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Abstract—Enhanced regenerative brake performances and
increased battery reliability in modern Electric Vehicles could be
allowed by a proper reduction of electric braking applications
at severe operative conditions. In this paper, authors intend to
develop an algorithm for the optimized coordination between
Regenerative Brake System and Hydraulic Brake Plant, also
known as Brake Blending strategy. Proposed solution aim at
maximizing the recovered energy during braking manoeuvres
while ensuring an increased battery durability, by avoiding
accelerated ageing phenomena occurring at high temperatures
and limit State Of Charge values of the energy storage system.
The controller, based on fuzzy logic, is validated through
simulation activities on a benchmark electric vehicle showing
improved reliability performances and extended lifespan of the
storage system.

Index Terms—electric vehicle, brake blending, electric brak-
ing, fuzzy logic, battery reliability

I. INTRODUCTION

The synergetic coordination between electric and hydraulic
brakes in modern Electric Vehicle (EV), aimed at ensuring a
maximum energy recovery, is a very challenging task due to
the complexity of the involved phenomena, which concerns
several and heterogeneous physical domains [1], [2]. Also,
reliability constrains, which inevitably affects electric power-
train systems, should be accounted in the design of the Brake
Blending (BB) Controller, making it capable to automatically
select the most cautionary conditions [3]. Using a fuzzy logic
approach could be a feasible solution for the design of this
algorithm, being able to account both modelled and poorly
conditioned limitations [4], [5].

The availability of a Regenerative Braking System (RBS)
in EVs offers to designers the possibility to implement newly
and innovative brake strategies [6], [7] that can enhance the
vehicle driving range by increasing the regenerated energy.
Optimize this feature, thus, could be a crucial point and an
highly desired solution to reduce overall energy consumption
[8], [9]. These aspects constitute a constrained optimization
allocation problem [10], [11].

Extensive work has been done in literature in order to
properly model electric powertrain torques availability and to
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apply related constrains in the adopted control policies [12].
However, since a deterministic approach can be detrimental
and, in some cases, lead to an underestimation of the involved
limitations, a probabilistic based approach is proposed. To
determine how the brake demand should be split between
hydraulic and regenerative braking plant, the so-called Brake
Blending strategy, we decide to follow a fuzzy logic method-
ology, which could be a useful tool in the optics of integrating
the above mentioned aspects [13], [14].

Despite common fuzzy applications [15], in which the
involved aspects are abstracted to define a probabilistic strat-
egy, in this paper authors successfully build and implement
a fuzzy controller which can completely take account of
power and energy limitations of battery and Electric Mo-
tor (EM), based on its own models and their ideal power
characteristics. Another non secondary advantages arising by
the utilization of mamdami inference method concern the
reduced perception of the driver during variations of the
efforts exerted by the involved systems. This allows smoother
transitions in torques allocation between available braking
actuators, ensuring better reliability of the electric driveline
and improved dynamics behaviour of the vehicle, avoiding
abrupt acceleration variations. This know-how is used to
build an effective and efficient Fuzzy Brake Blending (FBB)
controller, which can take account also of bad conditioned
and hardly modelled constrain terms, such as the battery
temperature and ageing [16].

In this work, authors intend to evaluate the improvement
permitted by the FBB controller in terms of regenerated
energy and battery ageing. The proposed solution is validated
through simulation activities based on a benchmark vehicle:
the FIAT 500e. Nevertheless, a wide range of different
EVs architectures are investigated in the current State-of-
Arts, so the controller is designed to ensure scalability
and portability properties, in order to be implementable for
several e-powertrain configurations and multiple vehicles Use
Case (UC)s. This activity has been conducted in collaboration
with Centro Ricerche FIAT (CRF), who shared important
experimental data for the model validation and the controllers
calibration.
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II. SIMULATION FRAMEWORK

In this section we firstly describe the benchmark vehicle
UC and related powertrain architectures. Then the proposed
brake blending fuzzy logic algorithm is exposed.

A. Benchmark Vehicle: FIAT 500e

The investigated vehicle is the FIAT 500e (Fig.1), a fully
Front Wheel Drive (FWD) EV, in which a single EM is used
to actuate the front wheels through a differential mechanism.

The evaluation of the results is done supposing, for the
reference UC, two different powertrain architectures showed
in Fig.2: a) the conventional FWD configuration and b) a
Four Wheel Drive (4WD) layout, actuated by independents
In-Wheel Motor (IWM)s. The parameters remain the same
for both the investigated configurations: in the case b) the
total electric power of the four IWMs is equal to the power
of the EM of the case a).

