GRADIENT-BASED OPTIMIZATION METHODS FOR NEURAL NETWORK TRAINING

Ph.D. in Industrial Engineering Università di Firenze, A.A. 2020/2021

Simone Rebegoldi Dipartimento di Ingegneria Industriale Università di Firenze

università degli studi FIRENZE

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Expected and empirical risk minimization

Optimization problems in Machine Learning consist in minimizing:

0 either an $Expected\ Risk$

 $f(x) \stackrel{\text{def}}{=} \int_{\mathbb{R}^d \times \mathbb{R}^p} \ell(h(a; x), b) dP(a, b) = \mathbb{E}[\ell(h(a; x), b)], \quad f : \mathbb{R}^n \to \mathbb{R}$

P(a,b) representing the probability distribution of inputs $a \in \mathbb{R}^d$ and outputs $b \in \mathbb{R}^p$

2 or an *Empirical Risk*

$$f(x) \stackrel{\text{def}}{=} \frac{1}{N} \sum_{i=1}^{N} \ell(h(a_i; x), b_i), \quad f : \mathbb{R}^n \to \mathbb{R}$$

 $\{(a_i, b_i)\}_{i=1}^N \subseteq \mathbb{R}^d \times \mathbb{R}^p$ being a set of independently drawn input-output samples.

$$\min_{x \in \mathbb{R}^n} f(x), \quad f : \mathbb{R}^n \to \mathbb{R} \text{ differentiable.}$$

- Start with some initial guess x_0 .
- Generate a new guess x_1 by moving in the negative gradient direction:

$$x_1 = x_0 - \alpha_0 \nabla f(x_0).$$

• Repeat to successively refine the guess:

$$x_{k+1} = x_k - \alpha_k \nabla f(x_k), \quad k = 0, 1, 2, \dots$$

うしゃ 本理 キャイヨ キ ふうくう

where $\alpha_k > 0$ is called step-size or steplength or *learning rate* in the machine learning community.

$$\min_{x \in \mathbb{R}^n} f(x), \quad f : \mathbb{R}^n \to \mathbb{R} \text{ differentiable.}$$

- Start with some initial guess x_0 .
- Generate a new guess x_1 by moving in the negative gradient direction:

$$x_1 = x_0 - \alpha_0 \nabla f(x_0).$$

• Repeat to successively refine the guess:

$$x_{k+1} = x_k - \alpha_k \nabla f(x_k), \quad k = 0, 1, 2, \dots$$

where $\alpha_k > 0$ is called step-size or steplength or *learning rate* in the machine learning community.

 $-\nabla f(x_k)$ is a **descent direction** for f at x_k .

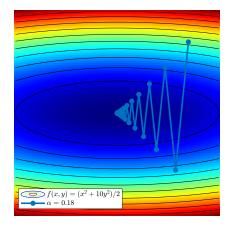
 $p \in \mathbb{R}^n$ is a descent direction if

$$\nabla f_p(x_k) = \nabla f(x_k)^{\mathrm{T}} p < 0.$$

うして ふゆ うん しょう ふ しゃ ふしゃ

Constant step-size $\alpha_k = \alpha > 0$

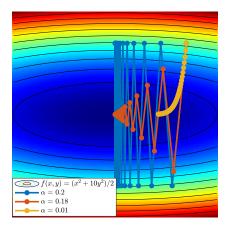
$$x_{k+1} = x_k - \alpha \nabla f(x_k), \quad k = 0, 1, 2, \dots$$



▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 …のへで

Constant step-size $\alpha_k = \alpha > 0$

$$x_{k+1} = x_k - \alpha \nabla f(x_k), \quad k = 0, 1, 2, \dots$$



• α needs to be "sufficiently small" in order to guarantee convergence.

• However, if α is "too small", the convergence might be too slow (expensive!)

Gradient Descent: convergence properties

We analyze the gradient descent assuming gradient of f is Lipschitz continuous:

There exists an L > 0 such that for all x and y we have

$$\|\nabla f(x) - \nabla f(y)\| \leq L \|x - y\|.$$

L is called the Lipschitz constant of the gradient.

