

An enrichment and extension
programme for primary-aged students

Created by
Tim Bell, Ian H. Witten and Mike Fellows

Adapted for classroom use by
Robyn Adams and Jane McKenzie

Illustrated by Matt Powell

An enrichment and extension
programme for primary-aged children

Created by

Tim Bell, Ian H. Witten and Mike Fellows

Adapted for classroom use by Robyn Adams and Jane McKenzie

Illustrations by Matt Powell

2015 Revision by Sam Jarman

Licensed under Creative Commons i
© 2015 Computer Science Unplugged (csunplugged.org)

Introduction
Computers are everywhere. We all need to learn how to use them, and many
of us use them every day. But how do they work? How do they think? And
how can people write software that is fast and easy to use? Computer science
is a fascinating subject that explores these very questions. The easy and fun
activities in this book, designed for studentren of all ages, introduce you to
some of the building blocks of how computers work—without using a
computer at all!

This book can be effectively used in enrichment and extension programmes,
or even in the regular classroom. You don’t have to be a computer expert to
enjoy learning these principles with your students. The book contains a range
of activities, with background information explained simply. Answers to all
problems are provided, and each activity ends with a ‘what’s it all about?’
section that explains the relevance of the activities.

Many of the activities are mathematically based, e.g. exploring binary
numbers, mapping and graphs, patterns and sorting problems, and
cryptography. Others link in well with the technology curriculum, and the
knowledge and understanding of how computers work. The studentren are
actively involved in communication, problem solving, creativity, and thinking
skills in a meaningful context. The activities also provide a very engaging way
to explore “computational thinking”, which is gaining traction in school
curricula.

In addition to this book, the “Unplugged” project has as lot of free, online
resources including videos, pictures and extra material at csunplugged.org.
As part of the 2015 revision of this book, we have also released a brand new
website, with more resources, better access to the open source material, and
stronger curriculum links to match the appearance of computer science and
computational thinking in school curricula.

This book was written by three computer science lecturers and two school
teachers, and is based on our experience in classrooms as well as feedback
from hundreds of educators over two decades. We have found that many
important concepts can be taught without using a computer—in fact,
sometimes the computer is just a distraction from learning. Often computer
science is taught using programming first, but not every student finds this
motivating, and it can be a significant barrier to getting into the really
interesting ideas in computer science. So unplug your computer, and get
ready to learn what computer science is really about!

ii Licensed under Creative Commons
© 2015 Computer Science Unplugged (csunplugged.org)

This book is available as a free download thanks to a generous grant by
Google, Inc. It is distributed under a Creative Commons Attribution-
NonCommercial-ShareAlike licence, which means that you are free to
share (copy, distribute, and transmit) the book. It also allows you to
remix the book. These are only available under the following conditions:
you include attribution to the authors, you do not use this book for
commercial purposes, and if you alter, transform or build upon this
work, you share under the same or similar license. More details of this
license can be found online by searching: CC BY-NC-SA 3.0.

We encourage the use of this material in educational settings, and you
are welcome to print your own copy of the book and distribute
worksheets from it to students. We welcome enquiries and suggestions,
which should be directed to the authors (see csunplugged.org).

This book has been translated into many languages. Please check the
web site for information about the availability of translations.

Licensed under Creative Commons iii
© 2015 Computer Science Unplugged (csunplugged.org)

Acknowledgements
Many children and teachers have helped us to refine our ideas. The children
and teachers at South Park School (Victoria, BC), Shirley Primary School, Ilam
Primary School and Westburn Primary School (Christchurch, New Zealand)
were guinea pigs for many activities. We are particularly grateful to Linda
Picciotto, Karen Able, Bryon Porteous, Paul Cathro, Tracy Harrold, Simone
Tanoa, Lorraine Woodfield, and Lynn Atkinson for welcoming us into their
classrooms and making helpful suggestions for refinements to the activities.
Gwenda Bensemann has trialed several of the activities for us and suggested
modifications. Richard Lynders and Sumant Murugesh have helped with
classroom trials. Parts of the cryptography activities were developed by Ken
Noblitz. Some of the activities were run under the umbrella of the Victoria
“Mathmania” group, with help from Kathy Beveridge. Earlier versions of the
illustrations were done by Malcolm Robinson and Gail Williams, and we have
also benefited from advice from Hans Knutson. Matt Powell has also
provided valuable assistance during the development of the “Unplugged”
project. We are grateful to the Brian Mason Scientific and Technical Trust for
generous sponsorship in the early stages of the development of this book.

Special thanks go to Paul and Ruth Ellen Howard, who tested many of the
activities and provided a number of helpful suggestions. Peter Henderson,
Bruce McKenzie, Joan Mitchell, Nancy Walker-Mitchell, Gwen Stark, Tony
Smith, Tim A. H. Bell1, Mike Hallett, and Harold Thimbleby also provided
numerous helpful comments.

We owe a huge debt to our families: Bruce, Fran, Grant, Judith, and Pam for
their support, and Andrew, Anna, Hannah, Max, Michael, and Nikki who
inspired much of this work,2 and were often the first children to test an
activity.

We are particularly grateful to Google Inc. for sponsoring the Unplugged
project, and enabling us to make this edition available as a free download.

We welcome comments and suggestions about the activities. The authors can
be contacted via csunplugged.org.

1 No relation to the first author.
2 In fact, the text compression activity was invented by Michael.

iv Licensed under Creative Commons
© 2015 Computer Science Unplugged (csunplugged.org)

Contents
Introduction i	

Acknowledgements iii	

Data: the raw material—Representing information 1	

Count the Dots—Binary Numbers 3	

Colour by Numbers—Image Representation 16	

You Can Say That Again! —Text Compression 26	

Card Flip Magic—Error Detection & Correction 35	

Twenty Guesses—Information Theory 43	

Putting Computers to Work—Algorithms 51	

Battleships—Searching Algorithms 53	

Lightest and Heaviest—Sorting Algorithms 72	

Beat the Clock—Sorting Networks 80	

The Muddy City—Minimal Spanning Trees 87	

The Orange Game—Routing and Deadlock in Networks 93	

Tablets of Stone—Network Communication Protocols 97	

Telling Computers What To Do—Representing Procedures 105	

Treasure Hunt—Finite-State Automata 107	

Marching Orders—Programming Languages 123	

Really hard problems—Intractability 129	

The poor cartographer—Graph coloring 132	

Tourist town—Dominating sets 146	

Ice roads —Steiner trees 155	

Sharing secrets and fighting crime-Cryptography 167	

Licensed under Creative Commons v
© 2015 Computer Science Unplugged (csunplugged.org)

Sharing secrets—Information hiding protocols 172	

The Peruvian coin flip—Cryptographic protocols 176	

Kid Krypto—Public-key encryption 188	

The human face of computing-Interacting with computers 201	

The chocolate factory—Human interface design 205	

Conversations with computers—The Turing test 220	

vi Licensed under Creative Commons
© 2015 Computer Science Unplugged (csunplugged.org)

Part I
Data: the raw material—
Representing information

2 Licensed under Creative Commons
© 2015 Computer Science Unplugged (csunplugged.org) © 2015 Computer Science Unplugged (csunplugged.org)

Data: The Raw Material
How can we store information in computers?

The word computer comes from the Latin computare, which means to
calculate or add together, but computers today are more than just giant
calculators. They can be a library, help us to write, find information for us,
play music and even show movies. So how do they store all this information?
Believe it or not, the computer uses only two things: zero and one!

What is the difference between data and information?

Data is the raw material, the numbers that computers work with. A computer
converts its data into information (words, numbers and pictures) that you
and I can understand.

How can numbers, letters, words and pictures be converted into zeros
and ones?

In this section we will learn about binary numbers, how computers draw
pictures, how fax machines work, what is the most efficient way to store lots
of data, how we can prevent errors from happening and how we measure
the amount of information we are trying to store.

Licensed under Creative Commons 3
© 2015 Computer Science Unplugged (csunplugged.org)

Activity 1
Count the Dots—Binary Numbers
Summary
Data in computers is stored and transmitted as a series of zeros and ones.
How can we represent words and numbers using just these two symbols?

Curriculum Links
ü Mathematics: Number – Exploring numbers in other bases. Representing

numbers in base two.
ü Mathematics: Algebra – Continue a sequential pattern, and describe a

rule for this pattern. Patterns and relationships in powers of two.

Skills
ü Counting
ü Matching
ü Sequencing

Ages
ü 6 and up

Materials
ü You will need to make a set of five binary cards (see page 7) for the

demonstration.
A4 cards with smiley face sticker dots work well.

Each student will need:
ü A set of five cards.

Copy Photocopy Master: Binary numbers (page 7) onto card and cut out.
ü Worksheet Activity: Binary numbers (page 6)

There are optional extension activities, for which each student will need:
ü Worksheet Activity: Working with binary (page 8)
ü Worksheet Activity: Sending secret messages (page 9)
ü Worksheet Activity: Email and modems (page 10)
ü Worksheet Activity: Counting higher than 31 (page 11)
ü Worksheet Activity: More on binary numbers (page 12)

4 Licensed under Creative Commons
© 2015 Computer Science Unplugged (csunplugged.org) © 2015 Computer Science Unplugged (csunplugged.org)

Binary Numbers
Introduction
Before giving out the worksheet on page 6, it can be helpful to demonstrate
the principles to the whole group.

For this activity, you will need a set of five cards, as shown below, with dots
on one side and nothing on the other. Choose five students to hold the
demonstration cards at the front of the class. The cards should be in the
following order:

Discussion
As you give out the cards (from right to left), see if the students can guess
how many dots are on the next card. What do you notice about the number
of dots on the cards? (Each card has twice as many as the card to its right.)

How many dots would the next card have if we carried on to the left? (32) The
next…? (64)

We can use these cards to make numbers by turning some of them face
down and adding up the dots that are showing. Ask the students to show 6
dots (4-dot and 2-dot cards), then 15 (8-, 4-, 2- and 1-dot cards), then 21 (16, 4
and 1)… The only rule is that a card has to be completely visible, or
completely hidden.

What is the smallest number of dots possible? (They may answer one, but it’s
zero).

Now try counting from zero onwards.

The rest of the class needs to look closely at how the cards change to see if
they can see a pattern in how the cards flip (each card flips half as often as
the one to its right). You may like to try this with more than one group.

When a binary number card is not showing, it is represented by a zero. When
it is showing, it is represented by a one. This is the binary number system.

Licensed under Creative Commons 5
© 2015 Computer Science Unplugged (csunplugged.org)

Ask the students to make 01001. What number is this in decimal? (9) What
would 17 be in binary? (10001)

Try a few more until they understand the concept.

There are five optional follow-up extension activities, to be used for
reinforcement. The students should do as many of them as they can.

6 Licensed under Creative Commons
© 2015 Computer Science Unplugged (csunplugged.org) © 2015 Computer Science Unplugged (csunplugged.org)

Worksheet Activity: Binary Numbers

Learning how to count
So, you thought you knew how to count? Well, here is a new way to do it!

Did you know that computers use only zero and one? Everything that you see
or hear on the computer—words, pictures, numbers, movies and even sound
is stored using just those two numbers! These activities will teach you how to
send secret messages to your friends using exactly the same method as a
computer.

Instructions
Cut out the cards on your sheet and lay them out with the 16-dot card on the
left as shown here:

Make sure the cards are placed in exactly the same order.

Now flip the cards so exactly 5 dots show—keep your cards in the same
order!

Find out how to get 3, 12, 19. Is there more than one way to get any number?
What is the biggest number you can make? What is the smallest? Is there any
number you can’t make between the smallest and biggest numbers?

Extra for Experts: Try making the numbers 1, 2, 3, 4 in order. Can you work out a
logical and reliable method of flipping the cards to increase any number by one?

Licensed under Creative Commons 7
© 2015 Computer Science Unplugged (csunplugged.org)

Photocopy Master: Binary Numbers

8 Licensed under Creative Commons
© 2015 Computer Science Unplugged (csunplugged.org) © 2015 Computer Science Unplugged (csunplugged.org)

Worksheet Activity: Working With Binary

The binary system uses zero and one to represent whether a card is face up
or not. 0 shows that a card is hidden, and 1 means that you can see the dots.
For example:

Can you work out what 10101 is? What about 11111?

What day of the month were you born? Write it in binary. Find out what your
friend’s birthdays are in binary.

Try to work out these coded numbers:

Extra for Experts: Using a set of rods of length 1, 2, 4, 8 and 16 units show how
you can make any length up to 31 units. Or you could surprise an adult and show
them how they only need a balance scale and a few weights to be able to weigh

those heavy things like suitcases or boxes!

Licensed under Creative Commons 9
© 2015 Computer Science Unplugged (csunplugged.org)

Worksheet Activity: Sending Secret Messages

Tom is trapped on the top floor of a department store. It’s just before
Christmas and he wants to get home with his presents. What can he do? He
has tried calling, even yelling, but there is no one around. Across the street
he can see some computer person still working away late into the night. How
could he attract her attention? Tom looks around to see what he could use.
Then he has a brilliant idea—he can use the Christmas tree lights to send her
a message! He finds all the lights and plugs them in so he can turn them on
and off. He uses a simple binary code, which he knows the woman across the
street is sure to understand. Can you work it out?

1 2 3 4 5 6 7 8 9 10 11 12 13

a b c d e f g h i j k l m
14 15 16 17 18 19 20 21 22 23 24 25 26

n o p q r s t u v w x y z

10 Licensed under Creative Commons
© 2015 Computer Science Unplugged (csunplugged.org)

Worksheet Activity: E-mail and Modems

Computers connected to the internet through a modem also use the binary
system to send messages. The only difference is that they use beeps. A high-
pitched beep can be used for a one and a low-pitched beep for a zero. These
tones go very fast—so fast, in fact, that all we can hear is a horrible
continuous screeching sound. If you have never heard it, listen to a modem
connecting to the Internet, or try calling a fax machine—fax machines also
use modems to send information.

Using the same code that Tom used in the department store, try sending an
e-mail message to your friend. Make it easy for yourself and your friend
though—you don’t have to be as fast as a real modem!

Licensed under Creative Commons 11
© 2015 Computer Science Unplugged (csunplugged.org)

Worksheet Activity: Counting higher than 31

Look at the binary cards again. If you were going to make the next card in the
sequence, how many dots would it have? What about the next card after
that? What is the rule that you are following to make your new cards? As you
can see, only a few cards are needed to count up to very big numbers.

If you look at the sequence carefully, you can find a very interesting
relationship:

1, 2, 4, 8, 16…

Try adding: 1 + 2 + 4 = ? What does it come to?

Now try 1 + 2 + 4 + 8 = ?

What happens if you add all the numbers up from the beginning?

Have you ever heard of “let your fingers do the walking”? Well now you can
let your fingers do the counting, but you can get much higher than ten—no,
you don’t have to be an alien! If you use the binary system and let each finger
on one hand represent one of the cards with dots you can count from 0–31.
That’s 32 numbers. (Don’t forget that zero is a number too!)

Try counting in order using your fingers. If a finger is up it is a one, and if it is
down it is a zero.

You can actually get from 0–1023 if you use both hands! That’s 1024
numbers!

If you had really bendy toes (now you would have to be an alien) you could
get even higher. If one hand can be used to count 32 numbers, and two
hands can count to 32 × 32 = 1024 numbers, what is the biggest number Miss
Flexi-Toes can reach?

12 Licensed under Creative Commons
© 2015 Computer Science Unplugged (csunplugged.org)

Worksheet Activity: More on Binary Numbers

1. Another interesting property of binary numbers is what happens when a zero
is put on the right hand side of the number. If we are working in base 10
(decimal), when you put a zero on the right hand side of the number, it is
multiplied by 10. For example, 9 becomes 90, 30 becomes 300.

But what happens when you put a 0 on the right of a binary number? Try this:

 1001 → 10010
 (9) (?)

Make up some others to test your hypothesis. What is the rule? Why do you
think this happens?

2. Each of the cards we have used so far represents a ‘bit’ on the computer (‘bit’
is short for ‘binary digit’). So our alphabet code we have used so far can be
represented using just five cards, or ‘bits’. However a computer has to know
whether letters are capitals or not, and also recognise digits, punctuation and
special symbols such as $ or ~.

Go and look at a keyboard and work out how many characters a computer
has to represent. So how many bits does a computer need to store all the
characters?

Most computers today use a representation called ASCII (American Standard
Code for Information Interchange), which is based on using this number of
bits per character, but some non-English speaking countries have to use
longer codes.

Licensed under Creative Commons 13
© 2015 Computer Science Unplugged (csunplugged.org)

What’s it all about?
Computers today use the binary system to represent information. It is called
binary because only two different digits are used. It is also known as base
two (humans normally use base 10). Each zero or one is called a bit (binary
digit). A bit is usually represented in a computer’s main memory by a
transistor that is switched on or off, or a capacitor that is charged or
discharged.

When data must be transmitted over a telephone line or radio link, high and
low-pitched tones are used for the ones and zeros. On magnetic disks (hard
disks and floppy disks) and tapes, bits are represented by the direction of a
magnetic field on a coated surface, either North-South or South-North.

Audio CDs, CD-ROMs and DVDs store bits optically—the part of the surface
corresponding to a bit either does or does not reflect light.

