RIASSUMENDO CIRCA L'INCOERENZA DI SPIN

La cosiddetta incoerenza di spin è sempre presente. Fanno eccezione esclusivamente i campioni costituiti da isotopi con spin nucleare / = 0. Solo tali campioni scatterano i neutroni in modo completamente coerente.

La presenza di scattering incoerente è una proprietà esclusiva dei neutroni

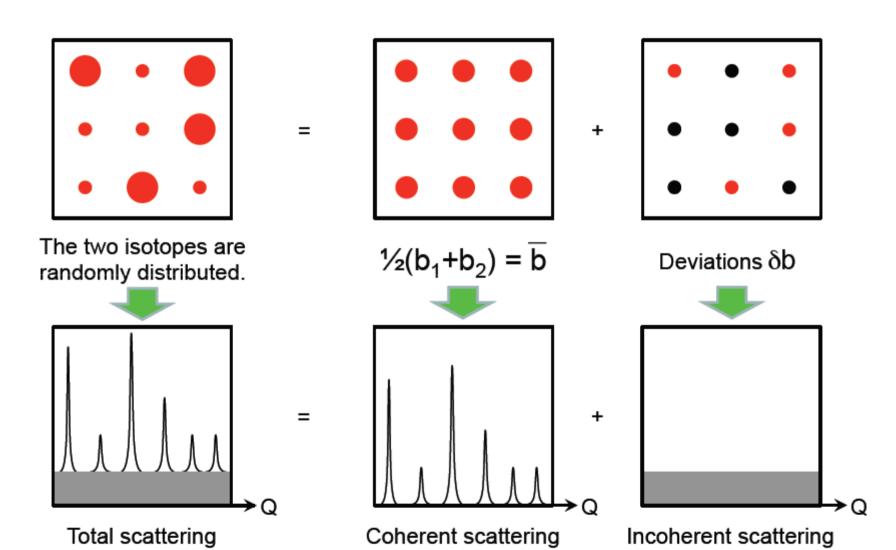
In studi di tipo strutturale (i.e. mirati alla determinazione della sezione d'urto differenziale e, da questa, del fattore di struttura statico S(Q)) lo scattering incoerente dà luogo ad un background e rappresenta uno "svantaggio".

$$\frac{d\sigma}{d\Omega} \cong \sum_{\alpha,\beta} \langle b \rangle^2 e^{i\mathbf{Q}\cdot(\mathbf{R}_{\alpha}-\mathbf{R}_{\beta})} \left(N \left(\langle b^2 \rangle - \langle b \rangle^2 \right) \right)$$

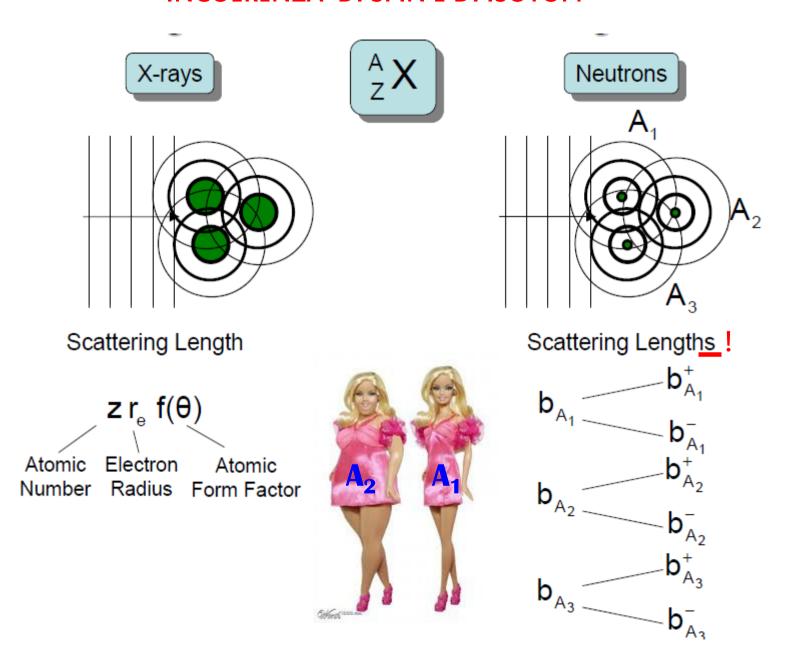
In studi di tipo dinamico (i.e. mirati alla determinazione della sezione d'urto differenziale doppia e, da questa, del fattore di struttura dinamico S(Q,E)) lo scattering incoerente dà luogo ad un segnale dipendente dall'energia scambiata E e rappresenta in alcuni casi un grosso "vantaggio".

INCOERENZA ISOTOPICA

Il fenomeno della "incoerenza" nasce dal fatto che i neutroni, essendo dotati di spin, possono interagire con uno stesso nucleo (di spin non nullo) in due modi diversi.


Ovviamente, se un campione, anche di uno stesso elemento chimico, ha una composizione isotopica mista, questo darà luogo ad uno scattering (coerente ed incoerente) che dipende anche dal fatto che sono presenti nuclei di vario tipo.

Si parla in tali casi di "incoerenza isotopica" per distinguerla da quella (intrinseca ed ineliminabile) dovuta allo spin.