Descent Lemma

If ∇f is Lipschitz continuous with constant L, then we have

$$f(y) \leq f(x) + \nabla f(x)^T (y - x) + \frac{L}{2} \|y - x\|^2, \quad \forall \ x, y \in \mathbb{R}^n.$$

If $y = x + \alpha p$, $\alpha > 0$, $p \in \mathbb{R}^n$, then:

$$f(x + \alpha p) \leq f(x) + \alpha \nabla f(x)^T p + \frac{L}{2} \alpha^2 \|p\|^2$$

イロト (四) (ヨ) (ヨ) (ヨ) ()

Gradient descent: case $\alpha_k = 1/L$

By the Descent Lemma, we have

$$x_{k+1} = x_k - \frac{1}{L} \nabla f(x_k)$$

$$= \underset{y \in \mathbb{R}^n}{\operatorname{argmin}} \frac{L}{2} \| y - (x_k - \frac{1}{L} \nabla f(x_k))) \|^2$$

$$= \underset{y \in \mathbb{R}^n}{\operatorname{argmin}} \underbrace{f(x_k) + \nabla f(x_k)^T (y - x_k) + \frac{L}{2} \| y - x_k \|^2}_{=q(y;x_k) \ge f(y)}.$$

$$q(x; x_k) \qquad \qquad F(x)$$
Majorization-Minimization (MM)
At each iteration, replace $f(x)$ with a quadratic majorizer $q(x; x_k)$ at x_k and minimize $q(x; x_k)$.

$$x_{k+1} = x_k - \frac{1}{L} \nabla f(x_k), \quad k = 0, 1, 2, \dots$$

Decrease of the objective function

• By the Descent Lemma, we have

$$f(x_{k+1}) = f(x_k - (1/L)\nabla f(x_k)) \leq f(x_k) - \frac{1}{2L} \|\nabla f(x_k)\|^2.$$

If
$$\nabla f(x_k) \neq 0$$
, this implies $f(x_{k+1}) < f(x_k)$.

(Weak) convergence to critical points

• Still from the Descent Lemma, it follows that

$$\|\nabla f(x_k)\|^2 \leq 2L(f(x_{k+1}) - f(x_k)).$$

Taking the limit for $k \to \infty$ yields $\lim_{k\to\infty} \|\nabla f(x_k)\| = 0$.

The same convergence properties hold for any $0 < \alpha_k < 2/L$. However, the knowledge of the Lipschitz constant L is needed.

Gradient descent: case $\alpha_k = 1/L$

Assume gradient of f Lipschitz continuous and $f \ge f_{low}$ bounded from below;

• Given $\epsilon_g > 0$, $\alpha_k = \alpha \leq 1/L$, the gradient descent method achieves

 $\|\nabla f(x_k)\| \leqslant \epsilon$

in at most

$$k = \left\lceil \epsilon_g^{-2} \sqrt{\frac{2(f(x_0) - f_{low})}{\alpha}} \right\rceil - 1 \quad \text{iterations}.$$

In other words, $\|\nabla f(x_k)\|^2$ decreases as O(1/k).

• Assume f convex and let $f(x^*)$ be the optimal value. Given $\epsilon_f > 0$, $\alpha \leq 1/L$, the gradient descent method achieves

$$f(x_k) - f(x^*) \leqslant \epsilon_f$$

in at most

$$k = \left[\epsilon_f^{-1} \frac{\|x_0 - x^*\|^2}{2\alpha}\right] \quad \text{iterations.}$$

In other words, $f(x_k) - f(x^*)$ decreases as O(1/k).

(ロト (個) (E) (E) (E) (E) (O)

• Assume f strongly μ -convex, i.e. there exists a constant $\mu > 0$ such that

$$f(x) \geq f(y) + \langle \nabla f(y)^T (x-y) + \frac{\mu}{2} \|x-y\|^2 \quad \text{for all} \quad x,y \in {\rm I\!R}^n,$$

then, if $0 < \alpha < 2/(\mu + L)$, SG achieves linear convergence

$$f(x_k) - f(x^*) = O(\rho^k),$$

with ρ depending on L/μ , $\rho \in (0, 1)$.

 \checkmark Logistic regression + ℓ_2- regularization is strongly convex and has Lipschitz continuous gradient.

Finite sum minimization: subsampling

Consider a finite-sum minimization problem:

$$\min_{x \in \mathbb{R}^n} f(x) = \frac{1}{N} \sum_{i=1}^N \phi_i(x)$$

where N is large.