The 7 Degree Of Freedom (DOF) EV model consist of
several mechanical, electrical and electronic sub-systems,
useful for an accurate simulation of the vehicle behaviour
during real driving scenarios, i.e.:

• Driver model: produces acceleration and braking com-
mands, in-between [0,1] value range, based on the
specified reference manoeuvres.

• Torque regulation controller: constituted by a simple
Electronic Braking Distributor (EBD) controller (which
apply different distribution ratio between front and rear
axles torques in function of the longitudinal load trans-
fer), and the proposed FBB controller.

• Electric motor model: includes the Motor Control Unit
(MCU) and the electric actuators models, which deliver
traction or braking torques to the wheels, working
respectively in the 1° and the 4° quadrants, tracing
the ideal traction/braking Torque vs Speed characteristic
[12].

• Energy storage model: which comprise the High Volt-
age (HV) battery and the corresponding Battery Man-
agement System (BMS). The latter is used for the
battery parameters estimation, while the HV battery
powers the EM in the traction phases and stores the
regenerated energy during electric braking phases. To
consider the Power Inverter Module (PIM) (inverter +

Fig. 1. Vehicle UC: Fiat 500e.

Fig. 2. Investigated EV powertrain architectures: a) FWD with one EM and
a differential mechanism; b) 4WD with independents IWM.

DC-DC converter) we impose a proper Voltage-Current
profile for the charging and discharging of the battery
[17].

• Hydraulic brake model: a functional decomposition
model able to reproduce the behaviour of a real dis-
sipative automotive disc brake [7].

• Chassis model: a 3 DOF model (longitudinal, lateral
and yaw motions) which account aerodynamic and Cen-
tre Of Gravity (COG) position effects on the vehicle
dynamics/kinematics.

• Wheel model: a further 1 DOF is added by the rota-
tion around z-axis of each wheel. Tire-road contacts is
modelled according to the Pacejka ”Magic Formula Pure
Longitudinal slip” model [18].

The main UC parameters are summarized in Table I, which
are freely available online. It is important to note that the
gathered experimental data has allowed to estimate the the
number of cycle which the battery has already experienced,
based on our model. It has been found that the battery has
performed about 25 equivalent cycle before tests starts. These
results are in agreement with the ones arise from the real
vehicle.

B. Fuzzy Brake Blending Controller

Fuzzy logic can be considered as a simplified neural
network whose primary benefit is to approximate systems
behaviour when analytic functions or numerical models don’t
exist, are poorly structured [14] or object of high level of
measurement uncertainty [15]. This solution is a widely
adopted tool for the control of complex system which in-
volves several devices and components belonging to quite
different physical fields [3]. Is the case of the BB, in which
is fundamental a prediction of the states evolution to avoid
undesired situations, while assuring the fully exploitation of
the EM torques availability. Indeed, conventional controllers
cannot handle driving scenario in some specific condition,
when non-linear effect occurs and predominate the system’s
states evolution, as they are often restricted to linear ranges
of variables.



TABLE I
MAIN VEHICLE PARAMETERS: FIAT 500E

Vehicle Parameters
Name Symbol Value [unit]

Vehicle Mass mV 1355 [kg]
Front Wheelbase a 0.989 [m]
Rear Wheelbase b 1.311 [m]

Vertical Dist. Ground to COG h 0.65 [m]
Electric Motor Power PEM 83 [kW]

Battery Capacity Cbatt 64 [Ah]

Proposed Fuzzy Inference System (FIS) logic controller,
whose block diagram is represented in Fig.3, aims at the
controlling of the blending strategy of the available braking
actuators: RBS and disc brake. For doing that, accounts
multiple variables in the process, listed above.

1) Driver demand: establish the requested torques on each
wheel. As already pointed out, when battery State Of Charge
(SOC), defined by (1), is lower than a certain value, it
is recommended to prioritize electric braking, in order to
ensure the maximum regeneration. Otherwise, when battery
is almost completely charged a de-rating of the EM brake
performances should be applied. For medium SOC value
instead, regenerative brake is still desired, but it achieves
its maximum value of 1 only if the entity of the requested
brake exceeds a threshold, corresponding to an acceptable
level of regeneration. Indeed, if the brake command is smaller
than this established value, the reduced amounts of recovered
energy doesn’t justify the increased complexity in the system
management. The Driver demand is then fuzzified through
three different Mothership Function (MF)s, respectively full,
derate and no for low, medium and high SOC values.

