Introduzione

Le proprietà della materia, nelle sue varie forme di aggregazione, sono determinate dall'interazione fra gli atomi e le molecole.

Di gran lunga dominante è **l'interazione coulombiana** fra tutte le cariche del sistema (nuclei e elettroni). Trascurando interazioni magnetiche e spin-orbita, il problema della struttura della materia è quello di risolvere l'equazione di Schrödinger a molti corpi:

$$\left[\sum_{i} \frac{-\hbar^{2} \nabla_{i}^{2}}{2 m_{i}} + \frac{1}{2} \sum_{\substack{i,j \ i \neq j}} \frac{q_{i} q_{j}}{r_{ij}}\right] \Psi = E \Psi$$

Un problema così complesso può essere affrontato solo facendo delle approssimazioni:

- separazione di Born-Oppenheimer (ipotesi adiabatica) equazione per i nuclei in cui lo stato elettronico gioca il ruolo di potenziale efficace per una data configurazione nucleare
- in sistemi non monoatomici, si trascurano gli effetti di rotazioni e vibrazioni
- si considerano sistemi classici (ipotesi verificata in genere per i liquidi, ma non per tutti)

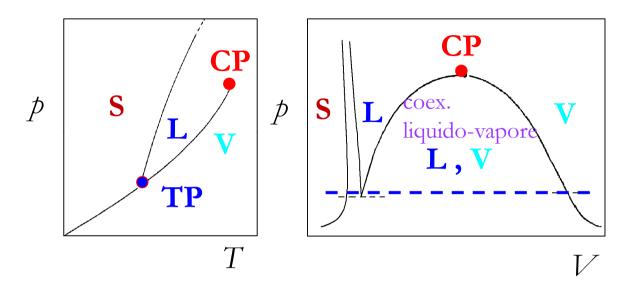
Liquidi quantici

Sistema	T _C [K]	T _T [K]	n _C [nm ⁻³]	n_T [nm-3]	$(\Lambda/\sigma)_C$	$(\Lambda/\sigma)_T$	$(\Lambda/l)_C$	$(\Lambda/l)_T$
Не	5.20	2.18 (*)	10.47	21.99 (*)	1.50	2.31 (*)	0.84	1.66 (*)
H_2	33.19	13.96	9.00	23.06	0.72	1.11	0.44	0.94
D_2	38.34	18.71	10.44	25.99	0.47	0.68	0.31	0.60
Ne	44.4	24.55	14.31	37.2	0.21	0.29	0.14	0.26

Confronto fra la lunghezza d'onda termica di de Broglie Λ , la dimensione σ di una particella e l'interdistanza media l delle particelle per alcuni liquidi leggeri. I pedici C e T si riferiscono al punto critico e triplo rispettivamente, n è la densità numerica. Con il simbolo (*) si sono indicati per l'elio i dati relativi al punto λ , ovvero al punto termodinamico in cui ha luogo la transizione da fluido a superfluido (si ricorda che per l'elio non esiste un punto triplo).

$$\Lambda = h / (2\pi M k_B T)^{1/2}$$

Lo stato liquido



Nelle ipotesi menzionate, l'Hamiltoniana del sistema dei nuclei può essere separata in un termine

cinetico e uno di energia potenziale:

$$H = \sum_{i=1,N} \frac{p_i^2}{2m_i} + V_N(\mathbf{r}^N) = K + V$$

$$\mathbf{r}^N = \{\mathbf{r}_1, \mathbf{r}_2, \dots, \mathbf{r}_N\}$$

$$continue l'effetto degli stati elettronici$$

$$K/|V| >> 1$$
 gas diluiti (disordinati, assenza di struttura)
 $K/|V| \cong 1$ liquido (strutturati, ma assenza di ordine a lungo raggio)
 $K/|V| << 1$ solido (ordine a lungo raggio)

Dinamica microscopica di un sistema a molti corpi

E' impossibile pensare di scrivere l'equazione di moto per ciascuna particella quando N è dell'ordine di 10^{22} , almeno. Si rende necessario un

approccio statistico:

il comportamento statico e dinamico di un insieme di atomi è descritto in termini di *medie* su tutte le possibili configurazioni microscopiche compatibili con un dato stato macroscopico di equilibrio, definito da poche variabili termodinamiche (cioè macroscopiche), come *temperatura*, *densità*, etc.

