722 (Levesque and Verlet

1970); triangles, actual simulation data; full line, results deduced from the Gaussian

approximation (5.37) using for 6r2(t) the data generated in the simulation; dashed

line, results deduced from eqn (5.45) with fitted values of 75, k- The arrow denotes
the position of the main peak of S(k).

approaches k; that is, as the length scale effectively probed becomes
comparable with the nearest-neighbour distance.

The incorrect predictions of eqn (5.37) in this wavevector range clearly
imply that the presence of non-Gaussian corrections. These can be
systematically accounted for by the following ‘cumulant expansion’
(Nijboer and Rahman 1966)

F,(k,t) = exp[ —k2r*(£)/6] {1 + La,(t) [K%6r*(¢)/6]> + - - -}.

(5.38)
Here the first non-Gaussian coefficient reads
30r*(t)
a(t) = SEO (5.39

where or*(¢) = ([r;(¢) — r;(0)]*). Although even higher order coefficients
(involving orS(¢), etc.) have been evaluated, the dominant corrections to
the Gaussian result are provided by the term with a,(¢) (Rahman 1964).
As eqn (5.37) is essentially correct both at short and long times for all
wavevectors, the typical time evolution of a,(¢) deduced from the stimula-
tion findings consists of an initial increase up to a broad maximum,
followed by a relatively slow decay at long times. These results are
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supported by a similar analysis on the ‘real’ experimental data obtained by
inelastic neutron scattering (Sko6ld ef al. 1972). In every case, the coefficient
a,(?) is found to be positive at all times, implying a decay for F, somewhat
slower than the one predicted by (5.37). This feature (previously mentioned
‘in connection with Figure 1.7) is clearly consistent with the overall situation
illustrated in Figure 5.5 (larger values of the ‘Gaussian’ widths with respect
to the actual I, (k)). B

Athough instructive and widely used in early treatments, the analysis
based on the expansion (5.38) is not enlightening enough to clarify the
origin of the initial decrease of I',(k) below the diffusion result Dk2. Our
physical understanding is instead much better in the opposite limit of large
wavevectors, where the Gaussian result is virtually exact. Starting from a
situation with k/ > 1, where

I-'s_(k)_)(rs(k))free_ 2In2 l/zi
Dk? Dk* ~ \ pm | Dk’

the rise of the ratio at decreasing wavevectors is found to become pro-
gressively slower than the (1/k) law predicted by (5.40). This feature clearly
marks the breakdown of a free-particle description. As the latter implies
that the velocity autocorrelation function is a constant at all times, even
a modest improvement of this limiting result is expected to be sufficient
to account for the observed effect. Indeed, a better description of the data
in this & range is obtained by taking into account the term —3 Q3¢ in the
short time expansion of w(¢) (Nijboer and Rahman 1966; Levesque and
Verlet 1970).

(5.40)

5.3.1 A simple memory function approach

As in the case of the velocity autocorrelation function (Section 3.3), a first
insight into k-dependent self-motion can be obtained by a simple applica-
tion of the memory function framework. We start from the continued frac-
tion representation

{w}),

-1
—Tks 4
z + M,(k, z)} 4D

F(k,2) = [z + K (k,2)] "' = [z +

Here (w?) = (ky T/m)k?, whereas K,(k,z) and M,(k,z) are respectively
the Laplace transforms of the first- and second-order memory functions
of F,(k,t). As shown in Section 3.4.1, for sufficiently small wavevectors
the quantity K (k,t)/k? tends to the velocity autocorrelation function
(cf. (3.93)). Correspondingly, in the same limit M, (k, ¢) approaches the
memory function K(¢), whose properties have been discussed in detail in
Sections 3.3 and 5.1. In view of ‘this, for a preliminary analysis at finite
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wavevectors it is natural to start with a model which is a simple generaliza-
tion of the result (3.67) for K(¢). In other terms, it is assumed that

M(k,t) = M(k,0) exp(—t/7,,). (5.42)

Here the initial value of the memory function follows from eqn (3.42b):
M,(k,0) = Ko /{op)] — {w}),

=Qf + 2(kgT/m)k* = 4, (5.43)

where we have used the result (1.46) for (w}),. Inserting the Laplace
transform of (5.42) into (5.41) we obtain

(i), -
T+ As’k/(z + I/Ts,k)

F,(k,z) = [z + (5.44)
The corresponding frequencx spectrum of F(k,t) is obtained from the ‘
relation S;(k, w) = (1/7) Re F,(k, z = iw). After a few calculations we find

<wi>sAs,kTs,k
Ts,k(a)2 - (60%)5 - As,k)]2 + [602 - (w%c>s]2 )
(5.45)

The decay time 7, ; can be either fitted to the data, or estimated by the
following approximate proceduge (Lovesey 1973). Noting that eqn (5.41)
implies K (k,z = 0) = (w3}),/M,(k,z = 0), from the ansatz (5.42) we
deduce that

S,(k, w) = (1/n) (o

[ dtK,(k,1) = (0B (A h7,) (5.46)
0

On the premise that the integral on the left-hand side is likely to be insen-
sitive to the detailed shape of K;(k, t), this memory function is approx-
imated by a form which fulfils the known short-time properties. Letting
K (k, 1) = {wd) (VA ; + 1), it follows that

1Vt = EJA, x. (5.47)

In this scheme, the dimensionless parameter & = (§dx f(x) is independent
of the wavevector. Its value can be determined by requiring that at zero
frequency the prediction of the model
AT 1 J4
S, (k, @ = 0) = =2k ek = — Vouk 5.48
| s )=, TF (b 49
coincides with the exact result in the diffusive regime (=1/Dk?) or in the
free particle limit (=(zmpB/2k*)"/?). In both cases, it is found that & = 1
(Lovesey 1973).
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The results predicted by eqn (5.45) with the above recipes are found to
be in fair agreement with the experimental spectra over a rather large
wavevector range. However, under more severe tests the oversimplified
character of the model becomes apparent. By construction, as K = 0 the
model predicts an expression for the velocity autocorrelation function iden-
tical with eqns (3.70) or (3.73). Even allowing for some uncertainty for the
value of ¢, this result for w(¢) is known to be rather unsatisfactory in the
liquid range (see Figure 3.2). Another stringent test of the validity of the
model is the wavevector dependence predicted for the quantity I, (k)/Dk2.
For sufficiently small k, eqn (5.45) predicts a narrow quasi-Lorentzian spec-
trum with a halfwidth approximately given by

I, (k) = &Bmk*/N A, . (5.49)

Choosing for ¢ the value mfQ,D which reproduces the correct diffusive
limit, we find that

I(k)/Dk? = [1 + (2kz T/mQ3)k>] V2. (5.50)

In contrast with the predictions of the Gaussian approximation (5.37), the
result accounts for the initial decrease of the width with respect to the
hydrodynamic value Dk?2. The coefficient of the term in k* on the right-
hand side is seen to be proportional to the square of the ‘mean free path’
I (cf. eqn(1.53)). Within the model, we may consequently interpret the
decrease of the ratio I',(k)/Dk? at small wavevectors as being due to an
increasing value of kI, or in more physical terms to the fact that the number
of collisional events appears to be effectively decreased when detected on
a shrinking length scale. Although this picture seems plausible, a numerical
calculation of the widths from eqn(5.45) shows clear quantitative
discrepancies with respect to the actual findings at all wavevectors (see
Figure 5.5, where the values of 7, , were obtained by a best fit to (5.45)
to the observed spectra). Equally unsatisfactory results are obtained for the
k-dependence of the quantity nDk2S,(k, w = 0), which is the ratio bet-
ween the actual intensity at zero frequency and the corresponding
hydrodynamic prediction. This failure is not due to a defect of the exponen-
tial decay law (5.42); alternative functional forms with a single relaxation
time have been found to yield no substantial improvement (Levesque and
Verlet 1970). As a result, we are forced to conclude that a much deeper
analysis of the memory function M;(k, ¢) is required to account for the
quantitative features of k-dependent self-motion. The situation clearly
parallels the one already met for the memory function K(¢), with the
additional complications brought about by the need of understanding
the relevance of the various decay channels over considerably different
length scales.
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5.3.2 Analysis of M, (k,t) at different wavevectors

The successful results obtained in the case of the velocity autocorrelation
function indicate that the framework of Chapter 4 may account for the
dynamics of M,(k, t) at different wavevectors in a more realistic way than
the simple approach discussed so far. The relation between the Laplace
transforms of the self-intermediate scattering function F,(k, ¢) and of the
matrix elements C; ;;-(k, ¢) is readily obtained by noting that

F(k,z) = VC, (K, 2) (5.51)

(cf. (4.71)). In turn, exploiting the ‘self’ version of eqn (4.153) és,oo(k, 2)
can be expressed as

z[2C, w(k,2) — (1/V)] = = (k*/pm)C, (K, z). (5.52)

The result (5.52) is a direct consequence of the validity of a continuity equa-
tion for the motion of the tagged particle.

Equations (5.51) and (5.52) indicate that the features of k-dependent
self-motion are ultimately determined by the quantity és,u(k, 2). The
corresponding time correlation function reads (cf. Section 4.2)

C,u(k, ) = (B/mV){p; .(0)p; . (¢) exp[ik - (ri(r) — r,(0))]).
(5.53)

Since k is along the z-axis, C (k,?) describes the dynamics of the
longitudinal part of the self—cu{rent Js,i(k, 7) (cf. (3.88)). Equations (5.41),
(5.51), and (5.52) imply that C; ;;(k, z) can be expressed as

Con(k,z) = (1/V) [z + (k¥/Bmz) + M,(k,z)] . (5.54)

The results previously obtained for the velocity autocorrelation function
(i.e. essentially for C;;,(k = 0,¢)) indicate that the memory function
M,(k,t) should include both rapid °‘collisional’ processes and slower
‘mode-coupling’ decay channels. Within a kinetic framework, there have
been several attepts of increasing sophistication to account for these
dynamical features (Lebowitz ef al. 1969; Akcasu et al. 1970; Desai 1971;
Jhon and Forster 1975; Gotze and Zippelius 1976). In the following we shall
discuss the basic points of the approach by Wahnstrém and Sjogren (1982),
which incorporates many aspects of the general framework of Chapter 4.
The starting point of the analysis is the set (4.80) of memory equations
for C; ;,(k,2). In a matrix notation, these equations can be written as

[21 —iQ,(k) + M,(k,z)] - €,(k,z) = C,(k, ¢ =0). (5.55)

It is convenient to introd~uce a formally similar equation which involves
only the ‘binary’ part Mg(k,z) of the full memory matrix M,(k, z).

Denoting by C(k, z) the solution of this equation, we have
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[21 — iQ,(k) + Mp(k,2)] - Cip(k,2) = C,(k,t=0).  (5.56)
As a result of eqns (5.55) and (5.56) we may formally write that

és(k9 Z) = ésB(ks Z) - f':s(k’ Z) [cs(k’ t= 0)] _llﬂ's’(k’ z)ésB(k’ Z)
" (5.57)

where M((k, z) = M, (k, z) — M3(k, 2). In particular, exploiting eqn (4.78)
we obtain : :

s 11(k9z) sB ll(k Z) VZ és,lu(ks Z)Ms/,,uu'(k9 z)ésB,/x’l(k’ Z).
my’
(5.58)

Physically, the second term on the right-hand side accounts for the distur-
bances induced by the tagged particle in the surrounding medium. As
discussed in Chapter 4, we are particularly interested in the long-lasting
effects of these disturbances, which give rise to sizeable correlations among
the collisions suffered by the particle. Wahnstrém and Sjogren argue that
the leading contribution to these slow features is provided by the couplings
to quasi-conserved modes. Exploiting the longitudinal character of the pro-
blem and assuming that energy fluctuations have a negligigle role, in (5.58)
Ms’, w (&, 2) is effectively replaced 1\715', 11k,2)d,,10,,1, with the result
that

ésB,ll(k’z)

C (x,z) = = o )
s ( ) 1+ VMs,,ll(k7z)CsB,ll(k’ z)

(5.59)

The first problem to be faced is an adequate representation of the binary
contribution Cg ;;(k,2). This is possible by adopting some simple
approximation scheme for the matrix elements 1\7153, (K, 2) appearing in
eqn (5.56). In close analogy with the approach followed in Section 5.1, one
makes the ansatz

sB g’ (k Z) = sB up’ (k t= O)f(k Z) (5-60)

Here Mg, (k,t =0) = M, ,,.(k, ¢ =0) is given in eqn(4.143), and the
frequency dependence of all the matrix elements is assumed to be ruled by
a common factor f(k, z). Since the binary part concerns rapidly varying
events, it is reasonable to characterize f(k,z) by the first few terms in a
large-z expansion, or equivalently f(k, ) by its short-time behaviour. In
other words, in the time domain we write eqn (5.60) as

sBuu (k t) = s,;w (k t —O)f(k t)

s (Ko t = 0) f(t/%,(k)) (5.61)
where the shape function f(x) is such that

Single-particle motion probed over different length scales 205
ft/z (k) =1 = (¢/1,(k))> + - - -. (5.62)

As a result, the fast decay of all the binary memory functions is ruled by
a wavevector-dependent time constant 7,(k). Since the buildup of the
correlation effects not accounted for by Mg is expected to require a finite
time, 7,(k) can in practice be deduced from the initial decay of a suitable
selected element of the full memory matrix M;(k, t). Again, this procedure
leaves unspecified the form of the shape function, which is usually chosen
by some simple ansatz which satisfies eqn-(5.62) and provides a sufficiently
fast decay (e.g. a Gaussian, or sech?x form).

With the approximation (5.60), the solution of eqn (5.56) for sB(k, 2)
can be expressed analytically (Lebowitz et al. 1969; Jhon and Forster 1975).
In particular, the matrix element ésB,OO(k: Z) reads (Wahnstréom and
Sjogren 1982)

Cino0 (k,2) = [VOEF (K, 2)] ! Zo ["z(é))] (5.63)
where
®*(z) = (k¥/pm) [Q3F(k,2z)] 2 (5.64a)
Pa(z) = p(2)[p(z) +1]---[5(z) + n] (5.64b)
p(z) = %%(2) + [2/Q%f (k,2)]. (5.64c)

Usmg the result (5.63) in eqn (5.52), we eventually obtain the quantity

Cs,11(k, 2) to be inserted into (5.59).

The next task is to derive an explicit expression for the non—bmary
memory function which appears in eqn (5.59). From Section 5.1 we already
know that in the limit of small k, M; ;,(k, ¢) approaches the corresponding
non-binary portion of K(¢). As in that case, several decay channels may in
principle affect the intermediate- and long-time features of My ,; at finite
wavevectors. Nevertheless, in the liquid range the dominant contribution
is again provided by those couplings involving the density modes, which

yield (cf. eqn (4.146))
, Fo(lk"ql’t):‘
e'(a) [1 TF(k—dl,0)

x F,(|k - q|,7)F(g,1). (5.65)

We refer to Wahnstrom and Sjégren for the explicit expression of the other
decay channels, which involve couplings to the longitudinal and transverse
currents. As in the case of K’(¢), the factor in square brackets in eqn (5.65)
yields an initial increase of M, (k,f) as t*. The subsequent time
dependence is obtained by a numerical evaluation of (5.65), using as input

nk
Msi,ll(k’ t) = 8 2
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Fig.5.6 Wavevector dependence of the normalized halfwidth of S;(k,w) in a

Lennard-Jones system which simulates liquid argon. The triangles are the same

simulation data reported in Fig. 5.5 (Levesque and Verlet 1970). The full line is the

result of the theory by Wahnstrom and Sjogren (1982). The dashed line represents
the predictions of a purely ‘binary’ approach (eqn 5.63).

quantities structural data (needed for the weight factor cz(q?), as wel.l as
simple analytical representations for the intermediate scatter.mg func’tlons
F, and F (entirely analogous to those adopted for the evaluation of K’ (¢)).
The outcome of these calculations is qualitatively similar to the one
discussed in Section 5.1.3: after the initial increase, M ;; (k, f) exhibits a
broad maximum, followed by a slow decay (ruled by the factor F,F in
eqn (5.65)). The important point to be stressed in the present case is clearly
the wavevector dependence of all these dynamical feacutres. Broadly sp§ak-
ing, it is found that the overall relevance of the non-binary contributions
decreases at increasing wavevector. In particular, at larger k the broad peak
becomes progressively less defined and the amplitude of the tail is gradually
reduced with respect to the k = 0 case. Eventually, as the wavevector
increases beyond a certain range (typically, as k >2.5k,), the effects. of
M/, (k, t) can virtually be neglected and the features of self-moylon
appear to be entirely ruled by the binary portion of the memory function.

The overall results obtained by Wahnstrém and Sjogren for the
normalized halfwidth I',(k)/Dk? in the case of liquid argon are rep‘o.rted
in Fig.5.6. As a preliminary step, only the effects of binary collisions
were taken into account. In this case the spectral features are evalua!:ed
by eqns (5.63)-(5.64c), adopting for the quantity f(k, 2) the approximation
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flk,z) = | dtexp(—zt) f(k, 1)

=

dtexp(—zt)exp[ —t*/7%(k)]. (5.66)

Sy § O Cmm—y @

Even if this Gaussian ansatz for f(k, ¢) is likely to be an oversimplifica-
tion of the true binary dynamics, the previous discussion indicates that the
gross features of the collisional decay channel can indeed be accounted for
by a single time constant 7;(k). An important difference with respect to
the approximate treatment of Section 5.3.1 is that now the quantity 7,(k)
can be evaluated from ‘first principles’ by means of a short-time expansion
of F,(k,t) up to terms in ¢° (see Appendix I).

As is apparent from Fig. 5.6, the comparison of the results deduced from
the binary theory with the actual findings is unsatisfactory under several
respects. First of all, there is an obvious discrepancy as k — 0, where the
predicted halfwidth approaches Dpk? rather than the correct result Dk2.
Since the binary diffusion coefficient Dy is considerably larger than D (cf.
Section 5.2), the result is that I',(k)/Dk? starts from a value Dg/D > 1.
Aside from this trivial source of error, the binary approach predicts an
initial increase of the normalized halfwidth with the wavevector, in clear
disagreement with the trend observed in the simulation data. The theoretical
results become acceptable only at relatively large values of k, indicating that
only in this range binary collisions yield the leading decay mechanism for
the self-memory function. The obvious implication is that any serious
attempt to account for the ‘oscillations’ of I,(k)/Dk? at intermediate
wavevectors cannot neglect the presence of non-binary contributions. The
latter have been taken into account by Wahnstrom and Sjégren including
all the possible decay channels for M, (k, ) (the most relevant being
represented by eqn (5.65)), and inserting the results in (5.59). The final out-
come for the normalized halfwidth is reported in Fig. 5.6 (full line). Apart

-from some minor discrepancies in the amplitudes, this complete calculation

is seen to reproduce all the essential features of the simulation data (in par-
ticular, the positions of the minimum and maximum of I',(k)/Dk?).
The physical picture of k-dependent self-motion which emerges from all
this theoretical framework can be summarized as follows. At small
wavevectors the tagged particle undergoes an essentially diffusive motion,
in which both collisional events and less localized processes play an impor-
tant role. The precise nature of the second class of phenomena is largely
determined by the thermodynamic state of the system. In the case of
monatomic liquids near the melting point, the dominant processes (the
‘couplings to the density modes’) stem from the close-packed structure,
which ultimately causes the tagged particle to be ‘trapped’ to some extent
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by the surrounding atoms. The relevance of this effect is clearly enchanced
by the low temperature of the liquid, which prevents a rapid thermal disrup-
tion of the atomic ‘cages’. The trapping appears to be particularly effective
_for k = k,,, where the wavelength approaches the linear size of the cage
(typically, of the order of the nearest-neighbour distance) and the apparent
diffusion coefficient I’ (k)/k? is a minimum. At even larger wavevectors,
the situation changes drastically because the spatial range which is explored
is so short that the presence of the cage is not detected. As a consequence,
the dynamics of the particle is ruled by essentially uncorrelated
collisions, and the halfwidth rapidly increases to approach its binary value
(see Fig.4.6). Eventually, for k/ > 1, even the collisional events are not
revealed and the tagged particle is seen as though it were non-interacting.

This picture is to be contrasted with the situation occurring in a dense
gas, or in a ‘hot’ liquid. In this case, the ‘cages’ are so loose that the motion
of the particle gives rise to a backflow of the surrounding atoms, and even-
tually to the development of vortex patterns of considerable spatial extent
and stability. In turn, this modified -environment reacts on the particle,

whose motion is in a sense ‘supported’ by the backflow. As anticipated in_

Section 3.3, the final result of this dynamic process is a slower decay of
the velocity autocorrelation function (the positive ¢#~*? tail) and an
increase of the diffusion coefficient with respect to the binary prediction.
In the less pictorial language of Section 4.5, the effect is ultimately due to
the ‘coupling’ of the particle motion with shear modes of long wavelength.

In such a situation, the first effect observed in dense gases or hot liquids
when the self motion is explored at finite wavevectors is a reduction of
the effective diffusion coefficient I',(k)/k? (Verkerk etal. 1985, 1989;
Montfrooy et al. 1986; Morkel and Gléser 1986). Even if this behaviour is
apparently similar to the one found for liquids near melting, it arises in a
quite different physical context. Broadly speaking, we may argue that at
increasing k the gradual shrinking of the length scale decreases the effi-
ciency of the backflow processes on the tagged particle; as a result, the
effective diffusion coefficient approaches the binary value, which is now
somewhat lower than D. The initial evolution of this process is accounted
for by a mode-coupling calculation similar to the one discussed in Section
4.5. In particular, for small k the normalized width can be expressed as (de
Schepper and Ernst 1979, Verkerk et al. 1985)

I(k) H(9) P
i =TT k+ O(K"?). | (5.67)

Here k* = 16anmD?*/kgzT and & = D/[D + (n/nm)], n being the shear
viscosity coefficient. Usually J is a rather small parameter (6 < 1), par-
ticularly near the melting point where D < (n/nm). Finally,

H(J) = 1.43516%* + O(6%3). (5.68)
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The prediction of eqn (5.67) have been tested against the neutron-scattering
data obtained in liquid sodium at different temperatures (Montfrooy et al.
1986). Owing to the small magnitude of the effect, this test is particularly
meaningful at the highest temperature explored (7 = 803 K; the melting
point is =371 K). Consistently with the above arguments, in this ‘hot’ liquid
the effective diffusion coefficient I',(k)/k? never exceeds D; the initial
reduction is found to be well accounted for by eqn (5.67). The unambiguous
appearance of this linear decrease with & is a signature of the relevance of
the same mode-coupling effects leading to the ¢~*? tail in the velocity
autocorrelation function w(¢), or equivalently to the presence of a cusp
o w'? in the corresponding spectrum Z(w) for sufficiently small frequen-
cies. Clearly, the experimental detection of this square-root dependence
requires a non-trivial extrapolation of S;(k, w) both at low frequencies
and at small wavevectors. Nevertheless, some successful attempts in this
sense have been reported (Morkel et al. 1987; Verkerk ef al. 1989).

In all the preceding pages we have mostly confined our discussion to the
k-dependence of the normalized halfwidth I,(k)/Dk?, which has been
shown to provide a considerable amount of information despite the
apparently ‘uninteresting’ evolution of the full spectrum. A similar analysis
can be performed for another quantity of experimental interest, namely the
peak amplitude of S;(k, w) for w = 0. Even in this case it is convenient to
‘normalize’ the results with respect to the diffusive limit by introducing the
quantity

>} (k) = nDk2S,(k, w = 0). (5.69)

Besides the obvious result ) ;(k = 0) = 1, the definition (5.69) implies that
in the free particle limit }(k — o0) = (mm/2ks T)2Dk (cf. eqn (1.51)).
The typical evolution of ) (k) at finite wavevectors is illustrated in Fig. 5.7,
where for convenience we also report the corresponding behaviour of the
quantity I',(k)/Dk?. The results obtained for Yi(k) in a liquid near melting
(Fig. 5.7a) show a close correspondence with those previously seen for the
normalized halfwidth, even if the various features are some what less evi-
dent. Similar remarks can be made for the case of a less dense fluid (or
of a fluid at high temperature), which shows a considerably larger range
of validity of the free-particle regime (see Fig.5.7b).

It is worthwhile noticing that the behaviour of ) (k) would be straightfor-
ward if we had some indication that the product I;(k)- S,(k, w = 0) is
nearly constant over the entire wavevector range. In such a circumstance,
we might for example argue that for a liquid near the melting point the
‘oscillations’ of ) (k) and I',(k)/Dk? should be in a definite phase ratio,
with the maxima of one quantity being approximately coincident with the
minima of the other quantity and vice versa. As a matter of fact, Fig. 5.7a
indicates that this expectation is not verified at a quantitative level. Rather
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Fig.5.7 Schematic wavevector dependence of the two quantities L(k) (fu'll line)
and I];(k)/Dk2 (dashed line) in a typical simple fluid: the situation occurring (a)
near the melting point and (b) in a dense gas (or ‘hot’ liquid).

than being constant, the above mentioned product shows instead a
systematic increase with the wavevector (Fig. 5.8). This effect is a conse-
quence of the gradual change of S,(k, w) from a Lorentzian shape at small
k(I,(k)- S,(k,0) = 1/m = 0.3183) to a Gaussian one for k — oo (I5(k)"
S,(k,0) = \(In2/7) = 0.4697). Such a crossover is found to proceed at a
slower pace near the melting point than at high temperatures. As a mg.tter
of fact, in the latter case a ‘binary’ picture becomes rapidly appropriate,
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Fig. 5.8 Wavevector dependence of the product S;(k, w = 0)-I,(k) in liquid
sodium at 7 = 403K (chain line) and at 7 = 803K (dotted line). From the
incoherent neutron-scattering data of Morkel and Gliser (1986).

and the larger mean free path makes easier the fulfilment of the condition
kl> 1.

5.3.3 More recent studies of self-motion

When viewed in perspective, the success achieved in the interpretation
of single-particle dynamics by an essentially non-phenomenological frame-
work appears to be considerable. The basic ingredient for this accomplish-
ment is the recognition of the existence of processes evolving over a
timescale distinctly longer than the collisional one. As we have seen, dif-
ferent kinds of slow processes are relevant depending on the thermo-
dynamic state of the system. In particular, in a liquid near the melting
temperature the motion of the test particle is considerably affected by the
sluggishness of the atomic rearrangements. This kind of ‘coupling’ can
readily be accounted for by the theory, with quite satisfactory results at a
quantitative level.

It is natural to wonder if any obscure corners are still left in this bright
scenario. The answer may be partly subjective depending on which
requirements should ultimately be met by a satisfactory physical theory, as
well as on the actual accuracy of the experimental or simulation data
available. Even so, a thorough analysis of the theoretical framework
indicates that in the present stage of development the approach is able to
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Fig. 5.9 Comparison between the features of the effective pair potential in liquid

lead (full line) and those of a Lennard-Jones potential (dashed line). The separa-

tions are measured in units of the position R, of the first peak of g(r) in the two
systems. Redrawn from Gudowski ez al. (1993).

account rather well for the above mentioned long-lasting features; in con-
trast, our understanding of the fast collisional (‘binary’) dynamics in real
liquids is not so satisfactory. As stressed several times, this limited
knowledge can in practice be circumvented by adopting some simple ansatz
for the rapid time evolution of the binary memory functions, essentially
based on their initial decay rate. As a matter of fact, this rather ad hoc
procedure is found to yield satisfactory results both for liquid argon and
for liquid alkali metals, namely for the traditional archetypes of simple
liquids. However, the fast events giving rise to the ‘collisional dynamics’ are
expected to be considerably affected by the detailed shape of the effective
interatomic potential. Further tests in other systems may provide additional
information, or at least simply justify on a practical basis the status of the
theory in its present formulation.

In this context, it is interesting to discuss the results recently obtained
in an extensive simulation study of self-motion in liquid lead (Gudowski
etal. 1993). The effective pair potential ¢(r) in this system is determined
by starting with a trial function with several parameters and adopting an
iterative fitting procedure such that the static structure factor obtained
in the simulations reproduces the available neutron-scattering data as
accurately as possible (Dzugutov efal. 1988). The potential eventually
deduced in this way is considered realistic enough to be'employed in a com-
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prehensive molecular-dynamics investigation of the properties of liquid
lead, aimed to explore their features in a wavevector range uncovered by
the neutrons, as well as to obtain information on quantities which are not
accessible experimentally (Larsson et al. 1990). A noteworthy feature of the
adopted potential is that it looks considerably different from, say, the
familiar Lennard-Jones potential (see Fig. 5.9). In particular, whereas in
the LJ case the position of the minimum of ¢(r) nearly coincides with the
‘nearest-neighbour distance’ (approximately measured by the location of the
first peak of g(r)), the effective pair potential in liquid lead appears to be
strongly repulsive at that distance. A similar situation is found in another
molten semimetal, namely liquid bismuth (Dzugutov and Dahlborg 1989).
As a result, in these systems the repulsive portion of ¢(r) appears to have
a much longer range than in inert gas liquids or in molten alkali metals.
Coming back to the specific case of liquid lead near the melting point,
the simulation was performed with a large system (16 384 particles), thus
making possible a study of the dynamics at quite small wavevectors (down
to 0.07 A™1). Although both self- and collective quantities have been
investigated (Larsson ef al. 1990), in the present context we are particularly
concerned with the data obtained for single-particle motion by Gudowski
etal. (1993), which have been used as a benchmark for a stringent test of
the predictions of Sjogren and Sj6lander (1979) and of Wahnstrém and
Sjogren (1982) for the relevant memory functions. All the input quantities
needed in the theoretical expressions (such as the binary decay times, the
intermediate scattering functions F, and F and the currents) were taken
from the simulation data, rather than deduced by some approximation
scheme.

The most interesting test concerns the memory function K(¢) of the
velocity autocorrelation function. Recalling that K(¢) = lim, _, (M, (k, 1), in
this case the self-motion is effectively probed over a large spatial range, and
yet over an arbitrary timescale comprising even phenomena having a
microscopically short duration. As already discussed in Section 5.1, in such
a situation the dynamics of K(¢) reflects the presence both of rapid colli-
sional events and of slower ‘mode-coupling’ processes. The results obtained
by Gudowski efal. (1993) for the theoretical memory function K(¢) =
K(#) + K’(¢t) in liquid lead are reported in Fig.5.10. In close cor-
respondence with the original analysis by Sjogren and Sjélander (1979) and
by Sjogren (19800), the long-lasting portion K’(¢) was evaluated by
including both the dominant density contribution (eqn (5.12)) and the other
smaller terms involving the currents. A comparison of this theoretical K(¢)
with the corresponding simulation findings indicates clear quantitative
discrepancies (see Fig.5.10). In particular, at relatively short times the
molecular-dynamics data for K(¢) present a deep minimum which is not
reproduced by the theory. Moreover, in the majority of the intermediate
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function in liquid lead at 623 K. The full line denotes the result of the theory by

Sjogren and Sjélander (1979) with all the mode-coupling decay channels included.