2) EM shaft speed: essential for the evaluation of the
available torque by the electric powertrain and the avoidance
of shaft overrunning. Fully exploiting of the EM characteris-
tics is achieved making sure the delivered torque closely trace
the ideal traction/braking curve. To realize this assumption
in the FIS, we build a 2 MFs variable dependency: the start
function, used to avoid vehicle going in reverse direction, and
the stop function, which turns off the regenerative braking
above the maximum admitted shaft speed. Indeed, when the
vehicle is approaching 0 speed, regenerative braking is not
suggested, since applying negative torque to wheels when
the car is in stationary conditions can cause the vehicle
going backward. The Iso-Torque and Iso-Power curve are
implemented by the signals arising by the MCU.

Fig. 3. Fuzzy Brake Blending controller.

3) Battery SOC: fundamental for averting dangerous con-
dition of the storage system. Regenerated power should be
limited at high SOC to prevent battery over-charging, while
electric braking should be prioritize at low SOC to avoid
under-discharing. Viceversa during traction phases. State of
Charge is a key parameters to ensure a safe behaviour of the
battery and to guarantee its reliability respect to some limit
conditions. The power constrains are implemented by 3 MFs
named low, medium and high, reflecting the corresponding
SOC states defined by (1), where Cnominal is the battery
capacity.

SOC = 100

(
1− 1

Cnominal

∫ t

0

i(t)dt

)
(1)

This variable is essential to avoid fast performances degra-
dation due to high level of requested Depth of Discharge
(DOD), as pointed out in [19], where DOD is defined by (2).

DOD = 1− SOC (2)

4) Battery Temperature: it is recommended to reduce the
power flowing in the battery when low or high temperatures
condition occurs. Similarly at the previous case, temperature
effects increase the ageing rate of the battery [16], [19]. So
it is advisable to limit the battery C-rate when operating
at temperature that differs from the nominal. We adopt a
Gaussian MF in function of the battery temperature to reduce
the current.

5) Battery ageing: used to implement energy limitations
of storage according to capacity fade effects. As the battery
ages its capacity decreases, so it is recommended to limit the
amount of power recovered during regenerative braking sce-
nario. Otherwise we could accelerate the decay performances
law.

According to [16], automotive battery are considered at
End of Life (EoL) when their capacity drops below 80%
of the Beginning of Life (BoL) capacity value CBoL. For the
reference UC we assume an equivalent number of full charge-
discharge cycle of NEoL=2000. However, in EVs applications,
only in a restricted number of case batteries are object of full
cycles. So, to account the effect of partial cycles we define
the battery ageing using the Ampere-hour throughput model
[19], a framework for the battery lifetime prediction. The
battery nominal Ampere-hour throughput is calculated by (3),
supposing a DOD of 100% and an ambient temperature of
20°C.

Ah− throughputnominal =

∫ tEoL

0

|inom(t)|dt (3)

Where inom(t) is the nominal current of the battery and tEoL

the instant in which battery capacity reaches the EoL value.
To quantify the ageing effects we consider the severity

factor σ, an indicator of the battery degradation respect to
the nominal number of admitted cycle NEoL. In particular,
the severity factor, at a given DOD and temperature Tbatt, is
defined by (4), with i(t) the current actually flowing in the
battery.

σ =
Ah− throughputnominal∫ tEoL

0
|i(t)|dt

(4)



TABLE II
FUZZY CONTROLLER IMPLICATION RULES

Implication Rules: Statements
n° BrakeCMD EMrpm SOCbatt Tbatt Cyclebatt output
1 full start low cycle T max
2 derate start medium cycle T max
3 no start high cycle T min
4 stop / / / / min

Value of σ higher than 1 corresponds to more severe oper-
ating conditions respect to the baseline. In [19] the severity
factor is mapped respect to DOD and Tbatt, highlighting that
at higher temperature and depth of discharge the severity
factor is increased, as the ageing rate. So, is recommended
to reduce the flowing current when the effective battery
Ampere-hour throughput is approaching his EoL value. To
implement this functionalities we use a single MF respect to
the performed equivalent cycles. The severity factor σ is used
as adjusting coefficient for the calculation of the effective
battery Ah-throughputeff, according to (5).

Ah− throughputeff =

∫ t

0

σ(t)|ibatt(t)|dt (5)

At this point the Ah-throughputeff is used to establish the
equivalent number of performed cycles Neff, subdividing it
by the nominal Ah consumed during a cycle in nominal
condition, which is double the nominal capacity of the battery
supposing a cycle composed by a full charge and discharge
process.