The reason that computers only use two different values is that it’s much
easier to build devices that do it this way. We could have had CDs that have
10 levels of reflection so that we could represent all the digits from 0 to 9, but
you have to build very expensive and precise devices to make it work. The
other thing you may have noticed is that although we say that computers
only store zeroes and ones, the actually don’t have zeroes and ones inside
them – just high and low voltages, or north/south magnetism, and so on. But
it’s quicker to write “0” and “1” than things like “shiny” and “not shiny”.
Everything on computers is represented using these bits – documents,
pictures, songs, videos, numbers, and even the programs and apps that we
use are just a whole lot of binary digits.

One bit on its own can’t represent much, so they are usually grouped
together in groups of eight, which can represent numbers from 0 to 255. A
group of eight bits is called a byte.

14 Licensed under Creative Commons
© 2015 Computer Science Unplugged (csunplugged.org)

The speed of a computer depends on the number of bits it can process at
once. For example, a 32-bit computer can process 32-bit numbers in one
operation, while a 16-bit computer must break 32-bit numbers down into
smaller pieces, making it slower (but cheaper!)

In some of the later activities we will see how other kinds of information can
be represented on a computer using binary digits.

Licensed under Creative Commons 15
© 2015 Computer Science Unplugged (csunplugged.org)

Solutions and hints
Binary Numbers (page 6)

3 requires cards 2 and 1
12 requires cards 8 and 4
19 requires cards 16, 2 and 1

There is only one way to make any number.

The biggest number you can make is 31. The smallest is 0. You can make
every number in between, and each has a unique representation.

Experts: To increase any number by one, flip all the cards from right to left
until you turn one face up.

Working with binary (page 8)

10101 = 21, 11111 = 31

Sending Secret Messages (page 9)

Coded message: HELP IM TRAPPED

Counting higher than 31 (page 11)

If you add the numbers up from the beginning the sum will always be one
less than the next number in the sequence.

Miss Flexi-toes can count 1024 × 1024 = 1,048,576 numbers—from 0 to
1,048,575!

More on Binary Numbers (page 12)

When you put a zero on the right hand side of a binary number the number
doubles.

All of the places containing a one are now worth twice their previous value,
and so the total number doubles. (In base 10 adding a zero to the right
multiplies it by 10.)

A computer needs 7 bits to store all the characters. This allows for up to 128
characters. Usually the 7 bits are stored in an 8-bit byte, with one bit wasted.

16 Licensed under Creative Commons
© 2015 Computer Science Unplugged (csunplugged.org)

Activity 2
Colour by Numbers—Image Representation
Summary
Computers store drawings, photographs and other pictures using only
numbers. The following activity demonstrates how they can do this.

Curriculum Links
ü Mathematics: Geometry – Shapes and Spaces
ü Technology: using whole numbers to represent other kinds of data
ü Technology: reducing the space used by repetitive data

Skills
ü Counting
ü Graphing

Ages
ü 7 and up

Materials
ü Slide for presenting: Colour by numbers (page 19)

Each student will need:
ü Worksheet Activity: Kid Fax (page 20)
ü Worksheet Activity: Make your own picture (page 21)

Licensed under Creative Commons 17
© 2015 Computer Science Unplugged (csunplugged.org)

Colour by Numbers
Introduction

Discussion Questions
1. What do facsimile (fax) machines do?

2. In what situations would computers need to store pictures? (A drawing
program, a game with graphics, or a multi-media system.)

3. How can computers store pictures when they can only use numbers?

(You may like to arrange for the students to send and/or receive faxes as a
preparation for this activity)

Demonstration using projection

Computer screens are divided up into a grid of small dots called pixels
(picture elements).

In a black and white picture, each pixel is either black or white.

The letter “a” has been magnified above to show the pixels. When a
computer stores a picture, all that it needs to store is which dots are black
and which are white.

1, 3, 1
4, 1
1, 4
0, 1, 3, 1
0, 1, 3, 1
1, 4

The picture above shows us how a picture can be represented by numbers.
The first line consists of one white pixel, then three black, then one white.
Thus the first line is represented as 1, 3, 1.

18 Licensed under Creative Commons
© 2015 Computer Science Unplugged (csunplugged.org)

The first number always relates to the number of white pixels. If the first
pixel is black the line will begin with a zero.

The worksheet on page 20 gives some pictures that the students can decode
using the method just demonstrated.

Licensed under Creative Commons 19
© 2015 Computer Science Unplugged (csunplugged.org)

Colour by numbers

� A letter “a” from a computer screen and a magnified view showing the
pixels that make up the image

1, 3, 1
4, 1
1, 4
0, 1, 3, 1
0, 1, 3, 1
1, 4

� The same image coded using numbers

� Blank grid (for teaching purposes)

20 Licensed under Creative Commons
© 2015 Computer Science Unplugged (csunplugged.org)

Worksheet Activity: Kid Fax

The first picture is the easiest and the last one is the most complex. It is easy
to make mistakes and therefore a good idea to use a pencil to colour with
and have a rubber handy!

 4, 11
 4, 9, 2, 1
 4, 9, 2, 1
 4, 11
 4, 9
 4, 9
 5, 7
 0, 17
 1, 15

 6, 5, 2, 3
 4, 2, 5, 2, 3, 1
 3, 1, 9, 1, 2, 1
 3, 1, 9, 1, 1, 1
 2, 1, 11, 1
 2, 1, 10, 2
 2, 1, 9, 1, 1, 1
 2, 1, 8, 1, 2, 1
 2, 1, 7, 1, 3, 1
 1, 1, 1, 1, 4, 2, 3, 1
 0, 1, 2, 1, 2, 2, 5, 1
 0, 1, 3, 2, 5, 2
 1, 3, 2, 5

 6, 2, 2, 2
 5, 1, 2, 2, 2, 1
 6, 6
 4, 2, 6, 2
 3, 1, 10, 1
 2, 1, 12, 1
 2, 1, 3, 1, 4, 1, 3, 1
 1, 2, 12, 2
 0, 1, 16, 1
 0, 1, 6, 1, 2, 1, 6, 1
 0, 1, 7, 2, 7, 1
 1, 1, 14, 1
 2, 1, 12, 1
 2, 1, 5, 2, 5, 1
 3, 1, 10, 1
 4, 2, 6, 2
 6, 6

Licensed under Creative Commons 21
© 2015 Computer Science Unplugged (csunplugged.org)

Worksheet Activity: Make Your Own Picture

Now that you know how numbers can represent pictures, why not try making
your own coded picture for a friend? Draw your picture on the top grid, and
when you’ve finished, write the code numbers beside the bottom grid. Cut
along the dotted line and give the bottom grid to a friend to colour in. (Note:
you don’t have to use the whole grid if you don’t want to—just leave some
blank lines at the bottom if your picture doesn’t take up the whole grid.)

22 Licensed under Creative Commons
© 2015 Computer Science Unplugged (csunplugged.org)

Worksheet Activity: Make Your Own Picture

Extra for Experts: If you want to produce coloured images you can use a
number to represent the colour (e.g. 0 is black, 1 is red, 2 is green etc.) Two
numbers are now used to represent a run of pixels: the first gives the length
of the run as before, and the second specifies the colour. Try making a
coloured picture for a friend. Don’t forget to let your friend know which
number stands for which colour!

Licensed under Creative Commons 23
© 2015 Computer Science Unplugged (csunplugged.org)

Variations and Extensions
1. Try drawing with a sheet of tracing paper on top of the grid, so that the

final image can be viewed without the grid. The image will be clearer.

2. Instead of colouring the grid the students could use squares of sticky
paper, or place objects, on a larger grid.

Discussion Point
There is usually a limit to the length of a run of pixels because the length is
being represented as a binary number. How would you represent a run of
twelve black pixels if you could only use numbers up to seven? (A good way is
to code a run of seven black pixels, followed by a run of zero white, then a
run of five black.)

24 Licensed under Creative Commons
© 2015 Computer Science Unplugged (csunplugged.org)

What’s it all about?
A fax machine is really just a simple computer that scans a black and white
page into about 1000 × 2000 pixels, which are sent using a modem to
another fax machine, which prints the pixels out on a page. Often fax images
have large blocks of white (e.g. margins) or black pixels (e.g. a horizontal line).
Colour pictures also have a lot of repetition in them. To save on the amount
of storage space needed to keep such images programmers can use a variety
of compression techniques. The method used in this activity is called ‘run-
length coding’, and is an effective way to compress images. If we didn't
compress images it would take much longer to transmit pictures and require
much more storage space. This would make it infeasible to send faxes or put
photos on a web page. For example, fax images are generally compressed to
about a seventh of their original size. Without compression they would take
seven times as long to transmit!

Photographs and pictures are often compressed to a tenth or even a
hundredth of their original size (using a related techniques such as JPEG, GIF
and PNG). This allows many more images to be stored on a disk, and it
means that viewing them over the web will take a fraction of the time.

A programmer can choose which compression technique best suits the
images he or she is transmitting.

Licensed under Creative Commons 25
© 2015 Computer Science Unplugged (csunplugged.org)

Solutions and hints
Answers to Kid Fax Worksheet

26 Licensed under Creative Commons
© 2015 Computer Science Unplugged (csunplugged.org)

Activity 3
You Can Say That Again! —Text Compression
Summary
Since computers only have a limited amount of space to hold information,
they need to represent information as efficiently as possible. This is called
compression. By coding data before it is stored, and decoding it when it is
retrieved, the computer can store more data, or send it faster through the
Internet.

Curriculum Links
ü English: Recognising patterns in words and text.
ü Technology: reducing the space used by repetitive data

Skills
ü Copying written text

Ages
ü 9 and up

Materials
ü Presentation Slide: You can say that again! (page 28)

Each student will need:
ü Worksheet Activity: You can say that again! (page 29)
ü Worksheet Activity: Extras for experts (page 30)
ü Worksheet Activity: Short and sweet (page 31)
ü Worksheet Activity: Extras for real experts (page 33)

Licensed under Creative Commons 27
© 2015 Computer Science Unplugged (csunplugged.org)

You can say that again!
Introduction
Computers have to store and transmit a lot of data. So that they don’t have to
use up too much storage space, or take too long to send information through
a network connection, they compress the text a bit like this.

Demonstration and Discussion
Show “The Rain” slide (page 28). Look for the patterns of letters in this poem.
Can you find groups of 2 or more letters that are repeated, or even whole
words or phrases? (Replace these with boxes as shown in the diagram
below.)

28 Licensed under Creative Commons
© 2015 Computer Science Unplugged (csunplugged.org)

You Can Say That Again!

The Rain

Pitter patter
Pitter patter
Listen to the rain
Pitter patter
Pitter patter
On the window
pane

Licensed under Creative Commons 29
© 2015 Computer Science Unplugged (csunplugged.org)

Worksheet Activity: You can say that again!

Many of the words and letters are missing in this poem. Can you fill in the
missing letters and words to complete it correctly? You will find these in the
box that the arrow is pointing to.

Now choose a simple poem or nursery rhyme and design your own puzzle.
Make sure your arrows always point to an earlier part of the text. Your poem
should be able to be decoded from left to right and from top to bottom in the
same way we read.

Challenge: See how few of the original words you need to keep!

Here are some suggestions: Three Blind Mice, Mary Mary Quite Contrary,
Hickory Dickory Dock—or try some Dr Seuss books!

Hint: Try to avoid overcrowding of arrows. Leave a lot of space around letters
and words as you write them so that you have room for the boxes within
boxes and the arrows pointing to them.

It is easier to design the puzzle if you write out the poem first and then
decide where the boxes need to be.

30 Licensed under Creative Commons
© 2015 Computer Science Unplugged (csunplugged.org)

Worksheet Activity: Extra for Experts

How would you solve this puzzle?

Sometimes missing text points to part of itself. In this case it can be decoded
correctly if the letters are copied from left to right. Then each letter is
available to be copied before it is needed. This is useful in computers if there
is a long run of a particular character or pattern.

Try drawing some of your own.

On computers the boxes and arrows are represented by numbers. For
example,

Banana
can be written as Ban(2,3). “2” means count back two characters to find the
starting point for copying,

Ban---
and “3” means copy three consecutive characters:

Bana--

Banan-

Banana-
As two numbers are used to code these words, usually only groups of two or
more letters are worth compressing, otherwise there is no saving of space. In
fact the size of the file could go up if two numbers are used to code one
letter.

Make up some words of your own written in the way a computer would if they
were compressed. Can your friends decode them?

Ban---

Licensed under Creative Commons 31
© 2015 Computer Science Unplugged (csunplugged.org)

Worksheet Activity: Short and Sweet

How many words do you really need here?

Pretend you are a computer trying to fit as much into your disk as possible.
Cross out all the groups of two or more letters that have already occurred.
These are no longer needed as they could be replaced by a pointer. Your goal
is to get as many letters crossed out as possible.

32 Licensed under Creative Commons
© 2015 Computer Science Unplugged (csunplugged.org)

I
kn

o
w

 a
n

 o
ld

 l
ad

y
w

h
o

 s
w

al
lo

w
e

d
 a

 b
ir

d

H
o

w
 a

b
su

rd
!

Sh
e

 s
w

al
lo

w
e

d
 a

 b
ir

d
!

Sh
e

 s
w

al
lo

w
e

d
 t

h
e

 b
ir

d
 t

o
 c

at
ch

 t
h

e
 s

p
id

e
r

Th
at

 w
ri

gg
le

d
 a

n
d

 j
ig

gl
e

d

an
d

 t
ic

kl
e

d
 i

n
si

d
e

 h
e

r

Sh
e

 s
w

al
lo

w
e

d
 t

h
e

 s
p

id
e

r
to

 c
at

ch
 t

h
e

 f
ly

I
d

o
n

’t
 k

n
o

w
 w

h
y

sh
e

 s
w

al
lo

w
e

d
 a

 f
ly

P
e

rh
ap

s
sh

e
’ll

 d
ie

…

Licensed under Creative Commons 33
© 2015 Computer Science Unplugged (csunplugged.org)

Worksheet Activity: Extra for Real Experts

Ready for some really tough compression?

The following story was run through a computer program, which found that
there are at least 1,633 letters that can be crossed out. How many can you
find? Remember, only groups of two or more repeated characters can be
eliminated. Good luck!

nce upon a time, long, long ago, three little pigs set out to make their fortunes. The first
little pig wasn’t very clever, and decided to build his house out of straw, because it was
cheap. The second little pig wasn’t very clever either, and decided to build his house out of

sticks, for the “natural” look that was so very much in fashion, even in those days. The third
little pig was much smarter than his two brothers, and bought a load of bricks in a nearby
town, with which to construct a sturdy but comfortable country home.

Not long after his housewarming party, the first little pig was curled up in a chair reading a
book, when there came a knock at the door. It was the big bad wolf, naturally.

“Little pig, little pig, let me come in!” cried the wolf.

“Not by the hair on my chinny-chin-chin!” squealed the first little pig.

“Then I’ll huff, and I’ll puff, and I’ll blow your house down!” roared the wolf, and he did huff, and
he did puff, and the house soon collapsed. The first little pig ran as fast as he could to the
house of sticks, and was soon safe inside. But it wasn’t long before the wolf came calling again.

“Little pig, little pig, let me come in!” cried the wolf.

“Not by the hair on my chinny-chin-chin!” squealed the second little pig.

“Then I’ll huff, and I’ll puff, and I’ll blow your house down!” roared the wolf, and he did huff, and
he did puff, and the house was soon so much firewood. The two terrified little pigs ran all the
way to their brother’s brick house, but the wolf was hot on their heels, and soon he was on the
doorstep.

“Little pig, little pig, let me come in!” cried the wolf.

“Not by the hair on my chinny-chin-chin!” squealed the third little pig.

“Then I’ll huff, and I’ll puff, and I’ll blow your house down!” roared the wolf, and he huffed, and
he puffed, and he huffed some more, but of course, the house was built of brick, and the wolf
was soon out of breath. Then he had an idea. The chimney! He clambered up a handy oak tree
onto the roof, only to find that there was no chimney, because the third little pig, being
conscious of the environment, had installed electric heating. In his frustration, the wolf slipped
and fell off the roof, breaking his left leg, and severely injuring his pride. As he limped away,
the pigs laughed, and remarked how much more sensible it was to live in the city, where the
only wolves were in the zoo. And so that is what they did, and of course they all lived happily
ever after.

O

34 Licensed under Creative Commons
© 2015 Computer Science Unplugged (csunplugged.org)

What’s it all about?
The storage capacity of computers is growing at an unbelievable rate—in the
last 25 years, the amount of storage provided on a typical computer has
grown about a millionfold—but we still find more to put into our computers.
Computers can store whole books or even libraries, and now music and
movies too, if only they have the room. Large files are also a problem on the
Internet, because they take a long time to download. We also try to make
computers smaller—even a cellphone or wristwatch can be expected to store
lots of information!

There is a solution to this problem, however. Instead of buying more storage
space, or a faster network connection, we can compress the data so that it
takes up less space. This process of compressing and decompressing the
data is normally done automatically by the computer. All we might notice is
that the disk holds more, or that web pages display faster, but the computer
is actually doing more processing.