The open circles are the actual computer simulation data. Redrawn from Gudowski
et al. (1993).

time region the mode-coupling results are found to overestimate the actual
amplitude of the tail by about a factor two. Even if these discrepancies may
not appear dramatic on the full scale of K(¢), their combined effect on
eqn (5.27) is such that the theoretical diffusion coefficient underestimates
the actual one by as much as 30%. This situation is to be contrasted with
the satisfactory results previously seen both for liquid argon and for molten
alkali metals.

The reason for these shortcomings in liquid lead is still unclear. The
unusual shape of ¢(r) in this system may certainly have some consequences
for the binary part of K(¢), particularly in the last portion of its decay (i.e.
just where the deep minimum occurs). On the other hand, the presence of
discrepancies even in the tail (where presumably the potential shape plays
a smaller role) poses some problems about the validity of the mode-coupling
expressions in their present form.

Summing up, although the theoretical framework certainly provides the

keys for a correct interpretation of the different processes relevant for self-

motion, both additional tests in other systems and further quantitative
improvements are necessary before we can claim the ‘universal’ character
of the present formulation. In this respect, despite their deceivingly simple
appearance, single-particle properties are a very sensitive benchmark. In
contrast, we shall see in the next chapter that several features of collective
dynamics turn out to be ruled by rather trivial structural effects, making
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a very detailed knowledge of the relevant memory functions comparatively
less important.
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Collective properties'

6.1 GENERALIZED HYDRODYNAMICS

In Section 3.4 we saw that all the results of ordinary Navier-Stokes
hydrodynamics can formally be deduced by a microscopic memory function
approach. In perspective, this success stems from the slow character of the
hydrodynamic variables in the limit of small wavevectors, which in turn
implies the validity of a Markovian ansatz for the corresponding memory
functions. As a by-product of the approach, it was moreover possible to
establish ‘Green-Kubo relations’ for the macroscopic transport coefficients,
which can be expressed as time integrals of ordinary correlation functions.

Starting from this successful picture, let us now explore the dynamics of
the same variables at increasing wavevectors; that is, up to values of 2z/k
comparable with atomic sizes. Arguing by common sense, we may expect
that in this case the hydrodynamic results are no longer valid. To begin
with, the continuum description inherent in the Navier-Stokes equations
becomes suspect as we approach microscopic distances. Although deduced
by a framework entirely different from hydrodynamics, even a result like
eqn (3.136) should ultimately have similar limitations. Also, as k increases
. the time evolution of the variables, originally cla}ssified as ‘quasi-conserved’,
gradually loses any slow character, calling for a critical revision of the basic
arguments exploited in Section 3.4.

In practice, the situation actually occurring in the liquid range is
somewhat different. To be more specific, we shall see that with some
suitable changes the hydrodynamic framework can be extended up to wave
vectors considerably larger than anticipated from our intuitive considera-
tions. The basic physical reason for this unexpected success is that in & space
the actual domain of validity of hydrodynamics is determined, rather than
by the particle size o, by the requirement that the explored length scale must
comprise a sufficiently large number of collisional events. In other words,
rather than dealing with the restrictive condition ko < 1, we simply need
that k/ < 1, where the quantity / is of the order of a mean free path. Since
at liquid densities / is considerably less than the typical atomic separations
(the latter being of the order of ry, = o, cf. Section 1.4.2), the effective
validity of the hydrodynamic description is extended well beyond the limits
inherent to a ‘continuum approximation’. '
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Nevertheless, beyond a certain wavevector the results of ordinary
hydrodynamics are bound to break down. The simplest recipe to face this
situation is to retain the formal structure of the hydrodynamic equations
and to allow for the finiteness of k by replacing both equilibrium properties
and transport coefficients with suitable wavevector dependent generaliza-
tions. In practice, such a generalized hydrodynamics can be derived in
several ways. The most straightforward procedure is simply to assume that
some or all of the relevant quantities become k-dependent, and to look for
physical criteria which may help to establish such a dependence. For exam-
ple, let us consider the hydrodynamic expression (1.161) of the intermediate
scattering function. To illustrate the procedure in a simple situation, let
us assume that the effects of the thermal fluctuations can be neglected (i.e.
that y = 1). In such a case eqn (1.161) reads ‘

[F(k, )]nya = [F(k, 0)]nyaexp (—ILk%)[cos (vrkt)
+ (I k/vr) sin (vrkt)] 6.1)

where vy = (nmyr)~"? is the isothermal sound velocity and Iy =
3(n/nm). Since the initial value [F(k, 0)],yq = nky Txy can be written as
Sk =0) (cf. eqn(1.15)), at finite wavevectors it appears natural to
replace it with S(k). As we already know from eqn (1.121), this is in
fact the correct result at any k. Similarly, it is reasonable to replace
vr = [kgT/mS(k = 0)]"? with the wavevector dependent velocity vy(k) =
[k T/mS(k)]2. As a consequence, in this special case with y =1 the
quantity vy k appearing in eqn (6.1) is simply ‘generalized’ as vp(k) -k =
(w?>? (cf. eqn(1.128)). In contrast with the rather straightforward
treatment of these equilibrium properties, the generalization of the damping
rate I k? at finite wavevectors requires a careful discussion. As a first step
in this direction, it is convenient to consider the Laplace transform of
eqn (6.1) which for sufficiently small k can be written as

[k, 2) ]y ~ [F (ks 0)]e [z N z—i%ﬁ)—k} T 62

This exp~ression is now compared with the formally exact Mori representa-
tion of F(k, ) in terms of a continued fraction expansion (cf. eqn (3.42)).
At the second level we obtain

(6.3)

F(k,z) = S(k) [z+ (wb) r,

2+ Ky (k,2)
where K; (k, z) is the Laplace transform of the second-order memory func-

tion. Kj (k, t). Whereas the exact initial value of K (k, t) has already been
determined (cf. eqn (4.160)), not very much is known a priori about its time
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evolution at arbitrary wavevectors. However, in the hydrodynamic regime
we know that, on the timescale of F(k, t), the decay of K (k, t) should be
fast enough to guarantee the validity of the Markovian approximation

or, equivalently, K, (k,z) =41A,. To be consistent with eqn(6.2), the
proportionality constant in (6.4) should read

Ay = AL k? = 2(nu/nm) k2. 6.5)

Starting from this ¥ — 0 limit, we may now try to extend the framework
at finite wavevectors by making the ansatz

Ky (k, £) = Ky (K, 0) exp (~1/1,)
= [w}(k) — {w})] exp (—t/7;) (6.6)

where in the last step we have exploited eqn (4.160). The assumption that
the decay of the memory function is ruled by a single k-dependent time con-
stant parallels a similar approximation adopted in Section 5.3.1 for self-
motion, and is in fact the simplest one which we may envisage at a
preliminary stage. The consequences of the ansatz (6.6) (often referred to
as the viscoelastic model) will be discussed in detail in the next section; for
the time being, it is interesting to see its implications in the strict
hydrodynamic regime (i.e. for small wavevectors and small frequencies). In
this case, from eqns (6.6) and (1.144) we obtain

IzL(k -0,z 0) = limz—*o(ci_' U%‘)kzlz + (I/Tk-»o)] !
= (¢} — vDk*7i0. 6.7

Inserting this limiting expression into eqn (6.3)‘ and comparing the result
with eqn (6.2) we deduce that

_ (n./nm) (6.8)

Tes0 = .
TP el

Since the velocity ¢; turns out to be always larger than vy, the decay time
7, entering eqn (6.6) is perfectly defined and finite as £ — 0. In practice,
the values of 7,_, evaluated from (6.8) are still ‘microscopic’ (typically,
in the picosecond range for simple liquids), while at decreasing wavevectors
the decay times associated with F(k, ) become very long owing to the
progressive fulfilment of the conservation laws. Eventually we approach
an ideal Markovian situation, as in fact expected from the analysis in
Section 3.4.

Up to now, for simplicity we have dealt with a sort of ‘isothermal
hydrodynamics’ in which the specific heat ratio y = 1. Although this
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situation is rather well verified in all liquid alkali metals (y = 1.1), it
is not realistic in many other systems, including liquid argon where
y = 2.2. Let us therefore consider the more complicated case in which the
presence of thermal fluctuations cannot be neglected. Rather than deal-
ing with eqn (6.2), for k — 0 we now have the complete hydrodynamic
expression

(vrk)? -
(y = 1)(vek)?
z+ (x/ncy)k?

[ﬁ(k’z)]hyd = [F(kst = 0)]hyd Z+
Z4 200 k% +

6.9)

(cf. eqn(3.137) and subsequent results). Even in this case, a pre-
liminary ‘generalization’ of (6.9) is achieved by replacing the quantities
[F(k,t=0)]pqg and (vrk)? with their respective equivalents at finite &,
that is S(k) and (w?%). As a second step, eqn (6.9) can be interpreted in
terms of the formally exact representation (6.3); this implies that in the
hydrodynamic regime the memory function I~<L has the form

(y - 1)(“’%—»0)

K. (k—0,z) =2 k> )
a 7) L+ z+ (x/ncy)k?

(6.10)

Making the identification 2I7 = 5;/nm, in the time domain eqn (6.10)
corresponds to

K (k—0,t) =2(n/nm)k*6(t) + (v — 1){wi-o)
x exp [ — («/ncy)k?t]. 6.11)

In contrast with the first term on the right-hand side, the additional con-
tribution due to thermal fluctuations is seen to have a finite decay time even
in the hydrodynamic region. In our attempts to generalize eqn (6.11) at
finite wavevectors, it is consequently more sensible to modify the d(¢) decay
of the viscous term than to speculate about possible deviations of the ther-
mal contribution from a purely exponential decay. In analogy with the
previous case y = 1, we tentatively describe the viscous relaxation processes
by a simple viscoelastic model. As a result:

Ky (k, 1) = [w}(k) — y{w})] exp (—t/7;)
+ (y — 1){w?i) exp [ — (k/ncy) k] (6.12)

where the amplitude of the first term on the right-hand side is chosen
in such a way that the memory function has the correct initial value
K, (k,0) = wi(k) — (w%). Turning again to a description in terms of
Laplace transforms, the generalized hydrodynamics approach discussed so
far for F(k,z) can be summarized as follows:
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F(k,z) [ (w}) }“
50 - T iv Rk ) €13
Mwith
R(k.z) = wi(k) — y{wd) | (v — 1){w}) (6.14)

z+ (1/7) z + (k/ncy)k?’

The rather intuitive procedure, which has led to eqns (6.13)-(6.14), is the
simplest example of the typical arguments used in generalized hydro-
dynamics. Rather than trying to extend the Navier-Stokes results by a per-
turbative treatment (e.g. by a step-by-step expansion in the wavevector k),
these approaches are based on reasonable ‘extrapolations’ in which an
important criterion is the fulfilment of a limited number of exact short-time
properties such as S(k), (w2) and w?(k). As we shall see in the following,
the inclusion of these properties (which are in principle known at any
wavevector) may indeed extend the validity of the results to a range of
(k, w) considerably larger than the one typical of hydrodynamics.

In any case, the ultimate test for these approaches is the comparison of
the theoretical predictions for the spectra S(k, w) = (1/7n) Re F(k, z = iw)
with the experimental or simulation data at increasing wavevectors. Beyond
the hydrodynamic regime the observed spectra show a more or less rapid
transition from the Rayleigh-Brillouin triplet structure to a lineshape
characterized by a single peak at w = 0. The actual rate of this crossover
turns out to be much faster in argon-like liquids than in molten alkali
metals (cf. Figs1.12, 1.13). Generally speaking, in these systems the
evolution of the theoretical line shape at increasing k compares rather well
with the observations (Ailawadi et al. 1971; Leyesque et al. 1973; Copley
and Lovesey 1975). This is particularly true if one proceeds to a further
k-dependent generalization of eqn (6.14) by writing

(k) = ywd) | (= 1){wp)
zZ+ (I/Tk) z+akk2 )

Ki(k,z) = (6.15)

In particular, the form (6.15) has been adopted by Levesque et al. (1973)
in their pioneering work on the collective dynamics on Lennard-Jones
liquids. In this simulation study the quantities 7;, y, and a;, were con-
sidered as fitting parameters at every wavevector. Despite this rather
phenomenological aspect, the results of such an analysis are quite
interesting. At sufficiently small wavevectors the parameters 7, and a; are
indeed found to approach their correct hydrodynamic values 7.,
(eqn (6.8)) and k/nc,. On the other hand, the behaviour of y;, is more
subtle. For ka > 2 the best-fitted value of y, is essentially unity, indicating
that the coupling to thermal fluctuations can safely be neglected even for
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relatively small wavevectors (note that in the usual Lennard-Jones units the
main peak of S(k) occurs approximately for kg = 6.8). However, for k — 0
the optimum values of y, are found to exceed considerably the exact result
y = cp/cy. Since in this limit the second term in eqn (6.15) is characterized
by a rather small damping, the presence of the discrepancy indicates that
in the low wavevector range K; (k, t) is affected by additional long-lasting
processes, which the fit reveals by an effective increase of the amplitude
factor (y, — 1). To test the correctness of this interpretation, Levesque
et al. included an additional term in K (k, t) which should account for the
presence of slow features in the viscous relaxation. Modelling the time-
dependence of this contribution by another exponential decay law, one
eventually arrives at the following expression of f(L(k, 2):

Ruh2) = [w(0) - $od] | sy + 5 {’{‘/,'J

+ (7 — 1))

z + a.k? (6.16)

where the additional parameter @, measures the effective weight of the
‘slow’ contribution (described for simplicity by a k-independent time cons-
tant 7’). Given the larger number of parameters, it is not surprising to find
an even better agreement with the simulation data for S(k, w). The impor-
tant result is, however, the fact that for small wavevectors y, now
smoothly approaches the correct value y. Moreover, the weight factor a;
(roughly = 0.1 at small k) is found to decrease considerably at larger
wavevectors, confirming the approximate validity of the ansatz (6.6)
beyond a rather limited range of k.

In the simpler context of the memory function (6.6), several prescriptions
were originally proposed for the wavevector dependence of the relaxation
time 7, (Chung and Yip 1969; Akcasu and Daniels 1970). Rather than
attempting a microscopic derivation, these approaches provide for 7,
empirical expressions which interpolate between the k = 0 result (6.8)
and the limiting behaviour expected for a non-interacting system at large
k. Since the generalized hydrodynamics framework is intrinsically unable
to reproduce the Gaussian line shape (1.1) appropriate for free particles,
one may only require that some spectral feature is correctly accounted
for. To give an example, we may ask that for large wavevectors the
theory reproduces the free particle result S(k, w = 0) = (m/2nky Tk*)"2.
This procedure closely parallels the one discussed in Section 5.3.1 for
self-motion. Noting that S(k— o) =1, (w2_..) = (kg T/m)k?, and
wi(k - ) = (3kzT/m)k?, from eqn (6.3) we readily obtain that for large
k the predicted value of S(k, w = 0) is (2/7)t;- . TO be consistent, we
should then require that
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Fig. 6.1 Test of two theoretical schemes for the wavevector dependence of the
time 7, at intermediate k. The open circles are the best-fitted values deduced
from the neutron-scattering spectra in liquid Cs at 308 K (Bodensteiner 1990). The
dashed line refers to the results from eqn (6.18) and the full line to the expression
(6.34) proposed by Lovesey (1971). The position of the main peak of S(k) is at

ky=1.4A71,
2
[ ! J =§E§Zk2. 6.17)
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Then the simplest interpolation scheme which we may envisage can be
written as (Chung and Yip 1969)

2 2 .
[1] =[ 1 J LY 6.18)
Tk Tk->0 mm

While eqn (6.18) is clearly consistent for both small and large wavevectors,
the values of 7, predicted at intermediate k are generally in rather poor
agreement with the simulation data obtained by best-fitting procedures (see
Fig. 6.1). The results are not significantly improved with alternative choices
for the spectral feature to be reproduced for k¥ — o (for example, the posi-
tion of the peak of w?S(k, w)). A somewhat better agreement is instead
obtained by adopting more complicated interpolation formulas, albeit at
the price of introducing an additional parameter (Akcasu and Daniels
1970). In the absence of more refined calculations (see, however, the next
section), it is nowadays customary to treat the time 7, as a quantity to be
deduced from the observed spectra.
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Summing up, the hydrodynamic framework can indeed be extended suc-
cessfully well beyond its strict range of application— provided that we are
ready to accept a certain amount of intuitive and phenomenological
arguments in this generalization. If not, an alternative is to resort to the
more rigorous approach developed in Section 3.4. In particular, a result like
eqn (3.135) still represents a valuable starting point, even if in practice not
much progress can be made without further assumptions. A possible solu-
tion is to consider an enlarged set of Mori variables, also including the non-
conserved ones such as the different components of the microscopic stress
tensor (1.178) and of the microscopic energy current (1.182). The main
points of this theory (originally developed by Akcasu and Daniels (1970))
are discussed in detail by Boon and Yip (1980); although undoubtedly com-
prehensive, the approach has, however, not led to a significant improve-
ment of the previous results.

Even with these problems, the main concepts behind the generalized
hydrodynamics framework are quite appealing. We have seen that it is in
fact possible to retain the basic structure of the hydrodynamic equations,
provided that the usual transport coefficients are effectively replaced by
wavevector- and frequency-dependent quantities. Rather than being purely
formal, this replacement has far-reaching physical consequences on the
dynamic response of the system. Some of these implications are already
apparent in the simplest ‘generalization’ scheme, the aforementioned
viscoelastic model (see Section 6.2); others are more subtle and require a
careful consideration of those long-lasting events which have been seen to
pervade several features of the dynamics of the liquid state.

Besides an extensive use in the interpretation of the data from real fluids
(the works by Bodensteiner ef al. (1992) and by Youden ef al. (1992) are
only recent examples of a long series), the concepts of generalized
hydrodynamics have had a substantial impact even on the studies dealing
with hard-sphere fluids. In particular, the appropriate generalized forms of
the various thermodynamic and transport coefficients have been investi-
gated both theoretically (Leutheusser 1982) and by molecular dynamics
simulations (Alley and Alder 1983). Moreover, in the hard-sphere case it
proves possible to establish an approximate kinetic framework in which the
evolution of the main ‘eigenmodes’ (cf. Section 1.3) can be followed in a
wide range of wavevectors (de Schepper and Cohen 1982; Cohen ef al. 1984,
1986; Bruin ef al. 1985). In particular, at finite wavevectors the dynamic
structure factor is found to be governed by three eigenmodes reminiscent
of the hydrodynamic ones: two symmetrical ‘extended sound modes’
(generalized Brillouin doublet) and one ‘extended heat mode’ (generalized
Rayleigh component). As a consequence, S(k, ) can be represented even
for non-hydrodynamic wavevectors as a sum of three Lorentzians with
appropriate amplitudes (cf. Section 2.4.1). As k increases toward the
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position k,, of the main peak of S(k), the damping of the ‘heat’ mode is
found to be always smaller than that of the others, especially at high densities
where the most important features of S(k, w) are almost completely deter-

“mined by this eigenmode. On the other hand, as k — k,, the framework
gives a rather curious result for the dispersion of the sound modes, namely
the occurrence of a region with zero frequency (de Schepper ef al. 1983).
These findings aroused a debate about the actual existence of these ‘pro-
pagation gaps’ in real fluids (Lovesey 1984). Since the gaps themselves are
found to disappear at sufficiently high density (van Rijs ef al. 1985), the
subject has probably been overemphasized with respect to other more
important results of the framework. In a more general context, the predicted
three-Lorentzian line shape has been successfully adopted to analyse the
neutron-scattering data for S(k, w) in a variety of situations. As already
mentioned in Section 2.4.2, particularly interesting in this respect are some
recent neutron measurements made in argon gas at moderate density (Bafile
et al. 1990), where the initial deviation from Navier-Stokes hydrodynamics
have been detected. In this transition region, the three-Lorentzian analysis
and the generalized hydrodynamics framework are found to give an equally
good account of the experimental spectra (Youden ef al. 1992).

6.2 THE VISCOELASTIC MODEL

6.2.1 Density fluctuations

The results discussed in the previous section have made clear the relevance
of the memory function Ky (k,?) in determining the features of the
intermediate scattering function F(k,t) and of its frequency spectrum
S(k, w). Before embarking on the detailed analysis of a particularly simple
model for K (k, t), it is convenient to collect together the basic reference
equations. According to the memory function framework, the dynamic
structure factor S(k, w) can be exactly expressed as

S(k,w) 1 F(k,z=iw)
S(k) 7T Sk

(w}) }“

=—Re |iw + = . 6.19
[ iw + Ky (k,z =iw)] 6.19)

Since

K (k,z =iw) = j dtcoswt K (k,t) — i I dtsin wt Ky (k, t)
0 0

= K{ (k,w) —iK{ (k, ) (6.20)
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we may eventually write that

S(k,w) 1 (w)Ki (k, ») O
S(k)  n [0 — (@}) — wKi(k o)]* + [wK{ (k, )]’
— L WKL (6.21)

A priori, the only exact result which we know about the memory function
K (k, t) is the initial value

Ki(k,t =0) = wi(k) — (w}) = 4. (6.22)

The simplest assumption that we may make about the time dependence
of K;(k, t) is the exponential decay law

KL(k, t) =Akexp(-—t/‘t'k). (6.23)
Translated into the frequency domain, this amounts to saying that
( 1/ Tk)
K{ (k, =Ay—, .24
L (k, w) ¥t (/) (6.24a)
K7 (k, @) = @ (6.24b)

dy——F.
sz + (I/Tk)z

In the preceding section we have seen that the ansatz (6.23) implies that the
effects of the thermal fluctuations are negligible. Consequently, by adop-
ting eqn (6.23) we cannot hope to account for the correct hydrodynamic
behaviour of a system characterized by a specific heat ratio noticeably dif-
ferent from one. Also, the assumption that the decay of K (k, t) is ruled
by a single time constant is a clear oversimplication, particularly in those
cases where long-lasting phenomena play a role in the dynamics of the
memory function. Nevertheless, there are several good reasons to discuss
in detail the consequences of the approximation (6.23) (referred to as the
viscoelastic model):

(i) The dynamics of density fluctuations at finite wavevectors is controlled
to a large extent by structural effects, embodied in the two quantities
{w?%) and w?(k). In particular, in the liquid range the normalized second
moment {w2) = [kgT/mS(k)1k* is considerably affected by the sharp
variations of the static structure factor S(k) at increasing wavevectors.
These features are automatically incorporated into eqns (6.21) and (6.24).
This situation is to be contrasted with the case of self-motion, where
(w?), is simply (ks 7/m)k? and the structural features only appear at a
subsequent stage of the continued fraction.

(ii) As already noticed, the relevance of both thermal fluctuations and slow
‘tails’ appears to be considerably decreased as k approaches k,; in the
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notation of eqn (6.16), y,— 1 and a; — 0. Beyond a certain wavevector
range we therefore expect that the viscoelastic ansatz (6.23) gives a quite
reasonable description of the dynamical features of K (k, ?).

(iii) The time constant 7, controls the specific collective behaviour of the
system. We shall in fact see that for ¢ < 7, the fluid responds as it were
a ‘frozen’ solid-like system, whereas for times ?> 7, the viscous
mechanisms set in and reveal the inherent dynamic disorder.

Inserting (6.24a) and (6.24b) into eqn (6.21) we obtain

Stw) _1 A0 (1/1) '
S(k) 7 @P[e? — (@} — 4] + (1/7)* [0® - (wD)]*
(6.25)
The corresponding result for the intermediate scattering function reads
(Lovesey 1971):
F(k,t)  {wPd { 1
S(k) ~ ni+ (& — 6,)* 6% + (0l

R ) (= 36— w4260 cosm
k™ Gk

exp ( —06x?)

+

4 [(&— 6 (1 — &= (1)) + 2] (1/m) sin nkt}} .

(6.26)
Here
me= (/23 (re+s),
& = (1/6) [r —s + (2/7)],
0, = (1/3) [s — re + (/7)1 (6.27a)
with
:’;} = +[Q+ QL+ P11, (6.27b)

O = (1/27,) [9w2 (k) — 27{w}) + 2(1/7)?], 6.27¢)
P, =3wi (k) — (1/7)> ' (6.27d)

The rather awkward appearance of eqn (6.26) is a direct consequence of the
expression for F(k, 7) in the viscoelastic model:

ﬁ(k, Z) _ <w%c> ! 6.28)
sy |* Le (
Z+ (l/fk)
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which has a typical three-pole structure (the alternative name of the ‘three-
pole approximation’ is sometimes given to this version of the viscoelastic
model). The specific form of Fi(k, ) is then ultimately determined by the
solutions of a cubic equation. If the quantities 6;, &, and #, are real, it
is readily seen from eqn (6.26) that F(k, t) comprises both a portion which
decays exponentially and two damped oscillatory components with a period
2n/n.

Coming back to the frequency domain, eqn (6.25) shows that the peaks
of S(k, w) are located at the minima of the denominator. After some simple
algebra it is found that the spectrum has a central peak at w = 0 provided

-that

wt (k) > [2{wi)]*(1/7,). (6.29)

Moreover, S(k, w) may even have two symmetrical inelastic peaks at
W = £ Wpe (K), where ,

30 (k) = [208 (k) = (1/7})] + (wi (k)
~ (2/7}) [20} (k) = 3¢@})] + (1/79)}2 (6.30)
This happens provided that
wl (k) > V2 [203(k) — 3w}) — (1/7)2]2 (1/7).  (6.31)

A simpler criterion for the existence of these inelastic peaks is obtained by
rearranging the argument of the square root in eqn (6.30) so that

()2 = {lol(k) = (1/7)%]1% + (2/73) [3w}) — wi(k)]}2
(6.32)

The argument is certainly non-negative if
Hwi) > wl(k). , (6.33)

Equation (6.33) provides a sufficient (although not necessary) condition for
the existence of inelastic peaks, irrespectively of the values of (1/7;). In
any case, to proceed further in the analysis we must have some approximate
scheme to evaluate the relaxation rate (1/7;). The simplest procedure is to
adapt to the collective case the arguments set forward in Section 5.3.1
for the corresponding ‘self’ quantity 1/7, ,. The analogue of eqn (5.47)
now reads (1/7;) o s/A,,, where the proportionality constant can again
be determined by requiring that the predicted value of S(k,w = 0)
coincides for k¥ — o with the exact free-particle result. This implies that
(Lovesey 1971)

1/, = 2(4, /7). (6.34)

Since for small wavevectors 4, = (c? — v2)k?, the approximation (6.34) is
seen to be inconsistent with the hydrodynamic result (6.8) which implies a
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finite value of 1/7; for k — 0. On the other hand, from the discussion at
the beginning of this section it is clear that the viscoelastic model is only
expected to be particularly reliable for wavevectors outside the strict
hydrodynamic regime. Hence, the practical consequences of the above
inconsistency are likely to be not so serious. This expectation is supported
by the comparison of the values of 7, from eqn (6.34) with those obtained
by a best fit of the line shape (6.25) to the observed spectra (see Fig. 6.1).
It is seen that within the experimental uncertainties the scheme (6.34) pro-
vides a fair quantitative account of the data both at intermediate and large
values of k. ’ ‘

Some spectral shapes obtained from eqn (6.25) for liquid caesium near
melting are reported in Fig. 6.2 for two physically different wavevector
ranges. In the first case (part a), k = k; and the agreement of the
theoretical spectra with the neutron data of Bodensteiner (1990) is seen
to be quite good. In this situation the width of S(k, w) is controlled by
(w?)y o [S(k)]~! which attains very small values; as a result, the domi-
nant feature is a marked de Gennes narrowing of the spectrum (cf. Section
1.6.2). The smallness of the relevant frequency range implies that in eqn
(6.28) we may effectively neglect z = iw with respect to the quantities 1/7;
and A,7,. Thus, letting y(k) = (w%)/4,7; we obtain

F(k,z) = S(k) [z + y(k)] ! (6.35)

which corresponds to a Lorentzian spectrum with halfwidth p(k), or
equivalently to an intermediate scattering function

F(k,t) = S(k)exp[—y(k)t]. (6.36)

The Markovian result (6.36) has already been used in Section 5.1, and could
even be obtained from eqn (6.26) by a perturbative expansion in the small
parameters {w3)'?1, and {(w?%)/w?(k). Since, in this k range, even the
approximation (6.34) yields rather good results (see Fig. 6.1), we may safely
conclude that for k = k,, the viscoelastic model works remarkably well.

The situation is not as satisfactory for smaller wavevectors (Fig. 6.2b). -

In the case of liquid alkali metals, S(k, w) exhibits for k < 0.7 k,, inelastic
peaks which become more and more defined as k is decreased. The criterion
(6.33) for the existence of these peaks yields a maximum wavevector of
about 1.1 A™! in liquid caesium (see Fig. 6.3), in rather good agreement
with the experimental findings of Bodensteiner ef al. (1992) as well as with
recent simulation data (Balucani et al. 1992, 1993a; Kambayashi and Kahl
1992). On the whole, even the wavevector dependence of wpeqx (k) is rather
well accounted for, particularly in the case where the time 7, is left as an
adjustable parameter. However, in this k£ range the line shapes predicted
by the viscoelastic model show clear deviations from both the experi-
mental and the simulation spectra. In particular, in the case k¥ = 0.6 Al
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S(k,w)/S(k)

S(k,)/S(k)

‘Fig. 6.2 Dynamic structure factor S(k,w) in liquid Cs (T = 308K) at the

wavevectors (a) k = 1.4 A1 and (b) £k =0.6 A~!l. The curves are the viscoelastic
spectra evaluated from egn (6.25), with the only difference being that the value of
7, is either deduced by eqn (6.34) (dashed line) or treated as an adjustable
parameter (full line). The dots are the neutron-scattering data of Bodensteiner
et al. (1990) and the triangles the computer simulation findings of Balucani et al.
(1993aq). '
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Fig. 6.3 The quantities (w%) (dashed line) and w?(k) (full line) in liquid Cs at

308 K. The results were obtained from the definitions (1.128) and (1.143), using the

data from the computer simulation experiment by Balucani ef al. (19934) for ¢(r),

g(r), and S(k). The largest wavevector for which 3¢w2) > w?(k) is indicated by
an arrow.

illustrated in Fig. 6.2b the model appears to exaggerate the sharpness of the
inelastic peaks and to underestimate the intensity of the low-frequency
features. Since the specific heat ratio y of liquid alkali metals = 1 even
for very small wavevectors, these failures of the viscoelastic model cannot
be attributed to the neglect of the effects of thermal fluctuations. Conse-
quently, we are again forced to conclude that the ansatz (6.23) does not
take into proper account the existence of additional slow processes in the
‘viscous’ part of the memory function, which should increase the relative
contribution of low frequencies to S(k, w). In view of the good results pro-
vided by the viscoelastic model for k = k,, these slow decay mechanisms
are expected to yield a significant contribution only for relatively small
wavevectors. These conclusions are in qualitative agreement with those
discussed for Lennard-Jones liquids in the previous section, and demand
a more rigorous consideration of long-lasting effects in X (k, ¢). Before
attempting to do this, we shall however explore the consequences of the
viscoelastic approximation on other aspects of the collective dynamics
which are not directly accessible to experimental investigation.
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6.2.2 Transverse currents

In our attempts to build up a generalized hydrodynamic framework for the
collective framework, the attention has so far been focused exclusively on
density fluctuations. Although this emphasis is partly justified by the
experimental relevance of the dynamic structure factor S(k, w), the discus-
sion of Section 3.4.2 has shown that even transverse currents may provide
useful information about possible extensions of the framework to
microscopic length and timescales. As we shall see later in this section, a
preliminary generalization of the hydrodynamic result for Cr(k, #) can be
made in a much simpler way than the one followed for F(k, ).

