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Expected and empirical risk minimization

Optimization problems in Machine Learning consist in minimizing:

1 either an Expected Risk

fpxq
def
�

»
Rd�Rp

`phpa;xq, bqdP pa, bq � Er`phpa;xq, bqs, f : Rn Ñ R

P pa, bq representing the probability distribution of inputs a P Rd
and outputs b P Rp

2 or an Empirical Risk

fpxq
def
�

1

N

Ņ

i�1

`phpai;xq, biq, f : Rn Ñ R

tpai, biqu
N
i�1 � Rd � Rp being a set of independently drawn

input-output samples.



Gradient Descent (GD) Method

min
xPIRn

fpxq, f : IRn Ñ IR differentiable.

Start with some initial guess x0.

Generate a new guess x1 by moving in the negative gradient direction:

x1 � x0 � α0∇fpx0q.

Repeat to successively refine the guess:

xk�1 � xk � αk∇fpxkq, k � 0, 1, 2, . . .

where αk ¡ 0 is called step-size or steplength or learning rate in the
machine learning community.

�∇fpxkq is a descent direction for f at xk.

==========================
p P IRn is a descent direction if

∇fppxkq � ∇fpxkq
T
p   0.
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Gradient Descent (GD) Method

Constant step-size αk � α ¡ 0

xk�1 � xk � α∇fpxkq, k � 0, 1, 2, . . .

α needs to be ”sufficiently small” in order to guarantee convergence.

However, if α is ”too small”, the convergence might be too slow (expensive!)
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Gradient Descent: convergence properties

We analyze the gradient descent assuming gradient of f is Lipschitz continuous:

There exists an L ¡ 0 such that for all x and y we have

}∇fpxq �∇fpyq} ¤ L}x� y}.

L is called the Lipschitz constant of the gradient.

Descent Lemma
If ∇f is Lipschitz continuous with constant L, then we have

fpyq ¤ fpxq �∇fpxqT py � xq �
L

2
}y � x}2, @ x, y P IRn.

If y � x� αp, α ¡ 0, p P IRn, then:

fpx� αpq ¤ fpxq � α∇fpxqT p�
L

2
α2}p}2.



Gradient descent: case αk � 1{L

By the Descent Lemma, we have

xk�1 � xk �
1

L
∇fpxkq

� argmin
yPIRn

L

2
}y � pxk �

1

L
∇fpxkqqq}2

� argmin
yPIRn

fpxkq �∇fpxkqT py � xkq �
L

2
}y � xk}

2loooooooooooooooooooooooooomoooooooooooooooooooooooooon
�qpy;xkq¥fpyq

.

x

F pxq

xk

qpx;xkq

xk�1

Majorization-Minimization (MM)
At each iteration, replace fpxq with a
quadratic majorizer qpx;xkq at xk
and minimize qpx;xkq.



Gradient descent: case αk � 1{L

xk�1 � xk �
1

L
∇fpxkq, k � 0, 1, 2, . . .

Decrease of the objective function

By the Descent Lemma, we have

fpxk�1q � fpxk � p1{Lq∇fpxkqq ¤ fpxkq �
1

2L
}∇fpxkq}2.

If ∇fpxkq � 0, this implies fpxk�1q   fpxkq.

(Weak) convergence to critical points

Still from the Descent Lemma, it follows that

}∇fpxkq}2 ¤ 2Lpfpxk�1q � fpxkqq.

Taking the limit for k Ñ8 yields limkÑ8 }∇fpxkq} � 0.

The same convergence properties hold for any 0   αk   2{L.

However, the knowledge of the Lipschitz constant L is needed.



Gradient descent: case αk � 1{L

Assume gradient of f Lipschitz continuous and f ¥ flow bounded from below;

Given εg ¡ 0, αk � α ¤ 1{L, the gradient descent method achieves

}∇fpxkq} ¤ ε

in at most

k �

S
ε�2
g

c
2pfpx0q � flowq

α

W
� 1 iterations.

In other words, }∇fpxkq}2 decreases as Op1{kq.