Many methods of compression have been invented. The method used in this
activity, with the principle of pointing to earlier occurrences of chunks of text,
is often referred to as ‘Ziv-Lempel coding,’ or ‘LZ coding’, invented by two
Israeli professors in the 1970s. It can be used for any language and can easily
halve the size of the data being compressed. It is sometimes referred to as
‘zip’ on personal computers, and is also used for ‘GIF’ and ‘PNG’ images, and
has been used in high-speed modems. In the case of modems, it reduces the
amount of data that needs to be transmitted over the phone line, so it goes
much faster.

Some other methods are based on the idea that letters that are used more
often should have shorter codes than the others. Morse code used this idea.

Solutions and hints
You can say that again! (page 29)

Pease porridge hot,
Pease porridge cold,
Pease porridge in the pot,
Nine days old.

Some like it hot,
Some like it cold,
Some like it in the pot,
Nine days old.

Licensed under Creative Commons 35
© 2015 Computer Science Unplugged (csunplugged.org)

Activity 4
Card Flip Magic—Error Detection & Correction
Summary
When data is stored on a disk or transmitted from one computer to another,
we usually assume that it doesn’t get changed in the process. But sometimes
things go wrong and the data is changed accidentally. This activity uses a
magic trick to show how to detect when data has been corrupted, and to
correct it.

Curriculum Links
ü Mathematics: Number – Exploring computation and estimation.
ü Mathematics: Algebra – Exploring patterns and relationships, solving for a

missing value.
ü Mathematics: Rows and columns, coordinates
ü Technology: Validating data

Skills
ü Counting
ü Recognition of odd and even numbers

Ages
ü 7 years and up

Materials
ü A set of 36 “fridge magnet” cards, coloured on one side only
ü A metal board (a whiteboard works well) for the demonstration.

Each pair of students will need:
ü 36 identical cards, coloured on one side only.

36 Licensed under Creative Commons
© 2015 Computer Science Unplugged (csunplugged.org)

The “Magic Trick”
Demonstration
Here’s your chance to be a magician!

You will need a pile of identical, two-sided cards. (To make your own cut up a
large sheet of card that is coloured on one side only). For the demonstration
it is easiest to use flat magnetic cards that have a different colour on each
side—fridge magnets are ideal, but make sure they are magnetic on both
sides (many are single sided, in which case you can glue them face to face,
and put a white dot on one side).

1. Choose a student to lay out the cards in a 5 × 5 square, with a
random mixture of sides showing.

Casually add another row and column, “just to make it a bit harder”.

These cards are the key to the trick. You must choose the extra cards to
ensure that there is an even number of coloured cards in each row and
column.

2. Get a student to flip over one card only while you cover your eyes.
The row and column containing the changed card will now have an
odd number of coloured cards, and this will identify the changed
card. Can the students guess how the trick is done?

Licensed under Creative Commons 37
© 2015 Computer Science Unplugged (csunplugged.org)

Teach the trick to the students:
1. Working in pairs, the students lay out their cards 5 × 5.

2. How many coloured cards are there in each row and column? Is it an odd or
even number? Remember, 0 is an even number.

3. Now add a sixth card to each row, making sure the number of
coloured cards is always even. This extra card is called a “parity”
card.

4. Add a sixth row of cards along the bottom, to make the number of
cards in each column an even number.

5. Now flip a card. What do you notice about the row and column? (
They will have an odd number of coloured cards.) Parity cards are
used to show you when a mistake has been made.

6. Now take turns to perform the ‘trick’.

Extension Activities:
1. Try using other objects. Anything that has two ‘states’ is suitable. For example,

you could use playing cards, coins (heads or tails) or cards with 0 or 1 printed
on them (to relate to the binary system).

2. What happens if two, or more, cards are flipped? (It is not always possible to
know exactly which two cards were flipped, although it is possible to tell that
something has been changed. You can usually narrow it down to one of two
pairs of cards. With 4 flips it is possible that all the parity bits will be correct
afterwards, and so the error could go undetected.)

3. Try this with a much larger layout e.g. 9 × 9 cards, with the extra row and
column expanding it to 10 × 10. (It will work for any size layout, and doesn’t
have to be square).

4. Another interesting exercise is to consider the lower right-hand card. If you
choose it to be the correct one for the column above, then will it be correct
for the row to its left? (The answer is yes, always, if you use even parity.)

5. In this card exercise we have used even parity—using an even number of
coloured cards. Can we do it with odd parity? (This is possible, but the lower
right-hand card only works out the same for its row and column if the
numbers of rows and columns are both even or both odd. For example, a 5 ×
9 layout will work fine, or a 4 × 6, but a 3 × 4 layout won’t.)

38 Licensed under Creative Commons
© 2015 Computer Science Unplugged (csunplugged.org)

A Real-Life Example for Experts!

This same checking technique is used with book codes and bar codes.
Published books have a ten- or 13-digit code usually found on the back cover.
The last digit is a check digit, just like the parity bits in the exercise.

This means that if you order a book using its ISBN (International Standard
Book Number), the website can check that you haven’t made a mistake. They
simply look at the checksum. That way you don’t end up waiting for the
wrong book!

Here’s how to work out the checksum for a 10-digit book code:

Multiply the first digit by ten, the second by nine, the third by eight, and so
on, down to the ninth digit multiplied by two. Each of these values is then
added together.

For example, the ISBN 0-13-911991-4 gives a value

 (0 × 10) + (1 × 9) + (3 × 8) + (9 × 7) + (1 × 6)
 + (1 × 5) + (9 × 4) + (9 × 3) + (1 × 2)
 = 172

Then divide your answer by eleven. What is the remainder?

 172 ÷ 11 = 15 remainder 7

If the remainder is zero, then the checksum is zero, otherwise subtract the
remainder from 11 to get the checksum.

 11 – 7 = 4

Look back. Is this the last digit of the ISBN? Yes!

If the last digit of the ISBN wasn’t a four, then we would know that a mistake
had been made.

It is possible to come up with a checksum of the value of 10, which would
require more than one digit. When this happens, the character X is used.

� A barcode (UPC) from a box of Weet-Bix™

Licensed under Creative Commons 39
© 2015 Computer Science Unplugged (csunplugged.org)

Another example of the use of a check digit is the bar codes on grocery
items. This uses a different formula (the same formula is used for 13-digit
book codes). If a bar code is misread the final digit should be different from
its calculated value. When this happens the scanner beeps and the checkout
operator re-scans the code. Check digits are also used for bank account
numbers, social security numbers, tax numbers, numbers on trains and
rolling stock, and many other applications where people are copying a
number and need some assurance that it has been typed in correctly.

40 Licensed under Creative Commons
© 2015 Computer Science Unplugged (csunplugged.org)

Check that book!
Detective Blockbuster

Book Tracking Service, Inc.

We find and check ISBN checksums for a small fee.

Join our agency—look in your classroom or library for real
ISBN codes.

Are their checksums correct?
Sometimes errors are made.

Some of the common errors are:

û a digit has its value changed;
û two adjacent digits are swapped with each other;
û a digit is inserted in the number; and
û a digit is removed from the number

Can you find a book with the letter X for a checksum of 10? It shouldn’t be too
hard to find—one in every 11 should have it.

What sort of errors might occur that wouldn’t be detected? Can you change a
digit and still get the correct checksum? What if two digits are swapped (a
common typing error)?

Licensed under Creative Commons 41
© 2015 Computer Science Unplugged (csunplugged.org)

What’s it all about?
Imagine you are depositing $10 cash into your bank account. The teller types
in the amount of the deposit, and it is sent to a central computer. But
suppose some interference occurs on the line while the amount is being sent,
and the code for $10 is changed to $1,000. No problem if you are the
customer, but clearly a problem for the bank!

It is important to detect errors in transmitted data. So a receiving computer
needs to check that the data coming to it has not been corrupted by some
sort of electrical interference on the line. Sometimes the original data can be
sent again when an error has been transmitted, but there are some
situations when this is not feasible, for example if a disk has been corrupted
by exposure to magnetic or electrical radiation, by heat or by physical
damage. If data is received from a deep space probe, it would be very tedious
to wait for retransmission if an error had occurred! (It takes just over half an
hour to get a radio signal from Jupiter when it is at its closest to Earth!)

We need to be able to recognize when the data has been corrupted (error
detection) and to be able to reconstruct the original data (error correction).

The same technique as was used in the “card flip” game is used on
computers. By putting the bits into imaginary rows and columns, and adding
parity bits to each row and column, we can not only detect if an error has
occurred, but where it has occurred. The offending bit is changed back, and
so we have performed error correction.

Of course computers often use more complex error
control systems that are able to detect and correct
multiple errors. The hard disk in a computer has a
large amount of its space allocated to correcting
errors so that it will work reliably even if parts of the
disk fail. The systems used for this are closely related
to the parity scheme.

And to finish, a joke that is better appreciated after
doing this activity:

Q: What do you call this: “Pieces of nine, pieces of
nine”?

A: A parroty error.

42 Licensed under Creative Commons
© 2015 Computer Science Unplugged (csunplugged.org)

Solutions and hints
Errors that would not be detected by an ISBN-10 checksum are those where
one digit increases and another decreases to compensate. Then the sum
might still be the same. However, because of the way the calculation is done,
this is unlikely to happen. In other systems (such as ISBN-13) there are other
types of errors that might not be detected, such as three consecutive digits
being reversed, but most of the common errors (typing one digit incorrectly,
or swapping two adjacent digits) will be detected.

Licensed under Creative Commons 43
© 2015 Computer Science Unplugged (csunplugged.org)

Activity 5
Twenty Guesses—Information Theory
Summary
How much information is there in a 1000-page book? Is there more
information in a 1000-page telephone book, or in a ream of 1000 sheets of
blank paper, or in Tolkien’s Lord of the Rings? If we can measure this, we can
estimate how much space is needed to store the information. For example,
can you still read the following sentence?

Ths sntnc hs th vwls mssng.

You probably can, because there is not much ‘information’ in the vowels. This
activity introduces a way of measuring information content.

Curriculum links
ü Mathematics: Number – Exploring number: Greater than, less than,

ranges.
ü Mathematics: Algebra – Patterns and sequences
ü English: spelling, recognising elements of text

Skills
ü Comparing numbers and working with ranges of numbers
ü Deduction
ü Asking questions

Ages
ü 10 and up

Materials
ü No materials are required for the first activity

There is an extension activity, for which each student will need:
ü Worksheet Activity: Decision trees (page 47)

44 Licensed under Creative Commons
© 2015 Computer Science Unplugged (csunplugged.org)

Twenty Guesses
Discussion

1. Discuss with the students what they think information is.

2. How could we measure how much information there would be in a book? Is
the number of pages or number of words important? Can one book have
more information than another? What if it is a very boring book, or a
particularly interesting one? Would 400 pages of a book containing the
phrase “blah, blah, blah” have more or less information than, say, the
telephone directory?

3. Explain that computer scientists measure information by how surprising a
message (or book!) is. Telling you something that you know already—for
example, when a friend who always walks to school says “I walked to school
today”—doesn’t give you any information, because it isn’t surprising. If your
friend said instead, “I got a ride to school in a helicopter today,” that would be
surprising, and would therefore tell us a lot of information.

4. How can the surprise value of a message be measured?

5. One way is to see how hard it is to guess the information. If your friend says,
“Guess how I got to school today,” and they had walked, you would probably
guess right first time. It might take a few more guesses before you got to a
helicopter, and even more if they had travelled by spaceship.

6. The amount of information that messages contain is measured by how easy
or hard they are to guess. The following game gives us some idea of this.

Licensed under Creative Commons 45
© 2015 Computer Science Unplugged (csunplugged.org)

Twenty Questions Activity
This is an adapted game of 20 questions. Students may ask questions of a
chosen student, who may only answer yes or no until the answer has been
guessed. Any question may be asked, provided that the answer is strictly ‘yes’
or ‘no’.

Suggestions:
I am thinking of:
ü a number between 1 and 100
ü a number between 1 and 1000
ü a number between 1 and 1,000,000.
ü any whole number
ü a sequence of 6 numbers in a pattern (appropriate to the group). Guess in

order from first to last. (e.g. 2, 4, 6, 8, 10)

Count the number of questions that were asked. This is a measure of the
value of the “information”.

Follow-up Discussion
What strategies did you use? Which were the best ones?

Point out that it takes just 7 guesses to find a number between 1 and 100 if
you halve the range each time. For example:

Is it less than 50? Yes.
Is it less than 25? No.
Is it less than 37? No.
Is it less than 43? Yes.
Is it less than 40? No.
Is it less than 41? No.
It must be 42! Yes!

Interestingly if the range is increased to 1000 it doesn’t take 10 times the
effort—just three more questions are needed. Every time the range doubles
you just need one more question to find the answer.

A good follow up would be to let the students play Mastermind.

Extension: How much information is there in a message?
Computer scientists don’t just use guessing with numbers—they can also
guess which letter is more likely to be next in a word or sentence.

Try the guessing game with a short sentence of 4–6 words. The letters must
be guessed in the correct order, from first to last. Get someone to write down
the letters as they are found and keep a record of how many guesses it takes

46 Licensed under Creative Commons
© 2015 Computer Science Unplugged (csunplugged.org)

to find each letter. Any questions with a yes/no answer can be used.
Examples would be, “It it a t?” “Is it a vowel?” “Does it come before m in the
alphabet?” A space between words also counts as a “letter” and must be
guessed. Take turns and see if you can discover which parts of messages are
easiest to find out.

Licensed under Creative Commons 47
© 2015 Computer Science Unplugged (csunplugged.org)

Worksheet Activity: Decision Trees

If you already know the strategy for asking the questions, you can transmit a
message without having to ask anything.

Here is a chart called a ‘decision tree’ for guessing a number between 0 and
7:

What are the yes/no decisions needed to ‘guess’ the number 5?

How many yes/no decisions do you need to make to work out any number?

Now look at something very fascinating. Underneath the numbers 0, 1, 2, 3…
in the final row of the tree write the number in binary (see Activity 1).

Look closely at the tree. If no=0 and yes=1, what do you see?

In the number guessing game we try to choose questions so that the
sequence of answers works out to represent the number in exactly this way.

Design your own decision tree for guessing numbers between 0 and 15.

Extra for experts: What kind of tree would you use to guess someone’s age?
What about a tree to guess which letter is next in a sentence?

48 Licensed under Creative Commons
© 2015 Computer Science Unplugged (csunplugged.org)

What’s it all about?
A celebrated American mathematician (and juggler,
and unicyclist) called Claude Shannon did a lot of
experiments with this game. He measured the
amount of information in bits—each yes/no answer
is equivalent to a 1/0 bit. He found that the amount
of “information” contained in a message depends on
what you already know. Sometimes we can ask a
question that eliminates the need to ask a lot of
other questions. In this case the information content
of the message is low. For example, the information
in a single toss of a coin is normally one bit: heads or
tails. But if the coin happens to be a biased one that
turns up heads nine times out of ten, then the
information is no longer one bit—believe it or not,
it’s less. How can you find out what a coin toss was
with less than one yes/no question? Simple—just
use questions like “are the next two coin tosses both heads?” For a sequence
of tosses with the biased coin, the answer to this will be “yes” about 80%, of
the time. On the 20% of occasions where the answer is “no,” you will have to
ask two further questions. But on average you will be asking less than one
question per coin toss!

Shannon called the information content of a message “entropy”. Entropy
depends not only on the number of possible outcomes—in the case of a coin
toss, two—but also on the probability of it happening. Improbable events, or
surprising information, need a lot more questions to guess the message
because they tell us more information we didn’t already know—just like the
situation of taking a helicopter to school.

The entropy of a message is very important to computer scientists. You
cannot compress a message to occupy less space than its entropy, and the
best compression systems are equivalent to a guessing game. Since a
computer program is making the ‘guesses’, the list of questions can be
reproduced later, so as long as the answers (bits) are stored, we can
reconstruct the information! The best compression systems can reduce text
files to about a quarter of their original size—a big saving on storage space!

The guessing method can also be used to build a computer interface that
predicts what the user is going to type next! This can be very useful for
physically disabled people who find it difficult to type. The computer suggests
what it thinks they are likely to type next, and they just indicate what they
want. A good system needs an average of only two yes/no answers per

Licensed under Creative Commons 49
© 2015 Computer Science Unplugged (csunplugged.org)

character, and can be of great assistance to someone who has difficulty
making the fine movements needed to control a mouse or keyboard. This
sort of system is also used in a different form to ‘type’ text on some
cellphones.

50 Licensed under Creative Commons
© 2015 Computer Science Unplugged (csunplugged.org)

Solutions and hints
The answer to a single yes/no question corresponds to exactly one bit of
information—whether it is a simple question like “Is it more than 50?” or a
more complex one like “Is it between 20 and 60?”

In the number-guessing game, if the questions are chosen in a certain way,
the sequence of answers is just the binary representation of the number.
Three is 011 in binary and is represented by the answers “No, yes, yes” in the
decision tree, which is the same if we write no for 0 and yes for 1.

A tree you would use for someone’s age might be biased towards smaller
numbers.

The decision about the letters in a sentence might depend upon what the
previous letter was.

Part II
Putting Computers to Work—

Algorithms

52 Licensed under Creative Commons
© 2015 Computer Science Unplugged (csunplugged.org)

Putting Computers to Work
Computers operate by following a list of instructions set for them. These
instructions enable them to sort, find and send information. To do these
things as quickly as possible, you need good methods for finding things in
large collections of data, and for sending information through networks.