Beyond the strict hydrodynamic regime, the most important feature to
be accounted for is the appearance of inelastic peaks in the transverse
current spectrum (cf. Fig. 1.14). It is convenient to start our analysis from
the exact Mori representation of the Laplace transform of Cr(k, ¢):

Cr(k,z) = (kgT/m) [z + Kr(k,z)] ! 6.37)

(cf. eqn (3.113)). As already noticed in Section 3.4.2, with the formal
position

Kr(k,z) = (k*/nm)#i(k,z) (6.38)

eqn (6.37) is seen to have the typical aspect of a generalized-hydrodynamics
result. In particular, the quantity #(k,z = iw) can be interpreted as a
wavevector- and frequency-dependent shear viscosity coefficient, which is
such that
z_’lg’r}cl_’o fi(k,z) = n. (6.39)
Although interesting, this point of view does not, however, shed much
light on the dynamical features expected for Cr(k,¢) outside the
hydrodynamic range. Again, the first step which we can make in this direc-
tion is to assume that the temporal decay of the memory function
K1 (k, t), rather than being o«J(¢) as in hydrodynamics, proceeds with a
finite decay time 77 ;. As in the case of density fluctuations, the simplest
approximation is to assume that the time dependence of K is exponential:

K+1(k,t) = K1 (k,0) exp (—t/7r;) (6.40)

Exploiting eqn (3.43a), it is readily seen that the initial value of K(k, ¢)
can be written as (cf. eqn (1.151))

Kr(k,0) = (kg T/m)k* + Q5 — (2()*
= wi(k). (6.41)
Then the Laplace-transformed version of eqn (6.40) reads
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Kr(k, z) = 0¥(k) [z + (/)] 7t (6.42)

When expressed in terms of generalized shear viscosity, eqn (6.42) implies
that

ik, iw) = G(k) [iw + (1/7,)]"" (6.43)

where the quantity G(k) = (nm/k*)wi(k) is reféerred to as the
(k-dependent) rigidity modulus. Equation (6.43) is the archetype of all the
viscoelastic approximations in liquid-state dynamics. The basic physical
concepts behind these models were laid down in a somewhat different con-
text by J. C. Maxwell in the nineteenth century, and can be summarized
as follows. If the dynamics is observed over times sufficiently long with
respect to those appropriate to the relaxation process, the system is able
to ‘adjust’ itself to the probe; in the particular case under considera-
tion, the ordinary hydrodynamic behaviour stems from the condition
W7, ¢ < 1, which is equivalent to

filk—0,2-0) = G(k—=0)tg 0 =17 (6.44)

In other terms, the response of the liquid to a shear perturbation of long
wavelength and small frequency has a purely viscous character:

(n/nm)k?
w® + [(n/nm)k?]*’

As we shall see in Section 6.5, at finite wavevectors (but still in a long-time
limit) this sort of behaviour can formally be described in terms of a
‘k-dependent viscosity coefficient’, which according to the result (6.43) is
simply given by n(k) = G(k)tr,, . For our present purposes, it is however
convenient to see the predictions of the model in the opposite physical situa-
tion where w » 1/77,. In this case the liquid cannot follow the rapid
variation of the external probe, and reacts with an instantaneous response
which is dominated by the interatomic forces. In this short-time regime the
memory function K7(k,t) can be taken as approximately equal to its
initial value (6.41), and Ky (k, ) = w%(k)/z. The consequence of all this is
that the spectrum Cr(k, w) = (1/7)Cr(k, z = iw + 0*) now exhibits sharp
peaks at the frequency wr(k), much as if we were probing the transverse-
phonon dispersion relation of an. elastic solid. In the approximation
described by eqns (6.40)-(6.43), one tries to ‘interpolate’ in the simplest way
between the above-mentioned limiting cases; this mixed character is clearly
the origin of the attribute ‘viscoelastic’ traditionally used for this sort of
models in liquid-state dynamics.

The general consequences of the approximation (6.40) on the features of
Cr(k,t) are readily seen. In fact, the mathematical structure of the
memory equation - :

Cr(k, w) = (kg T/mn) (6.45)
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t

Crlk, 1) = —oh(k) [dt’ exp(~t' /20, ) Cr(kyt — 1) (6.46)
0

is formally identical to the one met in Section 3.3 for an approximate theory
of the velocity autocorrelation function. In the present case we obtain

Cr(k,t) = (kgT/m) exp( —t/211,) {cosh[A(k)t/27r ;]
+ [A (k)] ~!sinh[A4 (k)#/271,]) (6.47)
where we have let
A*(k) =1 - dw(k)1d =1 — 4(K*/nm)G(k)T} .  (6.48)

The corresponding spectrum reads

Crlk, ) = (kaT/mm)Re | i + lwﬁ—(llzm B
= (koT/mn) = 2%/ (T;)"])f’f((ka)) e 649
Inelastic peaks are found at the frequencies
Wpeax = * [0F(K) — 3 (1/71,)*]"2 (6.50)
provided that
20 (k)73 > 1. (6.51)

The fulfilment of the condition (6.51) at a given wavevector depends both
on the quantity wi(k) = (k*/nm)G(k)—which is readily evaluable from
eqn (1.151) in terms of ¢(r) and g(r)—and on the time 7r .

As in other similar cases discussed previously, the model (6.40) does not
provide any definite criterion for the determination of 7;,. Some
preliminary insight is obtained by considering the small-k case where
wi(k = 0) = c2k?, with the velocity c; being given by (1.159). Then from
eqn. (6.44) we deduce that the time 7 , remains finite for kK — 0:

T1.k~0 = 1/ G(k = 0) = n/nmc?. (6.52)
In this limit the quantity A(k) in eqn (6.47) is real and =1:
A(k—0) = 1 — 2(k/nm)G(k = 0) 7 4,
=1 - 2(k*/ nm)ntr 4 >o- (6.53)

As a result, Cr(k — 0, ¢) decays monotonically to zero. Inserting (6.53)
into eqn (6.47), it is easily verified that outside a microscopic time interval
Cr(k,t) indeed approaches the correct hydrodynamic result (3.109). Con-
sequently, eqn (6.49) is a valuable starting point for the construction of
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phenomenological expressions for the k-dependence of 7r ;. As in the case
of the time 7, discussed in the previous section, the basic ingredients of
these approximate recipes are (i) the choice of an appropriate quantity to
be matched for £k — oo with the exact free particle result (in the present case
with the result from eqn (1.156)), and (ii) the formulation of a simple inter-
polation scheme between the results obtained for 7 , in the opposite limits
of small and large wavevectors. In this respect, the most successful recipe
has been proposed several years ago by Akcasu and Daniels (1970), who
demanded that for kK — o the peak frequency (6.50) of C;(k, w) should
vanish in order to satisfy eqn (1.156). This implies that

(/71,55 0)? = 203 (k > ). (6.54)

On the basis of this result, at finite wavevectors Akcasu and Daniels sug-
gested the following interpolation formula

(1/7r,)? = 20%(k) + [1 + (k/kp)?] !
X {(1/71,k-0)? — 20%(k) + 2(kgT/m)k*}  (6.55)

where the parameter k, is typically chosen of the order of 0.7 k.

Since no inelastic peaks are present in Cy(k, w), both for very small and
very large wavevectors, a liquid is able to support the propagation of
transverse waves only inside a finite k interval. In the framework of the
viscoelastic model, the criterion (6.51) for the appearance of these peaks
can be written as

2o nm (172
> 2G(k) [TT,IJ (6:56)
where (cf. eqns (1.151)-(1.152))
92
G(k) = nksT + 52 [1 = jo(kro) = o(kro)].  (6.57)

In practice, it is found that both G(k) and 77 , decrease considerably as k
increases. Although the details of this wavevector dependence vary with the
specific liquid under consideration, the decrease of the rigidity modulus is
always found to be more marked than that of v;,. Consequently, the
threshold wavevector ky above which shear-wave peaks appear is system
dependent, and largely affected by the actual magnitude of the second term
on the right-hand side of eqn (6.57). Broadly speaking, k is found to
range from =0.45/r, in liquid alkali metals near the melting point to
~=0.9/r, in Lennard-Jones liquids (the position of the main peak of S(k)
being k,, = 7/r, in both cases).

When compared with the only ‘experimental’ data available (namely
those obtained by computer simulation techniques), the predictions of the
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Cr(k.@)

[

Fig. 6.4 Schematic comparison between the spectrum (6.49) predicted by the

viscoelastic approximation (full line) and the one typically observed in the simula-

tions of simple liquids near the melting point (dots). The results refer to a wave-
vector k of the order of 3kt.

viscoelastic model for Cr(k, t) or Cr(k, w) are found to be fairly good. In
particular, the ‘sudden’ appearance of the inelastic peaks in Cy(k, w) is
accounted for, even if the model predicts values of & somewhat higher
than the actual findings. Moreover, the position and the wavevector
dependence of wy,; appear to be reasonably well reproduced. However,
even in this case a more detailed comparison between the theoretical results
and the simulation data indicates clear discrepancies. Again, these defects
of the viscoelastic model are not the consequence of the (somewhat
arbitrary) recipe adopted for the estimate of the time 7r ;; as a matter of
fact, the improvement achieved by letting 7r , to be an adjustable para-
meter at every wavevector appears to be rather modest. The first indica-
tion of this failure of the approximation (6.40) for K+ (k, f) came again
from the comprehensive simulation study of Levesque et al. (1973) in
Lennard-Jones liquids. In particular, it was found that the inelastic
peaks predicted by the viscoelastic model were less sharp than those
observed in the simulations. This situation is typical for several other simple
liquids, and is schematically illustrated in Fig. 6.4. The flatter appearance
of the peaks predicted by the model is seen to be mostly due to the excess
intensity of the theoretical spectrum in the low frequency region. Since, for
small w, Cr(k, w) is roughly inversely proportional to the spectrum
Kr(k, w) of the memory function, the origin of the discrepancy can be
traced back to the neglect of a low-frequency contribution in Kr(k, w).
In other words, we are again faced with a situation in which a single
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1.2

Tr,k TiT Kk

Fig. 6.5 Wavevector dependence of the times 7r , (eqn (6.40); dashed line) and
7y7, £ (€90 (6.58); full line) as obtained by a fitting procedure to the simulation data
in Lennard-Jones liquids (Levesque et al. 1973). The times are reported in the
Lennard-Jones unit 73 j = (mo*/48¢)"? (15 = 0.311 ps for a choice of parameters
appropriate to liquid argon). In the same units, the ‘long’ time 7,1 appearing in
eqn (6.58) is found to be 4.72. The position of the main peak of S(k) is k0 = 6.8.

relaxation-time approximation fails because of the presence of additional
decay mechanisms with a considerably slower time dependence. The first
empirical remedy parallels the one already seen in the case of density fluc-
tuations (cf. Section 6.1), and consists in allowing the presence of two
suitably weighted relaxation mechanisms in Ky (k, ¢):

Ki(k,t) = 03(k)[(1 — ar ;) exp(—t/7i1,4) + ar,rexp(—1t/7yr)]
(6.58)

where for simplicity the longer relaxation time 7,y is assumed to be
independent of the wavevector (Levesque ef al. 1973). The presence of the
second term in square brackets leads to a substantial improvement of the
‘theoretical’ results, particularly in the wavevector range where the inelastic
peaks are more evident. In Lennard-Jones liquids the weight factor ar j is
found to decrease rapidly at increasing k£, and in practice as k — k,, one
recovers the results of the simple viscoelastic model (see Fig. 6.5). A similar
trend is observed even in molten alkali metals (Balucani et al. 1987;
Kambayashi and Kahl 1992). At wavevectors k > k,, any residual devia-
tion between the predictions of the viscoelastic model and the simulation
results is due to ‘trivial’ effects, such as the inability of a purely exponential
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model to reproduce the correct short-time decay of the true memory
function.

Although eqn (6.68) is useful both for its heuristic value and for the
analysis of simulation data, a genuine theoretical approach for transverse
collective dynamics must rely on less phenomenological assumptions. Even
in this case, the general framework discussed in Chapter 4 provides a
rationale for the existence of two distinct mechanisms affecting the decay
of the memory function. In particular, in Section 4.5 it has been argued
that Kr(k,?) can be split as follows (cf. eqn(4.174)):

KT(k, t) = [KT(k’ t)]fast +M’£2 (k’ t) (659)
where the first term on the right-hand side accounts for both the initial
value Kr(k, t = 0) = w3(k) and the rapid decay of K1 (k, t) at short times.
On the other hand, the second contribution to eqn (6.59), initially almost
negligible, should account for all the long-lasting features present in
Kr(k, t). Recalling the expression (4.120) for Mj,.(k, t) and exploiting the
result (G.18) for the static vertex, it is easily found that

M2'2(k9 t) =

T6n [ da {0020k & — 2, 0) |2 A0, 00(k — @, 031)
_ nkgT
~ 167°m

— Fa(|k — q|,)Fs(q,1)] (6.60)

where the external wave vector k has been chosen along the z-axis. A com-
prehensive study of eqns (6.59)-(6.60) for arbitrary k£ has not yet been
attempted. The particular case k¥ — 0 has, however, been analysed in some
detail because of its relevance for the study of the shear stress autocorrela-
tion function and of the associated transport property, the shear viscosity
coefficient (see Section 6.4).

faag2lc(|x - a]) - ()12 [F(|k - a,))F(g, 1)

6.2.3 Longitudinal modes

In the previous subsection we have seen that a liquid is able to propagate
transverse waves only if the wavevector exceeds a certain critical value. This
situation is to be contrasted with the one occurring for longitudinal modes,
which are easily supported even in the hydrodymamic region. This dif-
ference stems from the fact that density fluctuations and longitudinal cur-
rent modes are intimately connected by the relation (1.114):

Ak, t) = ikjp (k,t) (6.61)

and that for k¥ — 0 both these variables become quasi-conserved (see Section
1.6.1). In this limit, the presence of the Rayleigh-Brillouin triplet structure
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in S(k, w) has an immediate correspondence in the longitudinal current
spectrum Cp (k, w) = (w?*/k*) S(k, w), which is characterized by well
defined inelastic peaks at the frequencies w = +v,k.

As a result of the mathematical form of Ci(k, w), in the longitudinal
‘spectrum these finite-frequency peaks are in fact present at-any wavevector,
namely even in situations where the damping processes make hardly discer-
nible (or invisible) any structure in the spectrum S(k, w). Even if no new
physics is really involved, a separate analysis of Ci(k, w) consequently
appears to be particularly profitable to explore the evolution of longitudinal
modes in a wide wavevector range. Again, it is convenient to start from
the formally exact memory function result

1 (kg T/m)w*K{ (k, @)
7 [w? — {w?) — wK{ (k, 0)] + [wK{ (k, ©)]?
(6.62)

which is easily deduced from eqns (1.148) and (6.21). For the memory func-
tion Ky (k, z = iw) we may select one of the various models discussed in
Section 6.1; to begin with, let us consider the simplest one, namely the
viscoelastic model. The quantities K7 (k, w) and K{(k, w) are then given by
eqns (6.24a,b), and after some simple algebra we obtain

kBT szk(l/Tk)
mn [0’ — {w}) — A2+ (/7)) [0? — (w})]*”
(6.63)

CL(k,w) =

C.(k,w) =

The result (6.63) could of course have been written down immediately by
exploiting eqns (1.148) and (6.25). A study of eqn (6.63) shows that, apart
from the trivial minimum at w = 0, the extrema of Cy (k, w) are deter-
mined by the roots of a cubic equation in w*:

2(?)*[@” - 0} (K)] + (1/%)? [(0?)? = wi)’] =0  (6.64)

where we recall that w?(k) = (w%) + 4,. It is particularly interesting to
consider the following limiting cases.

(i) For sufficiently small wavevectors, the quantities {(w2) and w?(k)
vanish as k2, while the time 7, remains finite at the value (6.8). Conse-
quently, to the lowest order in k2, the dominant contribution to eqn (6.64)
is provided by the second term on the left-hand side which gives a peak
frequency for Cp (k, w) at +{w%)/% This is the correct hydrodynamic
result in the ‘isothermal’ conditions which we are implicitly dealing with.
In this range, a slightly better approximation for the peak frequency of
Ci(k, w) is

Ol = (%) [1 + Ai7}]. (6.65)
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Since 4, is always found to be non-negative, eqn (6.65) shows that for small
k the dispersion relation of the longitudinal modes ‘bends up’ with respect
to the limiting behaviour for £ — 0. In other words, the phase velocity of the
longitudinal sound waves increases with k (positive dispersion).

(ii) For larger wavevectors (but still smaller than the position k,, of the
main peak of S(k)) the value of w,, increases substantially, until it
becomes larger than the relaxation rate 1/t,. Owing to the increase of
S(k) in this k range, (w?2) is often found to be considerably smaller than
(k). In such a case, eqn (6.64) has the approximate solution

Weax = wi(k) — 1 (1/7)% (6.66)

Slightly better analytic approximations can be worked out, but in any case
the result shows a tendency of the effective velocity w,e,/k to approach
the limiting value ¢y (k) = wy(k)/k. The extent to which this velocity
crossover is completed depends on the actual rate of the relaxation
mechanisms; in the model we are dealing with, these processes control the
transition from a low-frequency ‘viscous’ behaviour to a high-frequency
‘elastic’ response. Conventionally, the increase of the effective longitudinal
velocity from vr(k) = {w2)'?/k to ci (k) is referred to as being due to
‘viscosity relaxation’.

(iii) At even larger wavevectors, the longitudinal response of the system is
initially dominated by structural features. In particular, as £ approaches
ky the pronounced de Gennes narrowing of S(k,w) leads to a con-
siderable decrease of the peak frequency of C; (k, w), down to a minimum
for k = k,,. At wavevectors k > k,, free-particle aspects begin gradually to
prevail and eventually for k » k,, C,(k, w) should approach the limiting
form (1.155)—although this cannot exactly be reproduced by the simple
model (6.63).

All these features of the dispersion relation (k) are illustrated in
Fig. 6.6a, which refers to liquid caesium near the melting point. These
results were obtained by a numerical solution of eqn (6.64), with the quan-
tities (w%) and wi(k) evaluated as in Fig. 6.3 and the rate 1/7, deduced
by a best fit of eqn (6.25) to the spectra S(k, w) obtained by computer
simulation (Balucani et al. 19934, b). Since in-all molten alkali metals the
effect of thermal fluctuations is quite small even at small wavevectors
(y = 1.1), the restriction to a sort of ‘isothermal hydrodynamics’ inherent
to the model (6.23) is expected to be not too serious. Indeed, Fig. 6.6b
shows that the values predicted for the k-depentdent longitudinal velocity
are in rather good agreement with the experimental data reported by
Bodensteiner et al. (1992). It appears that the maximum increase of the
velocity with respect to the hydrodynamic value occurs at relatively small
wavevectors, and is of the order of 20%.

i
i
i
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Fig. 6.6 (a) Wavevector dependence of the peak frequency wpex of Cp(k, w) in
liquid Cs at 308 K (obtained from eqn (6.64)). (b) Effective velocity wpeqi/k of the
longitudinal waves in the same system: theoretical results (full line) and experimental
data (triangles; Bodensteiner et al. 1992). The dashed and the long-dashed curves
denote the velocities vr(k) and c; (k), respectively (see text). The experimental
value of the hydrodynamic sound velocity (= 960 m s ~!) is indicated by an arrow.
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The actual magnitude of this positive dispersion is strongly system
dependent. An estimate of the maximum size of the effect can, however,
be made as follows. In any system, the peak frequency of C; (k, w) tends
to approach wy (k) = cL(k)k, and this crossover usually begins at small k.
Then, a convenient ‘measure’ of the maximum positive dispersion to be
expected is provided by the ratio

[&T _wi(k>0) 3[(kT/m) + (23r3/10)]
vr)  (@ieo) ksT/mS(0)

(6.67)

where we have exploited the approximation (1.143) for w?(k) and per-
formed a small-k expansion. In the liquid range the numerator of (6.67)
turns out to be dominated by the second term in the square brackets; conse-
quently, letting I' = mQ2%r3/ks T we may approximately write

)’ 3 S(0)r (6.68)
Ur 10 ) ’

Thus, high values of the product S(0)I" are expected to give rise to a poten-
tially large positive dispersion (the actual magnitude of the latter being
ultimately controlled by the relaxation rate 1/7;). Other things being

cf. Section 1.4.2). For example, owing to their relatively ‘soft’ potential all
molten alkali metals are expected to have values of the ratio ¢; /vy con-
siderably smaller than those found, say, in the typical Lennard-Jones
liquids. Indeed, near the melting point this ratio is found to be ‘only’ 1.28
in liquid caesium, to be compared with the value ¢ /vr = 2.16 in liquid
argon (note, however, that in the latter system, owing to a specific heat ratio
y = 2.2, the hydrodynamic sound velocity is far from being isothermal).

It is interesting to observe that the occurrence of high values of ¢ /vr
is somewhat contradictory with the possibility of observing well-defined
inelastic peaks in S(k, w) for wavevectors beyond the strict hydrodynamic
regime. To show this in the simplest way, consider the sufficient criterion
(6.33). Adopting the same approximations used in eqn (6.67), for small
wavevectors the condition (6.33) implies that

% S(0)r<i. (6.69)

Comparing eqns (6.69) and (6.67), it is readily seen that a liquid which easily
supports oscillatory density modes at finite wavevectors is unlikely to
exhibit a large positive dispersion of the longitudinal sound waves. Liquid
alkali metals are the typical paradigm of such a behaviour. A striking
example of the opposite situation is provided by liquid water, where at finite

=t
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k Teixeira et al. (1985) have observed values of the longitudinal velocity
~ 3300ms~!, more than twice as high as the ordinary sound speed v
~ 1450ms~!. In this system, no inelastic peak in the dynamic structure
factors is in fact discernible even at the smallest wavevectors explored out-
side the hydrodynamic range. Despite the rather complex nature of this
hydrogen-bonded liquid, all these findings can be interpreted successfully
by a simple application of the previous concepts (Balucani et al. 1993b).
The majority of the preceding discussion has considered cases in which
thermal fluctuations have a negligible role. In principle, it is straightforward
to extend the analysis to encompass situations in which y is substantially dif-
ferent from unity, at the price of some additional complications in the
algebra. For the longitudinal current spectrum we may again start from
eqn (6.62), and adopt a generalized hydrodynamics framework in which -

Ky (k, 1) = [0(k) = v@})] exp(—t/7¢) + (7 — 1){w}) exp(—a k)
= A exp( —Iyt) + Aycexp( —Iyt). (6.70)

The model (6.70) is the time-domain counterpart of eqn (6.15), and permits
a straightforward evaluation of the quantities Ky (k, w) and K{/(k, (.o) to be
inserted into (6.62). After some algebraic manipulations we obtain

kgT Siw? + fo(w?)?

o 6.71
mn ho + hlwz + hz(wz)z + h3(w2)3 + h4(w2)4 ( )

CL(k’ 60) =

where

Si = Tyl (A Do + AT i)

Jo= Al + Ayl i .

ko = @} YT} I'%

hy = (Aulo + Al ) + 23 (Aul % + Al 1) ¢
+ {}) (Il + T'y) — A0 Tl

hy = wi(k) — 2(Aul % + Aul%) — 26w} (M + Th) + Tl %

hy = 2w}(k) + (I + I'%)

hy=1

6.72)

A trivial minimum of eqn (6.71) is always found at @ = 0, where Cy (k, w)
vanishes. The other extrema are the roots of a fifth-order equation in w?:

25,k (0?)® + (3fihy + Folts) (0?)* + 211 h3(00?)?
+ (fiky — o) (@0?)? = 2 /10 0" — fi1ho = 0. (6.73)
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Equation (6.73) can approximately be solved by noting that, in the k range
where the effects of positive dispersion are more evident, the main peak
of Cy (k, w) is expected to be only marginally affected by the thermal dam-
ping I . This is indeed true for small wavevectors where w,,, = k and
Iy, = k?, and approximately correct even at larger k because of the
decreasing role of the thermal fluctuation term (cf. Section 6.1). The neglect
of I';; reduces eqn (6.73) to the cubic equation 2k,(w?)® + h;(w?)* — h, =0,
which can be rearranged to give

2(o?)* [0 = @i (k)] + T [(0)? ~ yi{0})?] =0 (6.74)

where I'y;, = (1/1;). Comparing with eqn (6.64), it is seen that the only dif-
ference is the replacement of (w2) with y,{w?2). We may therefore repeat
all the considerations seen in the isothermal case, with the advantage of
reproducing the correct ‘adiabatic’ sound velocity as £k — 0. In this amended
version, the theory accounts remarkably well for most of the dispersion
curve of the longitudinal mode in liquid argon (Boon and Yip 1980).

To close this section, it is worthwhile mentioning that the onset of
viscoelastic behaviour is not the only mechanism capable of yielding a
positive sound dispersion. A mode-coupling analysis similar to that
employed in Section 4.5 for the #~%2 tails in w(¢) yields for the sound
mode a non-analytic dispersion relation of the form v,k + ak>? at low k
(Ernst and Dorfman 1972, 1975). As a is very small in liquids near the
melting temperature, the non analyticity is most likely to be detected at
lower densities or higher temperatures. Nevertheless, there are indications
that the effect has been observed in liquid argon at 120K (de Schepper
et al. 1984).

e <
6.3 MODE-COUPLING THEORY AT WORK

In Section 6.2 the viscoelastic model was shown to provide a rather satisfac-

tory account of the main features of microscopic collective motion in simple
liquids, both in its longitudinal and transverse versions. To be sure, occa-
sionally the model had to be modified (as in systems where thermal fluctua-
tions play a non-negligible role); yet, these ‘extensions’ were in most cases
relatively straightforward, and did not requiré a substantial modification
of the overall picture. It is worthwhile recalling that in the context of a
memory function framework similar single-relaxation-time approximations
were previously discussed for “self-motion, with much less satisfactory
results (cf. Sections 3.3 and 5.3.1). At first sight this difference may appear
surprising, because ultimately single-particle and collective properties
reflect just two aspects of the same many-body dynamics. At a given
thermodynamic state of the system, the two sets of properties are in fact
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affected by similar structural quantities (such as g(r), S(k), Q3 etc.) which
are assumed to be known. However, whereas structural effects have an
immediate impact on collective dynamics, their influence on self-motion is
felt only at subsequent times (cf. eqns (1.128) and (1.38)). Consider, for
example, the sharp peak occurring in the static structure factor at k = ky:
‘while this feature is directly responsible of the marked de Gennes narrowing
of S(k, w) as k =k, its effect on the width of S;(k, ®), although non-
negligible, is certainly both less striking and more subtle (see Section 5.3).
Moreover, features such as the peak frequencies of S(k, w) or of C(k, w)
are immediately apparent from the spectra, and it is natural to argue that
their evolution with & can be accounted for by a simple memory function
ansatz in an easier way than that of a more elusive quantity as the width
I,(k) of a featureless spectrum.

Even so, we have already seen that several aspects of collective dynamics
can fully be understood only by abandoning single-relaxation-time approx-
imations in favour of alternative approaches which take into explicit
account the existence of additional decay channels for the memory func-
tions. Typically, these processes are associated with timescales considerably
longer than those pertinent to the various viscoelastic approximations;
also, their influence appears to be particularly relevant only at rather
small wavevectors. In the previous sections we have noticed on several
occasions that most of the defects of the single-relaxation-time models can
in fact be removed by assuming a two-exponential form for the decay of
the memory function of interest. In this respect, an empirical evidence
for the role played by slow processes at small wavevectors is provided
by Fig. 6.5, which is based on best-fit estimates of the time constants
occurring in eqns (6.40) and (6-58). It is clearly seen that at small k the
optimized viscoelastic model (6.40) ‘does its best’ to account for the
presence of a long-lasting tail in K1(k, ¢) by artificially increasing the value
of 7r; with respect to the ‘short’ decay time 7;r,, occurring in the two-
exponential ansatz (6.58).

In order to achieve a comprehensive physical picture of collective
dynamics, these evidences for the presence of two distinct contributions to
the memory functions must be given a less phenomenological interpreta-
tion. Again, the general framework developed in Chapter 4 appears to be
particularly suited to this purpose. To be more specific, the splitting of the
memory functions into rapidly decaying ‘binary’ contributions (associated
with fast collisional events) and slow ‘tails’ (accounted for by a ‘mode-
coupling’ framework) is just what is needed to give a sounder basis to the
previous findings. Again, the sluggishness of the structural relaxation pro-
cesses typical of the liquid range suggests that the slow decay of the collec-
tive memory functions at long times is basically due to couplings to
k-dependent density modes. Aside from a possibly different quantitative
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relevance of the two contributions, this situation closely parallels the one
seen in Chapter 5 for the self case.

It is now time to discuss several cases of physical interest (and of increas-
ing complexity) in which the role of slowly varying features is particularly
important. To begin with, we shall consider the density and longitudinal
current correlations.

