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Finite-sum minimization problems in machine learning

Training a neural network involves solving a problem of the form:

min
xPIRn

fpxq �
1

N

Ņ

i�1

φipxq

where φi : IRn Ñ IR, φi P C
1pIRnq, N is large.

Compute x̂ s.t. }∇fpx̂q} ¤ ε using iterative gradient-based methods

Training sets often show redundancy in the data
ñ using all the sample data in every optimization iteration is inefficient

Idea: gradient subsampling



First order (stochastic) gradient methods

Gradient method (GD)
Compute

xk�1 � xk �
α

N

Ņ

i�1

∇φipxkq, k � 0, 1, 2, . . .

Stochastic Gradient method (SG)

Choose randomly and uniformly the index ik P t1, . . . , Nu and compute

xk�1 � xk � αk∇φik pxkq, k � 0, 1, 2, . . .

Mini-batch Stochastic gradient (Mini-batch SG)

Choose randomly and uniformly the sample Sk � t1, . . . , Nu, let Nk � cardpSkq be the
sample size and compute

xk�1 � xk �
αk

Nk

¸
iPSk

∇φipxkq, k � 0, 1, 2, . . .



Stochastic optimization methods

Algorithm : Stochastic Gradient Methods

1. Choose x0 P IRn

2. For k � 0, 1, . . . do
2.1 Generate a realization of the random variable ξk.
2.2 Compute a stochastic gradient gpxk, ξkq.
2.3 Choose a stepsize αk ¡ 0.
2.4 Set xk�1 � xk � αkgpxk, ξkq.



SG analysis: strongly convex f , constant stepsize α

Suppose that the stochastic gradient gpxk, ξkq satisfies

∇fpxkqTEξk rgpxk, ξkqs ¥ µ}∇fpxkq}22
Eξk

�
}gpxk, ξkq}

2
2

�
¤M1 �M2}∇fpxkq}22, M2 ¥ µ2.

The first property implies that gpxk, ξkq is a descent direction in expectation.

SG: if f is strongly convex and α   µ
LM2

(sufficiently small stepsize), then

Erfpxkq � fpx�qs ¤
ᾱLM1

2cµ
� p1� ᾱcµqk

�
fpx0q � fpx�q �

ᾱLM1

2cµ




Mini-batch SG with Nk � Nmb: if f is strongly convex and α is sufficiently small, then

Erfpxkq � fpx�qs ¤
ᾱLM1

2cµNmbloooomoooon
smaller asymptotic gap

�p1� ᾱcµqk
�
fpx0q � fpx�q �

ᾱLM1

2cµNmb




However the computation of gpxk, wkq is Nmb times more expensive than in SG.



Issue of SG (1): effect of noise

SG suffers from the effect of noisy gradient estimates.

Example with gpxk, ξkq � ∇φikpxkq



Noise reduction

Observe that condition

Eξk
�
}gpxk, ξkq}

2
2

�
¤M1 �M2}∇fpxkq}22, M2 ¥ µ2

is implied by the following two properties:

1 }Eξk rgpxk, ξkqs } ¤ µG}∇fpxkq}2
2 Vξk rgpxk, ξkqs ¤M1 �MG}∇fpxkq}22, with M2 �MG � µ2

G

where Vξk rgpxk, ξkqs is the variance of gpxk, ξkq:

Vξk rgpxk, ξkqs � Eξk
�
}gpxk, ξkq}

2
2

�
� }Eξk rgpxk, ξkqs }2.



Noise reduction

Note that the descent lemma and the independence of xk from ξk implies:

Eξk rfpxk�1qs � fpxkq ¤ �αk∇fpxkqTEξk rgpxk, ξkqs �
1

2
α2
kLEξk r}gpxk, ξkq}

2
2s.

If also Eξk rgpxk, ξkqs � ∇fpxkq (unbiased estimator), then

Eξk rfpxk�1qs � fpxkq ¤ �αk }∇fpxkq}2looooomooooon
¤0

�
1

2
α2
kLEξk r}gpxk, ξkq}

2
2s.

Since Eξk
�
}gpxk, ξkq}

2
2

�
� }∇fpxkq}22 � Vξk rgpxk, ξkqs, the variance Vξk rgpxk, ξkqs

controls the convergence rate.

If the variance decreases fast enough along with }∇fpxkq}22, then the effect of having
noisy directions will not impede a “fast” rate of convergence.

Possible approach: design procedures such that the variance decreases along the
iterations.



