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Seminar content

Overview on models arising in machine learning1

Analysis of stochastic gradient methods2,3

Noise-reduction techniques

Methods with adaptive choice of the learning-rate

Application to Artificial Neural Networks

1
Goodfellow, Bengio, Courville, Deep Learning, MIT Press, 2016, http://www.deeplearningbook.org.

2
Bottou, Curtis, Nocedal. Optimization Methods for Large-Scale Machine Learning, Siam Review 60

(2), 223–311, 2018.
3
Bianconcini, Bellavia, Krejic, Morini, Subsampled first-order optimization methods with applications in

imaging, Handbook of Mathematical Models and Algorithms in Computer Vision and Imaging, 2021.

http://www.deeplearningbook.org.


Machine learning algorithms

A machine learning algorithm is an algorithm able to learn from data.

Mitchell, Machine Learning, McGraw-Hill, New York, 97, 1997.
A computer program is said to learn from experience E with respect to
some class of tasks T and performance measure P, if its performance at
tasks in T, as measured by P, improves with experience E.

Tasks: classification (object recognition, design of feasible
industrial components ...), regression, transcription (character
recognition, speech recognition ...), machine translation ...

Experience: large-scale data sets

Measure: training error, validation error, testing error



Supervised learning process

training set : tpai, biqui�1,...,N

testing set : tpatest
i , btest

i qui�1,...,Ntest

ai is called the feature vector.

bi is the true output associated to the input ai.



Training as solving an optimization problem

Training consists in solving a finite-sum minimization problem.

Finite-sum minimization problems

min
xPRn

fpxq �
1

N

Ņ

i�1

φipxq,

φi : Rn Ñ R, φi P C
1pRnq, i � 1, . . . , N and f bounded below.

Goal: compute εg-approximate first-order critical points:

}∇fpx̂q} ¤ εg.

Challenge: when N is large, the evaluation of f and its derivative
information is computationally expensive.



Classification example (1)

The MNIST Dataset1

DATA Training Size N Test Size Numb. of Features d

MNIST 60000 10000 784

Each feature vector (row in the feature matrix) consists of 784 pixels – unrolled from the
original 28x28 pixels images.

digits classification: hand-written digits 0, 1,... 9.

1http://yann.lecun.com/exdb/mnist

h


Classification example (2)

Mushrooms Dataset1

DATA Training Size N Test Size Numb. of Features d

Mushrooms 5000 3124 112

Each feature vector consists of 0 or 1.

Safe to eat or deadly poison?

1https://www.kaggle.com/uciml/mushroom-classification



Classification example (3)

Parametric Design of Centrifugal Pumps1,2

DATA Training Size N Test Size Numb. of Features d

Pumps 61600 440 15400

Features: parameters describing the pump geometry
Task: classify feasible and unfeasible pumps

1
Riccietti, Bellucci, Checcucci, Marconcini, Arnone, Engineering Optimization 50, 1304–1324, 2018.

2
Checcucci, Schneider, Marconcini, Rubechini, Arnone, De Franco, Coneri, Proc. of 12th International

Symposium on Experimental and Computational Aerothermodynamics of Internal Flows, 2015.



Regression example

Benzene estimation1

DATA Training Size N Test Size Numb. of Features d

Air 6294 2697 7

Benzene concentration predicted and true (10 days)

Features: concentrations of 7 pollutants measured in the centre of an Italian city
characterized by heavy car traffics from March 2004 until April 2005.

Task: predict the value of benzene concentration.

1
De Vito, Massera, Piga, Martinotto, Di Francia, In Sensors and Actuators B: Chemical 129 (2), 2008.



Fundamentals

Goal
Determine a prediction function (model) h : A Ñ B such that,
given a P A, the value hpaq offers an accurate prediction about the
true output b associated to the input a.

General problems

Binary classification: classify instances into κ � 2 classes.
Multi-class classification: classifying instances into one of
κ ¥ 3 classes.

The prediction function h : A Ñ r0, 1sκ is such that, given
a P A, the value phpaqqj is the prediction of the probability of
input a to be classified in class j. The input is then associated
to the class corresponding to the highest probability.

Regression: in this case, b P IRdb and hence h : A Ñ IRdb�κ.



Empirical risk

Goal: determine a prediction function (model) h : A Ñ B, belonging to
a family of prediction functions H.