6.3.1 The tail of the longitudinal memory function

As in Section 6.2, it is convenient to start our analysis by reporting the Mori
representations of the Laplace transforms of F(k, t) and C.(k, ?):

(w}) }“
zZ+ I?L(k’ Z) ’

Co(k,z) = (kgT/m) [z + (w})/z) + K (k,2)]7'.  (6.76)
The result (6.76) is a direct consequence of eqn (6.75) and of

F(k,z) = S(k) [z + (6.75)

BmC. (k,z) = — (6:@ [z F;fl’c;) - 1] 6.77)

which is a Laplace-transformed version of the ‘continuity equation’ (1.147).
The central quantity in both the representations (6.75) and (6.76) is the
memory function K (k, ¢). To specify its time dependence (and, in par-
ticular, the possible presence of slow features), up to now we have made
use of simple empirical recipes; henceforth, we wish instead to perform a
more rigorous analysis following the framework developed in Chapter 4.
For the present purposes it is convenient to adopt a simplified version of
the generalized hydrodynamic description of Section 4.4, and to write

Ki(k, 1) = [Kyp(k, t)]tase + M}y (K, 2) (6.78)

(cf. eqn (4.173)). The first term on the right-hand side includes a strictly
‘binary’ part Mp ;,(k, ) as well as an additional quantity m,,(k, £) which
involves couplings to non-hydrodynamic modes; taken together, these con-
tributions are responsible of the rapid short-time decay of the memory func-
tion from the initial value Ki(k,? = 0) = 4, = w?(k) — (w2). On the
other hand, the second term on the right-hand side of (6.78) is expected
to be nearly negligible initially; however, owing to its slower decay, it plays
a dominant role at intermediate and long times, where [K (k, #)}sq = O.
Note that, in adopting the description of Section 4.4 we have implicitly
chosen a number H = 4 of relevant modes: for the present purposes thermal
fluctuations are in fact not particularly important, and in a first approxima-
tion can be included in the non-hydrodynamic modes.
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The manifold events accounted for by [Kj (X, ¢)]. makes difficult an
accurate description of the rapid decay of this contribution. Following the
same procedure adopted in Chapter 5 for the self case, we must content
ourselves with a less detailed analysis which relies on the initial decay of
the full memory function:

Ki(k, 1) = 4,(1 — [t/2(0)]* + ?- Ny (6.79)

where the initial decay time 7(k) can be approximately evaluated in terms
of the sixth frequency moment of S(k, w) (see Appendix I) . Broadly speak-
ing, the values of 7(k) are expected to be of the same order as those obtained
in a two-exponential model for the ‘short’ time 7,. A numerical calcula-
tion performed in liquid rubidium (Sj6gren 1980) appears indeed to
support this expectation. Since for sufficiently short times K (k, ¢) and
[Ky (k, t)]sq nearly coincide, for the latter we may adopt a ‘scaled’ expres-
sion similar to the one seen in the self case:

[KL(k, )] tase = A S (t/7(K)) (6.80)

where the shape function f(x) should be such to ensure a sufficiently fast
decay. B

From the above it is clear that at sufficiently short times a certain
degree of uncertainty is still difficult to avoid. We are instead in a better
position for the long-lasting features of K (%, ¢), accounted for by the
second term in eqn (6.78). According to the results obtained in Section 4.3.2
we have:

M (k1) = 250 [ da [g.e(a) + (k - W:e(fk - a1

where we recall that the direct correlation function c(q) is defined by the
relation nc(g) = 1 — [1/S(g)]. In the result (6.81), the term involving the
‘binary’ intermediate scattering functions Fy has the effect of making
My, (k, t) very small at short times (in particular, M7, (k, ¢ = 0) = 0). This
reflects the intuitive concept that any coupling to the collective modes of
the medium —here, the density modes —requires a finite time to build up
(in the jargon of kinetic theory, we equivalently speak of ‘correlated-
collisions’ effects). In the explicit calculations, this feature can for example
be accounted for by approximating Fi(g, t) as in (4.147). In any case,
whichever the precise form adopted for the ‘binary’ correlation Fg, its
intrinsically rapid decay has the effect of making the last product term in
eqn (6.81) virtually negligible beyond a microscopically short time interval.
In other words, the genuine long-lasting features of the memory function
K (k,t) only stem from a typical ‘mode-coupling’ contribution:
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nkgT
167°m

[da [g.c(a) + (k- a).e(|k — a])]2F(g, )F(|k - g, #)

= [K; (k,1)]mc- 6.82)

The notation used on the right-hand side of eqn (6.82) is in fact justified
by noting that the same result can be obtained by a direct mode-coupling
approach (see Section 4.5), in which the product 7i(q) - 7i(k — q) plays the
role of the relevant pair variable.

For the numerical evaluation of eqns (6.81)-(6.82), it is convenient to
expand the squared vertex [+ * -]?> and to choose the external wavevector
k along the z-axis. Of the two angular integrations over the direction of
q, one can now be directly performed, with the result that, for example,
eqn (6.82) can be written as

L k+gq
kgT
Kk Olve =35 | daa [ appl(R+a>=pela)

Ik —gq|
x [S(q) —11S(p) + (¥ —g*+p*)*c(p) [S(p) — 1]5(q)
+ [k + (¢* - p?)?]1[S(q) — 1] [S(p) — 1]}

F(q,t) F(p,t)
S(q) S(p) -

We may now insert in (6.83) some simple phenomenological model for
F(q,t), and finally arrive at a quantitative assessment for the tail of
K (k,t) at the various wavevectors. Proceeding along similar lines in
eqn (6.81), we may go even further and determine the quantity M7, (k, ¢)
to be inserted into the expression (6.78) of the full memory function
Ky (k,t). After a numerical Laplace transform, one may finally exploit
eqn (6.75) to obtain S(k,w) = (1/7) Re F(k, z = iw). A typical result of this
procedure is illustrated in Fig. 6.7, which refers to liquid rubidium at a
wavevector where S(k, w) shows a well-defined inelastic peak (Sjégren
1980). The improvement with respect to the results obtained by letting
M (k, t) = 0 is particularly evident at small frequencies, where the full
theory yields a larger intensity in agreement with the simulation data. This
tendency (which is even more marked at lower wavevectors) is clearly a con-
sequence of the inclusion of slow contributions in the memory function.
On the other hand, the position of the inelastic peak is seen to be rather
well reproduced, even by taking into account only the fast portion of the
memory function. At larger wavevectors, the contribution of My, (k, ¢)
rapidly decreases, indicating that the dynamics is more and more deter-
mined by short-duration events. Eventually, for k >k, the spectra
obtained by using Kj(k,?) or [K_(k,?)]qs nearly coincide. All these

(6.83)
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Fig. 6.7 Dynamic structure factor in liquid Rb at 318K at a wavevector k =

0.797 A~': dashed line, spectrum deduced by letting Ky (X, ) = (KL (ks 1) ]gast s full

line, spectrum obtained by including Mj, (k, ¢) (eqn (6.81)); the dots are the com-

puter simulation data of Rahman (1974). In this system, the wavevector
ky = 1.54 A, Redrawn from Sjogren (1980).

features are consistent with the results found in Section 6.2.1 by the
‘empirical’ two-exponential model. As expected in the liquid range, no
substantial changes are instead found in the theoretical spectral shapes by
including additional decay channels involving the currents (Sjogren 1980).

6.3.2 Toward a fully self-consistent framework

A noteworthy feature of the expressions seen in the previous subsection is
the possibility of building up a self-consistent approach for the dyn?.mical
property under consideration (here F(k, t) or S(k, )). This is typl.cal of
all mode-coupling theories, and often it is just the combination of this self-
consistent aspect with the nonlinearity of the equations which leads to an
unusual dynamical behaviour. In this respect, the best example is still
provided by the very first application of the mode-coupling frame:worlf,
namely the study of critical dynamics (Kawasaki 1970). Although in this
field the occurrence of slowly varying phenomena is qualitatively predicted
even by the traditional Markovian theories, it is only by turning to a mode-
coupling description that one is able to account for several unexp?c'ted
features, such as line shapes which are markedly non-Lorentzian, or crftlcal
exponents which deviate considerably from the conventional predictions.
As we shall see in some detail in the next subsection, in recent years
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an equally important application of mode-coupling concepts has emerged.
The problem is even more intriguing than critical dynamics, and concerns the
dynamical transition from a stable liquid toward a metastable glassy phase.

Coming back to the ordinary liquid range, the self-consistent nature of
the mode-coupling results was recognized from the very start (Gétze and
Liicke 1975). Exploiting this aspect, one may in fact be able to establish a
comprehensive approach for the main dynamical quantities of interest, with
the only knowledge of a limited number of structural data. In this respect,
the first bases were set by a number of papers in which the self-consistency
was explicitly taken into account (Munakata and Igarashi 1977, 1978; Bosse
et al. 1978a,b). In all these works, the main emphasis was placed on the
various mode-coupling decay channels. The results were encouraging, even
if at the price of several approximations. In his detailed analysis of density
fluctuations, Sjogren (1980) treated both short-time (‘kinetic’) and long-
time (‘mode-coupling’) features on an equal footing, and established a con-
nection between single-particle and collective aspects of the dynamics.
However, a fully self-consistent calculation of the mode-coupling integrals
was not attempted. The current status of the theoretical studies in the collec-
tive dynamics of liquids is summarized in a number of review articles (e.g.
Sjolander 1987; Yoshida and Takeno 1989). From these one draws the
conclusion that, although in principle possible and interesting, a comprehen-
sive self-consistent analysis of collective motion is not particularly necessary
in the ordinary liquid range. To be more specific, the satisfactory results
reported in the preceding pages (as well as in several other works where the
‘loop’ structure was ignored) indicate that the self-consistent aspects are not
so crucial as to make a further ‘escalation’ in the numerical computations
worthwhile. Physically, this reflects the fact that in the collective dynamics
of liquids near the melting point the effects conventionally referred to as
‘mode-coupling features’, although certainly present and non-negligible, are
usually not large enough to trigger some ‘unexpected’ behaviour.

This situation changes as soon as the liquid is ‘quenched’ to enter a super-
cooled phase. Here the structural relaxation may become so sluggish to
increase considerably both the magnitude and the duration of all the long-
lasting features in the time correlations. This leads to a further slowing down
of the dynamics via the mode-coupling decay channels, and so on. Eventually
the process attains the typical features of a positive-feedback mechanism in
which self-consistency plays a major role. We shall now see which sort of
qualitatively new phenomena can actually occur in such a physical situation.

6.3.3 The ideal glass transition

Glasses are conventionally defined as ‘extremely viscous liquids’ in which
the shear viscosity coefficient # may attain values of the order of 10
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poise, to be compared with those =~ 10~2 poise typical of most ordinary
liquids near the melting point. An equivalent definition of a glass is that
of a liquid with virtually no diffusive motions: the diffusion coefficient
D= 10"%cm?s™!, at least ten orders of magnitude lower than in an
ordinary liquid. Both these figures make a glass resemble a crystalline solid,
were it not for its structure which is intrinsically disordered or ‘amorphous’.
" In practice, a glassy phase may be obtained from the ordinary liquid (‘the
melt’) by a suitable quenching of its temperature.

Although the previous definitions vividly illustrate some extremely
peculiar features, they encompass only a limited portion of the complex
physical behaviour of glassy systems. To begin with, in contrast with gases,
liquids and solids, glasses are not a stable phase of matter. As a matter of
fact, when observed over a sufficiently long time interval, glasses manifest
the tendency to ‘nucleate’ toward the really stable phase, which is usually
a crystalline solid. In the monatomic systems we are concerned with, this
crystallization process occurs quite rapidly (even in a few picoseconds),
making the experimental observation of a real glassy behaviour extremely
difficult or impossible. In these simple systems computer simulations have,
however, provided useful pieces of information about the gradual disap-
pearing of diffusive motions and/or the onset of nucleation phenomena.
In other systems of more practical interest (window glass being the typical
example) the crystallization process may require years, or even centuries.
This circumstance justifies the characterization of glasses as systems in
metastable (rather than thermodynamic) equilibrium. Another important
aspect concerns the details of the experimental technique by which a glass
is actually ‘produced’. Depending on the system, the actual observability of
the transition toward a glassy phase is found to be strongly related to the
quenching rate. In particular, while certain’ ‘easy glass formers’ such as
SiO, and B,0, can be made amorphous by a rather slow cooling (of the
order of 0.1-1K s™!), some metallic substances can be ‘glassified’ only by
quite high quenching rates (= 10°~10°Ks™'). Again, an extreme case is
provided by monatomic systems, which even in the liquid phase are
characterized by a close-packed arrangement of particles. In such a situa-
tion, it is difficult to overcome the tendency of these systems to crystallize
upon cooling, and indeed the quenching rate required to ‘freeze’ the
disordered structure is found to exceed the highest that can be achieved by
present experimental techniques. Fortunately, even in this case one may
resort to computer simulations, where it is relatively easy to ‘produce’
cooling rates as high as 10'2-10" K s~!. Finally, even assuming that in
some way or another an amorphous system has been obtained, one has to
face the fact that the details of the transition ordinary liquid — supercooled
liquid — glass (including the very existence of a well-defined ‘critical temper-
ature’) depend both on the nature of the system and on its experimental
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‘history’ (memory effects, hysteresis loops, and so on are common features).

. Clearly, we are rather far away from the ‘universal features’ typical, for

example, of an ordinary second-order phase transition.

Even from the previous schematic remarks it is clear that a comprehen-
sive study of glassy systems should encompass vastly different areas,
ranging from intriguing statistical-mechanics problems to subjects typical
of material physics. Here we can only refer the interested reader to a limited
number of books and rewiew articles which make a suitable selection bet-
ween the various ingredients of such a rich menu (Angell et a/. 1981; Zallen
1983; Elliott 1984; Jickle 1986). Even the more restricted field of the liquid-
glass transition has seen rapidly growing activity in several directions in
recent years (e.g. Fredrickson 1988). In the following we shall limit our-
selves to a very short account of the mode-coupling approach to this
particular field, referring to a recent review by Gotze and Sjogren (1992)
for a more thorough discussion of the entire subject.

The first point to appreciate is that something ‘unusual’ has to occur in
the time correlation functions of the system as it approaches a glassy phase.
Since one of the main features of a glass is the freezing of all the motional
degrees of freedom, it is natural to expect that correlation: functions such
as F(k, t) or F,(k, t), rather than showing a more or less monotonic decay
to zero, should ultimately be ‘blocked’ to some finite value. For example,
in the case of the intermediate scattering function, in a situation of struc-
tural arrest one should have that

. F(k,1) . F(k,1)
1 = 2
Im k=0~ "2 500

where f; # 0. This behaviour is in marked contrast with the one found in
the liquid phase, and is in fact the ultimate consequence of the occurrence
of slower and slower relaxation processes. In other terms, the ‘transition’
under investigation has a purely dynamic origin.

Given this picture, it is natural to argue that, owing to their intrinsic slow
character, mode-coupling decay channels are likely to play a major role in
triggering the transition. To actually see how this comes out, it is again
convenient to refer to the representation (6.75) for the Laplace transform
of F(k,t). As in Section 6.3.1, we shall make use of the expression (6.78)
for the memory function Kj (k, ). However, now our main interest is to
ascertain the effects of the genuine long-lasting features of K (k, ¢), and
it is worthwhile to split eqn(6.78) in a slightly different way. More
precisely, we write

Ky (k,t) = Ko(k, 1) + [Kp(k, 1)]mc (6.85)

where [K (k, £)]mc is given by (6.82), and the quantity K,(k, ¢) accounts
for all the short-time features of the memory function. As the latter are

=fi (6.84)
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not expected to be particularly relevant in the present problem, we may con-
tent ourselves of a simple representation of these rapidly decaying contribu-
tions. Specifically, we adopt a Markovian approximation of the form

Ko(k, 1) = 2a,-5(¢) , (6.86)

(a similar scheme was previously used in eqn (6.4) to describe the full
memory function in the hydrodynamic region; now the representation is
extended to finite wavevectors, but only to describe the short-time portion
of Ki(k,t)). As we shall see, a specification of the constant a; is not
necessary for our present purposes. Rearranging eqn (6.75) we obtain

[F(k,z)/S(k)] 1 )
T 2lE (/5] ~ (el 12T Kk
~ (6;? {z+a+ [K(k,2)lmc). (6.87)

Equation (6.84) implies that for z — 0 the quantity [F(k,z)/S(k)] has a
singular behaviour of the form

Fk,z) _fe
S(k) z

Inserting this limiting result into (6.87), consistency demands that an
equally singular behaviour must be present even in the memory function
K. (k,z— 0). Now, the Laplace transform of the rapidly decaying part
K, (k, t) is perfectly regular for z — 0, with a contribution given by the
constant a,. Consequently, the singularity of K is entirely due to the
mode-coupling contribution. Thus, letting

(6.88)

[K(k, 2= 0)]me = [Kp(k, 1~ @) ]mc/z (6.89)
in order to be consistent we should require that
Jx 1
=——— [Kp(k,t = o . (6.90)
= ony Mve

The next important step is now to see whether eqn (6.90) is actually
capable of predicting a non-vanishing value of f, namely a real asymp-
totic plateau for F(k, t). Starting from the expression (6.83) of K (k,¢)
and using eqn (6.84), Bengtzelius ef al. (1984) gave a positive answer to this
question in the case of a hard-sphere system. In this particular case where
the only relevant thermodynamic variable is the number density, the
numerical solution of eqn (6.90) in fact yields f; # 0 as the packing frac-
tion exceeds a certain critical value. At even higher densities, f; is found
to increase considerably for all wavevectors; this trend is particularly
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evident for k = k, where eventually f, approaches unity. All these fin-
dings confirmed the results obtained previously by a simpler mathematical
approach (Leutheusser 1984).

In their numerical calculations Bengtzelius et al. noticed that the
dominant contribution to eqn (6.83) comes from wavevectors near the main
peak of the static structure factor. This circumstance can be exploited to
construct an approximate model which has a simple analytical solution.
Specifically, Bengtzelius er al. assumed that the structure factors in
eqn (6.83) can be approximated as

S(g) =1+ A46(q — ky) (6.91)

where the only parameter is the area 4 under the main peak of the quantity
h(g) = S(g) — 1. An approximation identical to (6.91) can be performed
even for the mode-coupling integrals relevant for self-motion (cf. Section
5.1.3). The ansatz (6.91) implies that nc(k,) = 1, and leads to a con-
siderable simplification of the result (6.83) for [Ky (k, ¢)]mc- In particular,
after some algebra it is found that eqn (6.90) reduces to

T—7. = Af2 (6.92)
where
k. S(k,)A?
A= %ﬂ;‘r‘l)— . (6.93)

‘It is readily verified that for A < 4 eqn (6.92) admits only one real solution,

namely f; = 0. This corresponds to the situation which one has in the
liquid range. On the other hand, if A > 4 one also finds two additional real
solutions. Only one of these turns out to be physical, and reads

Si=1+3[1 - (4/2)]A (6.94)

The result (6.94) is clearly the one appropriate for a phase characterized
by a structural arrest. As argued by Bengtzelius et al., this phase can only
be a ‘glass’: any nucleation process toward an ordered crystal would in fact
require an explicit account of higher order structural correlations, and these
were effectively neglected in the factorization approximations of mode-
coupling theory. Consequently, the critical value A = 4 can be interpreted
as marking the transition toward an amorphous solid. Finally, the fact that
Jr— 1 as A increases well above the critical value is in qualitative agree-
ment with the previous numerical findings.

In connection with the non-trivial result (6.94), it is worthwhile remark-
ing the crucial role played by the self-consistent and nonlinear character of’
the entire mode-coupling framework. Although this was our main purpose
in this section, the analysis of the requirement (6.90) is only the first step
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of a full body of theoretical developments, collectively referred to as the
mode-coupling theories of the glass transition. In these treatments, an
important subject of investigation is the actual dynamic evolution of the
various time- or frequency-dependent quantities on both sides of the transi-
tion point. Even in this respect, the pioneering works by Leutheusser (1984)
and by Bengtzelius ef al. (1984) were rapidly followed by several more
sophisticated approaches. Again, for a detailed account we refer the reader
to the aforementioned review by Go6tze and Sjogren (1992) as well as to
recent work by Lai and Chen (1993). In turn, the unconventional dynamical
response has been shown to affect the behaviour of several thermodynamic
quantities, which exhibit discontinuous changes in the neighbourhood of
the transition (Bengtzelius and Sjogren 1986).

Whereas the most part of these theoretical approaches deal with relatively
simple model systems, the materials which actually exhibit a transition
toward a glassy phase are always rather complex both from the chemical
and the structural point of view. In such & situation it is probably too
pretentious to look for a direct quantitative test of the mode-coupling predic-
tions. Broadly speaking, the various theories are however found to account
remarkably well for several dynamical features observed in the supercooled
region (for instance, the occurrence of markedly non-exponential time
decays) . Evidence in this sense were provided by several computer simula-
tion studies (e.g. Brakkee 1990), as well as by real experiments both with
neutrons (Mezei ef al. 1987; Richter et al. 1988) and with light (Tao et al.
1991, 1992). On the other hand, in the close neighbourhood of the transition
point the theoretical predictions are not so satisfactory (and are sometimes
referred to as describing an ‘ideal’ glass transition). An important source
of these discrepancies with real life is believed to be the neglect of thermally
activated processes, at‘least in the less sophlstxcated versions of the
theoretical framework. Even with these limitations,' the introduction of
mode-coupling concepts in the theories of the glass transition represented
a real breakthrough, and the near future will certainly see further important
developments in this complex physical problem.

6.4 STRESS AUTOCORRELATION FUNCTION, AND
ORDINARY AND GENERALIZED SHEAR VISCOSITY
6.4.1 The dynamics of thg shear stress autocorrelation function

. L . .
In the hydrodynamic region, the transverse current correlation function
Cr(k,t) is known to exhibit a slow exponential decay with a lifetime
inversely proportional to k%

Cr(k, t) = (ks T/m) exp [ — (n/nm)k?*|t|]. (6.95)
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The actual magnitude of the decay rate is controlled by the shear viscosity
coefficient 7. In Section 3.4.2 we have seen that 5 can be expressed in term
of a simple Green-Kubo integral
n= ()™ | dr (a=(0) (1))
0

-]

= [ arn(o). (6.96)
0

The result (6.96) involves the time autocorrelation function of the non-
diagonal components of the stress tensor g (cf. (3.10)). In the last step of
(6.96) we have explicitly introduced the quantity #(¢), often referred to as
the (shear) stress autocorrelation function (SACF).

Clearly, the study of the dynamical features of 7(#) at various ther-
modynamic points is expected to provide useful information over the state
dependence of the shear viscosity coefficient. According to the definition
(3.10), the variable ¥ comprises both kinetic and potential terms:

o = va,,zv,x 1 D) (zyxy/ry)e’ (ry)

e
= (6%)x + (67)p. (6.97)

As a result, the SACF can be split into four different contributions:
n(2) = ngx(t) + ngp(t) + npx(t) + npp(2) (6.98)

where
nxx(t) = (kBTV)_l {(6¥(0))x (6%(2))x>

NkB Z(v.z(O)v.x(O)vl (D)o (2)) (6.99a)
nxp(2) = (kgTV) ™' {(6¥(0))k (6*(2))p) (6.99b)
nex(t) = (kgTV) "' {(a¥(0))p(a™(2)) &) (6.99¢)

nep(t) = (kgTV) ' {(a%(0))p (6¥(2)) p)

_ nm? zij(o)xij(o)
_4NkBTi,j¢iI,m¢1< r; (0) ¢ (r(0)

a0 1, (1) 6.9

Since the variables (6%), and (6%)p are both real and invariant under time
reversal, the cross-correlation functions #7,p(¢) and 77px(¢) are in fact equal
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(cf. Appendix B). Also, ngp(t = 0) = npx(t =0) = 0. As a result, the
initial value of the SACF can simply be written as
1(0) = ngx(0) + npp(0) = G (6.100)

where the quantity G is the k¥ — 0 limit of the rigidity modulus G(k). More
precisely, from the results of Section 6.2.2 it is easy to verify that

G=G(k-0) = KT(k 0, =0)
= nkgT + +n jdr (r) z%g(r)
= nkyT + 371 0 jdr [¢ (r)+4¢ (r )}g( ). (6.101)

In the same approximation scheme adopted in (6.57), eqn (6.101) reduces to

1
G= nkBT + — 10
Even these preliminary results offer the possibility of making several
important remarks over the dynamics of the SACF. First of all, from
eqn (6.101) it is readily seen that in a dilute fluid with n — 0 the value of
n(0) = G is essentially determined by the kinetic (ideal gas’) contribution
nkyT. Vice versa, at the high densities typical in the liquid range the
potential term is found to be the dominant one. Similar remarks apply even
to the different time-dependent contributions to 7(¢). In particular, at suffi-
ciently low densities (and/or sufficiently high temperatures) n(t) is expected
to be = ngx(t), and indeed by this approximation it is possible to deduce
for n all the well-known results of the kinetic theory of gases (e.g.
McQuarrie 1976). On the other hand, in very dense fluids the kinetic and
the cross contributions in eqn (6.98) are likely to be considerably smaller
than #pp(f) at all the times of practical interest. This expectation has
indeed been verified in a number of computer simulation experiments,
ranging from hard-sphere systems (Alder et al. 1970) to more realistic
model fluids (Schoen and Hoheisel 1985; Balucani ef a/. 1988). Thus in the
liquid range we may conclude that n(t) = npp(?).
Another noteworthy feature follows from the specific form (6.99d) of
npp(t). Recalling the definition (2.60) of the time-dependent distribution
function G(r0;r’?) we may equivalently write that

nmQ3iri. (6.102)

nep(0) = [ar[dr’ 4,(0)4,() G (x0;10) (6.103)

where we have let
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A,(r) = 1 (nm*/kgT)"? (2x/r) &' (). (6.104)

When expressed in this way, the quantity #7,,(¢) is seen to have the typical
form of the time correlation functions usually met in interaction-induced
phenomena (cf. Section 2.6). This analogy has in fact been exploited
(Balucani et al. 1988; Montrose ef al. 1991). Even so, between the two cases
there is an important difference which is worth mentioning. In the same
way as for the general correlation function (1.108), eqn (6.99d) can indeed
be split into two-, three-, and four-particle contributions; however, for
t = 0 the particular form (6.104) of the ‘weight factor’ A, (r) is such that
npp(0) can exactly be written in terms of only pair contributions, as in
eqn (6.101). This result can also be obtained from (6.99d) by exploiting the
hierarchy of the n-particle static distribution functions (Balucani et al.
1988). In contrast, in the case of interaction-induced phenomena the many-
particle aspects cannot be bypassed, and the initial value of the relevant
correlation (namerly, the integrated intensity of the spectrum) can only be
evaluated by resorting to some approximation scheme (see Appendix J).

In the liquid range, the actual evaluation of #(¢) makes use of the relation

n(t) = (kgTV) "' {a®*(0)a*(¢)) = nm}in:) [Kr(k,t)/k?] (6.105)
and of the results (6.59)-(6.60) for the memory function K(k, ¢). As a

consequence, the SACF is naturally split into two contributions associated
with distinctly different timescales:

n(t) = no(2) + ny(2). (6.106)
In particular, 7,(t) = nm ll(i_t}}) {[K7(k, t)]ae/k?} is essentially determined

by short-lived collisional events of the ‘binary’ type, which account for the
fast decay of #(¢) at short times. On the other hand, performing the k = 0
limit of eqn (6.60) and inserting the result into eqn (6.105) it is readily seen
that

M (£) = nm Jim, (M, (k, 1)/47]

where c¢’(g) = de(g)/dg = (1/n)S’(q)/ S*(q). Performing the angular
integrations we obtain

m(t) == jdqq [’ (@) [F*(g,1) - F3(a.0)]. (6.108)

602

Finally, adopting the model (4.147) for F(g, t) we end up with
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00 = s Lo 8] {1~ [R5 50
(6.109)

Aside from the factor in curly brackets, eqn (6.109) can be derived even

. by a simple mode-coupling calculation (Geszti 1983). Specifically, one has
to extract from ¢ all the contributions involving the most relevant pair
variables. In the liquid range the dominant couplings involve the product
fi(q) - i(—q) of two density modes, and the result is eventually to be
summed over all the intermediate wavevectors q. This procedure auto-
matically selects the potential part of the SACF as the one which gives a
non-zero contribution, thus confirming the practical relevance of 7pp(¢)
even beyond the short-time domain. Needless to say, this mode-coupling
result is expected to be strictly valid only beyond a microscopic time inter-
val. On a purely practical basis, its validity range can however be increased
by restricting the integration up to a cutoff wavevector:

e (1) = 28 ? dgq* [S'(Q)]z [F(q’t)r (6.110)

s0n2 ) Y17 [5(9) | [5(a)

where g, can be determined in such a way that 7y (¢ = 0) reproduces the
correct initial value of #pp(f). This ad hoc procedure has in fact been
adopted with some success (Geszti 1983; Balucani ef al. 1988). To achieve
a satisfactory description of the tail of the SACF, the integration interval
(0, g.) must in any case include the wavevector range where S(q) has its
main peak.

. Turning now the attention on the more ‘rigorous’ approach of
eqns (6.106), (6.109), it remains to specify thé rapidly decaying term 74(¢).
Even in this case, the fact that 7,(¢) and n(¢) coincide up to the order t?
included suggests the ansatz

no(t) = Gf(t/z,) 6.111)

where the shape function f(x) is chosen in such a way that (i) f(x = 0) =
1 — x? and (ii) f(x) = O for large x. In turn, the time constant 7, can be
determined by a short-time expansion of the full #(¢); this implies that

7, = [|#(0)]/2G] "~ (6.112)

A detailed calculation (Balucani et al. 1988) shows that the quantity #(0)
can be expressed as a sum of two contributions, which respectively involve
the pair and triplet distribution functions. Adopting for the latter a super-
position approximation, the time 7, is readily evaluable. In practice, the
values of 7, obtained in such a way in several simple liquids lie in the
typical ‘collision-time’ range (some tenths of a picosecond) and are more
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Fig. 6.8 Normalized potential part of the stress autocorrelation function in liquid

Na at 376 K (Balucani ef al. 1993a). The dashed line represents the rapidly decaying

portion 7,(#)/G = f(t/1,), with f(x) = sech?x and 7, = 0.110 ps. The full line

denotes the complete result of eqn (6.106), with 7, (¢) evaluated from (6.109). The

open circles are computer simulation data. On the scale of the graph, the contribu-

tions of the cross and kinetic terms in eqn (6.98) are quite small, with an overall
maximum magnitude =~ 0.04 at very short times.

or less similar to those found in Section 5.1 for the initial decay time 7 of
the memory function K(¢).

The ultimate test of the approach is obtained by comparing the predic-
tions of eqns (6.106), (6.109), and (6.111) with the data of 7(¢) obtained
by computer simulation. As in the case of the memory function K(¢), the
comparison can be made at various levels, depending on which approxima-
tion is used in eqn (6.109) for F,(q, t) and F(q, t). In any case, it is found
that the leading contribution to the tail of 5(¢) is provided by those density
modes with wavevectors g close (but not exactly at) the position g,, of the
main peak of S(g). On the basis of (6.109), this feature can be attributed
to a sort of ‘compromise’ between the amplitude of the tail (which decreases
as g —q,) and its actual long-lasting character (which is more pro-
nounced for wavevectors g = gp,).

As in Section 5.1.3, the dominance of a relatively narrow range of
wavevectors in the integral (6.109) can be exploited to simplify considerably
the expression of #77,(¢). Whichever the level of approximation adopted for
the evaluation of eqn (6.109), the overall results obtained for Npp(2) are
found to compare rather well with the corresponding simulation data in
various monatomic liquids (Balucani 1990; Balucani et a/. 1993a). Figure 6.8
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illustrates such a- comparison in the case of liquid sodium near the melting
point: despite a systematic tendency of the theoretical curve to lie slightly
below the simulation results, the overall agreement appears to be
satisfactory.