An algorithm is a set of instructions for completing a task. The idea of an
algorithm is central to computer science. Algorithms are how we get
computers to solve problems. Some algorithms are faster than others, and
many of the algorithms that have been discovered have made it possible to
solve problems that previously took an infeasible length of time—for
example, finding millions of digits in pi, or all pages that contain your name
on the World-Wide Web, or finding out the best way to pack parcels into a
container, or finding out whether or not very large (100-digit) numbers are
prime.

The word “algorithm” is derived from the name of Mohammed ibn Musa Al-
Khowarizmi—Mohammed, son of Moses, from Khowarizm—who joined an
academic centre known as the House of Wisdom in Baghdad around 800AD.
His works transmitted the Hindu art of reckoning to the Arabs, and thence to
Europe. When they were translated into Latin in 1120AD, the first words were
“Dixit Algorismi”—“thus said Algorismi”.

Licensed under Creative Commons 53
© 2015 Computer Science Unplugged (csunplugged.org)

Activity 6
Battleships—Searching Algorithms
Summary
Computers are often required to find information in large collections of data.
They need to develop quick and efficient ways of doing this. This activity
demonstrates three different search methods: linear searching, binary
searching and hashing.

Curriculum Links
ü Mathematics: Number – Exploring numbers: Greater than, less than and

equal to
ü Mathematics: Geometry – Exploring shape and space: Co-ordinates
ü Computing: Algorithms

Skills
ü Logical reasoning

Ages
ü 9 years and up

Materials
Each student will need:
ü Copy of battleships games

§ 1A, 1B for game 1
§ 2A, 2B for game 2
§ 3A, 3B for game 3

ü You may also need a few copies of the supplementary game sheets, 1A',
1B', 2A', 2B', 3A', 3B'.

54 Licensed under Creative Commons
© 2015 Computer Science Unplugged (csunplugged.org)

Battleships
Introductory Activity

1. Choose about 15 students to line up at the front of the classroom. Give each
student a card with a number on it (in random order). Keep the numbers
hidden from the rest of the class.

2. Give another student a container with four or five sweets in it. Their job is to
find a given number. They can “pay” to look at a particular card. If they find
the correct number before using all their sweets, they get to keep the rest.

3. Repeat if you wish to.

4. Now shuffle the cards and give them out again. This time, have the students
sort themselves into ascending order. The searching process is repeated.

If the numbers are sorted, a sensible strategy is to use just one “payment” to
eliminate half the students by having the middle student reveal their card. By
repeating this process they should be able to find the number using only
three sweets. The increased efficiency will be obvious.

Activity
The students can get a feel for how a computer searches by playing the
battleship game. As they play the game, get them to think about the
strategies they are using to locate the ships.

Licensed under Creative Commons 55
© 2015 Computer Science Unplugged (csunplugged.org)

Battleships—A Linear Searching Game

Read the following instructions to the students
1. Organise yourselves into pairs. One of you has sheet 1A, the other sheet 1B.

Don’t show your sheet to your partner!

2. Both of you circle one battleship on the top line of your game sheet and tell
your partner its number.

3. Now take turns to guess where your partner’s ship is. (You say the letter
name of a ship and your partner tells you the number of the ship at that
letter.)

4. How many shots does it take to locate your partner’s ship? This is your score
for the game.

(Sheets 1A' and 1B' are extras provided for students who would like to play
more games or who “inadvertently” see their partner’s sheet. Sheets 2A', 2B'
and 3A', 3B' are for the later games.)

Follow Up Discussion
1. What were the scores?

2. What would be the minimum and maximum scores possible? (They are 1 and
26 respectively, assuming that the students don’t shoot at the same ship
twice. This method is called ‘linear search’, because it involves going through
all the positions, one by one.)

56 Licensed under Creative Commons
© 2015 Computer Science Unplugged (csunplugged.org)

Battleships—A Binary Searching Game

Instructions
The instructions for this version of the game are the same as for the previous
game but the numbers on the ships are now in ascending order. Explain this
to the students before they start.

1. Organise yourselves into pairs. One of you has sheet 2A, the other sheet 2B.
Don’t show your sheet to your partner!

2. Both of you circle one battleship on the top line of your game sheet and tell
your partner its number.

3. Now take turns to guess where your partner’s ship is. (You say the letter
name of a ship and your partner tells you the number of the ship at that
letter.)

4. How many shots does it take to locate your partner’s ship? This is your score
for the game.

Follow Up Discussion
1. What were the scores?

2. What strategy did the low scorers use?

3. Which ship should you choose first? (The one in the middle tells you which
half of the line the chosen ship must be in.) Which location would you choose
next? (Again the best strategy is always to choose the middle ship of the
section that must have the selected ship.)

4. If this strategy is applied how many shots will it take to find a ship? (Five at
most).

This method is called ‘binary search’, because it divides the problem into two
parts.

Licensed under Creative Commons 57
© 2015 Computer Science Unplugged (csunplugged.org)

Battleships—A Hashing Search Game

Instructions
1. Each take a sheet as in the previous games and tell your partner the number

of your chosen ship.

2. In this game you can find out which column (0 to 9) the ship is in. You simply
add together the digits of the ship’s number. The last digit of the sum is the
column the ship is in. For example, to locate a ship numbered 2345, add the
digits 2+3+4+5, giving 14. The last digit of the sum is 4, so that ship must be in
column 4. Once you know the column you need to guess which of the ships
in that column is the desired one. This technique is called ‘hashing’, because
the digits are being squashed up (“hashed”) together.

3. Now play the game using this new searching strategy. You may like to play
more than one game using the same sheet—just choose from different
columns.

(Note that, unlike the other games, the spare sheets 3A' and 3B' must be
used as a pair, because the pattern of ships in columns must correspond.)

Follow Up Discussion
1. Collect and discuss scores as before.

2. Which ships are very quick to find? (The ones that are alone in their column.)
Which ships may be harder to find? (The ones whose columns contain lots of
other ships.)

3. Which of the three searching processes is fastest? Why?

What are the advantages of each of the three different ways of searching?
(The second strategy is faster than the first, but the first one doesn’t require
the ships to be sorted into order. The third strategy is usually faster than the
other two, but it is possible, by chance, for it to be very slow. In the worst
case, if all the ships end up in the same column, it is just as slow as the first
strategy.)

58 Licensed under Creative Commons
© 2015 Computer Science Unplugged (csunplugged.org)

Extension Activities
1. Have the students make up their own games using the three formats. For the

second game they must put the numbers in ascending order. Ask how they
might make the Hashing Game very hard. (The hardest game is when all the
ships are in the same column.) How could you make it as easy as possible?
(You should try to get the same number of ships into each column.)

2. What would happen if the ship being sought wasn’t there? (In the Linear
Search game it would take 26 shots to show this. In the Binary Search game
you would need five shots to prove this. When using the Hash System it
would depend on how many ships appeared in the relevant column.)

3. Using the Binary Search strategy how many shots would be required if there
were a hundred locations (about six shots), a thousand locations (about
nine), or a million (about nineteen)? (Notice that the number of shots
increases very slowly compared to the number of ships. One extra shot is
required each time the size doubles, so it is proportional to the logarithm of
the number of ships.)

Licensed under Creative Commons 59
© 2015 Computer Science Unplugged (csunplugged.org)

90
58

83
11

71
69

76
21

32
14

35
42

58
91

92
64

49
17

45
0

27
67

85
62

47
15

41
91

67
4

49
32

80
88

94
62

17
90

84
23

89
49

50
63

13 62
21

A AN N

B BO O

C CP P

D DQ Q

E ER R

F FS S

G GT T

H HU U

I IV V

J JW W

K KX X

L LY Y

M
y

Sh
ip

s

Y
ou

r
Sh

ip
s

N
um

be
r

of
 S

ho
ts

 U
se

d:

N
um

be
r

of
 S

ho
ts

 U
se

d: 1A

30
14

22
44M MZ Z

60 Licensed under Creative Commons
© 2015 Computer Science Unplugged (csunplugged.org)

Licensed under Creative Commons 61
© 2015 Computer Science Unplugged (csunplugged.org)

62 Licensed under Creative Commons
© 2015 Computer Science Unplugged (csunplugged.org)

Licensed under Creative Commons 63
© 2015 Computer Science Unplugged (csunplugged.org)

90
47

30
80

51
25

71
16

60
00

80
51

98
91

10
62

18
29

99
94

43
92

82
12

41
28

41
10

64
22

81
99

70
57

14
80

89
44

74
32

47
12

20
50

58
42

14
81

19
89

21
06

M
y

Sh
ip

s

Y
ou

r
Sh

ip
s

N
um

be
r

of
 S

ho
ts

 U
se

d:

N
um

be
r

of
 S

ho
ts

 U
se

d:

3A

0 0

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

A
C

E
L

O
H

A
R

B
S

E
H

L
O

V

C
T

F
I

M
P

W
Y

K

D
U

G
J

N
Q

X
Z

R
W

B
D

V

G
N

Q
K

U
Z

F
M

P
J

T
Y

I
S

X

64 Licensed under Creative Commons
© 2015 Computer Science Unplugged (csunplugged.org)

Licensed under Creative Commons 65
© 2015 Computer Science Unplugged (csunplugged.org)

66 Licensed under Creative Commons
© 2015 Computer Science Unplugged (csunplugged.org)

Licensed under Creative Commons 67
© 2015 Computer Science Unplugged (csunplugged.org)

68 Licensed under Creative Commons
© 2015 Computer Science Unplugged (csunplugged.org)

Licensed under Creative Commons 69
© 2015 Computer Science Unplugged (csunplugged.org)

70 Licensed under Creative Commons
© 2015 Computer Science Unplugged (csunplugged.org)

Licensed under Creative Commons 71
© 2015 Computer Science Unplugged (csunplugged.org)

What’s it all about?
Computers store a lot of information, and they need to be able to sift
through it quickly. One of the biggest search problems in the world is faced
by Internet search engines, which must search billions of web pages in a
fraction of a second. The data that a computer is asked to look up, such as a
word, a bar code number or an author’s name, is called a search key.

Computers can process information very quickly, and you might think that to
find something they should just start at the beginning of their storage and
keep looking until the desired information is found. This is what we did in the
Linear Searching Game. But this method is very slow—even for computers.
For example, suppose a supermarket has 10,000 different products on its
shelves. When a bar code is scanned at a checkout, the computer must look
through up to 10,000 numbers to find the product name and price. Even if it
takes only one thousandth of a second to check each code, ten seconds
would be needed to go through the whole list. Imagine how long it would
take to check out the groceries for a family!

A better strategy is binary search. In this method, the numbers are sorted into
order. Checking the middle item of the list will identify which half the search
key is in. The process is repeated until the item is found. Returning to the
supermarket example, the 10,000 items can now be searched with fourteen
probes, which might take two hundredths of a second—hardly noticeable.

A third strategy for finding data is called hashing. Here the search key is
manipulated to indicate exactly where to find the information. For example, if
the search key is a telephone number, you could add up all the digits in the
number and take the remainder when divided by 11. In this respect, a hash
key is a little like the check digits discussed in Activity 4—a small piece of data
whose value depends on the other data being processed. Usually the
computer will find what it is looking for straight away. There is a small chance
that several keys end up in the same location in which case the computer will
need to search through them until it finds the one it is seeking.

Computer programmers usually use some version of the hashing strategy for
searching, unless it is important to keep the data in order, or unless an
occasional slow response is unacceptable.

72 Licensed under Creative Commons
© 2015 Computer Science Unplugged (csunplugged.org)

Activity 7
Lightest and Heaviest—Sorting Algorithms
Summary
Computers are often used to put lists into some sort of order, for example
names into alphabetical order, appointments or e-mail by date, or items in
numerical order. Sorting lists helps us find things quickly, and also makes
extreme values easy to see. If you sort the marks for a class test into numeric
order, the lowest and highest marks become obvious.

If you use the wrong method, it can take a long time to sort a large list into
order, even on a fast computer. Fortunately, several fast methods are known
for sorting. In this activity students will discover different methods for
sorting, and see how a clever method can perform the task much more
quickly than a simple one.

Curriculum links
ü Mathematics: Measurement – Carrying out practical weighing tasks.
ü Computing: Algorithms

Skills
ü Using balance scales
ü Ordering
ü Comparing

Ages
ü 8 and up

Materials
Each group of students will need:
ü Sets of 8 containers of the same size but different weights (e.g. milk

cartons or film canisters filled with sand)
ü Balance scales
ü Worksheet Activity: Sorting weights (page 74)
ü Worksheet Activity: Divide and conquer (page 75)

Licensed under Creative Commons 73
© 2015 Computer Science Unplugged (csunplugged.org)

Lightest and Heaviest
Discussion
Computers often have to sort lists of things into order. Brainstorm all the
places where putting things into order is important. What would happen if
these things were not in order?

Computers usually only compare two values at once. The activity on the next
page uses this restriction to give students an idea of what this is like.

Activity
1. Divide the students into groups.

2. Each group will need a copy of the activity sheet on page 74, and its own
weights and scales.

3. Have the students do the activity, then discuss the result.

74 Licensed under Creative Commons
© 2015 Computer Science Unplugged (csunplugged.org)

Worksheet Activity: Sorting Weights

Aim: To find the best method of sorting a group of unknown weights into
order.

You will need: Sand or water, 8 identical containers, a set of balance scales

What to do:

1. Fill each container with a different amount of sand or water. Seal
tightly.

2. Mix them up so that you no longer know the order of the weights.

3. Find the lightest weight. What is the easiest way of doing this?

Note: You are only allowed to use the scales to find out how heavy each
container is. Only two weights can be compared at a time.

4. Choose 3 weights at random and sort them into order from lightest to
heaviest using only the scales. How did you do this? What is the
minimum number of comparisons you can make? Why?

5. Now sort all of the objects into order from lightest to heaviest.

When you think you have finished, check your ordering by re-weighing each
pair of objects standing together.

Selection Sort

One method a computer might use is called selection sort. This is how
selection sort works. First find the lightest weight in the set and put it to one
side. Next, find the lightest of the weights that are left, and remove it. Repeat
this until all the weights have been removed.

Count how many comparisons you made.

Extra for Experts: Show how you can calculate mathematically how many
comparisons you need to make to sort 8 objects into order. What about 9 objects?

20?

Licensed under Creative Commons 75
© 2015 Computer Science Unplugged (csunplugged.org)

Worksheet Activity: Divide and Conquer

Quicksort

Quicksort is a lot faster than selection sort, particularly for larger lists. In fact,
it is one of the best methods known. This is how quicksort works.

Choose one of the objects at random, and place it on one side of the balance
scales.

Now compare each of the remaining objects with it. Put those that are lighter
on the left, the chosen object in the middle, and the heavier ones on the
right. (By chance you may end up with many more objects on one side than
on the other.)

Choose one of the groups and repeat this procedure. Do the same for the
other group. Remember to keep the one you know in the centre.

Keep repeating this procedure on the remaining groups until no group has
more than one object in it. Once all the groups have been divided down to
single objects, the objects will be in order from lightest to heaviest.

How many comparisons did this process take?

You should find that quicksort is a more efficient method than selection sort
unless you happen to have chosen the lightest or heaviest weight to begin
with. If you were lucky enough to have chosen the middle weight, you should
have taken only 14 comparisons, compared with the 28 for selection sort. At
any rate the quicksort method will never be any worse than selection sort
and may be much better!

76 Licensed under Creative Commons
© 2015 Computer Science Unplugged (csunplugged.org)

Extra for Experts: If quicksort accidentally always chose the lightest object, how
many comparisons would it use?

Licensed under Creative Commons 77
© 2015 Computer Science Unplugged (csunplugged.org)

Variations and extensions
Many different methods for sorting have been invented. You could try sorting
your weights using these:

Insertion sort works by removing each object from an unsorted group and
inserting it into its correct position in a growing list (see picture below). With
each insertion the group of unsorted objects shrinks and the sorted list
grows, until eventually the whole list is sorted. Card players often use this
method to sort a hand into order.

Bubble sort involves going through the list again and again, swapping any
objects side-by-side that are in the wrong order. The list is sorted when no
swaps occur during a pass through the list. This method is not very efficient,
but some people find it easier to understand than the others.

Mergesort is another method that uses ‘divide and conquer’ to sort a list of
items. First, the list is divided at random into two lists of equal size (or nearly
equal if there are an odd number of items). Each of the two half-size lists is
sorted, and the two lists are merged together. Merging two sorted lists is
easy—you repeatedly remove the smaller of the two items at the front of the
two lists. In the figure below, the 40 and 60-gram weights are at the front of
the lists, so the next item to add is the 40-gram weight. How do you sort the
smaller lists? Simple—just use mergesort! Eventually, all the lists will be cut
down into individual items, so you don’t need to worry about knowing when
to stop.

78 Licensed under Creative Commons
© 2015 Computer Science Unplugged (csunplugged.org)

What’s it all about?
Information is much easier to find in a sorted list. Telephone directories,
dictionaries and book indexes all use alphabetical order, and life would be far
more difficult if they didn’t. If a list of numbers (such as a list of expenses) is
sorted into order, the extreme cases are easy to see because they are at the
beginning and end of the list. Duplicates are also easy to find, because they
end up together.

