

Institute of Applied Physics Friedrich-Schiller-Universität Jena

Design and Correction of optical Systems

Part 12: Correction of aberrations 1

Summer term 2012 Herbert Gross

Overview

2

1.	Basics	2012-04-18
2.	Materials	2012-04-25
3.	Components	2012-05-02
4.	Paraxial optics	2012-05-09
5.	Properties of optical systems	2012-05-16
6.	Photometry	2012-05-23
7.	Geometrical aberrations	2012-05-30
8.	Wave optical aberrations	2012-06-06
9.	Fourier optical image formation	2012-06-13
10.	Performance criteria 1	2012-06-20
11.	Performance criteria 2	2012-06-27
12.	Correction of aberrations 1	2012-07-04
13.	Correction of aberrations 2	2012-07-11
14.	Optical system classification	2012-07-18

Contents

3

- 12.1 Symmetry principle
- 12.2 Lens bending
- 12.3 Correcting spherical aberration
- 12.4 Coma, stop position
- 12.5 Astigmatism
- 12.6 Field flattening
- 12.7 Chromatical correction
- 12.8 Higher order aberrations

- Perfect symmetrical system: magnification m = -1
- Stop in centre of symmetry
- Symmetrical contributions of wave aberrations are doubled (spherical)
- Asymmetrical contributions of wave aberration vanishes W(-x) = -W(x)
- Easy correction of:

coma, distortion, chromatical change of magnification

Symmetrical Systems

Ideal symmetrical systems:

- Vanishing coma, distortion, lateral color aberration
- Remaining residual aberrations:
 - 1. spherical aberration
 - 2. astigmatism
 - 3. field curvature
 - 4. axial chromatical aberration
 - 5. skew spherical aberration

skew spherical aberration

5

Symmetry Principle

- Application of symmetry principle: photographic lenses
- Especially field dominant aberrations can be corrected
- Also approximate fulfillment of symmetry condition helps Triplet significantly: quasi symmetry
- Realization of quasisymmetric setups in nearly all photographic systems

Double Gauss (6 elements)

Double Gauss (7 elements)

Ref : H. Zügge

Correcting Spherical Aberration: Lens Splitting

- Correction of spherical aberration: Splitting of lenses
- Distribution of ray bending on several surfaces:
 - smaller incidence angles reduces the effect of nonlinearity
 - decreasing of contributions at every surface, but same sign
- Last example (e): one surface with compensating effect

Correcting Spherical Aberration : Power Splitting

Splitting of lenses and appropriate bending:

- 1. compensating surface contributions
- 2. Residual zone errors
- 3. More relaxed

setups preferred, although the nominal error is larger

Ref : H. Zügge

Correcting spherical aberration by cemented doublet:

- Strong bended inner surface compensates
- Solid state setups reduces problems of centering sensitivity
- In total 4 possible configurations:
 - 1. Flint in front / crown in front
 - 2. bi-convex outer surfaces / meniscus shape
- Residual zone error, spherical aberration corrected for outer marginal ray

Ref : H. Zügge

Correcting Spherical Aberration: Refractive Index

Ref : H. Zügge

 Better correction for high index also for meltiple lens systems

Institute of

Applied Physics

Example: 3-lens setup with one surface for compensation Residual aberrations is quite better for higher index

- Combination of positiv and negative lens : Change of apertur with factor β without shift of image plane
- Strong impact on spherical aberration
- Principle corresponds the tele photo system
- Calculation of the focal lengths

Inner and Outer Coma

- Effect of lens bending on coma
- Sign of coma : inner/outer coma

From : H. Zügge

Coma Correction: Achromat

- Bending of an achromate
 - optimal choice: small residual spherical aberration
 - remaining coma for finite field size
- Splitting achromate: additional degree of freedom:
 - better total correction possible
 - high sensitivity of thin air space
- Aplanatic glass choice: vanishing coma

- Perfect coma correction in the case of symmetry
- But magnification m = -1 not useful in most practical cases

Combined effect, aspherical case prevent correction

Ref : H. Zügge

Astigmatism: Lens Bending

- Bending effects astigmatism
- For a single lens 2 bending with zero astigmatism, but remaining field curvature

Ref : H. Zügge

Petzval Theorem for Field Curvature

- Petzval theorem for field curvature:
 1. formulation for surfaces
 - 2. formulation for thin lenses (in air)
- Important: no dependence on bending
- Natural behavior: image curved towards system
- Problem: collecting systems with f > 0: If only positive lenses: R_{ptz} always negative

$$\frac{1}{R_{ptz}} = -\sum_{j} \frac{1}{n_j \cdot f_j}$$

Petzval Theorem for Field Curvature

Goal: vanishing Petzval curvature

$$\frac{1}{R_{ptz}} = -\sum_{j} \frac{1}{n_j \cdot f_j}$$

 $\frac{1}{f} = \sum_{i} \frac{h_{i}}{h_{i}} \cdot \frac{1}{f}$

and positive total refractive power

for multi-component systems

• Solution:

General principle for correction of curvature of image field:

- 1. Positive lenses with:
 - high refractive index
 - large marginal ray heights
 - gives large contribution to power and low weighting in Petzval sum
- 2. Negative lenses with:
 - low refractive index
 - samll marginal ray heights
 - gives small negative contribution to power and high weighting in Petzval sum