Training sets often show redundancy in the data
 ⇒ using all the sample data in every optimization iteration is inefficient

うしゃ 本理 キャイヨ キ ふうくう

- Idea: work with small samples (at least initially)
- Methods in literature use subsampled f and/or ∇f and/or $\nabla^2 f_M$

Finite sum minimization: subsampling

Consider a finite-sum minimization problem:

$$\min_{x \in \mathbb{R}^n} f(x) = \frac{1}{N} \sum_{i=1}^N \phi_i(x)$$

where N is large.

Subsampling

- $S_k \subseteq \{1, \ldots, N\}$ randomly and uniformly selected
- $|\mathcal{S}_k|$: sample size at iteration k

$$abla_{\mathcal{S}_k} f(x_k) = rac{1}{|\mathcal{S}_k|} \sum_{i \in \mathcal{S}_k}
abla \phi_i(x_k)$$

ふりん 川 (中) (日) (日) (日) (日) (日)

Stochastic optimization methods

 $\min_{x \in \mathbb{R}^n} f(x), \qquad f : \mathbb{R}^n \to \mathbb{R}$ $f(x) = \begin{cases} \mathbb{E}[\phi(x, \xi)] \\ \text{or} \\ \frac{1}{N} \sum_{i=1}^N \phi_i(x) \end{cases}$

Algorithm : Stochastic Gradient Methods

1. Choose $x_0 \in \mathbb{R}^n$

where f

- **2.** For $k = 0, 1, \dots$ do
 - **2.1** Generate a realization of the random variable ξ_k .
 - **2.2** Compute a stochastic gradient $g(x_k, \xi_k)$.
 - **2.3** Choose a stepsize $\alpha_k > 0$.
 - **2.4** Set $x_{k+1} = x_k \alpha_k g(x_k, \xi_k)$.

Ingredients

- A mechanism for generating a realization ξ_k of ξ:
 ξ_k may represent the choice of a single training sample or a set of samples.
- A mechanism for forming $g(x_k, \xi_k)$.
- A mechanism for computing a scalar stepsize $\alpha_k > 0$, e.g., fixed stepsizes or diminishing stepsizes.

Stochastic process

The generated sequence $\{x_k\}$ is not determined uniquely by f, the starting point x_0 and the sequence of stepsizes $\{\alpha_k\}$ unlike the deterministic gradient descent method.

Rather, $\{x_k\}$ is a stochastic process whose behaviour is determined by the random sequence $\{\xi_k\}$.

$$f(x) = \mathbb{E}[\phi(x,\xi)]$$

Let ξ_k represent the independent choice of a single training sample or of a set $\{\xi_{k,i}\}$ of samples (according to the distribution P)

$$g(x_k, \xi_k) = \begin{cases} \nabla \phi(x_k, \xi_k) \\ \frac{1}{N_k} \sum_{i=1}^{N_k} \nabla \phi_i(x_k, \xi_{k,i}), \quad N_k \in \mathbb{N} \end{cases}$$

・ロト・日本・モン・モン・ ヨー うへぐ

Stochastic Gradient method (SG): a single item is drawn.

Mini-batch SG: a (small) set $\{\xi_{k,i}\}$ of samples is drawn.

Stochastic gradient: subsampling

$$f(x) = \frac{1}{N} \sum_{i=1}^{N} \phi_i(x)$$

Let ξ_k represent the independent choice of a single training sample or a set of samples in $\{1,\ldots,N\}$

$$g(x_k,\xi_k) = \begin{cases} \nabla \phi_{i_k}(x_k) \\ \frac{1}{N_k} \sum_{i \in \mathcal{S}_k} \nabla \phi_i(x_k), & N_k = card(\mathcal{S}_k), & 1 \leq N_k \ll N \end{cases}$$

Stochastic Gradient method (SG)

Choose randomly and uniformly the index $i_k \in \{1, \dots, N\}$ and compute

$$x_{k+1} = x_k - \alpha_k \nabla \phi_{i_k}(x_k), \quad k = 0, 1, 2, \dots$$

Mini-batch Stochastic gradient (Mini-batch SG)