Assume f convex and let fpx�q be the optimal value.
Given εf ¡ 0, α ¤ 1{L, the gradient descent method achieves

fpxkq � fpx�q ¤ εf

in at most

k �

R
ε�1
f

}x0 � x�}2

2α

V
iterations.

In other words, fpxkq � fpx�q decreases as Op1{kq.



Gradient descent: case αk � 1{L

Assume f strongly µ-convex, i.e. there exists a constant µ ¡ 0 such that

fpxq ¥ fpyq � x∇fpyqT px� yq �
µ

2
}x� y}2 for all x, y P IRn,

then, if 0   α   2{pµ� Lq, SG achieves linear convergence

fpxkq � fpx�q � Opρkq,

with ρ depending on L{µ, ρ P p0, 1q.

X Logistic regression + `2�regularization is strongly convex and has Lipschitz
continuous gradient.



Finite sum minimization: subsampling

Consider a finite-sum minimization problem:

min
xPIRn

fpxq �
1

N

Ņ

i�1

φipxq

where N is large.

Training sets often show redundancy in the data
ñ using all the sample data in every optimization iteration is inefficient

Idea: work with small samples (at least initially)

Methods in literature use subsampled f and/or ∇f and/or ∇2fM

Subsampling

Sk � t1, . . . , Nu randomly and uniformly selected

|Sk|: sample size at iteration k

∇Sk
fpxkq �

1

|Sk|
¸
iPSk

∇φipxkq
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Stochastic optimization methods

min
xPRn

fpxq, f : Rn Ñ R

where f

fpxq �

$'''''&
'''''%

Erφpx, ξqs

or

1

N

Ņ

i�1

φipxq

Algorithm : Stochastic Gradient Methods

1. Choose x0 P IRn

2. For k � 0, 1, . . . do
2.1 Generate a realization of the random variable ξk.
2.2 Compute a stochastic gradient gpxk, ξkq.
2.3 Choose a stepsize αk ¡ 0.
2.4 Set xk�1 � xk � αkgpxk, ξkq.



Ingredients

A mechanism for generating a realization ξk of ξ:
ξk may represent the choice of a single training sample or
a set of samples.

A mechanism for forming gpxk, ξkq.

A mechanism for computing a scalar stepsize αk ¡ 0,
e.g., fixed stepsizes or diminishing stepsizes.

Stochastic process

The generated sequence txku is not determined uniquely by f , the
starting point x0 and the sequence of stepsizes tαku unlike the
deterministic gradient descent method.

Rather, txku is a stochastic process whose behaviour is determined by
the random sequence tξku.



Stochastic gradient: subsampling

fpxq � Erφpx, ξqs

Let ξk represent the independent choice of a single training sample or
of a set tξk,iu of samples (according to the distribution P )

gpxk, ξkq �

$'&
'%

∇φpxk, ξkq
1

Nk

Nķ

i�1

∇φipxk, ξk,iq, Nk P N

Stochastic Gradient method (SG): a single item is drawn.

Mini-batch SG: a (small) set tξk,iu of samples is drawn.



Stochastic gradient: subsampling

fpxq �
1

N

Ņ

i�1

φipxq

Let ξk represent the independent choice of a single training sample or a set of samples in
t1, . . . , Nu

gpxk, ξkq �

$'&
'%

∇φik pxkq
1

Nk

¸
iPSk

∇φipxkq, Nk � cardpSkq, 1 ¤ Nk ! N

Stochastic Gradient method (SG)

Choose randomly and uniformly the index ik P t1, . . . , Nu and compute

xk�1 � xk � αk∇φik pxkq, k � 0, 1, 2, . . .

Mini-batch Stochastic gradient (Mini-batch SG)

Choose randomly and uniformly the sample Sk � t1, . . . , Nu, let Nk � cardpSkq be the
sample size and compute

xk�1 � xk �
αk

Nk

¸
iPSk

∇φipxkq, k � 0, 1, 2, . . .



Stochastic gradient: subsampling

Constant step-size αk � α ¡ 0

xk�1 � xk � α∇φikpxkq, k � 0, 1, 2, . . .

SG does not guarantee the decrease of the objective function

ñ oscillatory behaviour when close to the minimum.



Motivations

Intuitive Motivation
In reality, a training set does not consist of exact duplicates of sample data but the
data are a large set and redundant.

This suggests that using all the sample data in every optimization is inefficient.

Working with small (single) samples can be convenient.

Using the mini-batch approximation reduces the variance of the stochastic gradient
estimate with respect to the true gradient.

Practical Motivation
Pros: the cost per-iteration of SG and mini-batch SG is low.

For the finite-sum minimization problem, an epoch represents N single evaluations
∇φi, i.e., the cost of one full gradient evaluation.

SG performs N steps per epoch.

Cons: it is necessary to run the algorithm repeatedly in order to appropriately tune
the step-size (learning rate) and thus obtain an efficient solution.



SG for strongly convex f

Lipschitz continuity
f : Rn Ñ R is continuously differentiable and ∇f : Rn Ñ Rn, is Lipschitz-continuous with
Lipschitz constant L ¡ 0

}∇fpxq �∇fpx̄q}2 ¤ L}x� x̄}2, x, x̄ P Rn.

Strong convexity
There exists a constant 0   c ¤ L s.t.

fpx̄q ¥ fpxq �∇fpxqT px̄� xq �
1

2
c}x̄� x}22, @x, x̄ P Rn

Hence f has a unique minimizer x� with f� � fpx�q.

X Logistic regression + `2�regularization is strongly convex and has Lipschitz continuous
gradient.



SG for strongly convex f

Assumptions
txku is contained in an open convex set where f is bounded below by a scalar f�.

For all k P N

∇fpxkqTEξk rgpxk, ξkqs ¥ µ}∇fpxkq}22, for some positive µ (1)

in expectation �gpxk, ξkq is a direction of sufficient descent for f with norm
comparable to the norm of ∇fpxkq (trivial with µ � 1 if gpxk, ξkq is an unbiased
estimate of ∇fpxkq)

For all k P N

Eξk
�
}gpxk, ξkq}

2
2

�
¤M1 �M2}∇fpxkq}22, for some positive M1,M2 ¥ µ2 (2)



SG for strongly convex f

For small enough stepsizes, tfpxkqu gets near to the optimal value

Theorem

Suppose that SG is run with a fixed stepsize αk � ᾱ,@k s.t.

0   ᾱ ¤
µ

LM2
.

Then, for all k P N

Erfpxkq � fpx�qs ¤
ᾱLM1

2cµ
� p1� ᾱcµqk

�
fpx0q � fpx�q �

ᾱLM1

2cµ



kÑ8
ÝÑ

ᾱLM1

2cµ



SG for strongly convex f

Consequences:

If there is no noise in the gradient computation or the noise decays with
}∇fpxkq}22, then M1 � 0.

Hence, linear convergence to the optimal value occurs.

The initial optimality gap fpx0q � fpx�q appear with an exponentially
decreasing factor.

Selecting a smaller stepsize worsens the contraction constant in the
convergence rate but allows one to arrive closer to the optimal values.



SG: f strongly convex and diminishing stepsizes

More general requirements for αk take the form

8̧

i�0

αk � 8,
8̧

i�0

α2
k   8,

Theorem
Suppose SG is run with a stepsize s.t. for all k P N

αk �
β

γ � k
for some βcµ ¡ 1 and γ ¡ 0 s.t. α0 ¤

µ

LM2

Then for all k P N, the optimality gap satisfies

Erfpxkq � fpx�qs ¤
ν

γ � k
,

where

ν � max

"
β2LM1

2pβcµ� 1q
, γpfpx0q � fpx�qq

*
.



Summary of SG: f strictly convex and diminishing
stepsizes

Constant stepsizes ᾱ were required to satisfy ᾱ ¤ µ
LM2

For diminishing stepsizes, α0 is required to satisfy the same bound.

Successive steps αk, k ¥ 1, are of order Op1{kq and depend on the strong
convexity parameter c since β ¡ 1{pcµq.