Noise reduction

Classes of methods

Dynamic sample-sized methods

Nk � cardpSkq � rτk�1s, for some τ ¡ 1.

The variance decrease as Op 1
Nk

q � Opτ1�kq

ñ k � Opε�1q with constant sufficiently small stepsize

Gradient aggregation methods
Rather than increasing the sample size at each iteration, reuse previously
computed gradient estimations

SVRG, Johnson and Zhang, NIPS 2013

SAGA, Defazio, Bach, Lacoste-Julien, Advances in Neural Information Processing Systems, 2014

SARAH Nguyen, Liu, Scheinberg, Takac, Proceedings of the 34th International Conference

on Machine Learning, 2017

...



Stochastic Variance Reduced Gradient (SVRG)

Main idea:
Use the full gradient every m iterations (Outer loop, indexed by k - GD iteration)

In the inner loop, indexed by t, use SGD equipped with the following gradient
estimator:

g̃t � ∇φit px̃tq � ∇fpx̃0q �∇φit px̃0qloooooooooooomoooooooooooon
bias in the gradient estimate ∇φit px̃0q

g̃t is an unbiased estimator of ∇fpx̃tq; smaller variance than ∇φit px̃tq is expected;

Implementation issues:
The length of the inner cycle m and the stepsize α need by chosen by trial and error.

To reduce the memory requirements instead of storing all gradients ∇φipx̃0q
separately, at each inner iteration ∇φit px̃0q is evaluated along with ∇φit px̃tq.
When the full gradient evaluation is too expensive, a mini-batch stochastic gradient is
used.



SVRG: the algorithm

Hyperparameters: α, m number of steps in the inner loop

Step 0: Initialization.
Choose an initial point x0 P Rn, an inner loop size m ¡ 0, a steplength α ¡ 0,
the option for the iterate update. Set k � 1.
Step 1: Outer iteration, full gradient evaluation.
Set x̃0 � xk�1. Compute ∇fpx̃0q.
Step 2: Inner iterations
For t � 0, . . . ,m� 1

Uniformly and randomly choose it P t1, . . . , Nu.
Set x̃t�1 � x̃t � αp∇φitpx̃tq �∇φitpx̃0q �∇fpx̃0qq.

Step 3: Outer iteration, iterate update.
Set xk � x̃m (Option I).

Set xk � x̃t for randomly uniformly chosen t P t0, . . . ,m� 1u (Option II).

Increment k by one and go to Step 1.



SVRG for strongly convex f

For small enough stepzises, converges at linear rate

Theorem -option II

Suppose that all φi are convex and SVRG-option II is run with a fixed stepsize αk � ᾱ,@k
and m s.t.

ρ �
1

cᾱp1� Lᾱqm
�

Lᾱ

1� Lᾱ
  1,

then
Erfpxkqs � fpx�q ¤ ρkpfpx0q � fpx�qq.

Choosing m ¡ L{c and α Æ 1{L yields 0   ρ   1{2
ñ logpε�1q outer iterations to get Erfpxkqs � fpx�q   ε

1�m{N full gradient evaluations at each outer iteration



SVRG for strongly convex f

Theorem -option I

Suppose that SVRG-option I is run with a fixed stepsize αk � ᾱ,@k and m s.t.

ρ � p1� 2ᾱcp1� ᾱLqmq �
ᾱL2

cp1� ᾱLq
  1,

then
Er}xk � x�}

2s ¤ ρk}x0 � x�}
2



ADAptive Moment estimation (ADAM) Kingma e Jimmy Ba, 2014

1 ADAM does not require full gradient computation,

2 It computes individual adaptive steplengths for updating the iterate component-wise
on the basis of the current first and second order momentum of the stochastic gradient

Hyperparameters: tαu; β1, β2 P r0, 1q exponential decay rates for the moment estimates;
ε ! 1; Nmb;
Step 0: Initialization. Choose an initial point x0 P Rn, set v0 � 0 P Rn, q0 � 0 P Rn
Step 1 for k � 0, 1,.... do

Choose Sk � t1, . . . , nu con |Sk| � Nmb
Set gk �

1
Nmb

°
iPSk ∇φipxkq

Set vk Ð β1 � vk�1 � p1� β1q � gk Update biased first moment estimate
Set qk Ð β2 � qk�1 � p1� β2q gk d gk Update biased second moment estimate
Set v̂k Ð vk{p1� βk1 q Compute bias-corrected first moment estimate
Set q̂k Ð qk{p1� βk2 q Compute bias-corrected second moment estimate

Set xk�1 Ð xk � α � v̂k.{p
a
q̂k � εq

gk d gk denotes the vector ppgkq
2
1, pgkq

2
2, . . . , pgkq

2
nq
T and .{ denotes the componentwise

division



ADAM: some comments

vk � p1� β1q
°k
i�1 β

k�i
1 gi small weights to gradients too far in the past ;

qk � p1� β2q
°k
i�1 β

k�i
2 gi d gi.