' 6.4.2 Ordinary and generalized shear viscosity

The successful description of the main dynamical features of the SACF
achieved in the previous subsection suggests the possibility of using
eqn (6.96) to obtain reliable predictions for the shear viscosity coefficient
n. The first step is the evaluation of the quantity

mo= | dt mo(t) = G, | ax 1(x) 61y
0 0

which represents the contibution of the rapidly decaying portion of the
SACF. The shape function in eqn (6.113) can be approximated by a conve-
nient mathematical expression. Choosing f(x) = sech?x (cf. Fig. 6.8), we
simply obtain that

no = Grt,. (6.114)

The predictions of eqn(6.114) are always found to underestimate con-
siderably the actual values of 7, confirming that the contribution of the
long-lasting portion of the SACF is far from being negligible. As a conse-
quence, we have to deal with

n=rp+ s dz n,(¢) (6.115)
0 %

where #,(¢) is given by eqn (6.109). Equation (6.115) has been evaluated
numerically for several simple liquids, focusing the attention on the domi-
nant potential contributions (Balucani 1990; Balucani et al. 1993a). Some
results of these calculations are reported in Table 6.1. Comparing these
theoretical values with the corresponding computer simulation data, a
substantial improvement with respect to the results of eqn(6.114) is
apparent. In the case of liquid alkali metals, however, one notes a persisting
underestimate of the order of 10%. This discrepancy stems from the
aforementioned feature that the amplitude of the tail of npp(#) predicted
by the theory turns out to be slightly lower than the actual data (cf.
Fig. 6.8), and these systematic deviations clearly sum up in the integral
(6.115). In this context, a more accurate evaluation of eqn (6.109) (possibly
with the use of extensive simulation data for both F(g, t) and F(q, t)) is
needed to ascertain the actual origin of these residual discrepancies.
Owing to its intrinsic hydrodynamic nature, the shear viscosity coefficient
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Table 6.1 Comparison between the theoretical predictions for the poten-
tial contribution to the shear viscosity coefficient and the corresponding
molecular-dynamics data #yp (Balucani 1990; Balucani et al. 1993g). The
results refer to the same simple liquids considered in Table 5.1. For
completeness, the MD results for the full # are also reported (bracketed
entries).

_3'70 . 3’1 Nmp
1073 poise 1072 poise 1073 poise
Sodium 3.02 4.89 5.22 (6.30)
Rubidium 318 3.10 5.33 5.84 (5.95)
Rubidium 270 3.29 6.71 (7.26)
Caesium 3.23 5.40 6.07 (6.16)
Argon 1.80 2.80 2.72)

n is the only quantity needed in a fluid to specify transverse collective
motions on a macroscopic scale. However, this simple picture begins to

change as soon as we move toward a more microscopic description. In Sec-

tion 6.2.2 we have in fact seen that over short distances a liquid is able to
support high-frequency transverse sound waves. At intermediate and high
wave vectors considerable changes do occur even in the low-frequency
response. A formal way to describe these non-hydrodynamic features is to
introduce a wavevector- and frequency-dependent shear viscosity coeffi-
cient 7j(k, z = iw), defined as in eqn (6.38). At finite frequencies #(k, iw)
is in general a complex quantity, with an imaginary part which gives rise
to shear-wave propagation and a real part which accounts for damping
effects. As w — 0, 7j(k,iw) becomes purely real, and it is reasonable to
describe the microscopic low-frequency response of the system by a
generalized shear viscosity coefficient

n(k) = KT(k z=0)

nk" [Cr(k,z=0)]"! (6.116)

where we have exploited eqn (6.37). Clearly, for sufficiently small wavevec-
tors, n(k) approaches the ordinary shear viscosity coefficient #. On the
other hand, at large k, Cr(k, t) is known to approach the free-particle
result (1.154); thus in this limit -

2n’mkyT) V2 1
n(k) - [_T] z 6.117)
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Fig. 6.9 Computer simulation data for the wavevector dependence of the

generalized shear viscosity 7 (k)/n in two systems at densities typical of the liquid

range: dashed line, fluid of hard spheres at a reduced density no’ = 0.884 (Alley

and Alder 1983); full line, liquid Rb at 7= 332K and a reduced density

na? = 0.905 (Balucani ef al. 1987). The length parameter o denotes either the par-

ticle diameter (hard-sphere system) or the position of the first zero of the effective
pair potential (liquid metal).

At finite wavevectors, computer simulation data have been obtained
for n(k) in several model systems at densities typical of the liquid range
(Alley and Alder 1983; Balucani et al. 1987; Gaskell et al. 1987; Vogelsang
and Hoheisel 1987; Larsson ef al. 1990). Some of these data are reported
in Fig. 6.9 using properly scaled units. In all the systems which have
been investigated, it is apparent a quite substantial decrease of n(k) as
the wavevector moves from the strict hydrodynamic regime toward the
position k,, of the main peak of S(k) (in the reduced units of the figure,
k,o = 6.7-6.8).

The gross features of the decay of n(k) from its hydrodynamic value can
be understood on the basis of a simple viscoelastic model. As a matter of
fact, from eqn (6.43) we deduce that

n(k) = G(k)tr . (6.118)

In this picture, the observed wavevector dependence of 7(k) stems from the
marked decrease with k of both G(k) and 71 (cf. eqns (6.57) and (6.55)).
As might be expected, a somewhat better agreement with the simulation
data can be obtained by allowing the presence in Kr(k,?) of a second
decay mechanism with a longer relaxation time, as in eqn (6.58). However,
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even in this case some discrepancies persist at intermediate wavevectors,
where a sort of ‘shoulder’ in the data cannot be reproduced by either one
of these phenomenological models (Balucani et al/. 1987).

6.4.3 The Stokes-Einstein relation

An important consequence of the introduction of #(k) is a microscopic
generalization of the so-called ‘Stokes-Einstein relation’ between the diffu-
sion and shear viscosity coefficients. This was originally introduced to
describe the diffusive motion of a large ‘Brownian’ particle of radius R in
a continuous fluid with shear viscosity 7. More precisely, the relation can
be written as (.andau and Lifshitz 1963)

Y

= A1
cnnR (6.119)

where ¢ is a numerical constant which depends on the specific form assumed
for the velocity field of the fluid at the ‘surface’ of the particle. To be
specific, at the surface we may match either the full flaid velocity with
that of the particle, or simply the two normal components (with no tangen-
tial frictional force acting on the particle). These two possibilities are
usually referred to as ‘stick’ and ‘slip’ boundary conditions, and imply for
the constant in eqn (6.119) the values ¢ = 6 and ¢ = 4, respectively.

Owing to the large size of the particle, the description of the fluid by a
continuum implicit in eqn (6.119) seems quite reasonable. Surprisingly
enough, the Stokes-Einstein relation is, however, found to work fairly well
even in genuine one-component systems, where any distinction between the
diffusing particle and those of the surrounding fluid disappears. Actually,
it is not uncommon to find quantitative discrepancies up to ~20%, but
these are often dealt with empirically by some suitable change in the
constant ¢ and/or in the ‘effective’ radius R of the particle (which certainly
cannot be accurately defined). o

In the simple liquids we are concerned with, it proves possible to give
a sounder physical justification for the approximate validity of eqn (6.119).
By itself, the Stokes-Einstein relation implies the existence of some connec-
tion between single-particle motion (D) and the dynamics of transverse
currents (77), with both aspects being probed over an essentially macroscopic
space scale and timescale. Such a mutual relationship can, however, be
established at any level by introducing a microscopic velocity field (see
Appendix H). The key result in this respect is a simplified version of
eqn (H.10): .

(0) (1) =55 [ daA(@) [Cula, 1) + 261 0] (6.120)
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where, owing to the slowness of the diffusive processes in the liquid range,
the self-intermediate scattering function has effectively been replaced by its
initial value F,(g, 0) = 1. Integrating both sides of (6.120) over time and
exploiting the result (1.67) for the diffusion coefficient, we find

3D = 5 [das(a) | dt [Gula, 1) +2Cr(g,1)]

1 ~ ‘ '
== |das(a) Crla,z=0) 6.121)
since the longitudinal contribution involves Cy (g, z = 0) = 0. Introducing
the definition (6.116) and performing the angular integrations it is easily
shown that

o0

_ nkgT f(q)
D=5 |y

(6.122)

The result (6.122) is a sort of generalized Stokes-Einstein relation in which
the microscopic aspects are properly taken into account by the presence of
a wavevector dependent shear viscosity coefficient (Gaskell 1984; Gaskell
et al. 1989). If the g-dependence of n(g) were ignored by letting n(q) = n,
we would simply obtain

nkgT
3n’n

kgT

b= 4nna

quf(q) =

(6.123)

where we have made use of eqn (H.6) for the Fourier-transformed form
factor of the velocity field. The result (6.123) is seen to be identical to
eqn (6.119) in which ¢ = 4 and the effective particle radius R is naturally
replaced by the length a = (3/4nn)>. ,

In practice, the values of D predicted by eqn(6.123) are always
found to underestimate the actual diffusion coefficients. For example,
in a Lennard-Jones system simulating liquid argon at 7=95K and
n=0.021 A-3, it is found that eqn (6.123) predicts D = 1.84 x 10~5 cm?s ™!
whereas the real value is 2.39 x 107> cm?s~!. Clearly, the decrease of f(q)
with the wavevector is not fast enough to ensure the validity of the
approximation 7(g) = # in (6.122). In the particular case under considera-
tion, a simple viscoelastic model for 7(q) is sufficient to increase the
value of D to 2.47 x 10~ °cm?s™’, in close agreement with the actual
data. In other systems the integral in eqn(6.122) is found to be more
sensitive to the minor details of n(g), such as the ‘shoulder’ mentioned
at the end of section 6.4.2. Whichever the situation actually met, it is
clear that in one-component fluids the simplicity of eqn (6.119) is to some
extent deceiving, and the ‘relation’ must in fact be supplemented by some
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additional information about the microscopic behaviour of the liquid under
consideration.
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Appendix A

The Hermitian character of the
classical Liouville operator

Let us consider the scalar product (A4, B) between two arbitrary phase-space
variables of the functional space introduced in Section 1.3. The Hermitian-
conjugate L' of the Liouville operator (1.22) is then defined by the
relation

(A,LB) = (B,L'A)*. (A.1)
The purpose of this appendix is to prove that L' = L, that is that L is a
Hermitian operator. Choosing the classical statistical average (A*B) as a

convenient physical representation of the scalar product (A4, B), we have
that

1
(4,LB) = (A*LB) = — Sdr”deA*LBexp( —B3c)
N

33C oB _ a3C _3_3;
ari,a api,a api,a ari,a

_L N AnN 4%
—ZNi’za:jdrdpA{

} exp (—B3C).
(A2)

Here, we have exploited the definitions (1.5) and (1.22), and the summation
over a runs over the cartesian components. Equation (A.2) can be
integrated by parts taking (6B/dp; ,) and (3B/dr; ,) as integrating factors.
We obtain

i ) a3
A,LB) = — — Nap"B|— |A* — ¢ F%
( ) ZNi,Zajdr op B[api,a (A ari,ae ]
] oH
-5 [A"‘F e-ﬂ’c”. (A.3)

Performing the derivatives of the bracketed products, it is readily found
the contributions involving the derivatives of JC or the factor exp(—pg3C)
cancel each other. As a result
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93C 34* 3% aA*]e_m
0ri o 0P ODiq OF;q

(4,LB) = liZjdrNdeB[
ZN i,a

= (B*LA)* = (B,LA)". , A9

Comparing (A.4) with (A.3) and noting that the phase-space variables
are arbitrary, we immediately deduce that Lt =L.

Appendix B

Classical time correlation functions
and their spectra

In this appendix we shall discuss some general properties of the time
correlation functions

Cas(t) = (B(0), A(1)) = (B*(0)A(2))
= (B*(0) exp(iLt)A(0)) B.1)
where A(0) = A and B(0) = B are two dynamical variables (not necessarily
real) of a classical system ruled by the Hamiltonian (1.1). The properties

which we shall establish for C,z(¢) will also provide useful relations for
the corresponding frequency spectra

Cip() =% j dt exp( —iwt) Cup(t). (B.2)

Together with (B.2), in the following we shall make use of the inverse
Fourier transform

Cp(t) = j dw exp (iwt) Cap(w). (B.3)

-—00

The first property is a direct consequence of the Hermitian character of the
Liouvillian (cf. Appendix A). Since L' = L, the time propagator exp(iLt)
is unitary; that is, [exp(iL?)]’ = exp(—iL¢). On the other hand, from the
definition of Hermitian-conjugate operator one has that

C.p(t) = (B*exp(iLt)A) = (A*[exp(iLt)]' B)*. (B.4)
Thus, as a result of the unitarity of exp(iL#) we find that
Cap(t) = Cpa(-1). (B.5)
Equation (B.5) is a particular case of the stationarity property ‘
(B*(0)A(#)) = (B*(1)A(t + 7)) (B.6)

which is easily demonstrated by writing exp(iLt) as exp(—iL7).
exp[iL(t + 7)] and exploiting again the unitarity of the time propagator.
Equation (8.6) states that the statistical averages are not affected by a shift
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7 of the time origin. In particular, for 7 = —¢ eqn (8.6) reduces to (8.5).
Also, letting # = 0 eqn (B.6) gives (B*A4) = (B*()A(1)). In the special
case that the variable B is simply a constant, we deduce that as a conse-
quence of stationarity (A(7)) = (A(0)); that is, the averages of a single
dynamical variable at time 7 and time zero are identical.

~ Suppose now that in the phase space {r",p") we perform a trans-
formation which changes the sign of all the momenta and leaves the
positions unchanged. While the Hamiltonian JC is clearly invariant under
this transformation, eqn (1.22) shows that the Liouvillian L changes
sign, so that the time propagator exp(iL?) becomes exp(—iL?). In other
words, the result of the transformation is an effective time reversal in
the propagator. The dynamical variables of main interest in classical
statistical mechanics usually have a definite ‘parity’ (or ‘symmetry’) under
the change {r", p} = (r", —p"}, namely they are either invariant (‘even’)
or change sign (‘odd’). On the other hand, the statistical averages and
the correlation functions are unchanged by the transformation. Thus,
denoting with y, and yg the respective signatures of the variables 4, B
under this time reversal (y4, v = 1), we have that (B*exp(iLt)A) =
Ya¥s{B* exp(—iLt) A), or

Cap(t) = y478Cap(—1). ®B.7)

In the case when 4 and B have the same time-reversal symmetry, y,75 = 1
and eqn (B.7) states that the correlation function C,p(f) is even in time.
Vice versa, if y,y5 = —1, C45(?) is an odd function of time; in particular,
the initial value of the correlation function of two variables with opposite
time-reversal symmetry vanishes.

In view of its frequent occurrence, the special case of time auto-
correlation functions (B = A) deserves a detailed discussion. Combining
eqns (B.5) and (B.7) we find (y% = 1):

Can(t) = Cha(—1) = Caa( 1), (B.9)

that is, C4(¢) is real and even in time. As a result, the spectrum C,4(w)
is also a real and even function of the frequency w

l - -]
Caal@) =~ [ dtcos(@t)Caa(t) = Caa(-w). ®.9)
0
In terms of the Laplace transform
Caa(2) = | drexp(—2) Cuu(?) (B.10)
0

the spectrum can be expressed by an analytic continuation in the complex
plane near the imaginary axis:

Classical time correlation functions and their spectra 271
1. .
Cui(w) =—7;ReCAA(z=iw+e) (B.11)

where ¢ > 0 is an infinitesimal quantity ensuring the convergence of (B.10).
In practice, the term in ¢ is only needed when we deal with spectra with
o-like features. Because of the even character of the autocorrelation func-
tions, the short time expansion of C,44(?)

Caalt) = ), [ﬁi(—t—)} LI (a,/n!)t" (B.12)
=0

n=0 dt § t=0 n! n
is such that the coefficients @, with odd » vanish. Exploiting eqn (B.3) we
obtain

oo

1
Can() = 3 —1"(@") at” (B.13)

n=0

where the quantity (w"),4 (referred to as the nth frequency moment of the
spectrum C,44(w)) is defined by

-]

(@) 4q = j dw 0" C (o). (B.14)

—00

In the expansion (B.13) only even frequency moments yield a non-zero
contribution. Letting n = 2p we have

Caalt) = 3, (=17 (@) [/ (o)1)

= Cu4(0) = (172) (0?) 4u 2 + (1/41) (@) 4qt* —...

= Cus(0)[1 — (1720)K@®) g0 t? + (1/81){0*) 8% — ...]
(B.15)

where in the last step we have introduced the ‘normalized frequency
moments’ {@") 44 = (0") 44/ (0°) 44 = (W) 44/ C14(0).

Coming back to the general case, we may similarly introduce frequency
moments (") p defined either in terms of a short-time expansion of
C45(?) (cf. (B.13)) or through frequency integrals involving the spectrum
Cp(w) (cf. (B.14)). In any case

@)= (i (£ - Crfro 5, ).

dr”
(B.16)

Noting that, for n > 1, [d"A()/dt"] =iL[d"~'A(¢)/dt"~!], we may
exploit the property (A.4) to write
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" 4 * n—1
5*(0) (d ,(,t) _ _[{aB*() [d ,fft) .
dt”  Ji-o dt )=\ dt t=0
®B.17)

The result (B.17) can obviously be iterated, and turns out to be very useful
for the practical evaluation of the frequency moments: For example, if we
deal with an autocorrelation function C4, (), a repeated use of (B.17)
leads to the following expressions for the second and fourth frequency
moments:

(0%) 40 = —€A*(0) A(0)) = (A*(0) A(0)) (B.18)
(@%) 44 = (4*(0) A7 (0)) = (4*(0) A(0)) (B.19)

where the dots indicate time derivatives. :

Although the behaviour of correlation functions under a time-reversal
transformation is clearly important in all dynamical properties, there are
several other symmetry properties of the system which can be conveniently
exploited to simplify the calculations. An example of such properties is the
invariant character of the Hamiltonian 3C and of the Liouvillian L under
an inversion transformation which changes the sign of all the coordinates
and momenta of the particles of the system. Assuming that we deal with
dynamical variables 4, B which have a definite symmetry under the change
(r™, p"} = { —r", —p"}, the correlation function C,z(#) vanishes unless A
and B have the same parity (even or odd) under this inversion trans-
formation. Another useful property is associated with the invariance
of 3¢ and L under a reflection transformation, such as {(x",y",z"),
@Y, pY, pM)} = ((=xM, M, 2Y), (—pY,p).p?)}. The consequences of
this reflection symmetry through the yz plane (or of the analogous reflec-
tions through the zx and xy planes) are that the correlation functions which
change sign under these transformations are bound to vanish. While these
symmetry operations are present even in a cubic crystal with the edges of
the cell parallel to the (xyz) axes, in a isotropic system like a fluid additional
simplifications are brought about by the full rotational symmetry (cf., for
instance, the discussion in Section 3.4.3 about the various correlation
functions of the microscopic stress tensor).

Finally, in a fluid another powerful symmetry operation is related to
the invariance of 3C and L with respect to a shift of the origin of the
reference frame by an arbitrary constant vector p. The consequences of
this translational symmetry under the transformation (r;, p;) = (r; + p, D)
fori=1, ..., N are readily found in the case of dynamical variables of
the form

A(k) = Ya(r;, p) exp(ik 1) (B.20)

i
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where the quantity @ is not affected by the shift of the origin. Typical
examples of this class are the quasi-conserved collective variables, namely
the particle, current and energy densities (cf. (1.112), (1.115), and (1.173)).
As* a result of the above transformation, the correlation function
(A7 (k,0)A,(k’, 7)) appears to change to expli(k’ — k) p] < A (k, 0)
A,(k’, t)). Since the shift p is arbitrary, translational invariance requires
that k’ =k in order to have a non-zero correlation. In other words,

(43 (k, 0)A,(k", 1)) = (A7 (k,0)A, (k, £))dy. . (B.21)

In a continuum representation of the wavevectors, the Kronecker & is
replaced by a Dirac J according to the usual recipe

S = [(27)/V16(K’ = Kk). (B.22)

As is well known, a result similar to (B.21) holds even in crystalline solids,
where the invariance is restricted to the discrete set of lattice vectors. In
such a case, the equality k’ = k is valid only if the wavevectors k’ and k
lie in the same Brillouin zone of the reciprocal lattice space.



Appendix C

The light-scattering cross section for a
system of interacting atoms

Although not conceptually difficult, the derivation of the result (2.43) for
the correlation function involved in light scattering from an interacting
system is much more involved than that for the corresponding result (2.23)
for neutron scattering. Also, a comprehensive discussion of this subject is
not easily found in the general literature (a notable exception being a review
article by Gelbart (1974)). Hence, in this appendix we shall report the basic
steps of this derivation, along with a more detailed discussion of several
physical points which emerge in the course of the calculation.

C.1 THE PROBLEM

Let us consider an unperturbed system of N interacting atoms, and denote
by |w) a stationary quantum state of the system. If the atoms are all
identical and Z is their common atomic number, the properties of the
system can in principle be deduced by solving a many-body Schrédinger
equation for the N nuclei and the NZ electrons. This is clearly an impos-
sible task if N or Z exceed a few units. In order to make the problem
more manageable, one exploits the large difference between the masses
of the electrons and of the nuclei, and resorts to the well-known
‘Born-Oppenheimer approximation’, which represents the eigenstates of the
system as a product of nuclear eigenstates |n) and electronic eigenstates
|e(")>:

lw) = |w(n,e)) = [n)|e™). (C.1)

Whereas the state |n) describes the distribution and the motion of the
nuclei, the total electronic eigenstate |e®™) depends parametrically on
the position of the nuclei, and is supposed to follow any nuclear motion
instantaneously. As a result of the Born-Oppenheimer approximation,
the two Hilbert spaces of the nuclei and of the electrons can be separated,
and the eigenstates satisfy two distinct completeness relations of the form

Bl =L

Let us now consider an electromagnetic field in a spatial region where
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no field source is present (‘radiation field’). It is well known that in such
a case the properties of the field are completely specified by the ‘vector
potential’ A(r), which is such that V- A = 0. In the formalism of second
quantization, A(r) can be expressed in terms of photon annihilation and
creation operators @ and a' as follows (Louisell 1973):

A(r) = kz (2nhc*/ w0 V)V [aygexp (ik - 1) + af exp(—ik-r)]ey,
o3

(C.2)

where c is the velocity of the electromagnetic waves and w; = ck. In other
terms, the field has been decomposed into transverse plane-wave modes
(k, a), each of which is specified by a wavevector k, a polarization index
a and a polarization vector e,, such that k- e,, = 0. Strictly speaking, in
eqn (C.2) V is simply the volume in which the field has been quantized;
later on, for all practical purposes ¥ can be identified with the volume
of the system which scatters the photons. In the same formalism, the
Hamiltonian of the field is known to be

Hhea = kZ ho (aly Qg + ) (C.3)
,a

where hw, is the energy of a photon with momentum #k.

At a given time (which we shall choose as ¢ = 0) the atomic system and
Fhe radiation field are supposed to interact. The Hamiltonian describing this
interaction can be written as (Louisell 1973)

e e?
3. = . . 2(r.
) [mecp' Alr) + 54 (r,)}

Ze 2,2
+Z[—M“ P,-A(R,) + 22
a

> TR A’(Ra)] €4

where r; and p; are the position and momentum operators of the ith elec-
tron with mass m. and charge —e, and the index i runs over all the elec-
trons of the system. Similarly, R, and P, are the position and momentum
operators of the ath nucleus (@ =1,...,N) with mass M, and atomic
number Z,. Since m, <€ M,, the terms in the second summation on the
right-hand side of eqn (C.4) can safely be neglected, and we are left with

i

e e?
Hine = Z [m_ec pirA(r) + 5’;1:—6'—2 Az("i)} . (C.5)

As a result of the interaction, the global system S made of the N interacting
gtp{ns plus the quantized radiation field performs a ‘transition’ from an
initial state |i) to a final state |f). In particular, the atomic system we are



276 The light-scattering cross section for a system of interacting atoms

interested in evolves from an initial state |a) to a final one |b). In turn,
the initial state of the field can be characterized by the presence of ng
photons in the mode (ko, do) and of n, photons in the mode (k,, a,); using
a shorthand notation, this state will be denoted by |n,, n;). Then a typical
scattering process can schematically be represented by the transition from
|iy = |a) |ng, m) to |f> = |b) |(mo — 1), (n, + 1)). In other terms, as
far as the field is concerned, one photon has been ‘transferred’ from the
mode (Ko, @) to the mode (k;, a;). We wish now to evaluate the transition
probability of this overall process.

C.2 TIME-DEPENDENT PERTURBATION THEORY

The initial and final states of the global system S can be assumed to be
eigenstates of the full unperturbed Hamiltonian 3Cs = 3Cey + HCicias
where JC denotes the Hamiltonian of the atomic system. As a conse-
quence, the transition occurs between initial and final stationary eigenstates
which satisfy the time-independent Schrodinger equations ICs|i) =
E;|iy and 3Cs|f) = E;|f), where E; and E; are the initial and final
energy eigenvalues.

Assuming that the perturbation introduced by the interaction Hamiltonian
3C;,, is small, at any time the state of S can be conveniently expressed as
a linear combination of unperturbed eigenstates:

lw(2)) = Dies(t) exp(—iEst/h) | S) (C.6)

where the possible occurrence of the transition |i) — |f) has been
accounted for by allowing the coefficients cg(f) to be time dependent.
In eqn (C.6), |cs(#)|® is known to give the probability that the global
system is found at time 7 in the eigenstate |S) with energy Eg. In the
following, we are consequently interested in the evaluation of the quantity
les(#)|?, with the condition that initially all the coefficients cg vanish
except ¢; = 1.

A formal solution for ¢,(¢) is readily obtained by inserting eqn (C.6)
into the time-dependent Schrodinger equation ik | ¥(¢)) = (3Cs + ICin)
| w(¢)). This reads:

/() =3 — (i/h);jdrexp[ ~i(Es — E;)t/h] {f] 3| S c5(7).
0
(C.7)

Equation (C.7) can be solved iteratively, provided that the effects of the
perturbation are sufficiently small that the coefficients cs(f) are slowly
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varying. At the zeroth order, we clearly obtain c{”’(¢) = ; (i.e. no transi-
tion at all). The first-order solution reads:

t
(1) = &, — (i/h) [drexp[ ~i,o/n] (f13eu i)  (C.B)
0 .

where we have let Q= (E; — E;)/h. Equation (C.8) involves the matrix
element of the interaction Hamiltonian between the initial and the final
states. At this order, only the second term on the right-hand side of
eqn (C.5) turns out to be effective in giving rise to a scattering process.
In fact, in view of the expansion (C.2), the term of 3C,, linear in A
can just annihilate or create a single photon, thereby leading to absorption
or emission of radiation, rather than to scattering. However, it is readily
seen that the linear term does give rise to scattering processes if the

iteration is carried out up to the second order. At this level it is found
that

c?P(t) =c(t) — (l/hz)z jdr!d‘c' exp (iQ,7) exp (iQ7’)
So o

(f|3Cine| $3(S| 3| 1. .9

The term in eqn (C.5) linear in A can now connect the initial and final states
of the scattering process through the ‘intermediate’ states |S).

The matrix elements of 3C;, which appear in the expressions of c{(¢)
and c¢P(¢) can be evaluated by making use of the following well known
results for the photon creation and annihilation operators

a'ln) =(n+ 1)"2|(n+1))  a|ln) =n"*|(n-1)) (C.10)

along with a'a|n) = n|n). In the present case, these relations refer to a
specific field mode, whose indexes (k, a) have not been explicitly written
out in eqn (C.10) for notational simplicity. Exploiting the orthonormal
character of the photon states, from eqns (C.5), (C.2), and (C.10) we
eventually obtain

\  2mhe? (ny(n; + 1) ]2 .
(f]3Ce]i) = eV [ °w(‘)wl (eo~e1)<b|2 exp[i(ky — ki) - r;] a)
(C.11)
where wy, €y, ... are short-hand notations for Wy €k apr -+ ++ The

calculation of the product of matrix elements appearing in eqn (C.9) is more
cumbersome, and the result depends on the specific photon intermediate
state |I,,). After some algebra it is found that
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2nhe? [no(nl + l)j|”2
)

miV | wym
if | L) = |no, (n + 1))

)
y

1> <1
if |Ly) =|(no—1), ny)
L (C.12)

where |I) denotes an intermediate eigenstate of the atomic system.

(f|3Cin | SY(S| 3Cine [ 1) =

e, exp( —ik; - 1)

<b|2 p; - egexp (iko - ;)
X

<b|2 pi e exp(—ik; 1)

ij-eoexp(+ik0-rj
J

C.3 THE SCATTERING TRANSITION PROBABILITY

The results (C.11) and (C.12) can now be inserted into the expression (C. 9)
of the coefficient c,(¢). Before doing that, let us recall that usually the
quantity of experimental interest is the probability of occurrence of the
scattering transition (namely, |cf(t)|2) in a situation where any transient
effect due to the ‘switching on’ of 3C;, at ¢ = 0 has disappeared. Formally,
this can be achieved by letting # = oo in the final result. We are ultimately
interested in the scattering cross section, which depends on the probability
of the scattering event per unit time (the so-called ‘transition probability’).
As a consequence, we have to evaluate the quantlty |cr (®|?/t in a situa-
tion where ¢ — oo,

The first step is to perform the time mtegrals in eqns (C.8) and (C.9).
This is easily done for eqn (C.8), with the result that

exp(iQ;;t) — 1

C.13
o (C.13)

e (1) = o7 = (] 3Cim| 1)

Here
h.Qf,‘ = Ef —E,=E, - E, + h(wl - wo) (C'14)

where E, and E, denote the initial and final energies. of the atomic system.
.The evaluation of the double integral in eqn (C.9) is slightly more
involved. Performing the integration over 7’, we obtain
t

t T
s drj dr’ exp (i2/57)exp (i7" ) = ( l/iQSi)s dr[exp(iQ)7) — exp (iQs7)].
0 0 0 )

(C.15)
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As we shall see later on in this section, the important scattering events are
such that the total energy of the global system is conserved. Consequently,
in eqn (C.15) the quantity £y, is very small. On the other hand, no such
restriction exists for Q5= (E; — E5)/h = (E; — E5)/h, which remains
finite. As a result, the phase of the second exponential is never close to zero,
yielding rapid oscillations (and eventually a vanishing time integral) as
t — oo. Hence, collecting all the previous results eqn (C.9) can be written as

2 172 s
(1) = o, — 2nhe [no(n, + 1)] exp(iQ;2) — 1 (C.16)

meV W) Q/,

where M,, = (b|M|a) = M}, is the matrix element of the operator

M= (eo-el)Zexp[i(ko — k)]

1 Z p; - eoexp (iky - 1;) I> <I - e exp(—ik; - ;)
1 7
me z,; E; - E, + hw,
Z - ¢, exp( —ik, - r;) >< ij-eoexp(iko~ r;)
i J
EI - - hwo

(C.17)

In obtaining eqns (C.16)-(C.17), we have made use of the following results
for the quantity Qg;:

hQg; = Eg — E; = (E; + Ep.) — (E, + nohw, + n hawy)

{ E +h0)1 if I h>~—‘no,(nl+1)> (C 18)
E[ —hwo lf | h> —|(n0—1) nl> ’
according to the two cases seen in eqn (C.12). Noting that in a real
scattering event the initial and the final states are necessarily different and
d7,; = 0, for the quantity |c;(#)|> we obtain

2nh 2
e (1)]2 = [ 74 e] ny(n, + 1) 4sin®(Q,,1/2) IMy?  (C.19)

m, vV Wy, 92 i
Performing the limit # = o and exploiting the result lim sin?(at)/a’t =

md(a), the scattering transition probability W, = |c/(#)|*/¢ can even-
tually be written as
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2ne?)? ng(n, + 1) ) [Eh —E, J
= . M, 280 | ———— + 0 — w
Wscatt [m,V] Wow; ' bal T h 1 0

(C.20)

where clearly the d-function reflects the conservation of energy in the
scattering process. ’

C.4 THE ELECTRIC DIPOLE APPROXIMATION

In a tight-bonding model of the N-atom system, the electrons can be
considered as ‘belonging’ to their respective nuclei. This implies that in eqn
(C.17) each of the two summations over i, j (which run over all the electrons
of the system) can be replaced by a double sum over the nuclei and over
their respective bound electrons. Also, in this appendix we are primarily
interested in light scattering and we can exploit the fact that the atomic
sizes are much smaller than the optical wavelengths (the so-called ‘electric
dipole approximation’). Therefore, in the quantity M the terms involving
exp(xiko,, - I;) can be approximated as

> exp( ko, 1 - 1) = D Z, exp( ik, * R.) (C.21)
i g, exp( iky 1) = 2 exp(iko,1 "R L Py, €,y (C:22)

As aresult, the scattering transition probability can be written in the form
(C.20), where

My, = Apg + (Bpg + Cg) (C.23)
and
Ap, = (e ¢)) <b ZZa exp[i(ko — ki) "R, ] a> > (C.24)
) | (b Z exp(iko Ry) Y, Py, € I> (I > exp(—ik,-Rﬂ)E | JRL a>
— :__ x [ B 4 ,
Bb“_meZ E, — E, + hw,
(C.25)

1 <b > exp(—iky R,) Y Py, e I) <I > exp (iky: R,;)Z P e0|a>
=__ o g B Jg .
Cba_meZ EI_Ea—th
(C.26)
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C.5 A CLASSIFICATION OF THE ENERGY LEVELS

As a result of the Born-Oppenheimer approximation, the total energy of
the N-atom system can be split into nuclear and electronic contributions.
The nuclear component is given by the sum of the kinetic and potential
energy of the nuclei, and in the present context can be referred to as the
translational energy, with a magnitude = NkpT. For a specific eigenstate
|m) of the N-atom system with energy E,,, the above mentioned separa-
tion can be expressed by the relations

|m) = |2, " |en(tn)) (C.27)
E, = E9 + E© (C.28)

where the labels t and e stand respectively for translational and electronic.