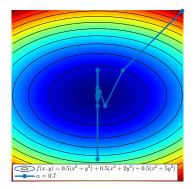
Choose randomly and uniformly the sample $S_k \subseteq \{1, \ldots, N\}$, let $N_k = card(S_k)$ be the sample size and compute

$$x_{k+1} = x_k - \frac{\alpha_k}{N_k} \sum_{i \in \mathcal{S}_k} \nabla \phi_i(x_k), \quad k = 0, 1, 2, \dots$$

Stochastic gradient: subsampling

Constant step-size $\alpha_k = \alpha > 0$

$$x_{k+1} = x_k - \alpha \nabla \phi_{i_k}(x_k), \quad k = 0, 1, 2, \dots$$



▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

SG does not guarantee the decrease of the objective function
 ⇒ oscillatory behaviour when close to the minimum.

• Intuitive Motivation

In reality, a training set does not consist of exact duplicates of sample data but the data are a large set and redundant.

This suggests that using all the sample data in every optimization is inefficient.

Working with small (single) samples can be convenient.

Using the mini-batch approximation reduces the variance of the stochastic gradient estimate with respect to the true gradient.

• Practical Motivation

Pros: the cost per-iteration of SG and mini-batch SG is low.

For the finite-sum minimization problem, an epoch represents N single evaluations $\nabla \phi_i$, i.e., the cost of one full gradient evaluation.

SG performs N steps per epoch.

Cons: it is necessary to run the algorithm repeatedly in order to appropriately tune the step-size (learning rate) and thus obtain an efficient solution.

・ロト ・ 同ト ・ ヨト ・ ヨー・ りへぐ

Lipschitz continuity

 $f: \mathbb{R}^n \to \mathbb{R}$ is continuously differentiable and $\nabla f: \mathbb{R}^n \to \mathbb{R}^n$, is Lipschitz-continuous with Lipschitz constant L > 0

$$\|\nabla f(x) - \nabla f(\bar{x})\|_2 \leq L \|x - \bar{x}\|_2, \quad x, \bar{x} \in \mathbb{R}^n.$$

Strong convexity

There exists a constant $0 < c \leq L$ s.t.

$$f(\bar{x}) \ge f(x) + \nabla f(x)^T (\bar{x} - x) + \frac{1}{2} c \|\bar{x} - x\|_2^2, \quad \forall x, \bar{x} \in \mathbb{R}^n$$

Hence f has a unique minimizer x_* with $f_* = f(x_*)$.

 \checkmark Logistic regression + ℓ_2- regularization is strongly convex and has Lipschitz continuous gradient.

うしゃ 本理 キャイヨ キ ふうくう

Assumptions

- $\{x_k\}$ is contained in an open convex set where f is bounded below by a scalar f_* .
- For all $k \in \mathbb{N}$

$$\nabla f(x_k)^T \mathbb{E}_{\xi_k} \left[g(x_k, \xi_k) \right] \ge \mu \| \nabla f(x_k) \|_2^2$$
, for some positive μ

(1)

in expectation $-g(x_k, \xi_k)$ is a direction of sufficient descent for f with norm comparable to the norm of $\nabla f(x_k)$ (trivial with $\mu = 1$ if $g(x_k, \xi_k)$ is an unbiased estimate of $\nabla f(x_k)$)

• For all $k \in \mathbb{N}$

 $\mathbb{E}_{\xi_k}\left[\|g(x_k,\xi_k)\|_2^2\right] \leqslant M_1 + M_2 \|\nabla f(x_k)\|_2^2, \quad \text{for some positive } M_1, M_2 \geqslant \mu^2 \qquad (2)$

For small enough stepsizes, $\{f(x_k)\}$ gets near to the optimal value

Theorem

Suppose that SG is run with a fixed stepsize $\alpha_k = \bar{\alpha}, \forall k \text{ s.t.}$

$$0 < \bar{\alpha} \leqslant \frac{\mu}{LM_2}.$$

Then, for all $k \in \mathbb{N}$

$$\mathbb{E}[f(x_k) - f(x_*)] \leqslant \frac{\bar{\alpha}LM_1}{2c\mu} + (1 - \bar{\alpha}c\mu)^k \left(f(x_0) - f(x_*) - \frac{\bar{\alpha}LM_1}{2c\mu}\right)$$
$$\stackrel{k \to \infty}{\longrightarrow} \frac{\bar{\alpha}LM_1}{2c\mu}$$

うしゃ 本理 キャイヨ キ ふうくう

Consequences:

• If there is no noise in the gradient computation or the noise decays with $\|\nabla f(x_k)\|_2^2$, then $M_1 = 0$.