Computers spend a lot of their time sorting things into order, so computer
scientists have to find fast and efficient ways of doing this. Some of the
slower methods such as insertion sort, selection sort and bubble sort can be
useful in special situations, but the fast ones such as quicksort and
mergesort are usually used because they are much faster on large lists – for
example, for 100,000 items, quicksort is typically about 2,000 times as fast as
selection sort, and for 1,000,000 items, it is about 20,000 times as fast.
Computers often have to deal with a million items (lots of websites have
millions of customers, and even a single photo taken on a cheap camera has
over a million pixels); the difference between the two algorithms is the
difference between taking 1 second to process the items, and taking over 5
hours to do exactly the same task. Not only would the delay be intolerable,
but it will have used 20,000 times as much power (which not only impacts the
environment, but also reduces battery life in portable devices), so choosing
the right algorithm has serious consequences.

Quicksort uses an approach called Divide and Conquer. In quicksort, you keep
dividing a list into smaller parts, and then perform a quicksort on each of the
parts. The list is divided repeatedly until it is small enough to conquer. For
quicksort, the lists are divided until they contain only one item. It is trivial to
sort one item into order! Although this seems very involved, in practice it is
dramatically faster than other methods. This is an example of of a powerful
idea called Recursion where an algorithm uses itself to solve a problem – this
sounds weird but it can work very well.

Licensed under Creative Commons 79
© 2015 Computer Science Unplugged (csunplugged.org)

Solutions and hints
1. The best way to find the lightest weight is to go through each object in turn,

keeping track of the lightest one so far. That is, compare two objects, and
keep the lighter one. Now compare that with another, keeping the lighter
from the comparison. Repeat until all the objects have been used.

2. Compare the weights on the balance scales. This can easily be done with
three comparisons, and sometimes just two will suffice—if the students
realize that the comparison operator is transitive (that is, if A is lighter than B
and B is lighter than C, then A must be lighter than C).

Experts:
Here is a short cut for adding up the number of comparisons that selection
sort makes.

To find the minimum of two objects you need one comparison, three needs
two, four needs three, and so on. To sort eight objects using selection sort
takes 7 comparisons to find the first one, six to find the next, five to find the
next and so on. That gives us:

7 + 6 + 5 + 4 + 3 + 2 + 1 = 28 comparisons.

n objects will take 1 + 2 + 3 + 4 +… + n – 1 comparisons to sort.

Adding up these numbers is easy if we regroup them.

For example, to add up the numbers 1 + 2 + 3 + … + 20, regroup them as

(1 + 20) + (2 + 19) + (3 + 18) + (4 + 17) + (5 + 16) +

(6 + 15) + (7 + 14) + (8 + 13) + (9 + 12) + (10 + 11)

= 21 × 10

= 210

In general, the sum 1 + 2 + 3 + 4 … + n – 1 = n(n – 1)/2.

80 Licensed under Creative Commons
© 2015 Computer Science Unplugged (csunplugged.org)

Activity 8
Beat the Clock—Sorting Networks
Summary
Even though computers are fast, there is a limit to how quickly they can solve
problems. One way to speed things up is to use several computers to solve
different parts of a problem. In this activity we use sorting networks which do
several sorting comparisons at the same time.

Curriculum Links
ü Mathematics: Number – Exploring number: Greater than, less than

Skills
ü Comparing
ü Ordering
ü Developing algorithms
ü Co-operative problem solving

Ages
ü 7 years and up

Materials
This is an outdoor group activity.
ü Chalk
ü Two sets of six cards.

Copy Photocopy Master: Sorting networks (page 83) onto card and cut out
ü Stopwatch

Licensed under Creative Commons 81
© 2015 Computer Science Unplugged (csunplugged.org)

Sorting Networks
Prior to the activity use chalk to mark out this network on a court.

Instructions for Students

This activity will show you how computers sort random numbers into order
using a thing called a sorting network.

1. Organise yourselves into groups of six. Only one team uses the network at a
time.

2. Each team member takes a numbered card.

3. Each member stands in a square on the left hand (IN) side of the court. Your
numbers should be in jumbled order.

4. You move along the lines marked, and when you reach a circle you must
wait for someone else to arrive.

5. When another team member arrives in your circle compare your cards. The
person with the smaller number takes the exit to their left. If you have the
higher number on your card take the right exit.

6. Are you in the right order when you get to the other end of the court?

If a team makes an error the students must start again. Check that you have
understood the operation of a node (circle) in the network, where the smaller
value goes left and the other goes right. For example:

82 Licensed under Creative Commons
© 2015 Computer Science Unplugged (csunplugged.org)

Licensed under Creative Commons 83
© 2015 Computer Science Unplugged (csunplugged.org)

Photocopy Master: Sorting networks

1 2

3 4

5 6

156 221

289 314

422 499

84 Licensed under Creative Commons
© 2015 Computer Science Unplugged (csunplugged.org)

Variations
1. When the students are familiar with the activity use a stopwatch to time how

long each team takes to get through the network.

2. Use cards with larger numbers (e.g. the three-digit ones in the photocopy
master).

3. Make up cards with even larger numbers that will take some effort to
compare, or use words and compare them alphabetically.

4. This can be used as an exercise for other subjects e.g. in music you can
compare notes printed on cards, and sort them from lowest to highest, or
shortest to longest.

Extension Activities
1. What happens if the smaller one goes right instead of left and vice versa?

(The numbers will be sorted in reverse order.)

Does it work if the network is used backwards? (It will not necessarily work,
and the students should be able to find an example of an input that comes
out in the wrong order.)

2. Try to design smaller or larger networks. For
example, here is a network that sorts just three
numbers. The students should try to come up with
this on their own.

3. Below are two different networks that will sort four inputs. Which is the
faster? (The second one is. Whereas the first requires all comparisons to be
done serially, one after the other, the second has some being performed at
the same time. The first network is an example of serial processing, whereas
the second uses parallel processing to run faster.)

4. Try to make a larger sorting network.

5. Networks can also be used to find the minimum or maximum value of the
inputs. For example, here is a network with eight inputs, and the single
output will contain the minimum of the inputs (the other values will be left at
the dead ends in the network).

Licensed under Creative Commons 85
© 2015 Computer Science Unplugged (csunplugged.org)

6. What processes from everyday life can or can’t be accelerated using
parallelism? For example, cooking a meal would be a lot slower using only
one cooking element, because the items would have to be cooked one after
another. What jobs can be completed faster by employing more people?
What jobs can’t?

86 Licensed under Creative Commons
© 2015 Computer Science Unplugged (csunplugged.org)

What’s it all about?
As we use computers more and more we want them to process information
as quickly as possible.

One way to increase the speed of a computer is to write programs that use
fewer computational steps (as shown in Activities 6 and 7).

Another way to solve problems faster is to have several computers work on
different parts of the same task at the same time. For example, in the six-
number sorting network, although a total of 12 comparisons are used to sort
the numbers, up to three comparisons are performed simultaneously. This
means that the time required will be that needed for just 5 comparison steps.
This parallel network sorts the list more than twice as quickly as a system
that can only perform one comparison at a time.

Not all tasks can be completed faster by using parallel computation. As an
analogy, imagine one person digging a ditch ten metres long. If ten people
each dug one metre of the ditch the task would be completed much faster.
However, the same strategy could not be applied to a ditch ten metres
deep—the second metre is not accessible until the first metre has been dug.
Computer Scientists are still actively trying to find the best ways to break
problems up so that they can be solved by computers working in parallel.

Licensed under Creative Commons 87
© 2015 Computer Science Unplugged (csunplugged.org)

Activity 9
The Muddy City—Minimal Spanning Trees
Summary
Our society is linked by many networks: telephone networks, utility supply
networks, computer networks, and road networks. For a particular network
there is usually some choice about where the roads, cables, or radio links can
be placed. We need to find ways of efficiently linking objects in a network.

Curriculum Links
ü Mathematics: Geometry – Exploring shape and space: Finding the

shortest paths around a map

Ages
ü 9 and up

Skills
ü Problem solving

Materials
Each student will need:
ü Workshop Activity: The muddy city problem (page 89)
ü Counters or squares of cardboard (approximately 40 per student)

88 Licensed under Creative Commons
© 2015 Computer Science Unplugged (csunplugged.org)

The Muddy City
Introduction
This activity will show you how computers are used to find the best solutions
for real-life problems such as how to link power lines between houses. Have
the students use the worksheet on page 89, which explains the ‘Muddy City’
problem.

Follow-up discussion
Share the solutions the students have found. What strategies did they use?

One good strategy to find the best solution is to start with an empty map,
and gradually add counters until all of the houses are linked, adding the
paths in increasing order of length, but not linking houses that are already
linked. Different solutions are found if you change the order in which paths
of the same length are added. Two possible solutions are shown below.

Another strategy is to start with all of the paths paved, and then remove
paths you don’t need. This takes much more effort, however.

Where would you find networks in real life?

Computer scientists call the representations of these networks “graphs”. Real
networks can be represented by a graph to solve problems such as designing
the best network of roads between local cities, or aeroplane flights around
the country.

There are also many other algorithms that can be applied to graphs, such as
finding the shortest distance between two points, or the shortest route that
visits all the points.

Licensed under Creative Commons 89
© 2015 Computer Science Unplugged (csunplugged.org)

Worksheet Activity: The Muddy City Problem

Once upon a time there was a city that had no roads. Getting around the city
was particularly difficult after rainstorms because the ground became very
muddy—cars got stuck in the mud and people got their boots dirty. The
mayor of the city decided that some of the streets must be paved, but didn’t
want to spend more money than necessary because the city also wanted to
build a swimming pool. The mayor therefore specified two conditions:

1. Enough streets must be paved so that it is possible for everyone to
travel from their house to anyone else’s house only along paved roads,
and

2. The paving should cost as little as possible.

Here is the layout of the city. The number of paving stones between each
house represents the cost of paving that route. Find the best route that
connects all the houses, but uses as few counters (paving stones) as possible.

What strategies did you use to solve the problem?

Variations and extensions
Here is another way of representing the cities and roads:

90 Licensed under Creative Commons
© 2015 Computer Science Unplugged (csunplugged.org)

The houses are represented by circles, the muddy roads by lines, and the
length of a road is given by the number beside the line.

Computer scientists and mathematicians often use this sort of diagram to
represent these problems. They call it a graph. This may be confusing at first
because “graph” is sometimes used in statistics to mean a chart displaying
numerical data, such as a bar graph, but the graphs that computer scientists
use are not related to these. The lengths do not have to be drawn to scale.

Make up some of your own muddy city problems and try them out on your
friends.

Can you find out a rule to describe how many roads or connections are
needed for a best solution? Does it depend on how many houses there are in
the city?

Licensed under Creative Commons 91
© 2015 Computer Science Unplugged (csunplugged.org)

What’s it all about?

Suppose you are designing how a utility such as electricity, gas, or water
should be delivered to a new community. A network of wires or pipes is
needed to connect all the houses to the utility company. Every house needs
to be connected into the network at some point, but the route taken by the
utility to get to the house doesn’t really matter, just so long as a route exists.

The task of designing a network with a minimal total length is called the
minimal spanning tree problem.

Minimal spanning trees aren’t only useful in gas and power networks; they
also help us solve problems in computer networks, telephone networks, oil
pipelines, and airline routes. However, when deciding the best routes for
people to travel, you do have to take into account how convenient the trip
will be for the traveller as well as how much it will cost. No-one wants to
spend hours in an aeroplane taking the long way round to a new country just
because it is cheaper. The muddy city algorithm may not be much use for
these networks, because it simply minimizes the total length of the roads or
flight paths.

Minimal spanning trees are also useful as one of the steps for solving other
problems on graphs, such as the “travelling salesperson problem” which tries
to find the shortest route that visits every point in the network.

There are efficient algorithms (methods) for solving minimal spanning tree
problems. A simple method that gives an optimal solution is to start with no
connections, and add them in increasing order of size, only adding
connections that join up part of the network that wasn’t previously
connected. This is called Kruskal’s algorithm after J.B. Kruskal, who published
it in 1956.

For many problems on graphs, including the “travelling salesperson
problem”, computer scientists are yet to find fast enough methods that find
the best possible solution.

92 Licensed under Creative Commons
© 2015 Computer Science Unplugged (csunplugged.org)

Solutions and hints
Variations and extensions (page 89)

How many roads or connections are needed if there are n houses in the city?
It turns out that an optimal solution will always have exactly n–1 connections
in it, as this is always sufficient to link up the n houses, and adding one more
would create unnecessary alternative routes between houses.

Licensed under Creative Commons 93
© 2015 Computer Science Unplugged (csunplugged.org)

Activity 10
The Orange Game—Routing and Deadlock in
Networks

Summary
When you have a lot of people using one resource (such as cars using roads,
or messages getting through the Internet), there is the possibility of
“deadlock”. A way of working co-operatively is needed to avoid this
happening.

Curriculum Links
ü Mathematics: Developing logic and reasoning

Skills
ü Co-operative problem solving
ü Logical reasoning

Ages
ü 9 years and up

Materials
Each student will need:
ü Two oranges or tennis balls labeled with the same letter, or two pieces of

fruit each (artificial fruit is best)
ü Name tag or sticker showing their letter, or a coloured hat, badge or top

to match their fruit

94 Licensed under Creative Commons
© 2015 Computer Science Unplugged (csunplugged.org)

The Orange Game
Introduction
This is a co-operative problem solving game. The aim is for each person to
end up holding the oranges labelled with their own letter.

1. Groups of five or more students sit in a circle.

2. The students are labelled with a letter of the alphabet (using name tags or
stickers), or each is allocated a colour (perhaps with a hat, or the colour of
their cloths). If letters of the alphabet are used, there are two oranges with
each student’s letter on them, except for one student, who only has one
corresponding orange to ensure that there is always an empty hand. If fruit is
used, there are two pieces of fruit for each child e.g. a child with a yellow hat
might have two bananas, and a child with a green hat may have two green
apples, except one child has only one piece of fruit.

3. Distribute the oranges or fruit randomly to the students in the circle. Each
student has two pieces, except for one student who has only one. (No
student should have their corresponding orange or colour of fruit.)

4. The students pass the oranges/fruit around until each student gets the one
labelled with their letter of the alphabet (or their colour). You must follow two
rules:

a) Only one piece of fruit may be held in a hand.

b) A piece of fruit can only be passed to an empty hand of an immediate
neighbour in the circle. (A student can pass either of their two oranges to
their neighbour.)

Students will quickly find that if they are “greedy” (hold onto their own fruit as
soon as they get them) then the group might not be able to attain its goal. It
may be necessary to emphasize that individuals don’t “win” the game, but
that the puzzle is solved when everyone has the correct fruit.

Follow up Discussion
What strategies did the students use to solve the problem?

Where in real life have you experienced deadlock? (Some examples might be
a traffic jam, getting players around bases in baseball, or trying to get a lot of
people through a doorway at once.)

Licensed under Creative Commons 95
© 2015 Computer Science Unplugged (csunplugged.org)

Extension Activities
Try the activity with a smaller or larger circle.

• Have the students come up with new rules.

• Carry out the activity without any talking.

• Try different configurations such as sitting
in a line, or having more than two
neighbours for some students. Some
suggestions are shown here.

96 Licensed under Creative Commons
© 2015 Computer Science Unplugged (csunplugged.org)

What’s it all about?
Routing and deadlock are problems in many networks, such as road systems,
telephone and computer systems. Engineers spend a lot of time figuring out
how to solve these problems—and how to design networks that make the
problems easier to solve.

Routing, congestion and deadlock can present frustrating problems in many
different networks. Just think of your favourite rush-hour traffic! It has
happened several times in New York City that the traffic in the streets has
become so congested that it deadlocks: no-one can move their car!
Sometimes when the computers are “down” in businesses (such as banks)
the problem is caused by a communication network deadlock. Designing
networks so that routing is easy and efficient and congestion is minimized is
a difficult problem faced by many kinds of engineers.

Sometimes more than one person wants the same data at the same time. If a
piece of data (such as a customer’s bank balance) is being updated, it is
important to “lock” it during the update. If it is not locked, someone else
could update it at the same time and the balance might be recorded
incorrectly. However, if this locking is interfered with by the locking of
another item, deadlock may occur.

One of the most exciting developments in computer design is the advent of
parallel computing, where hundreds or thousands of PC-like processors are
combined (in a network) to form a single powerful computer. Many problems
like the Orange Game must be played on these networks continuously (but
much faster!) in order for these parallel computers to work.

Licensed under Creative Commons 97
© 2015 Computer Science Unplugged (csunplugged.org)

Activity 11
Tablets of Stone—Network Communication
Protocols

Summary

Computers talk to each other over the internet via messages. However, the
internet is not reliable and sometimes these messages get lost. There are
certain bits of information we can add to messages to make sure they are
sent. This information makes up a protocol.

Curriculum Links

ü Mathematics: Developing logic and reasoning
ü English: Communication, interpersonal listening

Skills
ü Co-operative problem solving
ü Logical reasoning

Ages
ü 9 years and up

Materials
Each student will need:
ü Many blank “Tablets”
Each messenger will need:
ü A set of message action cards
The teacher will need:
ü A timer

98 Licensed under Creative Commons
© 2015 Computer Science Unplugged (csunplugged.org)

Tablets of Stone
Introduction
In this activity students consider how different methods of communication
operate successfully. By looking at rules and procedures in place, students
are introduced to communication protocols. By working through a role-play
scenario, pupils test their own protocol operating in an unreliable
environment similar to that found in packet switching on the Internet,
specifically, TCP/ IP.

Preparation (30 minutes)

1. First gather the cards. You’ll need to print out the action cards (below) and
cut them up. These form the basis of the game.

2. Next, decide on some messages for student to send. It’s important that
they’re not English sentences or anything that can be put back together by
their structure. Something like “1LHC255HD(RLLS” would be a suitable
message, or a phone number.

3. Print out copies of the “tablets’. Each tablet has places for six characters or
numbers, so you cannot fit the whole message on one tablet. You will be
need roughly 30 tablets per student, depending on how long you wish to
run the game.

Note: The action cards are three types; delay, don’t deliver, deliver. Adjusting
the ratio between these will represent the quality of your messengers. More
"deliver" cards means a more reliable messenger. More "delay" and "don’t
delivers means a less reliable network. These cards are analogous to a
computer network/communication channel.

Playing the game
1. Split your class into pairs. It is crucial for the pairs to sit apart from one

another where they cannot see or communicate with each other. Two
rooms are ideal but sitting students on opposing sides of a classroom
should suffice.

2. Give one of each pair a message to deliver to their partner.
3. Shuffle the Action Cards and choose a messenger. You could be the

messenger or if you use a student if you have an odd number. You might
need more than one messenger if you have a large class.

4. A student is now to write on their tablet and give it to the messenger. The
tablet should at least say the name of the other person on it.

Licensed under Creative Commons 99
© 2015 Computer Science Unplugged (csunplugged.org)

5. The messenger now picks the top action card, turns it over, reads it and
uses it to decide what to do with the tablet.

6. Repeat steps 4 and 5 with each tablet

After 5 or so minutes of chaos and frustration, your students should realise that
names alone are not good enough for a protocol. Stop the class and discuss this…
what is the first issue they’re having? Is it order? Perhaps it would be be best to use
one of those 6 slots to put a tablet number in? This means there is less room for
the actual data – what does this mean in terms of the number of tablets we have
to use now?

After some more time, they might notice other problems, and these should also be
discussed. Possible problems could be missing tablet, not knowing if the tablet was
delivered, not knowing whether to resend a tablet. Solutions you could suggest
would be a sending back acknowledgements and waiting to hear back for these
before re-sending another – this means that the receiving student(s) also need
blank tablets to send messages, and they will have to agree on what their 6-
character responses mean before they play the game again.

You’ll need at least two students for this game, but we recommend having as many
as possible. If you have a large class, consider a few messengers. Once again,
discuss this with your class… what happens if you have many messengers? What
happens if you had one?

100 Licensed under Creative Commons
© 2015 Computer Science Unplugged (csunplugged.org)

Deliver this tablet
now

Deliver this message
after the next one

Deliver this tablet
now

Deliver this message
after the next one

Deliver this tablet
now

Deliver this message
after the next one

Deliver this tablet
now

Don’t deliver this
message

Deliver this tablet
now

Don’t deliver this
message

Licensed under Creative Commons 101
© 2015 Computer Science Unplugged (csunplugged.org)

To:

From:

To:

From:

To:

From:

To:

From:

To:

From:

To:

From:

To:

From:

To:

From:

102 Licensed under Creative Commons
© 2015 Computer Science Unplugged (csunplugged.org)

Tablets of Stone

In an ancient city there are a number of very important Governors. These
Governors decide how the city is run and make very important decisions. They
each live in different houses all over the city.

The Governors often want to communicate, they need to send and receive
messages all over the city. Governors are identified by their house number and
they all have access to a group of messengers whose job it is to deliver the
messages.

The only way to send messages is by writing them on large rectangular stone
tablets, which the messengers carry to their destination. The stone tablets are of a
fixed size and can only fit 6 pieces of information on them. One piece of
information can be one letter or one number. Messages are often split over a
number of tablets, and as these tablets are very heavy they can only be carried one
at a time.

The messengers cannot be trusted to always deliver the message correctly as they
are forgetful and lazy. They often stop for long breaks during working hours and
even try to escape from the city.

The Governors want to find a way of making their communication reliable, they
want to develop a set of rules that they will all follow. By doing this they can tell
whether or not their message has been delivered and if the message was correct.
The Governors have already decided that the destination should be written on the
tablet.

In your groups your task is develop the rules that the Governors will use to
communicate…

Licensed under Creative Commons 103
© 2015 Computer Science Unplugged (csunplugged.org)

What’s it all about?
On the internet, data is broken into packets for transportation. However,
the channels in which these packets travel is not always reliable. Individual
packets sometimes are damaged, lost or lose their ordering.

In Tablets of Stone, tablets are packets and their contents is data. Packets
contain both data and header information. The size of the header
information affects how much data can be transferred – so a balance has to
be reached, as packets are of finite size.

Students will find that they will need to swap some of their data boxed for
information such as packet number and total packets, or whether or not
the packet is an acklnowledgement packet. Due to this information taking
up data boxes, overall more packets will be needed.

Internet protocols such as TCP and UDP balance these factors to create
reliable and efficient data transfer.

This activity is adapted from one available through the “Computing Science
Inside” project (csi.dcs.gla.ac.uk).

104 Licensed under Creative Commons
© 2015 Computer Science Unplugged (csunplugged.org)

Licensed under Creative Commons 105
© 2015 Computer Science Unplugged (csunplugged.org)

Part III

Telling Computers What To Do—
Representing Procedures

106 Licensed under Creative Commons
© 2015 Computer Science Unplugged (csunplugged.org)

Telling Computers What To Do
Computers follow instructions—millions of instructions every second. To tell
a computer what to do, all you have to do is give it the right instructions. But
that’s not as easy as it sounds!

When we are given instructions we use common sense to interpret what is
meant. If someone says “go through that door,” they don’t mean to actually
smash through the door—they mean go through the doorway, if necessary
opening the door first! Computers are different. Indeed, when they are
attached to mobile robots you need to be careful to take safety precautions
to avoid them causing damage and danger by interpreting instructions
literally—like trying to go through doors. Dealing with something that obeys
instructions exactly, without “thinking,” takes some getting used to.

The two activities in this section give us some idea of what it is like to
communicate to literal-minded machines using a fixed set of instructions.

The first will teach us about a “machine” that computers use to recognise
words, numbers or strings of symbols that the computer can work with.
These “machines” are called finite-state automata.

The second activity introduces us to how we can communicate with
computers. A good programmer has to learn how to tell the computer what
to do using a fixed set of instructions that are interpreted literally. The list of
instructions is the program. There are lots of different programming
languages a programmer can choose to write these instructions in, but we
will be using a simple language that can be used without a computer.

Licensed under Creative Commons 107
© 2015 Computer Science Unplugged (csunplugged.org)

Activity 12
Treasure Hunt—Finite-State Automata
Summary
Computer programs often need to process a sequence of symbols such as
letters or words in a document, or even the text of another computer
program. Computer scientists often use a finite-state automaton to do this. A
finite-state automaton (FSA) follows a set of instructions to see if the
computer will recognise the word or string of symbols. We will be working
with something equivalent to a FSA—treasure maps!

Curriculum Links
ü Mathematics: Developing logic and reasoning—using words and symbols

to describe and continue patterns
ü Social Studies
ü English

Skills
ü Simple map reading
ü Recognising patterns
ü Logic
ü Following instructions

Ages
ü 9 and up

Materials
You will need:
ü One set of island cards (the instructions must be kept hidden from those

trying to draw the map!)
Copy Photocopy Master: Island cards (page 114 onwards) and cut out.
Fold along the dotted line and glue, so that the front of the card has the
name of the island, and the back has the instructions.

Each student will need:
ü Worksheet Activity: Find your way to the riches on Treasure Island (page

113)
ü Pen or pencil

There are optional extension activities, for which each student will need:
ü Worksheet Activity: Treasure islands (page 119)
ü Worksheet Activity: The mysterious coin game (page 120)

108 Licensed under Creative Commons
© 2015 Computer Science Unplugged (csunplugged.org)

Treasure Island
Introduction
Your goal is to find Treasure Island. Friendly pirate ships sail along a fixed set
of routes between the islands in this part of the world, offering rides to
travellers. Each island has two departing ships, A and B, which you can
choose to travel on. You need to find the best route to Treasure Island. At
each island you arrive at you may ask for either ship A or B (not both). The
person at the island will tell you where your ship will take you to next, but the
pirates don’t have a map of all the islands available. Use your map to keep
track of where you are going and which ship you have travelled on.

Demonstration
(Note: This is a different map from the actual activity.)

Using a board, draw a diagram of three islands as shown here:

Copy the three cards on the next two pages, and have one student hold each
card. Note that the routes on these cards are different from those in the
main activity.

Starting at Pirates’ Island ask for ship A. The student should direct you to
Shipwreck Bay. Mark the route in on the map. At Shipwreck Bay ask for ship A
again. You will be directed back to Pirates’ island. Mark this on the map. This
time ask for ship B. Mark this on the map. This route goes to Dead Man’s
Island, at which stage you will be stuck!

Licensed under Creative Commons 109
© 2015 Computer Science Unplugged (csunplugged.org)

Your final map should look like this:

A

A

B

110 Licensed under Creative Commons
© 2015 Computer Science Unplugged (csunplugged.org)

Cards for demonstration activity

A →

A →

B →

B →

Licensed under Creative Commons 111
© 2015 Computer Science Unplugged (csunplugged.org)

Cards for demonstration activity

No ships sail from
Dead Man’s Island!

112 Licensed under Creative Commons
© 2015 Computer Science Unplugged (csunplugged.org)

Activity
Choose 7 students to be “islands”. The students will hold cards identifying
their island, with the secret instructions on the back. Position them randomly
around the room or playground. The rest of the students are given the blank
map and have to navigate a route from Pirates’ Island to Treasure Island,
marking it carefully on their maps. (It is a good idea to send the students off
one at a time so they cannot hear the routes in advance.)

Fast Finishers: Try to find more than one route.

The complete map looks like this:

Follow-up discussion
What is the quickest route? What would be a very slow route? Some routes
may involve loops. Can you find an example of this? (For example, BBBABAB
and BBBABBABAB both get to Treasure Island.)

Licensed under Creative Commons 113
© 2015 Computer Science Unplugged (csunplugged.org)

Worksheet Activity:
Find your way to the riches on Treasure Island

114 Licensed under Creative Commons
© 2015 Computer Science Unplugged (csunplugged.org)

Photocopy Master: Island cards (1/4)

A →

A →

B → B →

Licensed under Creative Commons 115
© 2015 Computer Science Unplugged (csunplugged.org)

Photocopy Master: Island cards (2/4)

A →

A →

B → B →

116 Licensed under Creative Commons
© 2015 Computer Science Unplugged (csunplugged.org)

Photocopy Master: Island cards (3/4)

A → A →

B → B →

Licensed under Creative Commons 117
© 2015 Computer Science Unplugged (csunplugged.org)

Photocopy Master: Island cards (4/4)

Congratulations!

118 Licensed under Creative Commons
© 2015 Computer Science Unplugged (csunplugged.org)

Finite-State Automata
Another way of drawing a map is like this:

The islands are shown as numbered circles, and the final island (with the
treasure) has a double circle. What routes can we travel around to get to the
final island? (It’s good to explore these by considering examples e.g. does “A”
get to the double circled state? “AA”? “ABA”? “AABA”? What’s the general
pattern?

Solutions:

Map (a) will finish at the double circle (island 2) only if the sequence has an
odd number of As (for example, AB, BABAA, or AAABABA).

Map (b) only gets to the double circle with an alternating sequence of As and
Bs (AB, ABAB, ABABAB, ...).

Map (c) requires that the sequence contains at least one B (the only
sequences not suitable are A, AA, AAA, AAAA, ...).

Licensed under Creative Commons 119
© 2015 Computer Science Unplugged (csunplugged.org)

Worksheet Activity: Treasure Islands

Can you hide your buried treasure well? How hard can you make it to find the
treasure? It’s time to make your own map!

1. Here is a more complicated version of the same idea of representing a map.
This map is the same as for the previous exercise. Computer Scientists use
this quick and easy way of designing routes for their patterns.

Draw your own basic plan like this so you can clearly see the routes your
Pirate ships will travel and then make up your own blank maps and island
cards. What is the most efficient sequence of routes to reach your Treasure
Island?

2. How well can your friends follow your map? Give them a sequence of As and
Bs, and see if they can reach the correct island.

You can make up a variety of games and puzzles based on this idea of finite-
state automata.

3. Here is a way of constructing sentences by choosing random paths through
the map and noting the words that are encountered.

Now try the same idea for yourself. Perhaps you could even make up a funny story!

120 Licensed under Creative Commons
© 2015 Computer Science Unplugged (csunplugged.org)

Worksheet Activity: The Mysterious Coin Game

Some friends downloaded a game from the Internet in which a robot flipped
a coin and they had to guess whether it would turn up heads or tails. At first
the game looked very easy. At least they would have a 50/50 chance of
winning—or so they thought! After a while though they started to get
suspicious. There seemed to be a pattern in the coin tosses. Was the game
rigged? Surely not! They decided to investigate. Joe wrote down the results of
their next attempts at the game and this is what they found: (h = heads,
t = tails)

h h t h h t h h h t t h h h h t t h t t t h h h h h t h h h t t t h h h t t t h h h h h h t
t h t t t t t h t t h t t t h h h t t h h h t h h h h h h h h h t t h h h t t t t h h h h h t t
t t t t t

Can you find a predictable pattern?

There is a very simple ‘map’ that will describe the sequence of coin tosses.
See if you can figure it out. (Hint: it has just 4 ‘islands’)

Licensed under Creative Commons 121
© 2015 Computer Science Unplugged (csunplugged.org)

What’s it all about?

Finite-state automata are used in computer science to help a computer
process a sequence of characters or events.

A simple example is when you dial up a telephone number and you get a
message that says “Press 1 for this … Press 2 for that … Press 3 to talk to a
human operator.” Your key presses are inputs for a finite state automaton at
the other end of the phone. The dialogue can be quite simple, or very
complex. Sometimes you are taken round in circles because there is a
peculiar loop in the finite-state automaton. If this occurs, it is an error in the
design of the system—and it can be extremely frustrating for the caller!

Another example is when you get cash from a bank cash machine. The
program in the machine’s computer leads you through a sequence of events.
Inside the program all the possible sequences are kept as a finite-state
automaton. Every key you press takes the automaton to another state. Some
of the states have instructions for the computer on them, like “dispense $100
of cash” or “print a statement” or “eject the cash card”.

Some computer programs really do deal with English sentences using maps
like the one on page 119. They can both generate sentences themselves, and
process sentences that the user types in. In the 1960s a computer scientist
wrote a famous program called “Eliza” (after Eliza Dolittle) that had
conversations with people. The program pretended to be a psychotherapist,
and came out with leading questions like “Tell me about your family” and “Do
go on.” Although it didn’t “understand” anything, it was sufficiently
plausible—and its human users were sufficiently gullible—that some people
really did think they were talking to a human psychotherapist.

Although computers are not really very good at understanding natural
language, they can readily process artificial languages. One important type of
artificial language is the programming language. Computers use finite-state
automata to read in programs and translate them into the form of
elementary computer instructions, which can then be “executed” directly by
the computer.

122 Licensed under Creative Commons
© 2015 Computer Science Unplugged (csunplugged.org)

Solutions and hints
The Mysterious Coin Game (page 120)

The mysterious coin game uses the following map to toss coins:

If you follow it, you will see that the first two coin tosses of each three have
the same outcome.

Licensed under Creative Commons 123
© 2015 Computer Science Unplugged (csunplugged.org)

Activity 13
Marching Orders—Programming Languages
Summary
Computers are usually programmed using a “language,” which is a limited
vocabulary of instructions that can be obeyed. One of the most frustrating
things about programming is that computers always obey the instructions to
the letter, even if they produce a crazy result. This activity gives students
some experience with this aspect of programming.

Curriculum Links
ü English: Interpersonal Listening

Skills
ü Giving and following instructions.

Ages
ü 7 years and up

Materials
You will need:
ü Cards with pictures such as the ones shown on the next page.

Each student will need:
ü Pencil, paper and ruler

124 Licensed under Creative Commons
© 2015 Computer Science Unplugged (csunplugged.org)

Licensed under Creative Commons 125
© 2015 Computer Science Unplugged (csunplugged.org)

Marching Orders
Introduction
Discuss whether it would be good if people followed instructions exactly. For
example, what would happen if you pointed to a closed door and said, “Go
through that door”?

Computers work by following lists of instructions, and they do exactly what
the instructions say—even if they don’t make sense!

Demonstration Example
See if the students can draw the picture from these instructions.

1. Draw a dot in the centre of your page.

2. Starting at the top left-hand corner of the page rule a straight line through
the dot finishing at the bottom right hand corner.

3. Starting at the bottom left-hand corner of the page rule a line through the
dot, finishing at the top right hand corner.

4. Write your name in the triangle in the centre of the left-hand side of the
page.

The result should look something like this:

126 Licensed under Creative Commons
© 2015 Computer Science Unplugged (csunplugged.org)

Activities
Choose a student and give them an image (such as the examples on page
124). The student describes the picture for the class to reproduce. The
students can ask questions to clarify the instructions. The object is to see
how quickly and accurately the exercise can be completed.

Repeat the exercise, but this time the students are not allowed to ask
questions. It is best to use a simpler image for this exercise, as the students
can get lost very quickly.

Now try the exercise with the instructing student hidden behind a screen,
without allowing any questions, so that the only communication is in the
form of instructions.

Point out that this form of communication is most like the one that computer
programmers experience when writing programs. They give a set of
instructions to the computer, and don’t find out the effect of the instructions
until afterwards.

Have the students draw a picture and write down their own instructions. Try
them out in pairs or as a whole class.

Variations
1. Write instructions to construct a paper dart.

2. Write instructions on how to get to a mystery location around the school
using such instructions as “Go forward x metres”, “turn left” (90 degrees), and
“turn right” (90 degrees).

Students should test and refine their instructions until they have the desired
effect.

3. Blind Game. Blindfold a student and have the other students direct them
around the room.

Licensed under Creative Commons 127
© 2015 Computer Science Unplugged (csunplugged.org)

What’s it all about?
Computers operate by following a list of instructions, called a program, that
has been written to carry out a particular task. Programs are written in
languages that have been specially designed, with a limited set of
instructions, to tell computers what to do. Some languages are more suitable
for some purposes than others.

Regardless of what language they use, programmers must become adept at
specifying exactly what they want the computer to do. Unlike human beings, a
computer will carry out instructions to the letter even if they
are patently ridiculous.

It is important that programs are well written. A small error
can cause a lot of problems. Imagine the consequences of an
error in the program of a computer in a space shuttle launch,
a nuclear power plant, or the signals on a train track! Errors
are commonly called “bugs” in honour (so it is said) of a moth that was once
removed (“debugged”) from an electrical relay in an early 1940s electronic
calculating machine.

The more complex the program, the more errors there are likely to be. This
became a major issue when the USA was working on the Strategic Defence
Initiative (“Star Wars”) program, a computer controlled system that was
intended to form an impenetrable defence against nuclear attack. Some
computer scientists claimed that it could never work because of the
complexity and inherent unreliability of the software required. Software
needs to be tested carefully to find as many bugs as possible, and it wouldn’t
be feasible to test this system since one would have to fire missiles at the
United States to be sure that it worked!

128 Licensed under Creative Commons
© 2015 Computer Science Unplugged (csunplugged.org)

Part IV
Really hard problems—

Intractability

130 Licensed under Creative Commons
© 2015 Computer Science Unplugged (csunplugged.org)

Intractability
Are there problems that are too hard even for computers? Yes. We will see
in Activity 20 that just having a conversation—chatting—is something
computers can't do, not because they can't speak but because they can't
understand or think of sensible things to say, but that’s not the kind of hard
problem we’re talking about here – it's not that computers can’t have
conversations, more that we don't know just how we do it ourselves and so
we can't tell the computer what to do. But in this section we're going to look
at problems where it's easy to tell the computer what to do—by writing a
program—but the computer can't do what we want because it takes far too
long: millions of centuries, perhaps. Not much good buying a faster
computer: if it were a hundred times faster it would still take millions of
years; even one a million times faster would take hundreds of years. That's
what you call a hard problem—one where it takes far longer than the lifetime
of the fastest computer imaginable to come up with a solution!

The activities in Part II on algorithms showed you how to find ways of making
computer programs run more efficiently. In this section we look at problems
for which no efficient solutions are known, problems that take computers
millions of centuries to solve. And we will encounter what is surely the
greatest mystery in computer science today: that no-one knows whether
there's a more efficient way of solving these problems! It may be just that
no-one has come up with a good way yet, or it may be that there is no good
way. We don't know which. And that's not all. There are thousands of
problems that, although they look completely different, are equivalent in the
sense that if an efficient method is found to solve one, it can be converted
into an efficient method to solve them all. In these activities you will learn
about these problems.

For teachers

There are three activities in this section. The first involves coloring maps and
counting how many colors are needed to make neighboring countries
different. The second requires the ability to use a simple street map, and
involves placing ice-cream vans at street corners so that nobody has to go
too far to get an ice-cream. The third is an outdoor activity that uses string
and pegs to explore how to make short networks connecting a set of points.

The activities provide a hands-on appreciation of the idea of complexity—
how problems that are very simple to state can turn out to be incredibly hard
to solve. And these problems are not abstruse. They are practical questions
that arise in everyday activities such as mapping, school time-tabling, and
road building. The computational underpinning rests on a notion called “NP-

Licensed under Creative Commons 131
© 2015 Computer Science Unplugged (csunplugged.org)

completeness” that is explained in the What's it all about? sections at the end
of each activity. Although the activities themselves can be tackled in any
order, these sections are intended to be read in the order in which they
appear. By the time you reach the end you will have a firm grip on the most
important open question in contemporary computer science.

The technical name for this part is “intractability” because problems that are
hard to solve are called intractable. The word comes the Latin tractare
meaning to draw or drag, leading to the modern usage of tractable as easy to
handle, pliant, or docile. Intractable problems are ones that are not easily
dealt with because it would take too long to come up with an answer.
Although it may sound esoteric, intractability is of great practical interest
because a breakthrough in this area would have major ramifications for
many different lines of research. For example, most cryptographic codes rely
on the intractability of some problems, and a criminal who managed to come
up with an efficient solution could have a field day decoding secrets and
selling them, or—more simply—just making phoney bank transactions. We
will look at these things in Part V—Cryptography.

132 Licensed under Creative Commons
© 2015 Computer Science Unplugged (csunplugged.org)

Activity 14
The poor cartographer—Graph coloring
Summary
Many optimization problems involve situations where certain events cannot
occur at the same time, or where certain members of a set of objects cannot
be adjacent. For example, anyone who has tried to timetable classes or
meetings will have encountered the problem of satisfying the constraints on
all the people involved. Many of these difficulties are crystallized in the map
coloring problem, in which colors must be chosen for countries on a map in a
way that makes bordering countries different colors. This activity is about
that problem.

Curriculum Links
ü Mathematics: Number – Exploring numbers in other bases. Representing

numbers in base two.
ü Mathematics: Algebra – Continue a sequential pattern, and describe a rule

for this pattern. Patterns and relationships in powers of two.

Skills
ü Problem solving.
ü Logical reasoning.
ü Algorithmic procedures and complexity.
ü Communication of insights.

Ages
ü 7 and up

Materials
ü a whiteboard or similar writing surface.

Each student will need:
ü a copy of one or more of the worksheets,

ü movable small colored markers (e.g. counters or poker chips), and

ü four crayons of different colors (or colored pencils, felt tips etc.)

Licensed under Creative Commons 133
© 2015 Computer Science Unplugged (csunplugged.org)

Graph Coloring

Introduction
This activity revolves around a story in which the students have been asked
to help out a cartographer, or map-maker, who is coloring in the countries on
a map. It doesn't matter which color a country is, so long as it’s different to
all bordering countries.

For example, this map shows four countries. If
we color Northland red, then Westland and
Eastland cannot be red, since their border with
Northland would be hard to see. We could
color Westland green, and it is also acceptable
to color Eastland green because it does not
share a border with Westland. (If two countries
meet only at a single point, they do not count
as sharing a border and hence can be made
the same color.) Southland can be colored red,

and we end up needing only two colors for the map.

In our story, the cartographer is poor and can't afford many crayons, so the
idea is to use as few colors as possible.

134 Licensed under Creative Commons
© 2015 Computer Science Unplugged (csunplugged.org)

Discussion
Describe the problem that the students will be working on, demonstrating
the coloring process on a blackboard.

Give out a copy of the first worksheet. This map can be colored correctly
using only two colors. Although restricting the number of colors to just two
might sound particularly challenging, the task is quite simple compared with
maps that require more colors because there is very little choice about what
color each country can be.

Have the students try to color the map in with only two colors. In the process
they may discover the “has-to-be” rule: once one country is colored in, any
bordering country has to be the opposite color. This rule is applied
repeatedly until all countries are colored in. It is best if the students can
discover this rule for themselves, rather than being told it, as it will give them
a better insight into the process.

As students complete each exercise they can be given the next sheet to try.

The students may also discover that it is better to use place-holders, such as
colored counters, instead of coloring the countries straight away, since this
makes it easier for them to change their mind.

For older students, ask them to explain how they know that they have found
the minimum number of colors. For example, at least three colors are
required for this map because it includes a group of three countries (the
largest three), each of which has borders with the other two.

If a student finishes all the sheets early, ask them to try to devise a map that
requires five different colors. It has been proved that any map can be
colored with only four colors, so this task will keep them occupied for some
time! In our experience students will quickly find maps that they believe
require five colors, but of course it is always possible to find a four-color
solution to their maps.

Licensed under Creative Commons 135
© 2015 Computer Science Unplugged (csunplugged.org)

Worksheet Activity: Graph Coloring 1

Color in the countries on this map with as few colors as possible, but make
sure that no two bordering countries are the same color.

136 Licensed under Creative Commons
© 2015 Computer Science Unplugged (csunplugged.org)

Worksheet Activity: Graph Coloring 2

Color in the countries on this map with as few colors as possible, but make
sure that no two bordering countries are the same color.

Licensed under Creative Commons 137
© 2015 Computer Science Unplugged (csunplugged.org)

Worksheet Activity: Graph Coloring 3

Color in the countries on this map with as few colors as possible, but make
sure that no two bordering countries are the same color.

138 Licensed under Creative Commons
© 2015 Computer Science Unplugged (csunplugged.org)

Worksheet Activity: Graph Coloring 4

Color in the countries on this map with as few colors as possible, but make
sure that no two bordering countries are the same color.

Licensed under Creative Commons 139
© 2015 Computer Science Unplugged (csunplugged.org)

Variations and Extensions

There is a simple way to
construct maps that require
only two colors, as shown
here. This map was drawn by
overlaying closed curves (lines
whose beginning joins up with
their end). You can draw any
number of these curves, of
any shape, on top of each
other, and you will always end
up with a map that can be
colored with two colors.
Students can experiment with
creating this type of map.

Four colors are always enough
to color a map drawn on a
sheet of paper or on a sphere
(that is, a globe). One might
wonder (as scientists are paid
to do) how many colors are
needed for maps drawn on
weirder surfaces, such as the torus (the shape of a donut). In this case, one
might need five colors, and five is always enough. Students might like to
experiment with this.

There are many other entertaining variations on the map-coloring problem
that lead off into directions where much is currently unknown. For example,
if I am coloring a map on a sheet of paper by myself, then I know that if I
work cleverly, four colors will be enough. But suppose that instead of
working alone I am working with an incompetent (or even adversarial)
partner, and we take turns at choosing the color for countries. Assume that I
work cleverly, while my partner only works “legally” as we take turns coloring
countries on the map. How many crayons need to be on the table in order
for me in my cleverness to be able to make up for my partner's legal but not
very bright (or even subversive) moves? The maximum number isn’t known!
In 1992 it was proved that 33 crayons will always be enough, and in 2008 this
was improved by a proof that 17 would be sufficient, but we still don't know
that this many is ever actually required. (Experts conjecture that fewer than
10 colors are sufficient.) Students might enjoy acting out this situation, which
can be played as a two-person game where you try to maximise the number
of colours that your opponent needs.

140 Licensed under Creative Commons
© 2015 Computer Science Unplugged (csunplugged.org)

In another variation of map coloring know as empire coloring, we start with
two different maps on two sheets of paper having the same number of
countries. Each country on one of the maps (say, the Earth) is paired with
exactly one country on the other map (which might be colonies on the
Moon). In addition to the usual coloring requirement of different colors for
countries that share a border (for both maps) we add the requirement that
each Earth country must be colored the same as its colony on the Moon.
How many colors do we need for this problem? The answer is currently
unknown.

Licensed under Creative Commons 141
© 2015 Computer Science Unplugged (csunplugged.org)

What’s it all about?
The map coloring problem that we have explored in this activity is essentially
to find the minimum number of colors—two, three, or four—that are
necessary to color a particular map. The conjecture that any map can be
colored using only four colors was formulated in 1852, but it was not proved
until 1976. Computer science is full of unsolved problems, and knowing that
the four-color theorem was proved after more than 120 years of attention
from researchers is an encouragement to those working on other problems
whose solution has eluded them for decades.

Map coloring belongs to a
general class of problems
known as “graph coloring.” In
computer science, a graph is
an abstract representation of
relationships, as shown here.

As mentioned in Activity 9 on
the Muddy City, the term
graph is used in a different sense in mathematics to mean a chart displaying
numerical data, such as a bar graph, but the graphs that computer scientists
use are not related to these. In computer science, graphs are drawn using
circles or large dots, technically called “nodes,” to denote objects, with lines
between them to indicate some sort of relationship between the objects. The
above graph happens to represent the map at the beginning of this activity.
The nodes represent the countries, and a line between two nodes indicates
that those two countries share a common border. On the graph, the coloring
rule is that no connected nodes should be allocated the same color. Unlike a
map, there is no limit to the number of colors that a general graph may
require, because many different constraints may be drawn in as connecting
lines, whereas the two-dimensional nature of maps restricts the possible
arrangements. The “graph coloring problem” is to find the minimum number
of colors that are needed for a particular graph.

In the graph on the right
the nodes correspond to
subjects in a school. A
line between two
subjects indicates that at
least one student is
taking both subjects, and
so they should not be
timetabled for the same

142 Licensed under Creative Commons
© 2015 Computer Science Unplugged (csunplugged.org)

period. Using this representation, the problem of finding a workable
timetable using the minimum number of periods is equivalent to the coloring
problem, where the different colors correspond to different periods. Graph
coloring algorithms are of great interest in computer science, and are used
for many real-world problems, although they are probably never used to
color in maps!—our poor cartographer is just a fiction.

There are literally thousands of other problems based on graphs. Some are
described elsewhere in this book, such as the minimal spanning tree of
Activity 9 and the dominating sets of Activity 14. Graphs are a very general
way of representing data and can be used to represent all sorts of situations,
such as a map made up of roads and intersections, connections between
atoms in a molecule, paths that messages can take through a computer
network, connections between components on a printed circuit board, and
relationships between the tasks required to carry out a large project. For this
reason, problems involving graph representations have long fascinated
computer scientists.

Many of these problems are very difficult—not difficult conceptually, but
difficult because they take a long time to solve. For example, to determine
the most efficient solution for a graph coloring problem of moderate size—
such as finding the best way to timetable a school with thirty teachers and
800 students—could take years, even centuries, for a computer using the
best known algorithm. The problem would be irrelevant by the time the
solution was found—and that’s assuming the computer doesn't break down
or wear out before it finishes! Such problems are only solved in practice
because we are content to work with sub-optimal, but still very good,
solutions. If we were to insist on being able to guarantee that the solution
found was the very best one, the problem would be completely intractable.

The amount of computer time needed to solve coloring problems increases
exponentially with the size of the graph. Consider the map coloring problem.
It can be solved by trying out all possible ways to color the map. We know
that at most four colors are required, so we need to evaluate every
combination of assigning the four colors to the countries. If there are n
countries, there are 4n combinations. This number grows very rapidly: every
country that is added multiplies the number of combinations by four, and
hence quadruples the solution time. Even if a computer were invented that
could solve the problem for, say, fifty countries in just one hour, adding one
more country would require four hours, and we would only need to add ten
more countries to make the computer take over a year to find the solution.
This kind of problem won't go away just because we keep inventing faster
and faster computers!

Licensed under Creative Commons 143
© 2015 Computer Science Unplugged (csunplugged.org)

Graph coloring is a good example of a problem whose solution time grows
exponentially. For very simple instances of the problem, such as the small
maps used in this activity, it is quite easy to find the optimal solution, but as
soon as the number of countries increases beyond about ten, the problem
becomes very difficult to do by hand, and with a hundred or more countries,
even a computer can take many years to try out all the possible ways of
coloring the map in order to choose the optimal one.

Many real-life problems are like this, but must be solved anyway. Computer
scientists use methods that give good, but not perfect, answers. These
heuristic techniques are often very close to optimal, very fast to compute, and
give answers that are close enough for all practical purposes. Schools can
tolerate using one more classroom than would be needed if the timetable
were perfect, and perhaps the poor cartographer could afford an extra color
even though it is not strictly necessary.

No-one has proved that there isn't an efficient way to solve this sort of
problem on conventional computers, but neither has anyone proved that
there is, and computer scientists are sceptical that an efficient method will
ever be found. We will learn more about this kind of problem in the next two
activities.

Further reading
Harel discusses the four-color theorem, including its history, in Algorithmics.
More aspects of the map-coloring problem are discussed in This is MEGA-
Mathematics! by Casey and Fellows. Kubale’s 2004 book, Graph Colorings,
includes a history of the problem. There are many websites that cover this
topic.

144 Licensed under Creative Commons
© 2015 Computer Science Unplugged (csunplugged.org)

Solutions and Hints

This is the only possible solution for the
map on worksheet 1 (of course, the
choice of colors is up to the student, but
only two different colors are required).

The map at the top of worksheet 2 can be
colored correctly using three colors, while
the one at the bottom requires four. Here
are two possible solutions.

Licensed under Creative Commons 145
© 2015 Computer Science Unplugged (csunplugged.org)

The map on worksheet 3 is a simpler
three-color map, with a possible solution
shown here.

Solution for worksheet 4 using just two
colors (shaded and white).