Before proceeding, it is important to realize the relative order of
magnitude of the different energies which are involved in W,,,. A conve-
nient reference point is provided by the energy of the electronic ground
state. When referred to this level, the electronic energies are distinctly larger
than both the translational ones and the photon energies typical of the
optical range. More precisely, at room temperature, thermal energies are
found to be two orders of magnitude smaller than those of optical photons;
in turn, the latter are smaller than those typical of the electronic transitions.
For example, Table 2.2 shows that even in the unfavourable case of xenon,
the first excited electronic level of rare-gas atoms has an energy definitely
greater than that of optical photons.

In view of all this, assuming that initially the N-atom system is in its
ground electronic state, we argue that even the final electronic level is the
ground state. Therefore the matrix elements (C.24)-(C.26) can be written as

Ap,=(€9-€) <tb t,,> , (C.29)

—1 <tb ZeXp(iko'Ra)Pa,bl'eo t1> <t1 Z exp (—ik,"Rg) pp, 107 €1 ta>
By,=— x £ ,
" m, t;& EP —E® + EY —EY + hw,

(C.30)
-1 <tb tl) <tl
Cpa=— 2

Zexp (_ikl'Ra)Pa,bI‘el E eXP(iko'Rp)Pp,la‘eo ta)
a B

me ter Ese) - Ege) + E?) - ES:) + hwo ?
‘ (C.31)

2 Z.expli(ko — k) R,]

where we have let
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Po,pr = <eb(tb) ZP:’,, eI(tl)>’ (C.32)
Ps1c = <el(t1) ijp ea(ta)> . , (C.33)
Js )

Assuming that both |e,) and |e,) coincide with the electronic ground
state, E® = Ef and the energy conservation relation becomes simply

E® + hwy = EP + ho, (C.34)

As a result, the energy denominator in eqn (C.30) can be written as
E® — E® + EY — EY + hw,. We shall now exploit the above-mentioned
fact that the energy difference between the electronic levels is distinctly
larger than the other energy terms in the denominators of eqns (C.30) and
(C.31). In particular, the translational energy differences are the smallest
ones, and can safely be neglected.

A first consequence of this approximation is that in the expressions of
B,, and C,, we may now make use of the completeness relation for the
intermediate translational states, obtaining

ta>

1 <tb Z eXI)(iko : Ra)pa, »1" €0 Z exp( —ik; - Rﬂ)pﬂ,la '€
- ~ i
By, =—
(C.35)
ta)

m, & EP —E© + haw,
(C.36)

Z exp( —ik, Ra)pa,bl T € Z exp (iko - Rﬁ)l’ﬂ,)a L)
a B
EP — EO + hw,

c,,,,=:lZ <tb

e ey

Next, we may expand the energy denominators in the photon energy
hw,. In the zeroth-order result (hw, = 0) we exploit the Heisenberg equa-
tion of motion p, = (m/ik) I[r,, 3], where 3© is the electronic
Hamiltonian. By definition, the eigenstates of 3@ are the states |e,(¢,)
introduced in eqn (C.27). Using this property and the completeness relation
for the electronic eigenstates, at the zeroth order in hw, eqns (C.35) and

(C.36) can be written as
e,,>z exp( —ik; - Ry) ta> ,
B

(C.37)

Z Pi, €T, €

[/ ]

s =2 Yo (iko R e
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i . .
cy =;.l'<tb ;exp(—lkrRﬂ)<ea DR L MEr S ea>2 exp (iko* R,) ta>-
lasJp a
(C.38)

In eqns (C.37)-(C.38) the inner average over the electronic states depends
on the nuclear positions only parametrically. Hence the exponentials
containing R, and R, can safely be interchanged. Summing the two results

we arrive at
e,,) *€ ta>

ta) (eo-e) (C.39)

BO+CYQ =—;3<t,,

- _<,,,

where in the last step we have used the commutation relation between the
electronic position and momentum. It is easily seen that the result (C.39)
cancels exactly the contribution (C.29) from A,,. Therefore, at the zeroth
order in hw, the contribution to the cross section vanishes identically.

Similar manipulations can be made in the first-order terms of the expan-
sion in hw,. Again, one exploits the expression of the momentum
operator p; in terms of [r;, JC®]. The final result of this first order
calculation is that BY) + C{)= 0.

Turning eventually to the second-order contributions, we may again
make use of the above-mentioned expression of p;_in both B and Cf.
The final result for these two quantities is

O‘Z}?exl’ [i(ko’ R,k 'Rﬂ)]eo . <ea Z [Pi,,a rjp]

imjﬂ

2 Zaexpli(ko — ki) *R,]

B = —mewt2)<tb Y expli(ko R, — ky - Ry)]
o, B :
<ea E T, "€ ez) <ez Z Tjg" €1 ea>
o JB
% EP —ED
cP = -mew3<tb 2 exp[i(ko" R, — k;* Ry)]
«,fp
Z <ea Z l'j,g * € e,> <e, Z T, " € ea>
Js fa

2 Ef - EO

Strictly speaking, the many-body character of these expressions prevents
any separation of single-atom contributions. Indeed, B2 and C%2 are seen
to involve operators associated with different’ atoms, correlated by a

t,,) (C.40)

ta) (C.41)
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common many-atom electronic term. In the general case, a rigorous
quantum-mechanical solution of this problem is clearly impossible. In order
to proceed, we have then to resort to some approximate physical arguments.
Let us tentatively assume that for different atoms the electronic
eigenstates could be factorized. In such a limiting case, the intermediate
state |e;) would become a product of single-atom states in which only one
atom moves to an excited level while all the others remain in their ground
state. Consequently, in this scheme the indexes « and f in the electronic
averages inside B and C§ should refer to the same atom. We shall
suppose that a factor J, 4 is present even in the general case. If we now
introduce the polarizability of the a-th atom defined as (Gelbart 1974)

Z":a e,> (e, Z"a

ED — ff’

> (C.42)

= 2¢? 2 <ea

it turns out that A, depends on the position of all the atoms of the system
only in a parametric way, and the expressions of Bf) and Cf) become
much simpler. Adding these two terms, we end up with the result

ba=B22¢?+C§zza)

mwo
= 14
]2

Yiexp(ik-R,)eo A, - ¢ > (C.43)

where we have let k = k, — k;. The result (C.43) is valid for ‘quasi-elastic’
scattering of photons in the optical region, and is eventually to be inserted
into eqn (C.20). )

Equation (C.43) relies on the assumption of an absence of any dynamic
interaction among the different atoms during the scattering event. In other
words, the latter is assumed to occur on a single atom, involving transitions
between the electronic states determined by the instantaneous local con-
figuration of the neighbouring atoms. In this context, it should be stressed
that the ‘atomic’ polarizability as defined in eqn (C.42), rather than being
a strict single-atom quantity, depends on the positions of all the particles
of the system. As a consequence, the spatial distribution of neighbouring
atoms does affect the properties of each scattering centre; in a dense fluid,
this yields an effective dependence of the atomic polarizability on the
density of the system.
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C.5 THE SCATTERING CROSS SECTION

In the derivation of eqn (C.20) for W, we have tacitly assumed we are
dealing with a well-defined final photon state. In practice, the scattered
photons are instead detected within a certain solid angle around the scatter-
ing direction in a laboratory frame, and only an analysis of their energy
is performed. In order to evaluate the transition probability appropriate for
this situation, we have to take into account all the accessible final photon
states.

The number of modes of the electromagnetic field within the solid
angle dQ and having a fixed polarization and a frequency in the interval
(@, w; + dw;) is known to be (Louisell 1973)

vV
dnl )3 wl dwl dQ. (C.44)

(2n
Therefore, the transition probability from the translational state |, to
the state |7,), with a simultaneous scattering in the solid angle dQ2 of

a photon with energy in the range d(fiw,) around 4w, is given by the
product of eqn (C.20) and (C.44):

no(nl + l)c 601

aw, ,
vV

EY — E®
l ab|2 [ET + w; — (Uo] da)l dQ
(C.45)

where r, = e*/m.c? = 2.8 x 1073 cm is the so-called ‘classical radius’ of
the electron, and M, = Mj, is given by eqn (C.43). In order to obtain the
actual scattering cross section, eqn (C.45) must firstly be divided by the flux
nyc/V of the incident photons. The result must then be summed over the
final translational states |7#,), and averaged over the initial states |z,)
according to their statistical weight p,. Hence the differential scattering

cross section can be expressed as
d’o mows
dQdwo —re(nl+l) ( ; Zpaz<ta tb>
g) E(t)
ta) h + w; — Cl)o] .
(C.46)

ty Iy
<tb ; exp (ik - Rp) (ep- Ag-e))

It is now convenient to exploit in eqn (C.46) the well-known integral

representation the J-function, &(x) = (1/2x) {*,, dtexp(ixt). Letting w =

wy — w, (cf. eqn (2.2); positive w refer to the ‘Stokes’ side of the spec-

trum) and recalling that |#,) and |#,) are eigenstates of the translational

Hamiltonian 3C, eqn (C.46) can be written as

Yiexp(—ik-R,) (e A, e,
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d’o w, (m2wh

=ri(m +1) = | 23| Xpa 2\t A
Wy 1z 1

k. . .o\
0w, et ;exp( ik-R,) (e A,-¢)

j dt exp ( —iwt) <tb exp(idCt/n) Y, exp (ik - Ry) (ep- Ag-e;)
S B

exp ( —iJCt/h) t,,) . ‘ . (C.47)

Finally, introducing time-dependent operators in the Heisenberg picture
and exploiting the completeness relation for the translational states |2,),
the differential cross section becomes

d—;‘;—(‘l’a - % (ny + 1) (o — @)} {”;2’ ] _L dtexp (—iwt) I (k, 1)
(C.48)
where the quantity
Lk 1) = 5 T 1] Deswl -k R(O) 61 A,(0) 1)
Senplik-Ry(0)] (e Ay(0) ) )
= 2 2 el -k R (0] e A (0) e’
(0" Ag(1) - & )explik- Rﬂ(t)i> | (C.49)

can be interpreted as the time correlation function which is probed in
light-scattering experiments. The quantity (C.49) is just the ‘intermediate
scattering function for light scattering’ introduced in Section 2.3.6
(cf. eqn (2.43)).

The total cross section is obtained integrating (C.48) in dw. If we neglect
the small difference between (wo, — w) and w, (quasi-elastic scattering) the
integration is immediate and gives:

2
:—; = (n, + 1)Nw} [mez' J I.(k, £ =0) (C.50)

which shows the characteristic w§ dependence typical of Rayleigh
scattering. For the quantity I; (k, ¢ = 0) appearing in eqn (C.50) we may
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exploit the fact that, although R,(0) and R(?) in general do not commute,
they do when ¢ = 0. Therefore, even in the quantum case we may write

1 .
IL(k, t= 0) = N<Zexp[ —ik - (Ra - Rﬂ)] (eo'Aa . el)T (eo° Aﬂ. el)> .
o, f
(C.51)
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Appendix D

Symmetry properties of the
memory functions

Given an orthogonal set {A,} of dynamical variables, the basic results
of Section 3.1 for the correlation functions C,,(¢) = (4,,A4,(?)) can be
summarized by the memory equation

Cu(t) = Z [i.Q“,C,v(t) - !dTKM'(T)CA’v(t - T):l . (D.D)

Al 0

Here the elements of the proper frequency matrix and of the memory matrix
are respectively defined as

i), = (A;,iLA;)/ (A;, A;) (D.2)
Ky (t) = (fir,expli(1 — ®)Lt]f,)/ (A, Ay) (D.3)

where ® is the projection operator (3.8) over the set {A,} and
Ji =i(1 — ®)LA; are the components of the fluctuating force.

We wish to discuss the consequences of the time-reversal symmetry
on the quantities 2,,. and Kj;.(¢). This is straightforward for the proper
frequency matrix elements (D.2), which are ordinary static correlation
functions. Since under the transformation {r",p"}— {r", —p”} the
Liouvillian L changes sign, the result (B.7) can now be written as
(A, ,LA;) = —v,;7:-(4,.,LA;), where y, and y,» and the signatures of
A, and A, .. Noting that the quantity (A4,,A;) is unchanged by the
transformation, we obtain

Qi = =VaVa Q5. - (D.9

This result tells us that the element Q,;. is different from zero only if the
variables A; and A;. have opposite time-reversal symmetries. Conse-
quently, all the diagonal elements of the proper frequency matrix identically
vanish.

On the other hand, the analysis of the symmetry preperties of K, (¢)
is less immediate because of the presence of the anomalous propagator
expli(1 — ®@)L¢]. Denoting again by yp, the signature of the variable
A;, under time-reversal the projection operator ® = );(4;,...)
(A;,A;)"! A, changes according to ® — y,y3y,®. Since y2 =1, both
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® and (1 — @) are unchanged by the transformation, whereas the fluc-
tuating forces f, and the anomalous propagator become respectively
-7/, and exp[—i(1 — ®)L¢]. As a result, the overall time-reversal
symmetry requires that

K (t) = ya70 Ky (1), (D.5)

Comparing with (B.7), we see that memory functions behave as ordinary
time correlations as far as time-reversal symmetry is concerned. Moreover,

exploiting the idempotent character of projection operators we may write
that

exp[i(1 — ®@)Lt] f; = exp[i(1 — ®)L(1 - ®)¢]f,. D.6)

Repeating the same passages seen in Appendix A, it is readily shown that
the operators ®L® and (1 — ®)L(1 — ®) are Hermitian and that the
anomalous time propagator is unitary, as is the ordinary one. As a result,
the analogous of eqn (B.5) now reads

K (2) = K3a(0). D.7)

Combining eqn (D.5) and (D.7), we deduce that the diagonal elements of
the memory matrix are real and even in time. Also, the memory function
of two variables with opposite time-reversal signatures is odd in time.

Similar arguments can be repeated for the other symmetries (inversion,
reflection, etc.) present in the system. Summing up, the memory functions
share the same symmetry requirements of the corresponding time correla-
tion functions. '



Appendix E

Short-time dynamics of the velocity
autocorrelation function

In a classical system characterized by a continuous pair potential, the
normalized velocity autocorrelation function y(f) = Bm(v; .(0)v;(¢)) at
short times can be expanded as

w(t) =1+ Bmlv, ;) (¢*/2) + pmv, V) (e*/41) + - -
=1 — Bm{d2,) (£2/2) + Bm{ D2 ) (' /41) — - - - . (E.1)

As already discussed in Section 1.4.2, the coefficient of the quadratic term
in (E.1) is simply the square of the Einstein frequency

P00 o)

Qf = pm(o},) == [ar =5
' m

- imz {«z»"(r) + 3"73’—)} g(r). E®2)

Similarly, we may perform an analogous short-time expansion for the
memory function K(¢) of the velocity autocorrelation function. Introducing
a projection operator @ over the variable v; , -

@ = pmlv; . . iy, (E.3)
the memory function reads
K(t) = pm{(1 — ®@)v, cexp[i(1 — ®)Lt] (1 — ®) D, )

= pm(o; cexpli(1 — ®)Lt]d; ) (E.4)
since ® 0;, = 0. Then, in the short-time expansion
K(t) = K(0) + K(0)(£2/2) + - -~ (E.5)
we have .
K(0) = pm{i},) = @3, (E.6)
K(0) = pm{o;[i(1 = @)L][i(1 — ®)L] ;). (E.7)

Since i(1 — @)L, = U;x + Qfv;, and (U Tix) = (U 05 =0, we
may write eqn (E.7) in the form
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K(O) = ﬂm {< i)i,x'ﬁi,x) + Q%( i)i,x bi,x>}

= —pm(i?,) + Q3. (E.8)
Noting that (a = x, y, 2)
. 1 3(ry
Ba=—— ) e (B.9)

mizi ‘@ 0%;0ry,

we have

. 1
(v'?’x) =3

2 2
S <3 @ (ry) 3*¢(ry) vﬁﬂyﬂﬁ)

LGy a8 \9Xy0ry, 4 0X,0r; 4

1 <3z¢( ry) ¢ (ra)

=53
ﬁm INCHE axuaru a axtlartla

L Ly <a2¢( r) 3 ¢(r,,)>

3
Bm’ ;Ghy Wznj) ‘@ \Oxyory o 0x;0r; o

)(1+6,,)

(E.10)
Introducing the pair and triplet distributions functions

ng(r) = 3} {o(r —xy)),

J(#i)

(E.11)

ng®(rr) = 3, 3 (S(r—r1)e(r’ — ),

J(#E) 1(#i,))

(E.12)

we may write that

= o D (aafa(r)} str)

2 2 ’
+ ﬂ—fr—n;Z”drdr’ For) #o(r') g®(r,r’).

axar, ax'or, E.13)

In the absence of a precise knowledge of the triplet distribution function,
the second term on the right-hand side of (E.13) is evaluated within the
superposition approximation

g(r,r’) = g(r)g(r')e(|r —r’|)

= £(Ne(r) {1 + (82°m) [da [S(g) - 1exp[ —ig- (r — )]}
| (E.14)
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where we have expressed g(|r — r’|) through the inverse Fourier transform
of eqn (1.14). Inserting (E. 14) into (E.13) and exploiting isotropy, we obtain

.0~ g 3 | ["’“’"’] () + - 04

ar, ar,

1.1 .
" Bm 2ar°n § quIS(q) —1lyi(a)  (B.19)
where (cf. (3.317)): :

exp(iq-r)g(r). (E.16)

32
Yap(@) = ,%jdr a:f;::

Finally, we perform the angular integrations on the right-hand side of
(E.15). After some tedious calculations we obtain

w2, {W( )12+z[¢ {r ’}} ")+ o

67t211ﬁm g d‘{qz[s(q) - 11[yi(q) + 293 (9)]  ®.17)

87m

+

where

1@ =2 [ arr2{Uitan - (a1 ()

+ 2Ln(ar) + Jr(ar)] ["’ (v )]}g(r), (E.18)

n@ =5 | [ arre{Uitan + ianle ()

+2Li(ar) +Ja(ar)] [d’_’f_’l]}g(,). (E.19)

In the above calculation, the rather involved algebra illustrates the
increasing difficulty of dealing with short-time expansions beyond the first
coefficients. The appearance of many-body distribution functions (which
are largely unknown) introduces additional complications. Fortunately, for
the correlation functions of practical interest a detailed knowledge of the
short-time behaviour beyond the first few terms is hardly necessary (and
ultimately useless because of the slow convergence of the expansion). In the
case under consideration, the interest in the evaluation of (i, is not due
to the rather modest improvement expected in the description (E.1) of the
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short-time dynamics of w(¢), but rather to the fact that this quantity
establishes the initial decay time 7 of the memory function K(¢); that is,
an approximate value of the ‘duration of a collision’ (see Section 3.3).
Writing (E.5) as K(f) = Q3[1 — (¢/7)* + ...], from (E.16) we obtain

%L —1k(0) _—jdrr {[¢ (r)]2+2[¢ ( )JZ} (r)

+ ;ﬁ,;j daa 5@ - 10 @ + 23], E0)

Numerical calculations indicate that the dominant contribution to Q3/72
is provided by the first term on the right-hand side of (E.20), and in
particular by the part proportional to [¢”(r)]*.



Appendix F

‘The elements of the proper frequency
matrix for phase-space densities

In this appendix we shall report the detailed evaluation of the proper fre-
quency matrix elements Q,(k, pp’) and Q(k, pp’), respectively associated
with the self and the collective phase-space densities. From the result (4.29)
for Q,(k, pp’) it is seen that we need the ¢ = 0 value of the quantity

Foilbe B3 ) = 5 [exp(ik - £,(1))3(p = pi(1))]

= k- p(D)exp(ik -, (1)d(p — pi(1))
+ exp(ik - 1,(2)) 6(p — pi(?))
= %(km)fs,,-(k,p; t)

— exp(ik - r;(1)) (8/3p) [o(p — pi())] - Bi(1). (F.1)

As a result

(fs,i(k’ P”)fs,i(k, p)) = i (k- p)<fs,i(ks p”)fs,i(k’ p))

d ,
(o0 =) 2 160 - 20 -8). @2
Since p; = —dVy/ar; depends only on the coordinates, the average in the

second term on the right-hand side can be factorized, eventually yielding
a vanishing result because {p;) = 0. Therefore

. i
(£0.i(k, ") f1i(k, P)) = — (k- p) VC, (k,pp”51 =0).  (F.3)
Inserting this result into (4.29) and exploiting (4.19) it is readily found that

i0,(k, pp") = - (k-)3(p — B"). ©.49
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As a consequence, in the case of the self-phase-space density the proper
frequency matrix reflects only a ‘free-streaming’ dynamics, basically
because the total force acting on a given particle averages out to zero.

This is not the case for the collective proper frequency matrix (4.30). The
counterpart of (F.1) now reads

Pl = & Stk pi0) = Crma(p)o 0)

= ;in—(k p)F(k, p; 1) —,Z exp (ik - r,-(t))-(% [6(p—pi())] - 1:(2)
(F.5)

where in the first term we have reinstalled (27)*nf,(p)d (k), which yields a
Z€ero contrlbutlon because of the factor (k-p). When performing the
average (f k,p”) f (k, p)) needed in eqn (4.30), the first term in eqn
(F.5) ultimately yields for Q(k; pp’) a free-streaming contribution identical
to the one found for Q,(k, pp’). On the other hand, the second term of
(F.5) causes the presence in the average of a double summation }j; s
which can be split into self (j = i) and distinct (j # /) contributions. The
self part reproduces the same structure seen for Q,, and vanishes for the
same reasons. As a consequence

(F*(k,2)f 0, )Y = (k- ) (" (k, ) F (K, B))

- ZQ < —p, [5(9 —pi)]'l‘aiexp(ik'r,-,-)>-
(F.6)

In the second term on the right-hand side the average over the coordinates
can be factorized from that over the momenta, and the latter can further
be split into separate contributions involving the ith and jth particles.
Noting that (6(p” — p;)> = fo(p”), we find that the second term can be
rewritten as

_ Z«s(p”-p,»( [5(p - p,n) (brexp (ik - 1,))

iL,j#i -

=Zfo(P)fb(P”)P' >, Cbrexp(ik - ry)) (F.7)

ij#i

where in the last step we used the result df,(p)/dp = —(8/m)f,(p)p.
Using (1.133) and (1.120), we may write
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Z (exp (ik . l'ij) i’i)

) -3 fewteena 52

Lj#i i i

= kT Y, <ai exp(ik-r,-,-)>

iLj#i i

= —kyTik ), (exp(ik-ry))

= —NkgTik[S(k) — 1 + (27)nd (k)]
= —Nkg Tik[S(k) — 1]. (F.8)

Therefore
F* 6 07)F 0k, )) = - (kD) F* (o, 27)F (K, B))

L (e DAEAEINISE) - 11, €9)

Inserting this result into (4.30) and using (4.21) we find
190,00) = & (k-8) |56 = ) + o (2) [SCK) = 1]
[ap"solo") ([nfo(0")] 8(p" — ) — c(k)}]

= ;;,‘ (k-p){o(p —p’) - fo(p) [SZk) —1][1 = ne(k)]}

(k-p)[6(p — p’) — nfo(p)e(k)] | (F.10)

=1
“m
since 1 — nc(k) = [S(k)]~'. Equations (F.4) and (F.10) are the results
(4.36) and (4.37) of the main text.

Finally, in the representation in terms of three-dimensional Hermite

polynomials H, (p) of Section 4.2, the elements of the proper frequency
matrices read

iQ, (k) = i [[dp dp’ H, (p) 2, (k, p0") Hy (010 (")

= %[dPHA(P)(k'P)Hy(p)fo(p) (F.11)
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i) (k) = lﬂ dpdp’ H,(p)2(k, pp’)H,- (p')fo(p’)

fap 10) 0 DV 0)1o0) = 3] 18,181
(F.12)

where in the last step of (F.12) we have exploited the orthonormality
relations (4.59).

i
m



Appendix G

The static interaction vertices v® and v

In this appendix we shall express in a more manageable form the vertices
v%),,(;k — q,q) and v,,;(k;k — q,q) introduced in Section 4.3.2. To
simplify the calculations, we shall set the ‘external’ wavevector k directed
along the z-axis.

In the self case, we start from eqn (4.121) and note that Vp H,(P;) =
(B/m)"*i,, where i, is the z-axis unit vector. Then, using eqns (4.55) and
(4.56) we obtain

Vﬁ 172
v.?%,n(k;k—q,Q)=[7] 14243 d4 exp{-i[(k—a) ‘Ri+q-R,—k-Rs]]

({(1 - (Ps)fsi,Z(l’z)}*(l - (Ps)fsi,2(3’4)>

9 (Ry)

H, (P, Hy(Py) =

G.1

Here in the statistical average we have omitted terms of the form

(1 - (Ps)fsi,z(l,z)) = (”/V)fb(P1)fo(Ez) [g(Ry2) - 1] G.2)

as they give rise to ‘disconnected’ contributions o<d(k), which eventually
vanish for the anisotropy inherent to d¢(Rs,)/3Z;. Since
(1 = @) fu2(1,2)1*(1 = @)f5i2(3,4)) = {(1 = @) [firo(1,2)])7
fsi,2(3: 4)>
= > 2 (1= @) [8(R, —r)8(P, - p)S(R, — ;)0 (P, — p))]}*
J(#i) 1(#i)
6(R, —1)6(P, — p))o(Ry — R,)I(P; — P)), G.3)

the integrals over R;, P;, R,, and P, can be performed immediately,
whereas the averages over P, and P, yield a factor fo(P,)fo(P2). Thus
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Vﬁ 172
o105k~ 0,00 = (2] [ap, apusa (PO (PIA (2 B (R

de.dR2 > <{(1—(PS)[¢5(R;—I';)5(R2— 1"

B (i)

a_qsa(zr'_,.,_)_> exp[ig- (R, — Ry)]. (G.4)

Because of the orthogonality of the Hermite polynomials, the integrals over
P, and P, give simply &, ;. Noting that mi; , = —} ;41 [86(ri)/d2:],
we obtain

otttk - 0.0 =~ Bm ({1 -0)| 3 ewtian]} 0l
J(#i
0,,00¢,0 - (G.5)

In the thermodynamic limit the effect of ®, can bé neglected, and
exploiting the stationarity of the averages we may write that

< >, exp(iq-r,-j)b,-,z> = —( 2 (iq~v,-,-)exp(i<rrij)v.-,z>

J(#i) J(#i)

= —ig, D, (v?,){exp(iq-r;))
J(#i)

= —ig,(Bm)™ Y, [drexp(ia-r)¢a(r —r,))

J(#i)
= —iqz(ﬁm) -1 j drexp(iq- r)ng(r)

= —ig,(Bm)~' [S(q) — 1] (G.6)

where in the last step we have introduced the definition (1.14) of the static
structure factor and used the relation g,d(q) = 0. As a consequence, we
eventually find that

. 174 172
08 (k;k—q,q) = 1[’5;} q.[S(g) — 116,000 (G.7)

namely the result (4.133) of the main text.
The evaluation of the collective vertex v, ;(k;k — q, q) proceeds by
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similar steps. Starting from eqn (4.122) ih this case, the counterpart of
eqns (G.4) and (G.5) reads

1 (g2
) ch,l(k; k— qp‘l) = 7, [;J Sdpx dPZfO(Pl )fO(PZ)Hv(Pl)HE(PZ)

[ R, dR, dR; dR, exp(—i[(k—q) ‘R, +q-R,—k-R,])

%({(1 -@)[ % O(R, —r)d(R, - ,)]}*

Lj#i

Y 6(Rs — r)S(R, — rm))

Ilm=l

(Bm)"?
V

(fu-o 3 6 - n)o(R — )}

stldRzexp{ -i[(k—q) R, + q'R]}

zl:exp(ik-r,) i;,,z>av,oa¢,o. (G.8)
Using the definition (4.26), it is readily seen that for a variable F(r")
which depends only on the coordinates one has
®F(r") = (1/N)[1 = nc(k)]{A* (K)F(r¥)) 7 (k)
= [NS(k)] A% (k)F(r¥)) 7 (k)
= (A* (K)A(K)) 7 (A* (K)F(r"))A(K) G.9)

where A(k) = };;exp(ik - r;) — 2n)’nd (k) are the wavevector-dependent
density fluctuations. In other words, the effect of the phase-space projec-
tion operator @ is simply to project F(r") onto the density variable 7 (k).
Then

({@[ >, 6(R, —r,)5(R, — j)]}*zl]exp(ik-n)b,,z>

Lj#i

= [NS(k)] (mk); 5(R, - ,.)a(Rz—r,~)>'<ﬁ*(k@exp(ik-r,)o,,z)

J# i

= —ik(ﬂm)"nc(k)( D, 6(R, —r,)d(R, — rj)Zexp(ik-r,)> (G.10)

LJj#i I
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where we have exploited the result (G.6) and repeatedly used the relations
ké(k) = 0 and }},¥, ., = 0. Inserting (G.10) into (G.8) and integrating over
R, and R, we obtain

(ﬂm)l/Z
v

vy (kik—q,q) = — 9,,00¢,0

{( >, exp{—il(k - ;1) 1+ q-1])

Lj#i

D exp(ik-r) i),,z> + ik(Bm) nc(k)

(3 ewt-itth-a)n+ q-r,.n;ex,,(ik.r,))}.
| (G.11)

Exploiting stationarity, the first average in curly brackets can be written as

LJj#i

( > exp{—i[(k—q)°r,~+q'r,-]lzl]exp(ik'rz)i)z,z> |

=ﬁLm {(k —a;) ) (exp(iq 1)) + g, ) (exp[~i(k — q)-r;])

iLj#i ij#i
- k< Z exp{ —i[(k —q)'r;+ q-1;] }z’:exp(ik . r,)>}. (G.12)
Lj#i
Thus
s (6K = 0,0) =~ 257 8,000 },{2 [(k - g;)exp(iq-r,))
. Lj+#i

+ g, (exp[ —i(k — q) - ;)] — (k/5(k))

(Zj exp{ —i[(k —q)'r; + q-rﬂ}Zexp(ik-r,))}.
’ | (G.13)

Splitting the summation in the last term of eqn (G.13) according to the
formal decomposition );, = [}, i+ =10+ (=j)], it is readily seen
that the collective vertex depends both on pair and triplet distribution func-
tions. The latter can approximately be treated by the superposition scheme
(1.17), with the result that



302 The static interaction vertices v and v
b1k —a,0) ~ i )1,2 {(k - q.)5(q) + a.5(|k - q|)
- kS(Q)S( lk - (ll)}av,ofsc,o
=i gy 14:5(k — a]) [5(a) = 1]

+ (k- q)8(q) [S(|k — q|) — 1]1)6,,00¢,0
(G.14)

which is eqn (4.134). An equivalent form of thev result (G.14) is
2
. n
vyei(kik —q,q) =i B 5(¢)S(|k —q)
[g.c(q) + (k — q)e(|k - Q|)]5v,055,o-
(G.15)

It is also convenient to. report the expressions of the ‘transverse’
vertices v$),(k;k — q,q) and v,;,(k; k — @, q). In the self case, every-
thing proceeds as for u<sg, 1 except that the z-component is replaced by the
one along x. Thus

vV 1/2
W, ,2(k;k -q,q) = 1[";;] a.[S(q) — 1]5;-,05&,0- (G.16)

In the collective case, the replacement z — x in the result (G.8) has the effect
that the contribution (G.10) coming from the projection operator @
vanishes. Moreover, in eqn (G.12) any contribution proportional to k&
vanishes since k, = 0. Therefore:

. on
Vyea(kik —q,q) = ~i Bm)™ 0y,00¢,09x

= Z {Cexp[ —i(k — q)-r;]) — (exp(iq- ru))}
IJ*I
(G.17)
Noting that (1/N) };; ;.; {exp(iq - r;)> = S(g) — 1 + (2n)’nd(q) we obtain

v,e2(k;k —q,q) = ),,2 a.[S(|k —aq|) — S(q)]9,,00¢,0.