Hence, linear convergence to the optimal value occurs.

- The initial optimality gap $f(x_0) f(x_*)$ appear with an exponentially decreasing factor.
- Selecting a smaller stepsize worsens the contraction constant in the convergence rate but allows one to arrive closer to the optimal values.

うしゃ 本理 キャイヨ キ ふうくう

SG: f strongly convex and diminishing stepsizes

More general requirements for α_k take the form

$$\sum_{i=0}^\infty \alpha_k = \infty, \qquad \sum_{i=0}^\infty \alpha_k^2 < \infty,$$

Theorem

Suppose SG is run with a stepsize s.t. for all $k \in \mathbb{N}$

$$\alpha_k = rac{eta}{\gamma+k} \quad ext{ for some } eta c \mu > 1 ext{ and } \gamma > 0 ext{ s.t. } lpha_0 \leqslant rac{\mu}{LM_2}$$

Then for all $k \in \mathbb{N}$, the optimality gap satisfies

$$\mathbb{E}[f(x_k) - f(x_*)] \leq \frac{\nu}{\gamma + k},$$

where

$$\nu = \max\left\{\frac{\beta^2 L M_1}{2(\beta c \mu - 1)}, \gamma(f(x_0) - f(x_*))\right\}.$$

イロト 不得下 イヨト イヨト

ж

Summary of SG: *f* strictly convex and diminishing stepsizes

- Constant stepsizes $\bar{\alpha}$ were required to satisfy $\bar{\alpha} \leq \frac{\mu}{LM_2}$
- For diminishing stepsizes, α_0 is required to satisfy the same bound.
- Successive steps α_k , $k \ge 1$, are of order O(1/k) and depend on the strong convexity parameter c since $\beta > 1/(c\mu)$.

うしゃ 本理 キャイヨ キ ふうくう

• The rate of convergence of the optimality gap is $\mathbb{E}[f(x_k) - f(x_*)] = O(1/k)$

GD

$$f(x_k) - f(x_*) = O(\rho^k), \ \rho \in (0,1) \quad \Rightarrow \quad f(x_k) - f(x_*) \leqslant \epsilon, \quad k = O\left(\ln(1/\epsilon)\right)$$

The cost per-iteration is proportional to N (need to compute $\nabla \phi_i$, $1 \leq i \leq N$)

Total work to obtain ϵ -optimality is proportional to $N \ln (1/\epsilon)$

SG

$$\mathbb{E}[f(x_k) - f(x_*)] = O(1/k) \implies \mathbb{E}[f(x_k) - f(x_*)] \leqslant \epsilon, \quad k = O(1/\epsilon)$$

Unitary per-iteration cost

 $1/\epsilon \ge N \ln(1/\epsilon)$ for moderate values of N, ϵ

while

 $1/\epsilon < N \ln(1/\epsilon)$ in a big data regime where N is large

SG for general f

Recall that $\{f(x_k)\}$ is assumed to be bounded below by a scalar f_* .

Theorem (f nonconvex, fixed stepsize)

Suppose that SG is run with a fixed stepsize $\alpha_k = \bar{\alpha}$ for all $k \in \mathbb{R}$ s.t.

$$0 < \bar{\alpha} \leqslant \frac{\mu}{LM_2}.$$

Then, for all $K \in \mathbb{N}$

$$\mathbb{E}\left[\frac{1}{K}\sum_{k=1}^{K} \|\nabla f(x_k)\|_2^2\right] \leqslant \frac{\bar{\alpha}LM_1}{\mu} + 2\frac{f(x_0) - f_*}{K\mu\bar{\alpha}}$$
$$\xrightarrow{K \to \infty} \frac{\bar{\alpha}LM_1}{\mu}$$

This result characterizes the expected average-squared gradients of f

The average norm of the gradients can be made arbitrarily small by selecting a small stepsize (but doing so reduces the speed at which $\|\nabla f(x_k)\|_2$ approaches its limiting distribution).

SG for general f

Recall that $\{f(x_k)\}$ is assumed to be bounded below by a scalar f_* .