Colum	n Symb	ol Unit	Quantity	\/I	E Spare	Nout	ron Na	ews, 3(3),	1002		
			element	VI	Sear	s, iveui	I OII ING	=ws, 5(5 <i>)</i> ,	1992		
2	Z		atomic nun	nber							
	A		mass numb	ber							
	I(p)		spin (parity) of the nuclear g	ground state						
	C	%	natural abu	natural abundance (For radioisotopes the half-life is given instead.)							
	bc	fm		und coherent scattering length							
	b	fm	bound inco	herent scattering	length						
	s _c barn ¹ bound coherent scattering cross se										
113	S	barn	bound inco	herent scattering	eattering cross section						
0	Ss	barn	total bound	scattering cross	section						
1	S	barn	absorption cross section for 2200 m/s neutrons ²								
	barn = 100 = 25.30 me				2200 Till 3 Tiedd 0		2011	(8e* 1 (+)58	167701		
			4 Å ⁻¹ , /= 1.798		2200 11/3 1160010		2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	00 (1) (+) (2) (4) (1) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	TOTAL STATE		
					(auztra) (3	1.05 year 1	σ	σ	g		
2) E Z	= 25.30 me	V, k = 3.494	4 Å⁻¹, / = 1.79ℓ	8 Å	b _i	σ_c	August Property and The	σ, 20.00(c)	σ _e		
2) E Z	= 25.30 me	$V, k = 3.494$ $I(\pi)$	4 Å ⁻¹ , $I = 1.796$	8 Å b _c -3.7390(11)	b_i	σ _c 1.7568(10)	80.26(6)	82.02(6)	0.3326(7)		
2) E Z	= 25.30 me	$I(\pi)$ 1/2(+)	4 Å⁻¹, / = 1.79ℓ	8 Å b _c -3.7390(11) -3.7406(11)	<i>b_i</i> 25.274(9)	σ _c 1.7568(10) 1.7583(10)	80.26(6) 80.27(6)	82.02(6) 82.03(6)	0.3326(7) 0.3326(7)		
2) E Z	= 25.30 me A	$I(\pi)$ $I(\pi)$ $I(\pi)$	c 99.985 0.015	b _c -3.7390(11) -3.7406(11) 6.671(4)	b _i 25.274(9) 4.04(3)	σ _c 1.7568(10) 1.7583(10) 5.592(7)	80.26(6) 80.27(6) 2.05(3)	82.02(6) 82.03(6) 7.64(3)	0.3326(7) 0.3326(7) 0.000519(7		
2) E Z	A 1 2	$I(\pi)$ 1/2(+)	c 99.985	8 Å b _c -3.7390(11) -3.7406(11)	<i>b_i</i> 25.274(9)	σ _c 1.7568(10) 1.7583(10)	80.26(6) 80.27(6)	82.02(6) 82.03(6)	0.3326(7) 0.3326(7)		
z 1	A 1 2	$I(\pi)$ $I(\pi)$ $I(\pi)$	c 99.985 0.015	b _c -3.7390(11) -3.7406(11) 6.671(4) 4.792(27)	b _i 25.274(9) 4.04(3)	σ _c 1.7568(10) 1.7583(10) 5.592(7) 2.89(3)	80.26(6) 80.27(6) 2.05(3)	82.02(6) 82.03(6) 7.64(3) 3.03(5)	0.3326(7) 0.3326(7) 0.000519(7)		
z 1 1	A 1 2	$I(\pi)$ $I(\pi)$ $I(\pi)$	c 99.985 0.015	b _c -3.7390(11) -3.7406(11) 6.671(4) 4.792(27) 3.26(3)	b _i 25.274(9) 4.04(3) -1.04(17)	σ _c 1.7568(10) 1.7583(10) 5.592(7) 2.89(3) 1.34(2)	80.26(6) 80.27(6) 2.05(3) 0.14(4)	82.02(6) 82.03(6) 7.64(3) 3.03(5) 1.34(2)	0.3326(7) 0.3326(7) 0.000519(7) 0		
2) E Z	A 1 2 3	I(π) 1/2(+) 1(+) 1/2(+)	c 99.985 0.015 (12.32 a)	b _c -3.7390(11) -3.7406(11) 6.671(4) 4.792(27)	b _i 25.274(9) 4.04(3)	σ _c 1.7568(10) 1.7583(10) 5.592(7) 2.89(3)	80.26(6) 80.27(6) 2.05(3) 0.14(4)	82.02(6) 82.03(6) 7.64(3) 3.03(5)	0.3326(7) 0.3326(7) 0.000519(7		

INCOERENZA ISOTOPICA

$$b_1 = b_2 = 0$$

INCOERENZA DI SPIN E DI ISOTOPI

INCOERENZA DI ISOTOPI: ESEMPI INTERESSANTI

	Z	A	$I(\pi)$	c	b_c	b_{i}	σ_{c}	σ_i	$\sigma_{_{s}}$	σ_{a}
Ar	18				1.909(6)		0.458(3)	0.225(5)	0.683(4)	0.675(9
		36	0(+)	0.337	24.90(7)	0	77.9(4)	0	77.9(4)	5.2(5)
		38	0(+)	0.063	3.5(3.5)	0	1.5(3.1)	0	1.5(3.1)	0.8(2)
		40	0(+)	99.600	1.830(6)	0	0.421(3)	0	0.421(3)	0.660(9
Се	58				4.84(2)		2.94(2)	0.00(10)	2.94(10)	0.63(4)
		136	0(+)	0.19	5.80(9)	0	4.23(13)	0	4.23(13)	7.3(1.5)
		138	0(+)	0.25	6.70(9)	0	5.64(15)	0	5.64(15)	1.1(3)
		140	0(+)	88.48	4.84(9)	0	2.94(11)	0	2.94(11)	0.57(4)
		142	0(+)	11.08	4.75(9)	0	2.84(11)	0	2.84(11)	0.95(5)