(GRADIENT-BASED OPTIMIZATION METHODS

FOR NEURAL NETWORK TRAINING

PH.D. IN INDUSTRIAL ENGINEERING
UNIVERSITA DI FIRENZE, A.A. 2020/2021

Simone Rebegoldi
Dipartimento di Ingegneria Industriale
Universita di Firenze

UNIVERSITA
DEGLI STUDI

FIRENZE

Expected and empirical risk minimization

Optimization problems in Machine Learning consist in minimizing:

Q cither an Fxpected Risk
@ [(o) P, = Bl o) D), TR R
R4 xRP

P(a,b) representing the probability distribution of inputs a € R?
and outputs b € RP

@ or an Empirical Risk
1
def Ze CL“ 7bi) fRn_)R

{(ai, b))}, € R? x RP being a set of independently drawn
input-output samples.

Gradient Descent (GD) Method

min f(z), f:R"— R differentiable.
xe
@ Start with some initial guess .
@ Generate a new guess x7 by moving in the negative gradient direction:
x1 =9 — agV f(xg).
@ Repeat to successively refine the guess:
Tpy1 =z —apVf(xg), k=0,1,2,...

where ay, > 0 is called step-size or steplength or learning rate in the
machine learning community.

Gradient Descent (GD) Method

min f(z), f:R"— R differentiable.

xe

@ Start with some initial guess .

@ Generate a new guess x7 by moving in the negative gradient direction:
1 = Ty — Oéon(l?o).

@ Repeat to successively refine the guess:
Tk+1 = Tk —Oéka(:L'k), k= 0,1,2,...

where ay, > 0 is called step-size or steplength or learning rate in the
machine learning community.

—Vf(xy) is a descent direction for f at x.

p € R™ is a descent direction if
T
Vip(zr) = Vf(zk) p <0.

Gradient Descent (GD) Method

Constant step-size a, = a >0

Tpy1 = ok —aVf(zy), k=0,1,2,...

= flayy) = (@ +104%)/2
—e—a =018

Gradient Descent (GD) Method

Constant step-size a, = a >0

Tpy1 = ok —aVf(zy), k=0,1,2,...

s

T flay) = (@ + 1047)/2
—_——a =02
——a = 0.18

a=0.01

@ o needs to be "sufficiently small” in order to guarantee convergence.
@ However, if a is "too small”, the convergence might be too slow (expensive!)

Gradient Descent: convergence properties

We analyze the gradient descent assuming gradient of f is Lipschitz continuous:

There exists an L > 0 such that for all x and y we have

IVi(@) = Vil < Lz -yl

L is called the Lipschitz constant of the gradient.

Descent Lemma

If V f is Lipschitz continuous with constant L, then we have

J@) < 5@+ V@ -2 + Sly—al?, VayeR

Ify=x+ap, a>0,peR", then:

f(@ +ap) < £(@) +aV (@) P+ Lol

Gradient descent: case o = 1/L

By the Descent Lemma, we have

1
Th1 = Tpp — Evf(fﬂk)

. L 1
= argmin 5“2‘/ — (o — va(mk)))ﬂz
Rn

Yye

) L
= argmin f(z3) + Vf(ze)? (y — z1) + EHZJ — x|
yelR" o

v

=q(y;zr)=f(y)

Majorization-Minimization (MM)

At each iteration, replace f(x) with a
quadratic majorizer g(x; xx) at xy
and minimize q(x;).

Gradient descent: case o = 1/L

1
Th41 :xk_zvf(xk)7 k=0,1,2,...

Decrease of the objective function

@ By the Descent Lemma, we have

F@ken) = Fan ~ YDV i) < fon) — 5o 1V

If Vf(xg) # 0, this implies f(zg41) < f(xk).

(Weak) convergence to critical points

@ Still from the Descent Lemma, it follows that

IV (@)l < 2L(f(@rs1) — F(@)-

Taking the limit for k — o0 yields limy_, o |V f(zg)| = 0.

The same convergence properties hold for any 0 < oy < 2/L.

However, the knowledge of the Lipschitz constant L is needed.

case o = 1/L

Assume gradient of f Lipschitz continuous and f = fj,,, bounded from below;

@ Given €4 > 0, o, = o < 1/L, the gradient descent method achieves

IVi(zill < e

k= {egquww — 1 iterations.

In other words, |V f(xy)||? decreases as O(1/k).

in at most

@ Assume f convex and let f(z*) be the optimal value.
Given ¢y > 0, a < 1/L, the gradient descent method achieves

foi) = f(=*) < ¢

in at most .12
_ [—1llmo —=¥|
o [ttt

iterations.
2a

In other words, f(zy) — f(z*) decreases as O(1/k).

case o = 1/L

@ Assume f strongly p-convex, i.e. there exists a constant p > 0 such that
0
(@) = f) + V)T (@ —y) + 5”3& —y|? forall z,yeR",
then, if 0 < o < 2/(u + L), SG achieves linear convergence

flar) = f(@*) = 0(p"),

with p depending on L/u, p € (0,1).

v’ Logistic regression + f2—regularization is strongly convex and has Lipschitz
continuous gradient.

Finite sum minimization: subsampling

Consider a finite-sum minimization problem:

where N is large.

@ Training sets often show redundancy in the data
= using all the sample data in every optimization iteration is inefficient

o Idea: work with small samples (at least initially)

@ Methods in literature use subsampled f and/or V f and/or V2 fy,

Finite sum minimization: subsampling

Consider a finite-sum minimization problem:

1 N
min f(2) = ; éi(x)

where N is large.

Subsampling

o S; < {1,...,N} randomly and uniformly selected

© |Si|: sample size at iteration k

Vs, flze) = 2 V()

‘ k 1€SE

Stochastic optimization methods

min f(z), f:R*" SR

TERM
here f
. E[6(x,)]
o= o
Ve

Algorithm : Stochastic Gradient Methods

1. Choose zg € R"
2. For k=0,1,... do
2.1 Generate a realization of the random variable &j.
2.2 Compute a stochastic gradient g(z, k).
2.3 Choose a stepsize ay > 0.
2.4 Set w41 =) — pg(Th, &)

Ingredients

@ A mechanism for generating a realization & of &:
&, may represent the choice of a single training sample or
a set of samples.

@ A mechanism for forming g(xg, &).

@ A mechanism for computing a scalar stepsize o > 0,
e.g., fixed stepsizes or diminishing stepsizes.

Stochastic process

The generated sequence {x} is not determined uniquely by f, the
starting point xo and the sequence of stepsizes {«y} unlike the
deterministic gradient descent method.

Rather, {x} is a stochastic process whose behaviour is determined by
the random sequence {&x}.

Stochastic gradient: subsampling

f(z) = E[o(x, €)]

Let & represent the independent choice of a single training sample or
of a set {{;;} of samples (according to the distribution P)

V(&)

Ni
g(xg, &) = 1
- Vaoi(rg, ki), NpeN
Nk; i@, Ersi) i

Stochastic Gradient method (SG): a single item is drawn.

Mini-batch SG: a (small) set {{;;} of samples is drawn.

ochastic gradient: subsampling

1 N
@) = 5 X @)
i=1

Let & represent the independent choice of a single training sample or a set of samples in
{17 et N}

Vi, (k)

1
9@k, &) = — > Véi(zr), Ni=card(Sp), 1<Np <N
k €Sy

Stochastic Gradient method (SG)

Choose randomly and uniformly the index i € {1,..., N} and compute

Tr+1 = Tk —akV(ﬁik(xk), k=0,1,2,...

Mini-batch Stochastic gradient (Mini-batch SG)

Choose randomly and uniformly the sample S € {1,..., N}, let N = card(Si) be the
sample size and compute

ag
Tht1 = Bk~ - D) Véilzr), k=0,1,2,...
€S},

Stochastic gradient: subsampling

Constant step-size a = a > 0

Ti41 = Tk — av¢zk(xk)7 k=0,1,2,...

T=o flr,y) = 0.5(2% +) + 0.5(2% + 2%) + 0.5(a% + 5y?)
——a=07

@ SG does not guarantee the decrease of the objective function

=> oscillatory behaviour when close to the minimum.

Motivations

@ Intuitive Motivation
In reality, a training set does not consist of exact duplicates of sample data but the
data are a large set and redundant.

This suggests that using all the sample data in every optimization is inefficient.
Working with small (single) samples can be convenient.

Using the mini-batch approximation reduces the variance of the stochastic gradient
estimate with respect to the true gradient.

@ Practical Motivation
Pros: the cost per-iteration of SG and mini-batch SG is low.

For the finite-sum minimization problem, an epoch represents N single evaluations
Vi, i.e., the cost of one full gradient evaluation.

SG performs N steps per epoch.

Cons: it is necessary to run the algorithm repeatedly in order to appropriately tune
the step-size (learning rate) and thus obtain an efficient solution.

SG for strongly co f

Lipschitz continuity

f:R™ — R is continuously differentiable and V f: R™ — R™, is Lipschitz-continuous with
Lipschitz constant L > 0

IVi(@) = V@2 < Lllz — z[2, z,ZeR"

Strong convexity

There exists a constant 0 < ¢ < L s.t.

7@ > §@) + V@@~ 2) + gele ~alf, Vz,zeR"

Hence f has a unique minimizer zy with fy = f(z4).

V' Logistic regression + ¢ —regularization is strongly convex and has Lipschitz continuous
gradient.

SG for strongly convex f

Chssumptions

@ {zy} is contained in an open convex set where f is bounded below by a scalar f.

@ For all ke N

Vf(ar) e, [9(zr, k)] = plVF(zx)|3, for some positive p (1)

in expectation —g(xg, &) is a direction of sufficient descent for f with norm
comparable to the norm of V f(xzy) (trivial with g = 1 if g(x, &) is an unbiased
estimate of V f(zy))

@ For all ke N

Ee, [lg(zr, €0)I3] < M1 + Ma|Vf(zk)]|3, for some positive M1, Mz > p? (2)J

SG for strongly convex f

For small enough stepsizes, {f(z)} gets near to the optimal value

Theoen]

Suppose that SG is run with a fixed stepsize ap = &, Vk s.t.

O<a< £
LMo
Then, for all k € N
aLM aLM
B~)] < ZEl (- aow® (fleo) - fae) - 1)
cu 2cp

koo LM
—>
2cp

SG for strongly convex f

Consequences:

@ If there is no noise in the gradient computation or the noise decays with
IV f(zk)|3, then M; = 0.

Hence, linear convergence to the optimal value occurs.

@ The initial optimality gap f(z¢) — f(z4) appear with an exponentially
decreasing factor.

@ Selecting a smaller stepsize worsens the contraction constant in the
convergence rate but allows one to arrive closer to the optimal values.

SG: f strongly convex and diminishing stepsizes

More general requirements for oy take the form

3

Suppose SG is run with a stepsize s.t. for all k € N

B "

ap = —— for some Bep>1 and v >0 s.t. ag <
RS R Bep ol °S Iih

Then for all k € N, the optimality gap satisfies

E[f(zr) — flzx)] <

v+ K

where
B2LM;

m»’Y(f(xO) - f(cc*))}

1/=max{

Summary of SG: f strictly convex and diminishing

stepsizes

@ Constant stepsizes & were required to satisfy & < r}\%

For diminishing stepsizes, «q is required to satisfy the same bound.

@ Successive steps oy, k = 1, are of order O(1/k) and depend on the strong
convexity parameter ¢ since 8 > 1/(cu).

The rate of convergence of the optimality gap is

ELf(zx) — f(z4)] = O(1/F)

flay) = f(zx) = 0("), pe(0,1) = flar) — flax) <e

k=
The cost per-iteration is proportional to N (need to compute V¢;, 1 <

O (In(1/€))
< N)
Total work to obtain e-optimality is proportional to N In (1/e€)

SG

E[f(zr) — fzx)] = O(1/k) = E[f(zx) - fze)] s €, k=0(1/e)

Unitary per-iteration cost

1/e =z NIn(1/e) for moderate values of N, e

while
1/e < NIn(1/e) in a big data regime where N is large

SG for general f

Recall that {f(zy)} is assumed to be bounded below by a scalar f.

Theorem (f nonconvex, fixed stepsize)

Suppose that SG is run with a fixed stepsize oy = @ for all k£ € R s.t.

O<a< e .
LMo

Then, for all K € N

S aL M —

K—ow LM
= @b
i

This result characterizes the expected average-squared gradients of f

The average norm of the gradients can be made arbitrarily small by selecting a small
stepsize (but doing so reduces the speed at which ||V f(x)|2 approaches its limiting
distribution).

SG for general f

Recall that {f(zx)} is assumed to be bounded below by a scalar fs.

Theorem (f nonconvex, diminishing stepsizes)

Suppose that SG is run with a stepsize sequence satisfying

Then,
l}cminf]E [H Vf(ﬂvk)ng] 0
S0

i.e., gradient norms cannot asymptotically stay far from zero.

If we further assume that f is twice continuously differentiable and ||V f(z)||3 has Lipschitz
continuous derivatives then

Jim B[V f(zx)[3] = 0

Mini-batch SG

1 N
f@) = 5 X o)

1
9w &) = - D) Véi(zk), card(Sg) = Ny = Ny, Vk
€Sy

The variance of the direction is reduced by a factor 1/Npyy.

Previous results can be extended to mini-batch SG, e.g.,

@ SG, f strongly convex, constant and sufficiently small stepsize

alL My

E[f(or) - flaw)) < %
o

= ae)® <f(x0) — fzy) — dLMl)

2cp

@ Mini-batch SG, f strongly convex, constant and sufficiently small stepsize

B~ feal < gt b= aew® (1) - o) - o)
—

smaller asymptotic gap

But the computation of g(zj,wy) is Ny, times more expensive than in SG.
In general the methods can be comparable but mini-batch method can be parallelized.

Numerical experiment

Given {(a;,b;)}i=1,....n the Mushrooms dataset', b; € {0, 1}, learn the
parameters x € IR" of the logistic regression by solving

1 X 1 2
min f(zr) = — b — ——— | .
mp =y 8 ()

]

=g (x)

DATA Training Size N Test Size Numb. of Features d
Mushrooms 6503 1621 112

Safe to eat or deadly poison?

"https://www.kaggle.com/uciml/mushroom-classification

Numerical experiment

GD
o N
Trt1l = Tk — N Z; Voi(zr).
Mini-batch SG

(6%
Tht1 = Tk — EZV@(%), 1< |S] << N.
€S

For these tests, we set a = 1 and |S| = 65.
The sample S is computed by random and uniform subsampling.

Numerical experiment

0.25

0.25

4
[N

Testing loss
Training loss
o
o o
- o1

0.05

0 10 20 30 40 50
EGE EGE

o Training loss (for the training set 7)
1
(@) =5 2, 4i@).
€T
@ Testing loss (for the testing set Tr)
1
fn(z) = No > ¢i(x).

€T