Theorem (*f* nonconvex, diminishing stepsizes)

Suppose that SG is run with a stepsize sequence satisfying

$$\sum_{k=1}^{\infty} \alpha_k = \infty, \qquad \sum_{i=1}^{\infty} \alpha_k^2 < \infty,$$

Then,

$$\liminf_{k \to \infty} \mathbb{E}\left[\|\nabla f(x_k)\|_2^2 \right] = 0$$

i.e., gradient norms cannot asymptotically stay far from zero.

If we further assume that f is twice continuously differentiable and $\|\nabla f(x)\|_2^2$ has Lipschitz continuous derivatives then

 $\lim_{k\to\infty}\mathbb{E}\left[\|\nabla f(x_k)\|_2^2\right]=0$

うしゃ 本理 キャイヨ キ ふうくう

Mini-batch SG

$$f(x) = \frac{1}{N} \sum_{i=1}^{N} \phi(x)$$

$$g(x_k, \xi_k) = \frac{1}{N_k} \sum_{i \in S_k} \nabla \phi_i(x_k), \quad card(S_k) = N_k = N_{\rm mb}, \forall k$$

The variance of the direction is reduced by a factor $1/N_{\rm mb}$.

Previous results can be extended to mini-batch SG, e.g.,

• SG, f strongly convex, constant and sufficiently small stepsize

$$\mathbb{E}[f(x_k) - f(x_*)] \leq \frac{\bar{\alpha}LM_1}{2c\mu} + (1 - \bar{\alpha}c\mu)^k \left(f(x_0) - f(x_*) - \frac{\bar{\alpha}LM_1}{2c\mu}\right)$$

• Mini-batch SG, f strongly convex, constant and sufficiently small stepsize

$$\mathbb{E}[f(x_k) - f(x_*)] \leq \underbrace{\frac{\bar{\alpha}LM_1}{2c\mu N_{\rm mb}}}_{\text{smaller asymptotic gap}} + (1 - \bar{\alpha}c\mu)^k \left(f(x_0) - f(x_*) - \frac{\bar{\alpha}LM_1}{2c\mu N_{\rm mb}}\right)$$

But the computation of $g(x_k, w_k)$ is $N_{\rm mb}$ times more expensive than in SG. In general the methods can be comparable but mini-batch method can be parallelized.

Numerical experiment

Given $\{(a_i, b_i)\}_{i=1,...,N}$ the Mushrooms dataset¹, $b_i \in \{0, 1\}$, learn the parameters $x \in \mathbb{R}^n$ of the logistic regression by solving

$$\min_{x \in \mathbb{R}^n} f(x) = \frac{1}{N} \sum_{i=1}^{N} \underbrace{\left(b_i - \frac{1}{1 + e^{-a_i^T x}}\right)^2}_{:=\phi_i(x)}$$

DATA	Training Size ${\cal N}$	Test Size	Numb. of Features d
Mushrooms	6503	1621	112

Safe to eat or deadly poison?

 $^{^{1}} https://www.kaggle.com/uciml/mushroom-classification < \texttt{P} + < \texttt{P}$

Numerical experiment

GD

$$x_{k+1} = x_k - \frac{\alpha}{N} \sum_{i=1}^N \nabla \phi_i(x_k).$$

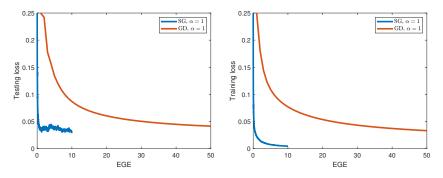
Mini-batch SG

$$x_{k+1} = x_k - \frac{\alpha}{|S|} \sum_{i \in S} \nabla \phi_i(x_k), \quad 1 < |S| << N.$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ のへぐ

For these tests, we set $\alpha = 1$ and |S| = 65. The sample S is computed by random and uniform subsampling.

Numerical experiment



• Training loss (for the training set \mathcal{T})

$$f_N(x) = \frac{1}{N} \sum_{i \in \mathcal{T}} \phi_i(x).$$

• Testing loss (for the testing set \mathcal{T}_T)

$$f_N(x) = \frac{1}{N_T} \sum_{i \in \mathcal{T}_T} \phi_i(x).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで