Friedrich-Schiller-Universität Jena

Design and Correction of optical Systems

Part 12: Correction of aberrations 1

Summer term 2012
Herbert Gross

1. Basics 2012-04-18
2. Materials 2012-04-25
3. Components 2012-05-02
4. Paraxial optics 2012-05-09
5. Properties of optical systems 2012-05-16
6. Photometry 2012-05-23
7. Geometrical aberrations 2012-05-30
8. Wave optical aberrations 2012-06-06
9. Fourier optical image formation 2012-06-13
10. Performance criteria 1 2012-06-20
11. Performance criteria 2 2012-06-27
12. Correction of aberrations 1 2012-07-04
13. Correction of aberrations 2 2012-07-11
14. Optical system classification 2012-07-18
12.1 Symmetry principle
12.2 Lens bending
12.3 Correcting spherical aberration
12.4 Coma, stop position
12.5 Astigmatism
12.6 Field flattening
12.7 Chromatical correction
12.8 Higher order aberrations

Principle of Symmetry

- Perfect symmetrical system: magnification m = -1
- Stop in centre of symmetry
- Symmetrical contributions of wave aberrations are doubled (spherical)
- Asymmetrical contributions of wave aberration vanishes $W(-x)=-W(x)$
- Easy correction of:
coma, distortion, chromatical change of magnification

Symmetrical Systems

Ideal symmetrical systems:

- Vanishing coma, distortion, lateral color aberration
- Remaining residual aberrations:

1. spherical aberration
2. astigmatism
3. field curvature
4. axial chromatical aberration
5. skew spherical aberration
skew spherical aberration

Symmetry Principle

- Application of symmetry principle: photographic lenses
- Especially field dominant aberrations can be corrected
- Also approximate fulfillment of symmetry condition helps significantly: quasi symmetry
- Realization of quasisymmetric setups in nearly all photographic systems

Triplet

Biogon

Double Gauss (6 elements)

Double Gauss (7 elements)

Ref:H. Zügge

Correcting Spherical Aberration: Lens Splitting

- Correction of spherical aberration:

Splitting of lenses

- Distribution of ray bending on several surfaces: - smaller incidence angles reduces the effect of nonlinearity
- decreasing of contributions at every surface, but same sign
- Last example (e): one surface with compensating effect (

(b)

(c)

(d)

(e)

Transverse aberration

Correcting Spherical Aberration : Power Splitting

Splitting of lenses and appropriate bending:

1. compensating surface contributions
2. Residual zone errors
3. More relaxed setups preferred, although the nominal error is larger

Ref : H. Zügge

Correcting Spherical Aberration: Cementing

Correcting spherical aberration by cemented doublet:

- Strong bended inner surface compensates
- Solid state setups reduces problems of centering sensitivity
- In total 4 possible configurations:

1. Flint in front / crown in front
2. bi-convex outer surfaces / meniscus shape

- Residual zone error, spherical aberration corrected for outer marginal ray

Crown in front		(b)
Filnt in front	(c)	(d)

Correcting Spherical Aberration: Refractive Index

- Better correction for higher index
- Shape of lens / best bending changes from

1. nearly plane convex for $n=1.5$
2. meniscus shape for $n>2$?

Ref: H. Zügge

- Better correction
for high index also for meltiple lens systems
- Example: 3-lens setup with one surface for compensation Residual aberrations is quite better for higher index

Ref:H. Zügge

Bravais System

- Combination of positiv and negative lens :

Change of apertur with factor β without shift of image plane

- Strong impact on spherical aberration
- Principle corresponds the tele photo system
- Calculation of the focal lengths

$$
\begin{aligned}
& \frac{1}{f_{a}^{\prime}}=\frac{\beta-1}{\beta \cdot d} \cdot\left(1-\frac{d}{s}\right) \\
& \frac{1}{f_{b}^{\prime}}=\frac{1-\beta}{d \cdot\left(1-\frac{d}{s}\right)}
\end{aligned}
$$

- Effect of lens bending on coma
- Sign of coma : inner/outer coma

large
incidence angle
for upper coma ray

From : H. Zügge

Coma Correction: Achromat

- Bending of an achromate
- optimal choice: small residual spherical aberration
- remaining coma for finite field size
- Splitting achromate: additional degree of freedom:
- better total correction possible
- high sensitivity of thin air space
- Aplanatic glass choice: vanishing coma

Coma Correction: Symmetry Principle

- Perfect coma correction in the case of symmetry
- But magnification $m=-1$ not useful in most practical cases

From : H. Zügge

Coma Correction: Stop Position and Aspheres

- Combined effect, aspherical case prevent correction

Ref:H. Zügge

Astigmatism: Lens Bending

- Bending effects astigmatism
- For a single lens 2 bending with zero astigmatism, but remaining field curvature

Ref:H. Zügge

Petzval Theorem for Field Curvature

- Petzval theorem for field curvature:

1. formulation for surfaces

$$
\frac{1}{R_{p t z}}=-n_{m}^{\prime} \sum_{k} \frac{n_{k}^{\prime}-n_{k}}{n_{k} \cdot n_{k}^{\prime} \cdot r_{k}}
$$

2. formulation for thin lenses (in air)

$$
\frac{1}{R_{p t z}}=-\sum_{j} \frac{1}{n_{j} \cdot f_{j}}
$$

- Important: no dependence on bending
- Natural behavior: image curved towards system
- Problem: collecting systems with $\mathrm{f}>0$:
If only positive lenses:
$\mathrm{R}_{\mathrm{ptz}}$ always negative

- Goal: vanishing Petzval curvature

$$
\frac{1}{R_{p t z}}=-\sum_{j} \frac{1}{n_{j} \cdot f_{j}}
$$

and positive total refractive power

$$
\frac{1}{f}=\sum_{j} \frac{h_{j}}{h_{1}} \cdot \frac{1}{f}
$$

for multi-component systems

- Solution:

General principle for correction of curvature of image field:

1. Positive lenses with:

- high refractive index
- large marginal ray heights
- gives large contribution to power and low weighting in Petzval sum

2. Negative lenses with:

- low refractive index
- samll marginal ray heights
- gives small negative contribution to power and high weighting in Petzval sum

Field Curvature

- Correction of Petzval field curvature in lithographic lens for flat wafer

$$
\frac{1}{R}=-\sum_{j} \frac{F_{j}}{n_{j}}
$$

- Positive lenses: Green
h_{j} large
- Negative lenses: Blue
h_{j} small

$$
F=\sum_{j} \frac{h_{j}}{h_{1}} \cdot F_{j}
$$

- Correction principle: certain number of bulges

Effect of a field lens for flattening the image surface

1. Without field lens
curved image surface

2. With field lens
image plane

Axial Colour: Achromate

- Compensation of axial colour by appropriate glass choice
- Chromatical variation of the spherical aberrations: spherochromatism (Gaussian aberration)
- Therefore perfect axial color correction (on axis) are often not feasable
(a)

$$
\begin{aligned}
& v=64.17 \\
& F=1
\end{aligned}
$$

(b)

$n=1.5168$	1.6200
$v=$	64.17
$F=$	36.37
	-1.31

$v=64.17$
36.37

Ref:H. Zügge

Axial Color Correction with Schupman Lens

- Non-compact system
- Generalized achromatic condition with marginal ray hieghts y_{j}

$$
\frac{y_{1}^{2}}{v_{1}} \cdot F_{1}+\frac{y_{2}^{2}}{v_{2}} \cdot F_{2}=0
$$

- Use of a long distance and negative F_{2} for correction
- Only possible for virtual imaging

- Effect of different materials
- Axial chromatical aberration changes with wavelength
- Different levels of correction:
1.No correction: lens, one zero crossing point
2.Achromatic correction:
- coincidence of outer colors - remaining error for center wavelength
- two zero crossing points

3. Apochromatic correction:

- coincidence of at least three colors
- small residual aberrations - at least 3 zero crossing points - special choice of glass types with anomalous partial dispertion necessery

- Choice of at least one special glass
- Correction of secondary spectrum: anomalous partial dispersion
- At least one glass should deviate significantly form the normal glass line

- Special glasses and very strong bending allows for apochromatic correction
- Large remaining spherical zonal aberration
- Zero-crossing points not well distributed over wavelength spectrum

Buried Surface

- Cemented surface with perfect refrcative index match
- No impact on monochromatic aberrations
- Only influence on chromatical aberrations
- Especially 3-fold cemented components are advantages
- Can serve as a starting setup for chromatical correction with fulfilled monochromatic correction
- Special glass combinations with nearly perfect parameters

Nr	Glas	n_{d}	$\Delta \mathrm{n}_{\mathrm{d}}$	v_{d}	Δv_{d}
1	SK16	1.62031	0.00001	60.28	22.32
	F9	1.62030		37.96	
2	SK5	1.58905	0.00003	61.23	20.26
	LF2	1.58908		40.97	
3	SSK2	1.62218	0.00004	53.13	17.06
	F13	1.62222		36.07	
4	SK7	1.60720	0.00002	59.47	10.23
	BaF5	1.60718		49.24	

- Field lens: in or near image planes
- Influences only the chief ray: pupil shifted
- Critical: conjugation to image plane, surface errors sharply seen

Ref : H. Zügge

Institute of

Influence of Stop Position on Performance

- Ray path of chief ray depends on stop position

Effect of Stop Position

- Example photographic lens
- Small axial shift of stop changes tranverse aberrations
- In particular coma is strongly influenced

Ref: H.Zügge

- Sign of distortion for single lens: depends on stop position and sign of focal power
- Ray bending of chief ray defines distortion
- Stop position changes chief ray heigth at the lens

Lens	Stop location	Distortion	Examples
positive	rear	$\mathrm{V}>0$	tele photo lens
negative	in front	$\mathrm{V}>0$	loupe
positive	in front	$\mathrm{V}<0$	retrofocus lens
negative	rear	$\mathrm{V}<0$	reversed binocular

Higher Order Aberrations: Achromate, Aspheres

- Splitted achromate

broken contact

Ref : H. Zügge

- Merte surface:
- low index step
- strong bending
- mainly higher aberrations generated
(a)

Transverse spherical aberration

- Additional degrees of freedom for correction
- Exact correction of spherical aberration for a finite number of aperture rays
- Strong asphere: many coefficients with high orders, large oscillative residual deviations in zones
- Location of aspherical surfaces:

1. spherical aberration: near pupil
2. distortion and astigmatism: near image plane

- Use of more than 1 asphere: critical, interaction and correlation of higher oders

Coexistence of Aberrations : Balance

- Example: Apochromate
- Balance :

1. zonal spherical
2. Spot
3. Secondary spectrum

Summary of Important Topics

- Nearly symmetrical system are goord corrected for coma, distortion and lateral color
- Important influence on correction: bending of a lens
- Correction of spherical aberration: bending, cementing, higher index
- Correction of coma: bending, stop position, symmetry
- Correction of field curvature: thick mensicus, field lens, low index negative lenses with low ray height
- Achromate: coincidence of two colors, spherical correction, higher order zone remains
- Apochromatic correction: three glasses, one with anomalous partial dispersion
- Remaining chromatic error: spherochromatism
- Field lenses: adaption of pupil imaging
- Higher orders of aberrations: occur for large angles
- Whole system: balancing of aberrations and best trade-off is desired