Choose a prediction function parametrized by a vector x P Rn

h P H � thp�;xq : x P Rnu.

Introduce a loss function ` : A� B Ñ R that, given an
input-output pair pa, bq, yields the loss `phpa;xq, bq when b is
predicted by hpa;xq.

Given a set of examples tpai, biqu
N
i�1 (training set), ai P IRd

(features), bi P IRp (label), compute x so as to minimize

fpxq �
1

N

Ņ

i�1

`phpai;xq, biqloooooomoooooon
φipxq

Empirical Risk

Testing set to evaluate generalization properties of the model.



Logistic classification model (logit or logistic regression)

Given tpai, biqu
N
i�1, ai P IRd, bi P t�1,�1u (binary classification problem).

Assume the conditional probability P pb|aq of b being the label of a is

P pb|aq � ζpa, b;xq �
1

1� e�baT x
, ζpa, b;xq : IRn Ñ p0, 1q

ζpa, 1;xq � ζpa,�1;xq �
1

1� e�aT x
�

1

1� eaT x
� 1

and x P IRd is the parameters vector.
The function ζpzq � 1

1�e�z is called the sigmoid function.
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Logistic loss

We take x that maximizes P pb1, b2, . . . , bN |a1, a2, . . . aN q :

max
xPIRd

N¹
i�1

ζpai, bi;xq � max
xPIRd

N¹
i�1

1

1 � e�bia
T
i x
.

Taking the logarithm and setting n � d:

min
xPIRn

fpxq �
1

N

Ņ

i�1

logp1 � e�bia
T
i xqlooooooooomooooooooon

φipxq

.



Logistic loss

min
xPIRn

fpxq �
1

N

Ņ

i�1

logp1 � e�bia
T
i xqlooooooooomooooooooon

φipxq

Given x̂ resulting from the classifier training, we classify the new
instance â P IRn as follows

If P p1|âq �
1

1 � e�âT x̂
¥ 0.5, set b̂ � 1

If P p1|âq �
1

1 � e�âT x̂
  0.5, set b̂ � �1.



Logistic loss with `2 regularization

The logistic loss with `2 regularization is given by

fpxq �
1

N

Ņ

i�1

logp1 � e�bia
T
i xq �

1

2N
}x}22.

where }x}2 �
b°N

i�1 x
2
i .

Regularization avoids overfitting (i.e. fitting too closely noisy data) by
imposing sparsity on the model parameters (see tomorrow’s seminar).

`2 regularization makes the logistic loss strongly convex
ñ good convergence properties for machine learning algorithms



Overcoming linear models

The logistic regression model assumes that the data is linearly
separable, i.e. can be separated by a line.
This is not the case for many real-life applications.
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Non-linearity often needs to be encoded in the prediction function.



Feedforward Neural Networks

Feedforward Neural Networks or Multilayer perceptrons (MLPs) are
non-linear models which aim at approximating an unknown function.

They are called feedforward because information flows through the
function being evaluated from x, through some intermediate
computations, and finally to the output y. There are no feedback
connections in which outputs of the model are fed back into itself,
as opposed to the so-called recurrent neural networks.

They are called networks as they are typically obtained by
composing together several different functions.

They are called neural since they are vaguely inspired by
neuroscience.



Feedforward Neural Networks

The prediction function h is determined by the network’s architecture, the vector of
parameters x is given by the network’s weights and bias.

Network’s layers: L1, . . . , Lm (where m ¥ 2), L1 input layer, Lm output layer.
Case m ¡ 2: L2, . . . , Lm�1 are the so-called hidden layers.

ni number of neurons of layer Li; n1 � d, nm � p.

Input Layer � �� Hidden Layer � �� Hidden Layer � �³ Output Layer � �²

Example: m � 4 levels, n1 � d � 5, n2 � 9, n3 � 3, n4 � p � 2.



Feedforward Neural Networks

Let vi �
�
vi,1, . . . , vi,ni

�T
P Rni be the output of layer Li and

σi �
�
σi,1, . . . , σi,ni

�T
P Rni contain the activation functions σi,j : R Ñ R.

The output of the j-th neuron of the layer Li, for i � 2, . . . , m is the scalar

vi,j � σi,j

�ni�1¸
k�1

wi,j,k � vi�1,k � βi,j

�
j � 1, . . . , ni,

where βi,j P R is called bias and the parameters wi,j,k are called weights.

vi1 is given by the input data a.

Σ

β4,1
v3,1

v3,2

v3,3

σ4,1

activation function

v4,1

w4,1,1

w4,1,2

w4,1,3



Output

Letting Wi P Rni � Rni�1 be the matrix with pj, kq-entry given by

pWiqj,k � wi,j,k, 1 ¤ j ¤ ni, 1 ¤ k ¤ ni�1

and βi �
�
βi,1, . . . , βi,ni

�T
P Rni , the output of the whole layer Li is

vi � σi pWivi�1 � βiq .

In fact, the output of each layer is defined recursively and depends on the output of
the previous layer:

"
v1 � a
vi � σi pWivi�1 � βiq i � 2, . . . ,m

Case m � 2, p � 1. Given the input a, the output of the network is:

v � σ

�
ḑ

k�1

wk � ak � β

�
� σ

�
wT a� β

	



Activation functions

linear: σpzq � z;

sigmoid or logistic: σpzq � 1
1�e�z .

Used in the output level if the label belongs to r0, 1s.

softmax : σ : IRk Ñ IRk defined by σpzqj :� e
zj

°k
i�1 ezi

for j � 1, . . . , k.

Produces positive estimates that sum up to 1 and is particularly useful in
classification when the output represents the probability of some P Rs to belong to
different classes.

hyperbolic function: σpzq � tanhpzq � ez�e�z

ez�e�z ; output in r�1, 1s.

ReLU (Rectified Linear Unit): σpzq � maxp0, zq.

ELU (Exponential Linear Unit): σpzq � z � 1rz¥0s � pez � 1q � 1rz 0s.



Activation functions
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Why using neural networks?

Universal approximation theorem (Hornik et al., 1989; Cybenko, 1989)
A feedforward network with a linear output layer and at least one
hidden layer with any “squashing” activation function (as the sigmoid
activation function) can approximate any Borel measurable function
from one finite-dimensional space to another with any desired non-zero
amount of error, provided that the network is given enough hidden
units.



Deep learning

Deep learning
Machine learning algorithms based on artificial neural networks.

Main steps

Choose the network architecture and the activation functions

Choose the loss function

Train the network to compute weights and bias ñ Model



Neural network training

The procedure for choosing the parameters tpWi, βiqui�2,...,m is called
training phase.

Let
x �

�
vecpW2q,β

T
2 , . . . , vecpWmq,β

T
m

�T
,

where vecpAq is the vector obtained by stacking A column by column.

Given the set of known data tpai,biqui�1,...,N (training set), the aim is to
choose the parameters so that the output vmpx; aiq of the neural network
corresponding to the input ai is as close as possible to the true output bi
for every i � 1, . . . , N .

We have to minimize the empirical risk:

fpxq �
1

N

Ņ

i�1

`pvmpx; aiq,biqloooooooomoooooooon
φipxq

.



Logistic regression as a neural network

Case m � 2 (no hidden layers), σpzq � 1{p1� e�zq (sigmoid function)

Given tpai, biqu
N
i�1, ai P IRn, bi P t0, 1u pp � 1q, the output is:

v � σ
�
wTa� β

�
�

1

1� e�a
T
i w�β

.

If β � 0, this is the probability P p1|aiq used in the logistic regression!

Σ

β
a1

a2

aN

σpzq � 1
1�e�z

sigmoid function

v

x1

x2

xN



Logistic regression as a neural network

If we interpret the output of the network as a predicted label, setting
x � pw1, . . . , wd, βq

T , it is reasonable to use a least squares loss1:

fpxq �
1

N

Ņ

i�1

�
bi �

1

1� e�a
T
i xp1:dq�xd�1


2

non-convex

Let x̂ � pŵ1, . . . , ŵd, β̂q
T the approximation computed by the network

training.

Binary classification: the classifier is such that

1

1� e�a
T
i ŵ�β̂

¥ 0.5 ñ bi � 1

1

1� e�a
T
i ŵ�β̂

  0.5 ñ bi � 0

1
Xu, Roosta, Mahoney, Proc. of the 2020 SIAM International Conference on Data Mining, 2020.