(G.18)

~ T

The result (G.18) is used in Section 632.

Appendix H

The velocity field approach

Suppose that we wish to evaluate the velocity autocorrelation function of
a tagged particle in a dense fluid, and that we are interested in dynamical
features occurring over length and time ranges considerably larger than
the typical microscopic scales. A possible procedure is to resort to a
hydrodynamic description of the fluid, with the microscopic variables
effectively replaced by suitable ‘coarse-grained’ averages. In the case under
consideration, we would deal with a velocity field v(r,t) defined in a
continuum version of the fluid. Typically, this hydrodynamic framework
has been adopted to account for the 2 long-time tail of the velocity
autocorrelation function (Zwanzig and Bixon 1970; Schofield 1975).

A possible way to generalize these approaches and include even
microscopic features was proposed by Gaskell and Miller (1978a). These
authors introduced a microscopic velocity field

v(r,2) = 23 F(r = x;(e) )v;(2) (H.1)

where the ‘form factor’ f is determined by a number of physical
requirements. First of all, if r is sufficiently close to a position of a
particular atom, the velocity field should essentially coincide with the actual
velocity of the atom. In particular, for r = r;(¢) it is required that

v(ri(2), 1) = vi(2). (H.2)

For r = r;(¢) + p, it is expected that v(r, ¢) is still ~v;(¢) for separations
p smaller than a suitable ‘atomic radius’ ¢. In such a way, the microscopic
velocity field near a particle is essentially constant across an atomic
diameter. For example, these requirements are met by choosing for the
form factor the step function '

f(r)y=6(a-r). (H.3)

Alternative choices for f(r) with the same behaviour and which are
continuous (e.g. f(r) = exp[—(r/a)'*]) have been tested by Gaskeli and
Miller, with no basic changes in the final results. In physical situations
characterized by a rather close-packed arrangement of particles, eqns (H.1)
and (H.3) provide a convenient definition of a velocity field at a
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microscopic level. In addition, Gaskell and Miller required that the field
satisfies the macroscopic condition

njdrv(r, t) = Zv,-(t). (H.4)
Introducing a space Fourier transform of the form factor

£(a) = | drexpia- 1)1 (r), (H.)

the condition (H.4) is equivalent to the requirement tha..t f(q = 0) =
§dr f(r) = (1/n). Choosing for f(r) the simple form (H.3), this implies that

(4/3)nna® = 1, so that the length a plays the role of an effective ‘particle

radius’. In this case

4nd’ji(qa) _
q

Ji(qa) EH.6)
qa

3
flg) = P

where j, (x) = sin(x)/x% — cos(x)/x is the spherical Bessel function of order

one. .
According to these prescriptions, the velocity autocorrelation function of

a tagged particle can be written as
{v;(0) - v;(2)) = (vi(0)-v(r;(¢),2))

= [ ar (vi(0)- v(£,(0) + £, )8 (x + £,(0) ~r,(1)))

= (27n)~? j dr§ dq exp ( —iq - r){v;(0)exp[ —iq - r;(0)]
v(q,)d(r + 1,(0) — r,(1))) (H.7)

where v(q, #) is the Fourier transform of the velocity field. To make contzfct
with the hydrodynamic approach, Gaskell and Miller replaced v(q) by its
projection over the current density j(q) = ), ;Viexp(iq - r;); in other terms,

v(q) ~ 2‘(‘;’)](‘:,? 1) = £(@)i(a). H.8)

Substituting into (H.7), it is apparent that the statistical average in‘ this
equation accounts for two different time-dependent processes, respectolve.ly
associated with the currents and with the space coordinates. At liquid
densities, the slowness of diffusive motions makes the timescales of the two
processes considerably different. Thus the average can approximately be
factorized into two separate contributions, yielding

The velocity field approach 305

w(0) vi(1)) = & daf (a) v (0)exp [ =ia-£,(0)] -} (a, 1)
Idrexp( —iq-r){d(r + r;,(0) — r;(¢)))

= 'sanNj daf(q){i*(q,0)-j(a,))F,(q,t) (H.9)

where in the last step we have introduced the self-intermediate scattering
function. Choosing q in the z-direction, the current correlation function in
eqn (H.9) can be split into longitudinal and transverse contributions, with
the result that

W0 w0 = 5] das (@) [Cula. 1) + 265(a D1 Fi(g, ).
(H.10)

Equation (H.10) is the main outcome of the microscopic velocity field
approach. Comparing with the mode coupling result (4.177), we note an
essentially identical structure, the only difference being the presence in
(H.10) of the quantity f(g) which replaces a constant factor (1/n). Since
Sf(g = 0) = (1/n), the two approaches give identical results in all the cases
where the dominant role in the integral (H.10) is played by sufficiently small
wavevectors. As discussed in Section 4.5, this circumstance typically occurs
for the slowly decaying ¢=32 tail of {v;(0) - v;(¢)>, which is essentially
determined by the hydrodynamic forms of the correlation functions in eqn
(H.10). Thus, the asymptotic behaviour of the velocity autocorrelation
function is correctly accounted for, even by the velocity field approach.

However, it is at short and intermediate times that the framework reveals
its practical usefulness. In contrast with the mode-coupling result “4.177),
eqn (H.10) reproduces the exact short-time behaviour of (v;(0)-v;(?)).
Noting that C, (g, 0) = Cy(q, 0) = k3 T/m and F,(q,0) = 1, for the initial
value we correctly obtain

3kg T 3k T
WHO) =222 = [das(a) = 20T 4, - o)
3T
== (H.11)

Moreover, the initial time decay of v;(0) - v;(¥)) predicted by eqn (H.10)
is ruled by

%(0)-90)) = 5[ dar(a){ 16, (2,0) + 285(g,0)] + X

T ..
- Fs(q,O)}.
(H.12)
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Here (cf. eqns (1.149), (1.150), and (1.38)):

6.(4,0) +28¢(8,0) = = 2L [0 (q) + 2} (q)]

SkgT
= — kBT/m TB q2 + 39(2) - (.Qz + Z.Qéz):l ,
» ‘ (H.13)
. kg T
F(g,0) = -2~ ¢~ (H.14)
m
Inserting these results into eqn (H.12), the kinetic terms are found to
give a contribution proportional to [V2f(r)],_,, which vanishes if the
form factor f(r) is sufficiently flat as » = 0. On the other hand, the con-
tribution of (22 + 202/ eventually involves an integral of the form
§ dr V2g(r) £ (Pg(r). Since at liquid density the range a of f(p) is typically
of the order of a particle ‘radius’ (i.e. @ = ¢/2), the product f(r)g(r) is
effectively zero. Consequently we are left with

3kgT 1
i(0)-9,(0)) = — 2= 03 — [ das(q)
= - T 02 1(-=0)
= — 3"“ng (H.15)
m

which is the correct result for the initial decay rate of the velocity auto-
correlation function. In perspective, it is seen that the ability of the
approach to account for the short-time behaviour of (v;(0)-v,(¢)) is a
consequence of the reasonable assumptions made for the velocity field at
microscopic distances.

Owing to the presence in eqn (H.10) of the unknown correlations
C., Cr, and F;, the framework does not provide a genuine ‘theory’ for the
velocity autocorrelation function at arbitrary times. However, the previous
tests in different regimes indicate that the structure of eqn (H.10) is
essentially correct, with the result that relatively simple approximations for
C., Cr, and F; are expected to yield satisfactory results for {v;(0) - v;(¢)).
In particular, in the liquid range the separation of timescales between the
current correlations and the slow diffusive motions is so sharp that, in
eqn (H.10), F(q, t) may be replaced by its initial value 1 with no substan-
tial influence on the results. As far as C; and C; are concerned, Gaskell
and Miller (1978a, b) basically adopted the simple results provided by
viscoelastic theory (cf. Section 6.2). The predictions obtained for the
velocity autocorrelation function were tested against computer simulation

The velocity field approach 307

1.00

0.75F

0.50

0.25F

Normalized VACF

0.00 .- .

-0.25¢ b

0.0 0.4 0.8 1.2 1.6
t (ps)

Fig. H.1 Normalized velocity autocorrelation obtained by the velocity ‘field
approach in liquid Rb at 332 K. The dots are the corresponding simulation data.
Redrawn from Balucani et al. (1984).

data in several simple liquids (such as liquid rubidium, sodium, and argon),
obtaining in any case a quite satisfactory agreement (see Fig. H.1).

The velocity field framework has subsequently been extended to treat
several other dynamical quantities, such as the memory function of the
self intermediate scattering function (Gaskell and Miller 1979) and the
cross-velocity correlations of Section 1.5.2 ruling the momentum transfer
to the surrounding atoms (Gaskell and Woolfson 1982; Balucani et al. 1983,
1984). Another interesting application concerns a microscopic generaliza-
tion of the Stokes-Einstein relation between the diffusion and the shear
viscosity coefficients; this subject is discussed in detail in Section 6.4.3.
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Appendix 1

Short-time dynamics of the intermediate
scattering functions (self and collective)

A better understanding of the relevance of fast collisional events in the
dynamics probed by F,(k,t) and F(k,t?) requires a rather detailed
knowledge of the short-time properties of these correlation functions. Some
information in this respect was provided in Chapter 1 with the deduction
of the expansion coefficients up to the order #4. On the other hand, the
approaches discussed in Chapters 5 and 6, rather than being explicitly con-
cerned with F, and F, deal with the corresponding second-order memory
functions. The collisional events of the ‘binary’ type are directly associated
with the initial decay of these memory functions (i.e. with the coefficients
in ¢6 of the short time expansions of F, and F). Although rather cumber-
some, the evaluation of these ‘sixth moments’ is still manageable. In this
appendix, we shall limit ourselves to report the essential steps of the
calculation for both correlation functions.

Starting with the self case, the short-time expansion of F,(k,?) =
(n: i(k, 0) ng ;(k, £)> can be written as

N o 1 o 18
F(k,t)=1- (wk>s§ + {wi)s a” (@) at €n

where we already know that

kg T
(i), = —,';1— e 1.2)
(i), =T [yjfsz + 9%] 13)

(cf. Section 1.4.1). Exploiting stationarity, the sixth moment {w$), can be
expressed in the form

6 .
Caty, = = (nt 0| L2 )

= (#3 (K, 0)# ;(k, 0)) d.4)

where
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iy, i(k, 0) = {ik - ¥;(0) + 3[ik - v;(0)] [ik - ¥,(0)]
+ [ik - v;(0)]3} exp[ik - r;(0)]. 1.5)
Choosing k along the z-axis, after some algebra we find

(0P = KP[(52,) + 1582w} 02 .) + K*v¢ )]
= kl{( #2.) + 1542 BT 0} + 15k4[k"—7ﬂ
m ’ m

kT . kg T
= k=2 {[sza ~ R(0)] + 15k* == 0f + 154 [ZC;—T]Z} (1.6)

where in the last step we have exploited the results (E.6) and (E.8) for
the memory function K(#) of the velocity autocorrelation function. At
sufficiently short times K{(¢) can be expanded as (cf. eqn (E.20)):

K(t)=K(0)++K(0)* + -+ = 93[1 - H2+ o ] (18y))
: T
As a result

(b= 5T 03 a3+ (3] |+ 156 07 [, p o]}
T m m
1.8)

From eqn (I.8) it is straightforward to deduce the short-time features
of th.e second-order memory function M;(k, ) appearing in eqn (5.41).
Starting from the expression

M, (k,t) = M,(k,0) + L M, (k,0)¢2 + - - -

= Ms(k, 0) ,:1 - (E(T)J + - 'j’ 1.9)
and using eqns (3.43b) and (3.43c), we deduce that
(), 2ks T
M,(k,0) = (wg>s—<wi>s= —— i + 0} (1.10)

— 1, (k, 0) = 39 _ [(w;t)sr '

(w)s  [{w}),
203 3kaT 2%k, T
=5+ k2[393+ ’: K. (1.11)

Therefore the initial decrease of the memory function M;(k, ¢) is ruled by
the decay rate
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Fig. .1 Wavevector dependence of the rate [z (k)] % in 11qu1d Cs at 308 g(
according to eqn (1.12) (full line). In this system, 7 = 0.30 ps and Qo = 19.22ps™“.
The dashed line denotes the results of the approximation (5.47), with the parameter
& = +/3/2 chosen in such a way to reproduce the asymptotic form (I.13) for k — .

rs <1k) = [Eg((:oo))]

{2(92/12) + 3 (ks T/m)K*[3Q}% + 2(kBT/m)k2]}‘/2.

20Q% + 4(kgT/m)k?
d.12)

The wavevector dependence of 7, (k) is entirely due to terms having a kinetic
origin. Starting from t,(k = 0) = 1, 7,(k) is found to decay monotonically
with k (see Fig. I.1, where the results are compared with those obtained by
the simple approximation (5.47)). Eventually, for £ — o one has

1 3kp T2
1.13
) [ZmJ g 1)

This result corresponds to free-particle behaviour, and can be obtained
directly from the Gaussian form of the spectrum S;(k, w) appropriate for
this case (cf. eqn (1.51)). Indeed, for a Gaussian all the quantities {w2"
can be expressed exactly in terms of the second frequency moment:

=(2n - 1) [{wi)]" = (2n—1)"( ]kz” (1.14)
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Consequently, for free particles M, (k, 0) = 2 w2y, and M,(k,0) =
—6[<wi), %, that is [1/7,(k)]* = +[— M, (k, 0)/M,(k, 0)] = 2 (w2),.

Turning now the attention to the collective case, we already know that
the second and fourth frequency moments of S(k, w) read

kgT
mS(k)

(w}) = K ' 1.15)

(w}) = {wd) 3kB B+ — I 62¢(r) (1 —coskz)g(r)} (1.16)

(cf. Section 1.6.1). In eqn (I.16), k has been chosen along the z-axis. The
evaluation of the sixth frequency moment

(of) = (A" (k)7 (k))/S(k) | (1.17)

is also straightforward, although quite tedious. Here we shall simply report
the final result; choosing again k/ z-axis, it is found that (e.g. Kim and
Nelkin 1971; Yoshida and Takeno 1975)

(wf) = <wi>{1s [kB?T]Zk“ Is ["’; sz far P20 4

6nky T 3o (r)
+ mz k.‘ 33

+ g”—':j dr[v [a—tba(z—r)ﬂ (1- coskz)é(r)

() Jorer s (52 [+ (5]

[1+cosk(z—2z") —2coskz]g®(r, r')} (1.18)

sinkz g(r)

where V’ = 8/3r’. The occurrence of the triplet distribution function in the
last term of (I.18) clearly prevents an accurate numerical evaluation of
(w}). A similar problem was present even in the expression (1.6) of (w$),
(cf. the results (E.8) and (E.13) for K(0)). As in that case, the usual
remedy is a recourse to the superposition approximation (1.17) for g®. It
is a fortunate circumstance that in eqn (I.18) the errors inherent to such
a scheme appear to compensate, so that the final result for (wf) is found
to be remarkably accurate (Bansal and Bruns 1978).

Having determined (w§), it is possible to proceed as in the self case to
establish the initial decay time 7(k) of Ky (k, t), the second-order memory
function of F(k, t). As before, one has
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L _ [_kL(O)]m (1.19)
T(k) B 2K; (0)
where
K (k,0) = -E-Z)iz‘% — (w}) " (1.20a)
k B
g () K“’”]z 1.20b

Broadly speaking, the values of 7,(k) and 7(k) are found to be ra?ther
similar. As might be expected, the largest differences oceur at relatively
small wavevectors, where the presence of structural effects in the frequency
moments gives rise to an oscillatory behaviour of 7(k). Such f;atu;es are
obviously absent in z,(k). In any case, at increasing k the os01llat§ons of
7(k) are rapidly damped; the two times approach each other, and ultimately
coincide for large wavevectors.
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Appendix J

Many-particle correlation functions as
probed by depolarized light scattering

As remarked in Section 1.5 .3, several time correlation functions of interest
in liquid dynamics can be written as

W =( 3 a0 3, 4 (i (0) @1
Lj#i Lm#l

where the dynamical variable 4 depends on the vector separation between

two particles. For example, correlation functions of the form (J .1)’are met

in the context of depolarized light scattering (DLS) from simple fluids

(see eqn (2.54)). In this case

A(ry) = \/%V a@(r,) J.2)

where ag’(r,-j) is a non-diagonal component of the ‘interaction-induced’
polarizability tensor of the pair (i,j). Moreover, the potential-potential
contribution to the shear stress autocorrelation function can also be written
in the form (J.1), with

nn? 172 24X
A(ry) =4 [NkB TJ =o' (ry) (J1.3)
v

(cf. Section 6.4.1).

Irrespective of the specific meaning of the variable A4, eqn (J.1) can
formally be written as

c(t) =nN[drdr A(r)A(r)g(ro;r'e) (.4)
where
G0N =5 % 5 (e~ (0)o( —r()). 0.9

In other terms, the dynamical features of all the correlation functions {Jd.1
are ultimately ruled by the quantity G(r 0; r’¢), which can be interpreted as
the joint probability density that two particles are separated by r at ¢ = 0
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and two particles (either the same pair, or a different one) are separated
by r’ at a later time z. If the pair at time ¢ is the same as the initial one,
G(r0; r’t) reduces simply to 2G,(r 0; r’¢), where G, is the time-dependent
‘pair distribution function introduced in Section 1.5.1, and the factor
2 stems from the two possible choices of the labels of the particles (either
I=i,m=jorl=j m=i. ;

However, in general G(r0;r’?), is a complicated many-particle correla-
tion function comprising pair, triplet, and quadruplet contributions (cf.
eqn (1.108)). In view of its importance in liquid-state dynamics, it is worth-
while looking for possible connections with other simpler fundamental
quantities, such as the van Hove correlation function

G(r,t) = 1—52(5(: +1,00) =r()))—n (J.6)

(cf. Section 1.6.2). Whereas G(r,t) refers at most to two particles,
G(r0;r’t) can involve up to four different atoms. As a consequence, any
relationship between G and G (and, ultimately, any expression of €(¢) in
terms of simpler pair correlation functions) is likely to be the result of some
approximation scheme. A noteworthy exception is the initial value of
Npp(¢), which can be expressed exactly in terms of the pair distribution
function g(r) (cf. Section 6.4.1). No such simple result exists for the quan-
tity 7, pep(¢ = 0), which is proportional to the integrated intensity of the
DLS spectrum. In both examples, some sort of approximate treatment is
instead required at finite times, where the many-particle character of C(¢)
cannot be circumvented. Even here, however, the analysis turns out to be
simpler for #,,(¢) than for I; pgp(#). Indeed, as shown in Section 6.4.1, a
theory combining kinetic and mode-coupling concepts is found to provide
a quite satisfactory account of the dynamical features of #,,() both at
short and at long times. Because of the aforementioned uncertainties, such
a comprehensive approach cannot be attempted in the more complicated
case of I pep(?). In the following we shall therefore discuss a number of
alternative approximation schemes, specifically developed to deal with the
DLS correlation functions. Some further insight into the problem is finally
provided by the data obtained by computer simulation techniques.

J.1 DIRECT FACTORIZATION OF G(x0;r't)

The simplest approximation which one can attempt to connect G and G is
found on the basis of intuitive physical arguments. First, we note that in
eqn (J.5) for G(r0;r’'¢) the particles i and j should be a distance r apart
at the same time ¢ = 0. It is therefore reasonable to infer that this situation
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R+r i (t)-ry(0) m

r,(0) Fim(t)

i |
time t=0 R time t

Fig.J .1’ Derivz}tion of the approximate expression (J.7) for the quantity
G(r 0; r'¢). Particles i/ and j are considered at time ¢ = 0, while particles / and m are
considered at a later time ¢.

should give rise to a term involving the equal-time pair distribution function
g(r). For the same reason, the fact that the particles / and m are found
at a distance r’ at time ¢ should bring in a term proportional to g(r’).
Sef:ondly, these two ‘static’ contributions to G must be connected by appro-
priate terms accounting for the ‘propagation’ of the particles. Assuming
that one atom of the second pair (at time t) is at a distance R from one
Pf the atoms of the first pair, the separation between the other two particles
is seen to be R — r + r’ (Fig. J.1). The required propagators are then given
by the van Hove correlation functions G(R, t) and G(|JR+r’ —r|, ).
Finally, we should integrate over all the separations R to obtain ’

g(r0,r't) = 2ng(r)g(r’)de G(R,1)G(|R+r' —r|,1) (1.7)

wh'ere the factor 2 accounts for the two possible choices of linking the two
pairs. In more formal terms, the many-particle correlation function G has
approximately been factorized into all possible (both static and dynamic)
pair contributions by neglecting any effect of higher-order fluctuations.

. Rather than in terms of the van Hove correlation functions, it is conve-
nient to express the result (J.7) in terms of the space Fourier transforms
of the Gs, namely of the intermediate scattering functions F(k,f). A
straightforward calculation then gives:

G(r,0;x",¢) = 2ng(r)g(r’) [%]3sdkﬁ‘2(k, t)exp[ik: (r — r’)]
J.8)
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We may now insert this approximate result into the expression of
I pep(?). Writing the latter in the form (2.59) we find

I e (1) = 2”( J [ akF2 (e, 1) dar () (r)

sdr’ﬂ(r )e(r’ )Pz[ ]exp[lk (r—-— r')] d.9

where B(r) is the anisotropic part of the pair polarizability and P,(x)
denotes the second-order Legendre polynomial. In order to write eqn (J.9)
in a more manageable form, it is convenient to exploit the well-known
expansions of P,(x) and of the exponential in terms of spherical harmonics

Y (£2):

Pz("f'] in i [ Yo (2)]* Y2, (3.10)

r 5 M=—2

o L
exp(ik-p) =4dn ), X iljL(kp) [ Yo (R2)]1* Yi(Q,) (3.11)
L=0M=-L

where the orientation of the vector r is specified by Q,= (4,, ¢,), and
Jr(x) is the spherical Bessel function of order L. Inserting eqns (J.10) and
(J.11) into (J.9) and making use of the orthonormality of the spherical
harmonics we readily arrive at

Lo (1) = —j dk k2 m? (k) F2(k, ). (7.12)

Here the function m(k) is defined as
m(k) = | drr* B(r)g(r)ja(kr) (1.13)
0

with j,(®) = [(3/x%) — 1][sin(x)/x] — 3[cos(x)/x*]. The result (J.12)
suggests a rather simple physical interpretation of the DLS correlation
function. In this picture, I} pgp(¢f) can be viewed as a weighted sum of
double-scattering events, represented by the squared terms F2(k, t), with a
k-dependent weight factor which involves the specific scattering mechanism
modulated by structural effects.

To have an explicit representation of the function m(k), we adopt the
simple dipole-induced-dipole (DID) model for the pair polarizability
anisotropy (e.g. Gelbart 1974):

B(r) =6aj/r (J.14)
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where @, is the single-atom polarizability. The integral (J.13) can now be
evaluated numerically by inserting for g(r) either simulation results or data
deduced from diffraction measurements. In Fig.J.2 we have reported

m?(k) as obtained in liquid argon near the triple point, together with the
experimental data for the static structure factor S(k) (Yarnell et al. 1973).
It is apparent that the function m?(k) is essentially localized at low
wavevectors, where the structure factor S(k) = S(0) has a small value
determined by the isothermal compressibility (cf. eqn (1.15)). The relevance
of k-dependent structural effects in eqn (J.12) can be fully appreciated
by introducing the normalized intermediate scattering function f(k, t) =
F(k, t)/S(k), so that

I pee (1) = —j dk w(k) £k, 1) (1.15)

where w(k) = k>S?(k)m*(k). The combined effect of the three factors
occurring in w(k) is now such that this weight function has a very sharp
maximum in the region of the main peak of the static structure factor, and
only some minor wiggles in correspondence with the secondary oscillations
of S(k) (see Fig.1.2).

A more detailed understanding of the approximate result (J.15) is
obtained by adopting simple models for f(k, ). Specifically, we may
assume the following.

() A free particle model, in which f(k,t) = exp(—kpTKk*t*/2m) is a
Gaussian. This is likely to be appropriate only at very short times, and in
a physical situation where the dominant contribution to the integral (J.15)
comes from sufficiently large wavevectors.

(i) A diffusive model in the framework of the Vineyard approximation,
for which f(k, ) = exp(—Dk?|¢|) (cf. Section 2.4.1). Although this form
is only appropriate for the self portion of F(k, t) in the hydrodynamic
region, it is instructive to see the consequences of such a simple scheme on
the dynamics predicted for I; pgp(?).

(iii) A more refined viscoelastic model, which incorporates the correct
short-time dynamics of f(k, #) up to ¢* included ((Copley and Lovesey
1975) see Section 6.2.1). Besides this, an important feature of this model
is its ability to account rather well for the slowing down of f(k, ¢) for
k = k., namely in the wavevector region which provides the largest
contribution to the integral (J.15).

The time correlation functions evaluated by inserting these three models

~into eqn (J.15) can readily be Fourier transformed to obtain the spectral

shapes I; ppp(w) shown in Fig. J.3. For illustrative purposes, the three
spectra have been reported in a semi-logarithmic scale, so that only the
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Fig.J.2 Weight functions for depolarized light scattering in the direct factoriza-

tion approximation for G and the DID model for B(r). (a) The dashed line is the

experimental data of S(k) in liquid argon (Yarnell et al. 1973), and the full line the

function m?(k)/(36 al); (b) The product w(k) = k>S2(k)m>(k), that is the full
weight which appears in eqn (J.15).
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Fig. J.3 Depolarized-light-scattering spectrum of liquid Ar at the melting point.
The dotted line denotes the results of the free-particle model, the dashed line those
of the diffusive model, and the full line those of the viscoelastic theory (respectively,
models (i), (ii), and (iii) in the text). The experimental spectra of An et al. (1976)
and of Varshneya ef al. (1981) are represented by the triangles (the differences
between the two sets of data being within the size of the symbols). In this semi-
logarithmic plot, the experimental spectrum has been shifted by an arbitrary amount
with respect to the theoretical curves (which are normalized to a common integrated
intensity = 1).

relative comparison of the shapes is meaningful. It is apparent that there
are substantial differences among the three theoretical curves, especially
between the predictions obtained by the models (i) and (ii) . In this respect,
the spectral shape deduced from the viscoelastic model (iii) has an ‘inter-
mediate’ character, being qualitatively similar to the one obtained from the
diffusive model at intermediate frequencies and to the one corresponding
to free particles for large frequencies.

A definitive answer about the validity of these theoretical results can only
be obtained from a comparison with the available experimental data. For
liquid argon near the melting point, DLS spectra have been reported by
An et al. (1976) and by Varshneya et al. (1981), with only minor differences ~
between the two sets of data. As illustrated in Fig. J.3, the experimental
spectrum is found in any case to be markedly different from the one
obtained by the free-particle model (i). On the other hand, the diffusive
model predictions are seen to be acceptable only at low frequencies,
® <50cm™!. In contrast, the theoretical spectra deduced from the
viscoelastic model appear to be in reasonable agreement with the data for



320 Many-particle correlation functions as probed

all frequencies w> 10cm™. Apart from possible shortcomings due to the
use of the DID model for B(r), the ultimate origin of the remaining
discrepancies between the theoretical and the experimental spectra can be
traced back to the approximation (J.7) for G(r0;r’'¢).