Divide by p1� βk2 q to correct the initialization bias

Erqks � E

�
�p1 � β2q

ķ

i�1

β
k�i
2 gi d gi

�
� � p1 � β2q

ķ

i�1

β
k�i
2 E rgi d gis

� p1 � β2q E rgk d gks
ķ

i�1

β
k�i
2 � p1 � β2q

ķ

i�1

β
k�i
2

�
E rgi d gis � E rgk d gks

	

looooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooon
ζcan be kept small

� E rgk d gks p1 � β2q
ķ

i�1

β
k�i
2 � ζ � E rgk d gks p1 � β

k
2 q � ζ

Adaptive learning rate: The step used to update the iterate is αv̂k.{
a
q̂k.

Components corresponding to small ratios v̂k.{
a
q̂k (estimates of first and second

order moment do not agree).

Effective and widely used, but still lacking of well-assessed convergence analysis, at
least to our knowledge.



Issue of SG (2): tuning of the learning rate

The choice of the stepsize/learning rate is problem-dependent.
SG with constant stepsize for strongly convex f requires α   µ{pLM2q
ñ If L is not known, the stepsize α needs to be tuned!
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Binary classification on the datasets A9A and HTRU2.



Issue of SG (2): tuning of the learning rate

For large-scale applications, tuning the parameters may require weeks or
months of effort on a supercomputer before the algorithm performs well.

H. Asi, J.C. Duchi, The importance of better models in stochastic
optimization, Proc. Natl. Acad. Sci. USA, 2019
”In searching for optimal neural network architectures and
hyperparameters, the paper ... uses approximately 750000 CPU days in
its parameter search ... Assuming standard CPU energy use of between
60-100 Watts, the energy is roughly between 4 and 6 � 1012 Joules. At 109

Joules per tank of gas, this is sufficient to drive 4000 Toyota Camrys the
380 miles between San Francisco and Los Angeles.”



Adaptive choice of the learning rate

SG and its variants employ stochastic (possibly and occasionally full) gradient
estimates and do not rely on any machinery from standard globally
convergent optimization procedures, such as linesearch or trust-region.

On the other hand, a few recent papers rely on such strategies for selecting
the steplength1,2,3. Part of them mimic traditional step acceptance rules
using stochastic estimates of functions and gradients, which are required to be
sufficiently accurate in probability.

The purpose of these methods is to partially overcome the dependence of the
steplengths from the Lipschitz constant of the gradient.

1
S. Bellavia, N. Krejić, B. Morini, Comput. Optim. Appl. 76, 701–736, 2020

2
S. Bellavia, N. Krejić, B. Morini, S. Rebegoldi, submitted, 2021

3
R. Chen, M. Menickelly, K. Scheinberg, Math. Progr. 169(2), 447–487, 2018



Stochastic trust-region approach

Let gk P IRn be a stochastic gradient (e.g. subsampled gradient).

Consider a linear model of fN around the iterate xk

mkppq � fN pxkq � gTk p.

Minimize the model over the ball Bpxk,∆kq of trust-region radius ∆k

pk � argmin
}p}¤∆k

mkppq

and compute the trial point as

xk � pk � xk �
∆k

}gk}
gk.

This is an SG step with adaptive steplength!

Accept or reject the trial point according to an acceptance criterion
based on sufficiently accurate estimates of functions and gradients.



STORM (STochastic Optimization with Random Models)4

Choose x0 P Rn, 0   ∆0   ∆max, γ ¡ 1, η1, η2 ¡ 0.
For k � 0, 1, 2, . . .

1. Build the model

mkpxk � sq � fN pxkq � gTk s, @ s P Bpxk,∆kq.

2. Compute the step

sk � argmin
}s}¤∆k

mkpxk � sq � �
∆k

}gk}
gk.

3. Compute estimates fk,0 and fk,s of fN at xk and xk � sk and

ρk �
fk,0 � fk,s

mkpxkq �mkpxk � skq
.