- Correction of Petzval field curvature in lithographic lens for flat wafer
- Positive lenses: h_i large Green
- Negative lenses : h_i small Blue
- Correction principle: certain number of bulges

24

Field Curvature

Effect of a field lens for flattening the image surface

Axial Colour: Achromate

- Compensation of axial colour by appropriate glass choice
- Chromatical variation of the spherical aberrations: spherochromatism (Gaussian aberration)
- Therefore perfect axial color correction (on axis) are often not feasable

Axial Color Correction with Schupman Lens

- Non-compact system
- Generalized achromatic condition with marginal ray hieghts y_i

$$\frac{y_1^2}{v_1} \cdot F_1 + \frac{y_2^2}{v_2} \cdot F_2 = 0$$

- Use of a long distance and negative F_2 for correction
- Only possible for virtual imaging

positive

Axial Colour: Achromate and Apochromate

- Effect of different materials
- Axial chromatical aberration changes with wavelength
- Different levels of correction:
 - 1.No correction: lens,
 - one zero crossing point
 - 2.Achromatic correction:
 - coincidence of outer colors
 - remaining error for center wavelength
 - two zero crossing points
 - 3. Apochromatic correction:
 - coincidence of at least three colors
 - small residual aberrations
 - at least 3 zero crossing points
 - special choice of glass types with anomalous partial dispertion necessery

Axial Colour : Apochromate

P gF { Choice of at least one special glass 0,62 N-FS6 (2) Correction of secondary spectrum: anomalous partial dispersion 0,60 At least one glass should deviate 0,58 significantly form the normal glass line (1)+(2) N-KZFS11 0,56 (3) 656nm .(1) 0,54 N-FK51 ν 70 90 80 60 50 40 30 20 588nm 486nm 436nm Δz Δz -0.2mm -0.2mm 0 1µm

- Special glasses and very strong bending allows for apochromatic correction
- Large remaining spherical zonal aberration
- Zero-crossing points not well distributed over wavelength spectrum

Buried Surface

- Cemented surface with perfect refrcative index match
- No impact on monochromatic aberrations
- Only influence on chromatical aberrations
- Especially 3-fold cemented components are advantages
- Can serve as a starting setup for chromatical correction with fulfilled monochromatic correction
- Special glass combinations with nearly perfect parameters

Nr	Glas	n _d	Δn_{d}	ν_{d}	$\Delta \nu_{d}$
1	SK16	1.62031	0.00001	60.28	22.32
	F9	1.62030		37.96	
2	SK5	1.58905	0.00003	61.23	20.26
	LF2	1.58908		40.97	
3	SSK2	1.62218	0.00004	53.13	17.06
	F13	1.62222		36.07	
4	SK7	1.60720	0.00002	59.47	10.23
	BaF5	1.60718		49.24	

Field Lenses

- Field lens: in or near image planes
- Influences only the chief ray: pupil shifted
- Critical: conjugation to image plane, surface errors sharply seen

Field Lens im Endoscope

Ref : H. Zügge

Ray path of chief ray depends on stop position

Effect of Stop Position

- Example photographic lens
- Small axial shift of stop changes tranverse aberrations
- In particular coma is strongly influenced

Ref: H.Zügge

Distortion and Stop Position

- Sign of distortion for single lens: depends on stop position and sign of focal power
- Ray bending of chief ray defines distortion
- Stop position changes chief ray heigth at the lens

Lens	Stop location	Distortion	Examples
positive	rear	V > 0	tele photo lens
negative	in front	V > 0	loupe
positive	in front	V < 0	retrofocus lens
negative	rear	V < 0	reversed binocular

Higher Order Aberrations: Achromate, Aspheres

Ref : H. Zügge

Higher Order Aberrations: Merte Surface

- Merte surface:
- low index step
- strong bending
- mainly higher aberrations generated

Transverse

Aspherical Surfaces

- Additional degrees of freedom for correction
- Exact correction of spherical aberration for a finite number of aperture rays
- Strong asphere: many coefficients with high orders, large oscillative residual deviations in zones
- Location of aspherical surfaces:
 1. spherical aberration: near pupil
 2. distortion and astigmatism: near image plane
- Use of more than 1 asphere: critical, interaction and correlation of higher oders

Coexistence of Aberrations : Balance

- Example: Apochromate
- Balance :
 - 1. zonal spherical
- 2. Spot
- 3. Secondary spectrum

43

	400 nm	450 nm	500 nm	550 nm	600 nm	650 nm	700 nm
axis	$\textcircled{\bigcirc}$	•					
field 0.71°	۲		٢				
field 1.0°		0		Ó			

Summary of Important Topics

- Nearly symmetrical system are goord corrected for coma, distortion and lateral color
- Important influence on correction: bending of a lens
- Correction of spherical aberration: bending, cementing, higher index
- Correction of coma: bending, stop position, symmetry
- Correction of field curvature: thick mensicus, field lens, low index negative lenses with low ray height
- Achromate: coincidence of two colors, spherical correction, higher order zone remains
- Apochromatic correction: three glasses, one with anomalous partial dispersion
- Remaining chromatic error: spherochromatism
- Field lenses: adaption of pupil imaging
- Higher orders of aberrations: occur for large angles
- Whole system: balancing of aberrations and best trade-off is desired