6) Output: the fuzzy logic requires the definition of proper
output MFs to fulfill the implication phases. Those are max
and min.

Once established the inputs fuzzy values using the corre-
sponding MFs during the fuzzification process, the fuzzified
input variables, whose degrees of membership are comprised
between 0 and 1, have to be processed according specified
rules. Adopted implication rules, summarized in Table II,
have the objective to join model-based constrains with poor
structured reliability aspects of the electric powertrain, while
maximizing the regenerated energy. The resolving of those
statement is done according to AND operator logic (min).

For each rule a single degree of membership is obtained
using an OR operator between fuzzified input and corre-
sponding output MFs, during the implication phase. The
aggregation stages conjugated the previously described rules,
while the defuzzification process returns a single crisp final
value using a Small Of Minimum (SOM) logic. The FIS con-
troller uses a mamdani-type inference method and the output
signals are continuous (instead of discrete for the sugeno-
type). This final value corresponds to the desired EM brake
ratio that can be exerted by the electric powertrain, respect
the maximum requested braking torque. The remaining effort
should be burden by the hydraulic brake system. The disc
brake desired torque is calculated by (6), subtracting from
the requested braking torque, provided by the driver and
subsequently modified by the EBD controller, the electric
deliverable torque, visible also in 3.

Tqdisc = Tqreq − TqEM (6)

Summarizing, all this recommended specification are in-
tegrated by a proper design of the fuzzy controller rules,
along with the BB controller developed in [6]–[9], whose
functionalities are not reported here for brevity reasons. It
is sufficient to know that the crisp value arise by the fuzzy
controller constitute a correctional gain, variable between 0
and 1, which is multiplied to the EM torques command.
The presence of redundant braking systems make appear the
vehicle over-actuated, so the coherence with the commands
in braking condition is ensured by the hydraulic brake plant,
which can compensate the RBS unavailability. This solution
concretized the attempt to reproduce a model-based concept
in a fuzzy controller. Electric powertrain protections should
be considered also during traction, so the fuzzy controller
functionalities have been extended in order to implement
EM and battery constrains, both during deceleration and
acceleration phases. However, to ensure the execution of
maneuvers according to the pilot’s request, the traction fuzzy
controller output is used to reduce the torque constrains, not
the command.

The above mentioned input and output MFs are visible in
Fig.4.

III. SIMULATIONS RESULTS

For evaluating the performances of the proposed FBB
controller, the models of the investigated EV (the FIAT 500e)
has been implemented in MATLAB Simulink environment,
according to the scheme of Fig.5, in order to execute some
simulation campaigns. As already pointed out, output results
concerns two different powertrain architectures: the conven-
tional FWD architecture and an hypothetical 4WD layout.

Performed tests can be grouped in two branches:
1) Reference Manoeuvres: consist in the execution of

straight line deceleration at fixed boundary condition, i.e.
battery temperature and initial vehicle speed, varying the
corresponding initial charge. In this way it is possible to
show the influence of BrakeCMD and EMspeed Membership
Functions on the blending strategy.

During these full braking manoeuvres the blending con-
troller prioritizes the RBS when available. Initial vehicle
speed Vi=27.78 m/s and battery temperature Tbatt=20 °C
are supposed constant, while consecutive simulation have
been performed at different battery initial charges SOCi.
Outcomes of the tests, for the FWD vehicle UC, are the
torque references summarized in Fig.6.

2) Driving Cycle: making the vehicle perform specific
driving cycles at different initial battery temperature Tbatti,
in order to account the effect of the FBB controller on
storage reliability aspects. The simulations campaign consists
in the execution of specific speed references over time.
In particular the New European Driving Cycle (NEDC).
Though more significant driving cycles are available and
frequently used, e.g. Worldwide Harmonised Light Vehicles
Test Procedure (WLTP), which better replicates real driving
conditions by involving a wide spectrum of acceleration and
speed ranges, we still opted for the NEDC. This is due to the
fact that experimental data have been made available by CRF
concerning this cycle, useful for the model and controller
design.



Fig. 4. Membership Function for: a) Brake Comand; b) EM shaft speed; c) Battery SOC; d) Battery Temperature; e) Battery Cycle; f) Aggregation.