4. If ρk ¥ η1 and }gk} ¥ η2∆k set

xk�1 � xk � sk, ∆k�1 � mintγ∆k,∆maxu,

otherwise set xk�1 � xk, ∆k�1 � ∆k{γ.
4
R. Chen, M. Menickelly, K. Scheinberg, Math. Progr. 169(2), 447–487, 2018



STORM algorithm

Function and gradient estimates need to be sufficiently accurate in probability:

Prt|fN pyq�mkpyq| ¤ κ∆2
k, }∇fN pyq�∇mkpyq} ¤ κ∆k, y P Bpxk,∆kqu ¥ α

Prt|f0
k � fN pxkq| ¤ εF∆2

k, |fsk � fN pxk � skq| ¤ εF∆2
ku ¥ β

where α, β P p0, 1q, εF , κ ¡ 0.

Probabilistic accuracy of mk, f0
k , fsk guarantees convergence in

probability

Function and gradient need to be estimated with increasingly high
precision!



SIRTR (Stochastic Inexact Restoration Trust-Region)1

In a recent paper1, the authors propose a stochastic first-order trust-region
method with the following features.

The trust-region model and acceptance rule employ both function and
gradient estimates (similarly to STORM).

The function sample size is computed dynamically according to a
deterministic rule inspired by the Inexact Restoration (IR) Method2

(unlike STORM).

We require probabilistic accuracy for the gradient estimates only when
the full function sample size is reached (unlike STORM).

GOAL: delay the use of the full function sample size and the adoption of
probabilistically accurate random models as much as possible.

1
S. Bellavia, N. Krejić, B. Morini, S. Rebegoldi, submitted, 2021

2
J.M. Martinez, E.A. Pilotta, J. Optim. Theory Appl. 104, 135–163, 2000



The Inexact Restoration method

The Inexact Restoration (IR) method is a constrained optimization tool
suitable for problems feasibility need not be imposed at all iterations.
The key idea is to improve feasibility and optimality in separate procedures.
Each iteration ensures the sufficient decrease of a suitable merit function and,
under certain assumptions, convergence to a feasible optimal point.

min
hpxq¤0

fpxq



SIRTR algorithm

IDEA: apply the IR strategy to dynamically select the function sample size.
To this aim, let us rewrite the finite-sum minimization problem as

min
xPRn

fM pxq �
1

M

¸
iPIM

φipxq

s.t. M � N

where IM � t1, . . . , Nu, |IM | �M .



SIRTR algorithm

We introduce the merit function

Ψpx,M, θq � θfM pxq � p1 � θqhpMq, θ P p0, 1q.

where h : N Ñ R is a measure of the level of infeasibility with respect to the
constraint M � N .

Example
hpMq � pN �Mq{N .



SIRTR algorithm

1. Restoration phase

compute Ñk�1 such that hpÑk�1q ¤ rhpNkq, r P p0, 1q;

compute the function sample size Nk�1 ¤ Ñk�1 such that

hpNk�1q � hpÑk�1q ¤ µ∆2
k, µ ¡ 0.

2. Optimality phase

compute the trial point xk � pk using a model mkppq;

consider the predicted and actual reduction defined as

Predkpθk�1q � θk�1pfNkpxkq �mkppkqq � p1 � θk�1qphpNkq � hpÑk�1qq

Aredpxk � pk, θk�1q � Ψpxk, Nk, θk�1q � Ψpxk�1, Nk�1, θk�1q

and accept the trial point only if

Aredpxk � pk, θk�1q ¥ ηPredkpθk�1q, η P p0, 1q.



Numerical experience

Let tpai, biqu
N
i�1 denote the pairs forming the training set, being ai P Rn the

vector containing the entries of the i-th example and bi P t0, 1u its label.
The classification problem is solved by solving the nonconvex problem

min
xPIRn

fN pxq �
1

N

Ņ

i�1

�
bi �

1

1 � e�a
T
i x


2

.

Training set Testing set
Data set N n NT
Cina0 10000 132 6033
A9a 22793 123 9768
Ijcnn1 49990 22 91701
Mnist 60000 784 10000
Htru2 10000 8 7898



Numerical experience
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Figure: SIRTR versus Trust-Regionish algorithm1 for several choices of the
steplength α. Decrease of the (average) testing loss fNT w.r.t. the (average)
computational time. From left to right: a9a and htru2 datasets.

1
F.E. Curtis, K. Scheinberg, R. Shi, INFORMS J. Optim. 1(3), 200–220, 2019

1
F.E. Curtis, K. Scheinberg, R. Shi, INFORMS J. Optim. 1(3), 200–220, 2019