Before discussing alternative approximation schemes for the many-
particle dynamics, it is interesting to compare the previous theoretical
spectra with those predicted by a naive model in which only pair motion
is taken into account. In other words, any contribution to G coming from
triplets and quadruplets of particles is ignored. In such a case, rather than
dealing with eqn (2.58), we would simply have

2 S (B(r;(0))B(ry (1)) Py(cos (i, 05 i, £)))

I P J——
[ L,DEP(t)]pa.u-s 15Ni,j¢i
(r r)

drjdr B(r)B(r )Pz[ ]Gz(ro r't) (J.16)
where we have exploited the definition (1.84) of the time-dependent
pair distribution function G,. The result (J.16) is clearly equivalent to
eqn (2.59) with G(r 0; r’¢) replaced by its pair contribution 2G,(r0;r’¢). A
priori, this replacement is expected to be justified only at low densities.
Rather than attempting an accurate treatment of the pair dynamics (such
as that obtained on the basis of eqn (1.101)), we shall content ourselves with
a simpler treatment which is based on the same approximations previously
adopted for G. Pursuing the same arguments as before, the final result for
G,(r0;r’t) turns out to be formally analogous to eqn (J.7), with the van
Hove correlation functions G replaced by their self counterparts G;:

G,(r0,r't) = ng(r)g(r’) stGs(R,t)Gs(‘|R +r —r1|,7) (.17

(note that in the present case there is only one possible way to connect the
particles; as a consequence, the factor 2 in eqn (J.7) is now absent). The
result (J.17) is seen to be quite similar to the ‘convolution approximation’
(1.90), the only difference being the presence of g(r’) as an additional
factor. As it stands, eqn (J.17) does not reproduce the correct initial value
(1.85), in contrast with eqn (1.90). However, the inclusion of g(r’) has
the merit of taking approximately into account the dynamical features
illustrated in Fig. 1.10, thus providing a more appropriate description of
the evolution of G, at finite times.

Inserting the approximate result (J.17) into eqn (J.16) and turning to
a k-space representation in terms of the self-intermediate scattering func-
tion F,, we may perform the angular integrations over r and r’ by the
same procedure previously adopted for the total correlation I pgp(#).
Eventually we end up with
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Fig.J.4 Contribution of the pair dynamics (dashed line) to the total depolarized
spectrum (full line) of liquid Ar at the melting point: (a) results obtained in the
free-particle model; (b) results obtained in the diffusive model.

ULz o ()]s = 15 | AR (VF2(R, 1) (.19
0

which is seen to differ from the result (J.12) only for the substitution
F— F,. Since F,(k,t=0) =1, no normalization is now needed; com-
paring with eqn (J.15), one notices a substantial change of the full
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k-dependent weight factor in the integral, where the factor S?(k) is now
lacking. o
Although eqn (J.18) is not expected to provide a reliable description of
the DLS correlation in dense fluids, there are some interesting features
which are worth mentioning. In particular, one may insert into eqn (J.18)
for F, the two limiting expressions previously referred to as moc!els (i.) and
(ii), evaluate the spectra and compare the results with those obtained in tl}e
same approximations from eqn (J.15). Such a comparison is reported in
Fig. J.4, which again refers to liquid argon. It is apparent that the total apd
the pair spectra evaluated by the free-particle model merge for frequencies
w above 70-80cm™'. In contrast, the use of the diffusive model yields
remarkably similar spectral shapes even at much lower frequencies; on the
semi-logarithmic plot of the figure, the difference between the two results
does not change up to very high frequencies, implying that the two spectra
differ by a constant factor. In both cases, one may conclude that at .large
w the total spectral shape appears to be determined by pair dynamics.

J.2 BEYOND THE DIRECT FACTORIZATION
APPROXIMATION

An alternative approach for G(r0; r’¢) can be developed by turning to a
k-space representation of the J-functions in eqn (J.5) (Madden 1978). This
makes it possible to extract the terms in r and r’ from the statistical average,
and to perform the integration over the angular parts of these vectors.
Consequently, eqn (2.59) becomes

167%(1)¢ ,
I pep(2) = B [E;J jdks dk

Qo

[ arr B i)

0

[a 280t p | EE s ok @9
0

where the quantity
1 .
F(kO;k't)=— >, > (exp{ik-[r,(0) —r;(0)]}
N %i ,m=1 .
exp{ —ik’ [r,(¢) — r, (£)1}) (J3.20)
can be interpreted as a sort of bilinear density correlation function. Rather
than proceeding to a direct ‘decoupling’ of eqn (J.20), Madden (1978) has

worked out an approximate theory for the Laplace transform of F(k 0; k t)
based on the Mori projection operator framework. Since the many-particle
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character of eqn (J.20) is retained, the approach is superior to the direct
factorization approximation, even if in practice it is necessary to resort to
several simplifying assumptions (such as the restriction to the case k’ =k
and the use of the superposition approximation for the evaluation of the
frequency moments). For the DLS spectrum, the final result of this
approach can be cast in the form

I pep (@) o< [ dk B2 [m (K)]25 (k, w). g.21)

0

Here F(k, w) is the spectrum of F&kO0;k¢), and

@

m’ (k) = j drr28(r)j, (kr) (.22)

d

where the cutoff separation d (necessary to prevent self-polarization) is
chosen of the order of the distance of closest approach. Inserting for
F(k, w) the results obtained from the above-mentioned Mori approach and
performing the wavevector integration, Madden was able to obtain a DLS
spectrum whose shape closely resembles the one observed experimentally
in liquid argon. Specific results were obtained by adopting for 8(r) both
the usual DID model (J.14) and a suitably modified form proposed by
Oxtoby and Gelbart (1975), with no substantial changes in the predicted
spectral shapes.

A closer examination of the weight of the different wavevectors in the

integral (J.21) reveals that the dominant low-frequency portion of the DLS

spectrum is ruled by the contributions of the wavevectors near the position
kn of the main peak of S(k). On the other hand, the high-frequency tail
of the spectrum is largely determined by the wavevectors k » k,,. Both
these findings are consistent with the results discussed in the previous
section.

The success of the approach in accounting for the interaction-induced
spectral shapes has subsequently been confirmed by a detailed experimental
analysis of the DLS spectra of liquid krypton (An etal. 1979). As noted
by Madden himself, a delicate point of his theory is the choice of the cutoff
distance d in eqn (J.22). Although when interpreted as a distance of closest
approach the value of d eventually chosen appears to be quite reasonable,
minor changes in this quantity are found to alter the quality of the
theoretical predictions substantially. Also, the choice of d as a parameter
to be adapted for a successful account of the line shape is found to yield
rather poor results for the integrated intensity of the DLS spectrum. These
shortcomings are partly due to our poor knowledge of the quantity g(r) at
very small separations, a range where the DID model is surely no longer
appropriate. Similar defects are in principle present even in the simple
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approximation scheme discussed in Section J.1, and are effectively only
circumvented by the presence of the pair distribution function in eqn (J.13).

J.3 ALTERNATIVE APPROACHES FOR THE DLS
SPECTRUM: A BRIEF SURVEY

The shapes of the experimental DLS spectra of rare-gas fluids are found
to be remarkably similar: when appropriately scaled, they can indeed be
made to nearly coincide, thus providing an evidence for the existence of
a ‘corresponding states law’ at a dynamical level (e.g. Rouch etal. 1977).
In all these fluids, the frequency dependence of the spectra is characterized
by a fast monotonic decrease, which can approximately be described by an
exponential law, I} ppp(w) xexp(—w/4). Adopting this simple represen-
tation, Fleury et al. (1971) reported that in a wide range of thermodynamic
states of neon, argon, and krypton the observed slope 4 is found to increase
both with temperature (as ¥T) and with density (according a parabolic law).
Although a closer examination of the spectra reveals deviations from a
single-exponential decay (e.g. Fig. J.3 for liquid argon), the simplicity of
all these empirical results is undoubtedly attractive. An interpretation of
these findings has in fact been attempted in a number of theoretical works,
ranging from simple ad hoc treatments (e.g. Balucani and Vallauri 1979b)
to more sophisticated kinetic approaches (Madden and Evans 1988).
Another important quantity of physical interest in the DLS spectra is
the integrated intensity J; pgp = §Zw dw I1 pep(w). Although this will be
discussed in some detail in Section J.5, it is worthwhile reporting here
a few qualitative remarks about the dependence of I, pgp on the thermo-
dynamic state of the fluid. As shown in Appendix C, the intensive quantity
I pep is basically the scattering cross section per particle (cf. eqn (C.48)).
As a result, the depolarized cross section (d/d€)pgp o nly pep should be
very small in dilute gases, where the phenomenon is basically ruled by the
dynamics of atomic pairs. As in this limit I} pgpp = [I1, ppp(! = 0)]pairs < 7
(cf. eqns (J.16) and (1.85)), for small n the depolarized cross section is
predicted to be proportional to the square of the density. This law is indeed
confirmed by the experiments performed in dilute gases, giving a clear
indication of the role played by binary collisions (hence the attribute
‘collision induced’, frequently given to this kind of light scattering), or in
other terms of the dominant contribution of atomic pairs. As the density
increases, however, (do/dQ)pgp is gradually found to increase less than
implied by the n? law, indicating that three-particle clusters begin to play
an important role. Qualitatively, the smaller values of the cross section
(da/dQ)ppp With respect to the n? prediction (or equivalently of I pep
with respect to a linear increase with #) can be understood arguing that
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the presence of three neighbouring particles tends to increase the local
symmetry seen by the incident photons, and thereby to decrease any
depolarized component in the scattered light. At even higher densities,
the effect becomes so marked that the overall intensity I; pgp reaches a
plateau, and subsequently rapidly decreases with n. As a result, in the liquid
range the integrated intensity is again very small, indicating that the
increased close packing has given rise to nearly symmetrical arrangements
of particles. Eventually, in a crystalline solid any residual depolarizing
effect can only be due to the displacement of the atoms from their equilib-
rium positions in the lattice, and the many-particle correlations probed
by DLS spectra can be viewed as steming from a ‘two-phonon correlation
function’ (Fleury et al. 1973; Alder et al. 1976). The growing importance of
nearly symmetrical clusters of particles in dense fluids naturally suggests an
interpretation of the DLS spectra in terms of lattice-gas models, in which
an important parameter is the ratio between the actual number density »
and the one in an ideal system in which all the lattice sites are occupied.
Such concepts have in fact been adopted both in an early attempt to account
for the density dependence of the integrated intensity (Thibeau et al. 1968)
as well in a more comprehensive study of the spectral features of I;, pgp(w)
(Guillot etal. 1980, 1982).

We close this section by mentioning a few recent studies and develop-
ments of DLS spectroscopy. The close similarity between the DLS correla-
tions and those ruling the dynamics of shear stresses has been noted and
explicitly analysed by Montrose efal. (1991). As already noted at the
beginning of this appendix, further studies in this direction will certainly
provide a better understanding of many-particle correlations in dense
fluids. This will possibly pave the way for a rigorous theory of the
dynamical features of DLS spectra, based on a combined kinetic and
mode-coupling approach similar to those described in Chapters 5 and 6.
The achievement of such an objective is not likely to be far off, as indicated
by the successful use of mode-coupling concepts in two recent applications
of DLS spectroscopy to the study of the liquid-glass transition (Tao ef al.
1991, 1992).

J.4 SEPARATION INTO PAIR, TRIPLET, AND
QUADRUPLET CONTRIBUTIONS

It is readily seen that eqn (J.20) can be decomposed into pair, triplet, and
quadruplet contributions according to

F(kO0;k’t) = 2NF,(k0; k’¢) + 4N?F;(k 0;k’¢) + N*F,(k0; k'¢)
J.23)
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where N» 1, and
F(k0;k’?) = (exp{ —ik - [r;(0) — r,(0)]} exp {ik’ - [, (¢) — r, ()]},

J.24)
F3(k0; k') = (exp{ —ik - [r;(0) — r,(0)]} exp (ik’ - [r,(¢) — r;(£)]}),
) J.25)
Fy(k0;k’t) = {exp{ —ik * [r,(0) — r,(0)]} exp {ik’ - [r3(#) — rs(£)]}).
J.26)

Although interesting, the decomposition (J.23) is of limited use in the liquid
range because of our poor knowledge of the triplet and quadruplet terms
(J.25) and (J.26). To throw some light on the role of the different contribu-
tions in the DLS correlation function 7; ppp(f), Ladd efal. (1979) made
recourse to computer simulations, performed in Lennard-Jones argon at
different densities. In all cases, the authors assumed a DID model for the
pair polarizability anisotropy B(r). More specifically, Ladd et al. inserted
(J.23) into eqn (J.19), obtaining a result which can be written in the form

L pep () = L(2) + L(2) + L(¢) .d.2n

where I,(t), I;(¢), and I,(¢t) denote the time-dependent contributions due
to pairs, triplet, and quadruplets, respectively.

The simulation data obtained in the liquid range for all these time correla-
tion functions are reported in Fig. J.5. The most striking feature is an
almost complete cancellation among I,(¢), I;(¢), and I,(¢) in the long-time
region. As a result, the time extent of the total correlation function
I1 pep(?) is much shorter than those of the partial contributions. As both
I,(¢) and I,(¢) are always found to be positive, tgxe origin of the effect is
due to the rather large negative values of the triplet contribution I;(¢).
Although the cancellation is complete only for sufficiently long times
(where the ratios among the three components L,(¢), I;(¢f), and I,(z) are
found to be 1: —2: 1), it is apparent from Fig. J.5 that the effect is present
even at much shorter times. In particular, at # = 0 the quantities 1,(0),
|I;(0)|, and I,(0) are found to be noticeably larger than the initial value
-of the total correlation function. Since I pgp(f = 0) is essentially the
integrated intensity of the DLS spectrum, the simulation data provide a first
insight into the origin of the small values of I pgp experimentally
observed in the liquid region. A noteworthy point stressed by Ladd et al.
is that the ratios of the pair : triplet : quadruplet terms would be exactly
1:—2:1 at all times if the environment of a particle were perfectly isotropic
(as in a static cubic lattice). Consequently, the fact that in the liquid one
only observes these values at long times and the fact that even the 1 = 0
ratios are not very different (being 1: —1.8:0.8) indicates that in a dense
fluid the deviations from isotropic environments are quite small.
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Fig.J.5 Simulation data for Lennard-Jones Ar near the triple point showing the
pair (short-dashed line), triplet (dot-dashed line) and quadruplet (long-dashed line)
contributions to the full DLS time correlation function It pep ()1 pEp(t = 0)
(full line). For clarity, the pair and quadruplet terms have been divided by a factor
10, and the triplet term by a factor —20. In these units, the approach of the three
partial contributions to a common value indicates the presence of a strong cancella-
tion effect. All the data refer to a DID model for the polarizability anisotropy.
Redrawn from Ladd et al. (1979).

To interpret all these simulation results, Ladd efa/. made the assump-
tion that beyond a short-time interval the quantity F(k0; k’t) defined by
eqn (J.20) may be factorized as

ﬁ(kO;k’t)z]lVZ >0 Cexpl—ik - ry(0)]exp[ik’ -5, (0)])

Lj#Ei Lm#l
(exp{ =ik’ [}, (¢) ~ 1, (0)]}) (J.28)

where the second average in eqn (J.28) can be regarded as a self-intermediate
scattering function for the pair (/, m) . Such a quantity is basically the
space Fourier transform of the time-dependent pair distribution function
G,(r0;r’¢) introduced in eqn (1.87). Adopting for the latter the convolu-
tion approximation (1.90), it is readily seen that in the diffusive regime

(exp{ =ik’ [}, (¢) — 1,,,(0)]}) = exp(—2Dk"?¢) (3.29)

(cf. eqn (1.93)). To arrive at a manageable expression of eqn (J.28), Ladd
etal. assumed that the dominant contribution to the DLS is provided by
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the terms with k’ = k (cf. a similar assumption in Section J.2), and finally
evaluated the first static average in eqn (J.28) by a superposition scheme.
In such a way they arrived at the approximate result

F(k0;k’t) zN[S(k)]Zexp(—ZDkzt)Jk',k ,
= (2n)*n[S(k)]*exp(—-2Dk*t)6(k’ — k).  (J.30)
Insérting (J.30) into eqn (J.19), one eventually obtains
an't

Ioee(t) = g | dkiem’ (B)]*[S(K))Pexp(—2DR%7)  (1.31)

where m’(k) is defined by eqn (J.22). Equation (J.31) closely resembles the
result (J.15) in which a diffusive model has been adopted for f(k, t). As
a consequence, the spectrum deduced from eqn (J.31) does not provide an
accurate representation of the DLS lineshape at high frequencies, and
moreover suffers from the same defects noted in Section J.2 in connection
with the artificial cutoff separation d. The important point is, however, that
approximations similar to those made for I ppp(?) can easily be extended
even to the separate contributions 7,(¢), I;(¢), and I,(¢) with the result that

o

Lo~ ‘l‘—g’j dk K2 [m’ (k)] exp( —2DKk*1), (.32)
0

L)~ ‘l‘—g’j dk 2 [m’ (k)]22[S(k) — 1]exp(—2DK%1),  (1.33)
0

L® =13 | kK Im (OIIS(K) - 1) exp(-2D%0), (134
0

where clearly
1+ 2[S(k) —1] + [S(k) — 1]2 = [S(k)]>. J.35)

Ladd et al. show that at sufficiently long times the dominant contribution to
eqns (J.32)-(J.34) comes from the low wavevector region, where S(k) < 1.As
a result, at long times the ratios of the pair : triplet : quadruplet terms
approach the values 1: —2: 1, as is indeed observed in the simulation data.
By the same arguments, the total correlation function I pep(?) (which
involves S2(k)) is found to be negligible for long times. On a shorter
timescale, the dominant contribution to eqn (J.31) does indeed come from
the wavevectors k = k,, (cf. Section J.1).
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J.5 THE INTEGRATED INTENSITY AND THE SECOND
FREQUENCY MOMENT OF THE DLS SPECTRUM

In the previous sections we have seen that the shape of the DLS spectrum
in dense fluids can be accounted for reasonably well by a number of
approximation schemes for the dynamic correlation function Iy pep(?). In
contrast, the situation for the integrated intensity I pep = It ppp(t = 0) is
less satisfactory, even leaving aside any problem connected with the precise
form of the pair polarizability anisotropy f8(r). The origin of this unfor-
tunate circumstance lies in the fact that the small magnitude of Iy pep
is ultimately determined by a delicate balance among the various partial
contributions due to pairs, triplets, and quadruplets. As a result of the large
amount of cancellation among these terms at high density, any small error
introduced by an approximate treatment of these partial static averages is
likely to be considerably magnified in the evaluation of the total intensity
I pep-

As already mentioned in Section J.3, the first attempt to account for the
density dependence of the DLS integrated intensity in dense fluids and
liquids made use of a lattice-gas model (Thibeau ef al. 1968). Within a DID
model for B(r), it is found that

I pep = Ayn[1 — (n/ny)?] (J.36)

where the quantity 4, can be determined by the low-density data (or
evaluated in terms of the pair contribution), and the ratio n/ny is a
measure of the relative illing’ of the lattice with respect to a situation in
which all sites are occupied and the number density is n,. Rather than
comparing the predictions of eqn (J.36) with the absolute integrated inten-
sities, Thibeau et al. tested their approach in rare-gas fluids by looking
at an easily measurable quantity, the so-called ‘depolarization ratio’
L, pep/If. While the agreement between theory and experiment is rather
good at moderate densities, the comparison is found to be less satisfactory
in dense fluids, particularly if one notes that the model does not provide
a well-defined recipe to establish the value of ngy.

An alternative approach is to rely on the results found for the »n
dependence of I ppp in moderately dense fluids (which can be obtained
rather accurately) and to adopt some extrapolation scheme to infer the
behaviour at high densities. This procedure has been followed with some
success in a number of cases (e.g. Balucani and Vallauri 1979a), but has
a clear empirical character. .

A systematic theoretical analysis of both the integrated intensity and the
second frequency moment of the DLS spectrum has subsequently been
worked out by Briganti et al. (1986). Besides making further tests on the
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Fig. J.6 Density dependence of (¢/ af’,)IL, DEP iN gaseous Ar at room temperature.
This dimensionless quantity is proportional to the actual integrated intensity divided
by the number density of the system. The triangles denote the experimental data
(Zoppi et al. 1981), along with a ‘virial-expansion’ fit of the form A,n + A3n2 +
Ayn? (dotted line). The dots are the simulation data obtained for a Lennard-Jones
system within the DID model (Balucani and Vallauri 1979b); the asterisks are the
corresponding theoretical results evaluated within a superposition scheme (Briganti
et al. 1986). The full line denotes the prediction of the lattice-gas model (eqn (J.36))
with the quantity 7ny,o>/6 chosen as 0.527.

results of the previous approaches, these authors investigated in some detail
the consequences of a superposition approximation scheme on the triplet
and quadruplet contributions to I; pgp at different densities. Specific
results were obtained for a Lennard-Jones fluid and within a DID model
for the pair polarizability anisotropy. In order to assess the validity of the
approximations without any ambiguity, the theoretical results were tested
against the computer simulation data obtained by Alder et al. (1973b) for
the same model system and the same DID mechanism for §(r). The overall
agreement between the two sets of data is found to be fairly good, as shown
in Fig. J.6. For completeness, in the figure we have also reported the lattice-
gas predictions by Thibeau et a/. (1968) and the experimental findings for
compressed gaseous argon at room temperature (Zoppi ef al. 1981). Aside
from any defect of the theoretical approaches, from Fig. J.6 it is apparent
that there is some discrepancy between the simulation data for Iy pgp
(which in principle should be ‘exact’) and the experimental ones.

A much larger discrepancy was initially found in the liquid range, where
the simulations of Alder efal. (1973b) gave a value of I ppp Which was
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Table J.1 Comparison between the dimensionless DLS integrated
intensities for liquid Ar as obtained in the experiment and in various
computer simulations. The first experimental value reported for this
quantity was 0.03 (Fleury and McTague 1969).

T

K) nna’/6 [0°1, pEP/@0)exp [0°L, pEp /@0 )simul
90.8 0.428 0.11 + 0.01¢

89.0 - 0.433 0.195¢

89.0 0.433 0.135°

88.8 0.428 0.120°¢

% Varshneya et al. (1981). The simulation value refers to Lennard-Jones liquid
argon with a DID model for S(r).

b Zoppi et al. (1981). Again, Lennard-Jones liquid argon, but with 8(r) empirically
determined from low-density data.

¢Zoppi and Spinelli (1986). Liquid argon with the pair interaction potential of
Barker et al. (1971); B(r) has the same form as in b,

more than five times larger than the first experimental determination of
this quantity reported by Fleury and McTague (1969). In contrast, the
DLS spectrum obtained by Alder ef al. (1973a) from computer simulations
performed in the same conditions (namely, Lennard-Jones fluids and
DID model for f(r)) was found to reproduce the experimental lineshape
rather well.

This contradictory situation stimulated more accurate experimental
measurements of f; pgp, as well as a careful analysis of any possible
source of ‘cutoff errors’ of the simulation result for I; pgp at high density.
Indeed, for fixed N = 10°-10%, the size of the simulation box becomes
rather small in the liquid range and any premature truncation in space may
considerably affect the relatively long-ranged DID correlations, particularly
in the static case (Ladd et al. 1980). Moreover, the sensitivity of the value
of I pep to these features stimulated a critical revision of all the basic
assumptions, including the models of the interaction potential and of the
pair polarizability, as well as possible defects of the pairwise assumption
for these two quantities. :

The final results of all this activity are quite gratifying (see Table J.1).
First of all, new accurate measurements in the liquid range (Varshneya ef al.
1981) gave a value of I} pgp much larger than the original one. As a conse-
quence, the discrepancy from the experimental result of the best-simulated
value of I; pgp in the Lennard-Jones plus DID model was considerably
reduced. This difference is brought to ~20% by using in the simulations
an empirical model of (r) deduced from low-density measurements (Zoppi
et al. 1981). Finally, even this residual discrepancy can be decreased and
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brought to lie within the experimental accuracy by using a more realistic
model for the argon interaction potential (Zoppi and Spinelli 1986).

To conclude this section, we mention that the splitting (J.27) of
I, pep(?) into pair, triplet, and quadruplet contributions can be exploited
to evaluate the short-time behaviour of this correlation function. A
noteworthy result of this analysis is that the quantity _fL,DEp(t =0)—
namely, the unnormalized second frequency moment w* of the DLS
spectrum —turns out to depend only on pair and triplet terms. Any
quadruplet contribution would in fact involve velocity averages of the form
(v§vf,> where v; =v; —v; and with labels i,j,/, and m all different,
eventually giving a vanishing result. As a consequence, the evaluation of
w? is somewhat simpler than that of J; pgp, and can in fact be performed
even at rather high density adopting a superposition approximation
(Balucani and Vallauri 1979b; Briganti efal. 1986). The knowledge of
I pep and @’ may in turn be exploited to account for the gross features
of the DLS spectrum at different densities (e.g. Zoppi ef al. 1981).
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alkali metals, liquid 22, 64, 241
averages, statistical
in canonical ensemble 4
restricted 39
time 100

Boltzmann equation 151
Brillouin
neutron scattering 58, 88
peaks 55, 90, 223
Brownian motion 32, 115-18
Burnett equations 177

cage effect 29, 124, 207-8
Cauchy isotropy relation 140
collisions
binary 142, 151, 183-5
correlated 153, 186
duration 121, 153, 293
frequency 19, 122-3
instantaneous 122
ring 153
 compressibility, isothermal 8, 54, 136
continued fraction expansion 114
current
correlation functions 50, 131
definition 43
longitudinal 43, 129, 132, 237
single-particle 127
spectra 60, 131, 231-5, 238-43
transverse 43, 129, 231

de Gennes

narrowing 46, 59, 88, 228

slowing down 46, 190
density

collective 42

fluctuations 42, 132, 224

single-particle 14
detailed balance 3, 71-2
diffusion coefficient

binary theory 192

in Brownian motion 118

definition 23, 128

in Enskog theory 123

“full theory 193-7

relative 36
dipole-induced-dipole (DID)

approximation 96, 316, 323, 329-31

distribution functions

bond-angle 9-10

n-particle 8-9

triplet 9, 291, 301, 311

see also pair distribution function

Einstein frequency 18, 21-2, 120
electric dipole approximation 80, 280
energy

current 57, 137

density 56

fluctuations 56, 129, 136, 175

internal 5
equilibrium properties 1, 4, 54
ergodic assumption 100

Fick’s law 1, 55
fluctuating force 108, 126
fluctuation-dissipation theorem 118
fluids R
definition I
dense 123-4, 151, 207-8
dilute 121-2, 151, 208-9
see also hard-sphere fluids
frequency moments
collective 45-51
general definition 271-2
single-particle 16-18

Gaussian approximation 27, 190, 198-200
glass transition 188, 195-6, 249-54
Green-Kubo relations 23, 131, 137-40

hard-sphere fluids
Enskog theory
ordinary 32, 122-3, 151
generalized 152
pair potential 8, 32, 122
structural properties 8

—1

Index

hydrodynamics
generalized 56, 134, 171-5, 216-24
Navier-Stokes 1, 55, 224
ordinary 53, 217-19

intermediate scattering function
definition 44
in light scattering 82, 286
memory function, second-order 217-21,
224-5, 238, 242, 245-7
in neutron scattering 75-7
short-time behaviour 45-9, 311-12
spectrum, see structure factor, dynamic
intermediate scattering function, self
definition 15
memory function
first-order 127-8, 178, 200
second-order 200-5
short-time behaviour 16-18, 308-11
spectrum 15, 19, 25-7, 201

kinetic modelling 176

Langevin equation
generalized 109, 126
ordinary 118

lattice-gas model 325, 329

lead, liquid 211-15

Lennard-Jones liquids 21

light scattering
depolarized 94-8, 316-32
interaction-induced- 95, 313
polarized 90-2

Liouville operator 12, 105, 114-17, 267-8

Markov approximation 110, 122, 128, 134,
177, 252 :
mean free path 19, 197, 202, 216
mean square displacement 20-1, 23, 31,
192
memory equation 109
memory functions
binary 168-70
definition 108
non-binary 164-6
phase-space 154-9
short-time behaviour 112
memory matrix
definition 108
short-time behaviour 111
mode-coupling theory
framework 177-8
and the glass transition 249-54
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and long-time tails 178-9, 186-7, 245-8
modes 13, 159, 164-5

neutron diffraction 84
neutron scattering
Brillouin 58, 88
cross section
coherent 75-7
incoherent 75-7
deep inelastic 77
kinematics 68-71
length 74
quasi-elastic 84

orientational order, local 9

pair distribution function
at equilibrium 5-6
time-dependent 34-9, 320
pair potentials 2, 21-2, 63-5, 122, 212-13
partition function, classical
canonical 4
configurational 5
phase-space
densities 143-4
variables 11
photon scattering
cross section 80-2
kinematics 68-71
Poisson bracket 12
polarizability
atomic 284
pair 83, 96, 316, 323
triplet 83
potential of mean force 38
projection operators 107, 113, 115, 127
propagation gaps 88, 224
proper frequency matrix 107, 148, 158,
294-7

quantum effects 3, 64, 71-2, 94

rare-gas liquids 21, 64

Rayleigh-Brillouin spectrum 55, 93-4, 135,
223

relative diffusion coefficient 36

renormalized kinetic theories 159

rigidity modulus 232, 256

scalar product 12, 106
simple liquids 2, 63-5
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simulations, computer
molecular-dynamics 11, 99-100
Monte Carlo 99
Smoluchowski equation 38
sound
dispersion
non-analytic 243
positive 59, 88, 239-42
extended 88
velocity
adiabatic 54, 136
isothermal 136, 217
specific heats 54, 136
stationarity property 15, 269-70
Stokes-Einstein relation 263-5
Stokes factor 71-2
stress autocorrelation function, shear
definition 131
theory 255-60
stress tensor, microscopic 56, 129, 139,
255
structural theories 8
structure factor
static 7, 75, 90
dynamic 45, 224-30
supercooled liquids 185, 188, 194-6,
249-54
superposition approximation 9, 184, 291,
332

tails, long-time
in Green-Kubo integrands 140, 258-9
=32 33, 123, 178-9
temperature fluctuations 157, 172, 175,
219-21, 242-3, 245
thermal conductivity coefficient 54, 137
thermal expansion coefficient 136
thermal fluctuations, see temperature
fluctuations
time propagator
anomalous 109, 127, 134
ordinary 105, 127, 134
time-reversal symmetry 270, 288-9
transport coefficients 1, 54, 126-40

Index

van Hove correlation function
collective 44, 74, 315
single-particle 15, 34-5, 320
variables
collective 13-14
conserved 13
dynamical 12 )
hydrodynamic 13, 56, 171
quasi-conserved 13-14, 56, 126, 157
-single-particle 14
velocity autocorrelation function
definition 20
and diffusion coefficient 23
memory function 119-21, 183-91
short-time behaviour 290-1
spectrum 28-33
t=3/2 tail 33, 123, 178-9
time dependence 29-30, 119-25
velocity field approach 179, 263-4, 303-7
vertex, interaction
expression 162, 164, 298-302
static approximation 162, 185
Vineyard approximation
modified 87
ordinary 87, 317
virial expansion §
virial theorem 57
Vlasov equation 150
viscoelastic model 191, 218, 224-43
viscosity coefficient
bulk 54, 140
longitudinal 54, 138
shear
generalized 131, 231, 261-4
ordinary 54, 93, 131, 260-1

water 241-2

X-ray diffraction 79
X-ray inelastic scattering 79