Tests are repeated, for both the electric powertrain configu-
rations of Fig.1, supposing the unavailability and availability
of the FBB controller in order to metrical asses its perfor-
mances. Interesting output are regenerated energy respect to
the consumed one, final SOCf and effective Ah-throughput
impact on one equivalent performed cycle (7), visible in
Table III, which show the effect of the FBB on above
mentioned variables, assuming the data arise from simulation
performed with conventional BB as a reference baseline for
the improvement evaluations.

Ah− throughputimpact =
Ah− throughputeff

2Cnom
(7)

Concerning the first simulations, results of Fig.6 show how
the proposed controller correctly assign the EM torque refer-
ences, according to the battery SOC and motor shaft speed:
when high level of charge occurs the blending strategies
reduces the RBS effort to avoid over-charging. Viceversa,
for low and medium level of charge the algorithm prioritize
electric braking to ensure a maximum energy recover.

Regarding the driving cycle simulations, we expect a
faster performances degradation when the BB strategy do
not account thermal and ageing phenomena. Data of Table III
are in agreement with these assumptions, since more severe
operative conditions accelerates the performances decay: the
equivalent performed cycle are higher. Indeed, according

Fig. 5. Simulation layout implemented in MATLAB Simulink.

equation (4)-(5) and [19], the impact in the battery ageing
of cycles performed at temperatures which differs from the
nominal, is greater. Nevertheless, energy performances are
reduced in potentially dangerous scenario. Important consid-
eration about the proposed controller could be done observing
that the amount of energy regenerated is minor for higher
battery temperatures. A first look at this output could suggest
some error in the simulations activities, since we expect a
less significant decrease of the energy recovered ratio by
the RBS, when the tests are performed at severe temperature
conditions.

However, these results are justified considering the limited
vehicle’s accelerations involved by the NEDC. The constrains
limitation imposed by the fuzzy controller during acceleration
phases are not overcomes by the driver request, which require
negligible torques, so the consumed energy remain the same.
During braking instead, the performances are reduced, since
are applied directly to the driver command, unlike during
traction, in which are applied to the e-powertrain limits.

IV. CONCLUSION AND FUTURE DEVELOPMENTS

Most significant results of the simulations are the energy
performances and reliability improvements obtained. Sup-
posing different powertrain layouts allows to comparatively
evaluate the outcomes, as well as the assessment of scalability
and portability properties of the developed control strategy.

Fig. 6. Straight line deceleration: regenerative torques at different SOCi



TABLE III
NEDC SIMULATION RESULTS AT SOCi=85% and DOD=5%

Initial Condition: Tbatt0=20°C; σ = 1
Layout Fuzzy BB SOCbattf[%] Ereg/Econs[%] Cycleimpact[%]

FWD ON 80.1 16.24 3.24
OFF 80.2 16.28 3.45

4WD ON 80.5 21.72 3.40
OFF 80.5 21.76 3.61

Initial Condition: Tbatt0=45°C; σ = 1.5
Layout Fuzzy BB SOCbattf[%] Ereg/Econs[%] Cycleeff

FWD ON 79.9 10.87 4.93
OFF 80.2 16.28 5.17

4WD ON 80.0 14.47 5.09
OFF 80.5 21.76 5.41

Initial Condition: Tbatt0=60°C; σ = 2
Layout Fuzzy BB SOCbattf[%] Ereg/Econs[%] Cycleeff

FWD ON 79.7 8.14 6.42
OFF 80.1 16.23 6.90

4WD ON 79.9 10.85 6.57
OFF 80.5 21.71 7.22

In conclusion, to ensure the maximum flexibility of the
controller, we have developed an algorithm which owns im-
portant scalability and portability properties. This conclusion
is due to the fact that the FBB strategies applies effectively
to different electric powertrain architectures. In addition,
improvements in the driver dynamic feedback are achieved:
conventional blending policies could generate abrupt accel-
erations when passing from the usage of a braking actuators
to another. A smoother dynamic instead, as the one proposed
in this paper, can reduce the passengers perception.

Results highlight how the proposed fuzzy controller could
increase battery reliability and lifespan, selecting more con-
servative power constrains when limit conditions occurs.
However, adopt FBB reduce the overall energy which could
be recovered for the RBS in those scenarios. This strategy,
attempt to find an optimal comprise between energy regen-
eration and energy storage system preservation.

Possible future developments concerns the refining of the
models and the further calibration of the Fuzzy BB controller,
making it capable to regenerate a greater amount of energy,
e.g. by modifying the ideal EM Torque vs Speed curve, or
by accounting more input variables in FIS design process.
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