Richiami di meccanica statistica classica

$$f_{eq}(\mathbf{r}^N, \mathbf{p}^N) = \frac{1}{N!h^{3N}} \frac{\exp^{-\beta H(\mathbf{r}^N, \mathbf{p}^N)}}{Z_N}$$

$$Z_{N} = \frac{1}{N!h^{3N}} \iint d\mathbf{r}^{N} d\mathbf{p}^{N} e^{-\beta H(\mathbf{r}^{N}, \mathbf{p}^{N})}$$

peso statistico di un certo microstato nell'insieme canonico (ensemble NVT) È omessa la dipendenza da t delle coordinate e degli impulsi per brevità di notazione

Funzione di partizione canonica

Valor medio statistico (di equilibrio) di A:

$$A(t) \underset{def}{\equiv} A(\mathbf{r}^{N}(t), \mathbf{p}^{N}(t)) = A(\mathbf{r}_{1}(t), \dots, \mathbf{r}_{N}(t); \mathbf{p}_{1}(t), \dots, \mathbf{p}_{N}(t)) \text{ variabile dinamica microscopica}$$
$$\langle A \rangle = \iint A(\mathbf{r}^{N}(t), \mathbf{p}^{N}(t)) f_{eq}(\mathbf{r}^{N}(t), \mathbf{p}^{N}(t)) d\mathbf{r}^{N} d\mathbf{p}^{N}$$

Anche detta media di insieme

Se si assume che l'energia potenziale sia dovuta solo a forze interne al sistema dipendenti solamente dalle coordinate delle N particelle

$$Z_{N}(V,T) = \frac{1}{N! h^{3N}} Q_{N}(V,T) \left[\int_{-\infty}^{+\infty} \exp\left(\frac{-\beta}{2M} p_{1x}^{2}\right) dp_{1x} \right]^{3N} = \frac{1}{N! \Lambda^{3N}} Q_{N}(V,T)$$

(1.5)

dove $Q_N(V,T)$ è il cosiddetto integrale configurazionale definito da:

$$Q_N(V,T) = \int d\mathbf{r}^N \exp\left[-\beta V_N(\mathbf{r}^N)\right]$$

Densità di probabilità configurazionale ad N particelle

$$P_N^{(N)}(\mathbf{r}_1,...,\mathbf{r}_N) = \frac{\exp\left[-\beta V_N(\mathbf{r}^N)\right]}{\int d\mathbf{r}^N \exp\left[-\beta V_N(\mathbf{r}^N)\right]} = \frac{\exp\left[-\beta V_N(\mathbf{r}^N)\right]}{Q_N(V,T)}$$
peso statistico

di una certa configurazione

Quindi $P_N^{(N)}(\mathbf{r}_1, \ldots, \mathbf{r}_N)$ $d\mathbf{r}_N$ rappresenta la probabilità di trovare il sistema nella configurazione in cui la particella 1 è in \mathbf{r}_1 , la particella 2 è in \mathbf{r}_2 , ..., la particella N è in \mathbf{r}_N , indipendentemente dai valori degli impulsi $\mathbf{p}_1, \ldots, \mathbf{p}_N$. Essa permette di ottenere il valor medio statistico di una funzione generica delle sole coordinate di posizione $\boldsymbol{\varphi}(\mathbf{r}_1, \ldots, \mathbf{r}_n)$ come:

$$\langle \varphi(\mathbf{r}_1,...,\mathbf{r}_n) \rangle = \int d\mathbf{r}_1...d\mathbf{r}_N \ P_N^{(N)}(\mathbf{r}_1,...,\mathbf{r}_N) \ \varphi(\mathbf{r}_1,...,\mathbf{r}_n)$$