The rate of convergence of the optimality gap is
Erfpxkq � fpx�qs � Op1{kq



GD vs SG

GD

fpxkq � fpx�q � Opρkq, ρ P p0, 1q ñ fpxkq � fpx�q ¤ ε, k � O plnp1{εqq

The cost per-iteration is proportional to N (need to compute ∇φi, 1 ¤ i ¤ N)

Total work to obtain ε-optimality is proportional to N ln p1{εq

SG

Erfpxkq � fpx�qs � O p1{kq ñ Erfpxkq � fpx�qs ¤ ε, k � O p1{εq

Unitary per-iteration cost

1{ε ¥ N ln p1{εq for moderate values of N, ε

while
1{ε   N ln p1{εq in a big data regime where N is large



SG for general f

Recall that tfpxkqu is assumed to be bounded below by a scalar f�.

Theorem (f nonconvex, fixed stepsize)

Suppose that SG is run with a fixed stepsize αk � ᾱ for all k P R s.t.

0   ᾱ ¤
µ

LM2
.

Then, for all K P N

E

�
1

K

Ķ

k�1

}∇fpxkq}22

�
¤

ᾱLM1

µ
� 2

fpx0q � f�

Kµᾱ

KÑ8
ÝÑ

ᾱLM1

µ

This result characterizes the expected average-squared gradients of f

The average norm of the gradients can be made arbitrarily small by selecting a small

stepsize (but doing so reduces the speed at which }∇fpxkq}2 approaches its limiting

distribution).



SG for general f

Recall that tfpxkqu is assumed to be bounded below by a scalar f�.

Theorem (f nonconvex, diminishing stepsizes)

Suppose that SG is run with a stepsize sequence satisfying

8̧

i�1

αk � 8,
8̧

i�1

α2
k   8,

Then,
liminf
kÑ8

E
�
}∇fpxkq}22

�
� 0

i.e., gradient norms cannot asymptotically stay far from zero.

If we further assume that f is twice continuously differentiable and }∇fpxq}22 has Lipschitz
continuous derivatives then

lim
kÑ8

E
�
}∇fpxkq}22

�
� 0



Mini-batch SG

fpxq �
1

N

Ņ

i�1

φpxq

gpxk, ξkq �
1

Nk

¸
iPSk

∇φipxkq, cardpSkq � Nk � Nmb,@k

The variance of the direction is reduced by a factor 1{Nmb.

Previous results can be extended to mini-batch SG, e.g.,

SG, f strongly convex, constant and sufficiently small stepsize

Erfpxkq � fpx�qs ¤
ᾱLM1

2cµ
� p1� ᾱcµqk

�
fpx0q � fpx�q �

ᾱLM1

2cµ




Mini-batch SG, f strongly convex, constant and sufficiently small stepsize

Erfpxkq � fpx�qs ¤
ᾱLM1

2cµNmbloooomoooon
smaller asymptotic gap

�p1� ᾱcµqk
�
fpx0q � fpx�q �

ᾱLM1

2cµNmb




But the computation of gpxk, wkq is Nmb times more expensive than in SG.
In general the methods can be comparable but mini-batch method can be parallelized.



Numerical experiment

Given tpai, biqui�1,...,N the Mushrooms dataset1, bi P t0, 1u, learn the
parameters x P IRn of the logistic regression by solving

min
xPIRn

fpxq �
1

N

Ņ

i�1

�
bi �

1

1 � e�a
T
i x


2

looooooooooomooooooooooon
:�φipxq

.

DATA Training Size N Test Size Numb. of Features d

Mushrooms 6503 1621 112

Safe to eat or deadly poison?

1https://www.kaggle.com/uciml/mushroom-classification



Numerical experiment

GD

xk�1 � xk �
α

N

Ņ

i�1

∇φipxkq.

Mini-batch SG

xk�1 � xk �
α

|S|

¸
iPS

∇φipxkq, 1   |S|    N.

For these tests, we set α � 1 and |S| � 65.
The sample S is computed by random and uniform subsampling.



Numerical experiment
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Training loss (for the training set T )

fN pxq �
1

N

¸
iPT

φipxq.

Testing loss (for the testing set TT )

fN pxq �
1

NT

¸
iPTT

φipxq.