146 Licensed under Creative Commons
© 2015 Computer Science Unplugged (csunplugged.org)

Activity 15
Tourist town—Dominating sets
Summary
Many real-life situations can be abstracted into the form of a network or
“graph” of the kind used for coloring in Activity 13. Networks present many
opportunities for the development of algorithms that are practically useful.
In this activity, we want to mark some of the junctions, or “nodes,” in such a
way that all other nodes are at most one step away from one of the marked
ones. The question is, how few marked nodes can we get away with? This
turns out to be a surprisingly difficult problem.

Curriculum Links
ü Mathematics – Position and orientation
ü Mathematics – Logical reasoning

Skills
ü Maps
ü Relationships
ü Puzzle solving
ü Iterative goal seeking

Ages
ü 7 and up

Materials
Each group of students will need:

ü a copy of the blackline master Ice Cream Vans, and
ü several counters or poker chips of two different colors.

You will need
ü a projector image of the blackline master Ice Cream Vans Solution on a

whiteboard, or a whiteboard to draw it on.

Licensed under Creative Commons 147
© 2015 Computer Science Unplugged (csunplugged.org)

 Dominating Sets

Introduction
The Ice Cream Vans worksheet shows a map of Tourist Town. The lines are
streets and the dots are street corners. The town lies in a very hot country,
and in the summer season ice-cream vans park at street corners and sell ice-
creams to tourists. We want to place the vans so that anyone can reach one
by walking to the end of their street and then at most one block further. (It
may be easier to imagine people living at the intersections rather than along
the streets; then they must be able to get ice-cream by walking at most one
block.) The question is, how many vans are needed and on which
intersections should they be placed?

Discussion
1. Divide the students into small groups, give each group the Tourist Town

map and some counters, and explain the story.

2. Show the students how to place a counter on an intersection to mark an
ice-cream van, and then place counters of another color on the
intersections one street away. People living at those intersections (or
along the streets that come into them) are served by this ice-cream van.

3. Have the students experiment with different positions for the vans. As
they find configurations that serve all houses, remind them that vans are
expensive and the idea is to have as few of them as possible. It is obvious
that the conditions can be met if there are enough vans to place on all
intersections—the interesting question is how few you can get away with.

4. The minimum number of vans for Tourist
Town is six, and a solution is shown here. But
it is very difficult to find this solution! After
some time, tell the class that six vans suffice
and challenge them to find a way to place
them. This is still quite a hard problem: many
groups will eventually give up. Even a
solution using eight or nine vans can be
difficult to find.

148 Licensed under Creative Commons
© 2015 Computer Science Unplugged (csunplugged.org)

5. The map of Tourist Town was made by starting with the six map pieces at
the bottom of the Ice Cream Vans solution worksheet, each of which
obviously requires only one ice-cream van, and connecting them together
with lots of streets to disguise the solution. The main thing is not to put
any links between the solution intersections (the open dots), but only
between the extra ones (the solid dots). Show the class this technique on
the board or using a projector.

6. Get the students to make their own difficult maps using this strategy.
They may wish to try them on their friends and parents–they will find that
they can create puzzles that they can solve but others can’t! These are
examples of what is called a “one-way function”: it's easy to come up with
a puzzle that is very difficult to solve—unless you’re the one who created it
in the first place. One-way functions play a crucial role in cryptography
(see Activities 17 and 18).

Licensed under Creative Commons 149
© 2015 Computer Science Unplugged (csunplugged.org)

Worksheet Activity: Ice Cream Vans

Work out how to place ice-cream vans on the street intersections so that
every other intersection is connected to one that has a van on it.

150 Licensed under Creative Commons
© 2015 Computer Science Unplugged (csunplugged.org)

Worksheet Activity: Ice Cream Vans Solution

Display this to the class to show how the puzzle was constructed.

Licensed under Creative Commons 151
© 2015 Computer Science Unplugged (csunplugged.org)

Variations and extensions

There are all sorts of situations in which one might be faced with this kind of
problem in town planning: locating mailboxes, wells, fire-stations, and so on.
And in real life, the map won’t be based on a trick that makes it easy to solve.
If you really have to solve a problem like this, how would you do it?

There is a very straightforward way: consider all possible ways of placing ice-
cream vans and check them to see which is best. With the 26 street corners
in Tourist Town, there are 26 ways of placing one van. It's easy to check all 26
possibilities, and it’s obvious that none of them satisfies the desired
condition. With two vans, there are 26 places to put the first, and, whichever
one is chosen for the first, there are 25 places left to put the second
(obviously you wouldn’t put both vans at the same intersection): 26 × 25 =
650 possibilities to check. Again, each check is easy, although it would be
very tedious to do them all. Actually, you only need to check half of them
(325), since it doesn’t matter which van is which: if you’ve checked van 1 at
intersection A and van 2 at intersection B then there’s no need to check van 1
at B and van 2 at A. You could carry on checking three vans (2600
possibilities), four vans (14950 possibilities), and so on. Clearly, 26 vans are
enough since there are only 26 intersections and there’s no point in having
more than one van at the same place. Another way of assessing the number
of possibilities is to consider the total number of configurations with 26
intersections and any number of vans. Since there are two possibilities for
each street corner—it may or may not have a van—the number of
configurations is 226, which is 67,108,864.

This way of solving the problem is called a “brute-force” algorithm, and it
takes a long time. It’s a widely held misconception that computers are so fast
they can solve just about any problem quickly, no matter how much work it
involves. But that’s not true. Just how long the brute-force algorithm takes
depends on how quick it is to check whether a particular configuration is a
solution. To check this involves testing every intersection to find the distance
of the nearest van. Suppose that an entire configuration can be tested in one
second. How long does it take to test all 226 possibilities for Tourist Town?
(Answer: 226 is about 67 million; there are 86,400 seconds in a day, so 226
seconds is about 777 days, or around two years.) And suppose that instead
of one second, it took just one thousandth of a second to check each
particular configuration. Then the same two years would allow the computer
to solve a 36-intersection town, because 236 is about 1000 times 226. Even if
the computer was a million times faster, so that one million configurations
could be checked every second, then it would take two years to work on a 46-
intersection town. And these are not very big towns! (How many
intersections are there in your town?)

152 Licensed under Creative Commons
© 2015 Computer Science Unplugged (csunplugged.org)

Since the brute-force algorithm is so slow, are there other ways to solve the
problem? Well, we could try the greedy approach that was so successful in
the muddy city (Activity 9). We need to think how to be greedy with ice-
creams—I mean how to apply the greedy approach to the ice-cream van
problem. The way to do it is by placing the first van at the intersection that
connects the greatest number of streets, the second one at the next most
connected intersection, and so on. However, this doesn’t necessarily
produce a minimum set of ice-cream van positions—in fact, the most highly
connected intersection in Tourist Town, which has five streets, isn’t a good
place to put a van (check this with the class).

Let’s look at an easier problem. Instead of being asked
to find a minimum configuration, suppose you were
given a configuration and asked whether it was
minimal or not. In some cases, this is easy. For
example, this diagram shows a much simpler map
whose solution is quite straightforward. If you imagine the streets as edges
of a cube, it’s clear that two ice-cream vans at diagonally opposite cube
vertices are sufficient. Moreover, you should be able to convince yourself
that it is not possible to solve the problem with fewer than two vans. It is
much harder—though not impossible—to convince oneself that Tourist Town
cannot be serviced by less than six vans. For general maps it is extremely
hard to prove that a certain configuration of ice-cream vans is a minimal one.

Licensed under Creative Commons 153
© 2015 Computer Science Unplugged (csunplugged.org)

What’s it all about?
One of the interesting things about the ice-cream problem is that no-one
knows whether there is an algorithm for finding a minimum set of locations
that is significantly faster than the brute-force method! The time taken by
the brute-force method grows exponentially with the number of
intersections—it is called an exponential-time algorithm. A polynomial-time
algorithm is one whose running time grows with the square, or the cube, or
the seventeenth power, or any other power, of the number of intersections.
A polynomial-time algorithm will always be faster for sufficiently large
maps—even (say) a seventeenth-power algorithm—since an exponentially-
growing function outweighs any polynomially-growing one once its argument
becomes large enough. (For example, if you work it out, whenever n is bigger
than 117 then n17 is smaller than 2n). Is there a polynomial-time algorithm
for finding the minimum set of locations?—no-one knows, although people
have tried very hard to find one. And the same is true for the seemingly
easier task of checking whether a particular set of locations is minimal: the
brute-force algorithm of trying all possibilities for smaller sets of locations is
exponential in the number of intersections, and polynomial-time algorithms
have neither been discovered nor proved not to exist.

Does this remind you of map coloring (Activity 13)? It should. The ice-cream
van question, which is officially called the “minimum dominating set”
problem, is one of a large number—thousands—of problems for which it is
not known whether polynomial-time algorithms exist, in domains ranging
from logic, through jigsaw-like arrangement problems to map coloring,
finding optimal routes on maps, and scheduling processes. Astonishingly, all
of these problems have been shown to be equivalent in the sense that if a
polynomial-time algorithm is found for one of them, it can be converted into
a polynomial-time algorithm for all the others—you might say that they stand
or fall together.

These problems are called NP-complete. NP stands for “non-deterministic
polynomial.” This jargon means that the problem could be solved in a
reasonable amount of time if you had a computer that could try out an
arbitrarily large number of solutions at once (that’s the non-deterministic
part). You may think this is a pretty unrealistic assumption, and indeed it is.
It’s not possible to build this kind of computer, since it would have to be
arbitrarily large! However, the concept of such a machine is important in
principle, because it appears that NP-complete problems cannot be solved in
a reasonable amount of time without a non-deterministic computer.

154 Licensed under Creative Commons
© 2015 Computer Science Unplugged (csunplugged.org)

Furthermore, this group of problems is called complete because although the
problems seem very different—for example, map-coloring is very different
from placing ice-cream vans—it turns out that if an efficient way of solving
one of them is found, then that method can be adapted to solve any of the
problems. That’s what we meant by “standing or falling together.”

There are thousands of NP-complete problems, and researchers have been
attacking them, looking for efficient solutions, for several decades without
success. If an efficient solution had been discovered for just one of them,
then we would have efficient solutions for them all. For this reason, it is
strongly suspected that there is no efficient solution. But proving that the
problems necessarily take exponential time is the most outstanding open
question in theoretical computer science—possibly in all of mathematics—
today.

Further reading
Harel’s book Algorithmics introduces several NP-complete problems and
discusses the question of whether polynomial-time algorithms exist.
Dewdney’s Turing Omnibus also discusses NP-completeness. The standard
computer science text on the subject is Garey & Johnson’s Computers and
Intractability, which introduces several hundred NP-complete problems along
with techniques for proving NP-completeness. However, it is fairly heavy
going and is really only suitable for the computer science specialist.

Licensed under Creative Commons 155
© 2015 Computer Science Unplugged (csunplugged.org)

Activity 16
Ice roads —Steiner trees
Summary
Sometimes a small, seemingly insignificant, variation in the specification of a
problem makes a huge difference in how hard it is to solve. This activity, like
the Muddy City problem (Activity 9), is about finding short paths through
networks. The difference is that here we are allowed to introduce new points
into the network if that reduces the path length. The result is a far more
difficult problem that is not related to the Muddy City, but is algorithmically
equivalent to the cartographer’s puzzle (Activity 13) and Tourist Town (Activity
14).

Curriculum Links
ü Mathematics – Position and orientation
ü Mathematics – Logical reasoning

Skills
ü Spatial visualization
ü Geometric reasoning
ü Algorithmic procedures and complexity

Ages
ü 7 and up

Materials
Each group of students will need

ü five or six pegs to place in the ground (tent pegs are good, although a coat
hanger cut into pieces which are then bent over is fine),

ü several meters of string or elastic,
ü a ruler or tape measure, and
ü pen and paper to make notes on.

156 Licensed under Creative Commons
© 2015 Computer Science Unplugged (csunplugged.org)

Ice Roads

Introduction
The previous activity, Tourist Town, took place in a very hot country; this one
is just the opposite. In the frozen north of Canada (so the story goes), in the
winter on the huge frozen lakes, snowplows make roads to connect up drill
sites so that crews can visit each other. Out there in the cold they want to do
a minimum of road building, and your job is to figure out where to make the
roads. There are no constraints: highways can go anywhere on the snow—
the lakes are frozen and covered. It’s all flat.

The roads should obviously travel in straight stretches, since introducing
bends would only increase the length unnecessarily. But it’s not as simple as
connecting all the sites with straight lines, because adding intersections out
in the frozen wastes can sometimes reduce the total road length—and it’s
total length that’s important, not travel time from one site to another.

In this figure, (a) shows three drill sites. Connecting one of them to each of
the others (as in (b)) would make an acceptable road network. Another
possibility is to make an intersection somewhere near the center of the
triangle and connect it to the three sites (c). And if you measure the total
amount of road that has been cleared, this is indeed a better solution. The
extra intersection is called a “Steiner” point after the Swiss mathematician

Licensed under Creative Commons 157
© 2015 Computer Science Unplugged (csunplugged.org)

Jacob Steiner (1796–1863), who stated the problem and was the first to notice
that the total length can be reduced by introducing new points. You could
think of a Steiner point as a new, fictitious, drill site.

Discussion
1. Describe the problem that the students will be working on. Using the

example above, demonstrate to the students that with three sites, adding
a new one sometimes improves the solution by reducing the amount of
road-building.

1. The students will be using four points arranged in a square, as illustrated
in (a). Go outside and get each group to place four pegs in the grass in a
square about 1 meter by 1 meter.

2. Get the students to experiment with connecting the pegs with string or
elastic, measuring and recording the minimum total length required. At this
stage they should not use any Steiner points. (The minimum is achieved by
connecting three sides of the square, as in (b), and the total length is 3 meters.)

3. Now see if the students can do better by using one Steiner point. (The
best place is in the center of the square, (c). Then the total length is 2√2 = 2.83
meters.) Suggest that they might do even better using two Steiner points.
(Indeed they can, by placing the two points as in (d), forming 120 degree angles
between the incoming roads. The total length is then 1 + √3 = 2.73 meters.)

4. Can the students do better with three Steiner points? (No – two points are
best, and no advantage is gained by using more.)

158 Licensed under Creative Commons
© 2015 Computer Science Unplugged (csunplugged.org)

5. Discuss with the students why these problems seem hard. (It’s because
you don’t know where to put the Steiner points, and there are lots of
possibilities to try out.)

Licensed under Creative Commons 159
© 2015 Computer Science Unplugged (csunplugged.org)

Worksheet Activity: Steiner Tree Example 1

160 Licensed under Creative Commons
© 2015 Computer Science Unplugged (csunplugged.org)

Worksheet Activity: Steiner Tree Example 2

Licensed under Creative Commons 161
© 2015 Computer Science Unplugged (csunplugged.org)

Two possible Steiner trees for the second
example

Variations and extensions

1. An interesting experiment for groups that finish the original activity early is to

work with a rectangle about 1 meter by 2 meters (a). The students will find that
adding one Steiner point makes things worse, but two give an improved
solution. (The lengths are 4 meters for (b), 2√5 = 4.47 meters for (c), and 2 + √3
= 3.73 meters for (d).) See if they can figure out why the one-point
configuration does so much worse for rectangles than for squares. (It’s
because when the square is stretched into a rectangle, the amount of stretch
gets added just once into (b) and (d), but both diagonals increase in (c).)

2. Older students can work on a larger problem. Two layouts of sites to connect
with ice roads are given in the worksheets. They can experiment with different
solutions either using new copies of the
worksheet, or by writing with removable
pen on a transparency over the top of
the sheet. Alternatively, the maps can
be marked out on the ground using
pegs. They can let the class know when
they think they’ve set a new record for
the shortest distance. (The figures on
the right show the minimal solution for
the first example and two possible
solutions for the second, whose total
length is quite similar.) The fact that
there are two such similar solutions
illustrates why these kinds of problem
are so hard—there are so many choices
about where to put the Steiner points!

162 Licensed under Creative Commons
© 2015 Computer Science Unplugged (csunplugged.org)

3. Ladder networks like this provide another way to extend the problem.

4. Some minimal Steiner trees for ladder networks are shown here.

The one for a two-rung ladder is just the same as for a square. However,
for a three-rung ladder the solution is quite different—as you will discover
if you try to draw it out again from memory! The solution for four rungs is
like that for two two-rung ladders joined together, whereas for five rungs it
is more like an extension of the three-rung solution. In general, the shape
of the minimal Steiner tree for a ladder depends on whether it has an
even or odd number of rungs. If it is even, it is as though several two-rung
ladders were joined together. Otherwise, it's like a repetition of the three-
rung solution. But proving these things rigorously is not easy.

Another interesting activity is to construct soap-bubble models of Steiner
trees. You can do this by taking two sheets of rigid transparent plastic and
inserting pins between them to represent the sites to be spanned, as
shown here.

Now dip the whole thing into a soap solution. When it comes out, you will
find that a film of soap connects the pins in a beautiful Steiner-tree network.

Unfortunately, however, it isn't necessarily a minimal Steiner tree. The soap
film does find a configuration that minimizes the total length, but the

Licensed under Creative Commons 163
© 2015 Computer Science Unplugged (csunplugged.org)

minimum is only a local one, not necessarily a global one. There may be
completely different ways of placing the Steiner points to give a smaller total
length. For example, you can imagine the soap film looking like the first
configuration in Extension 2 when it is withdrawn from the liquid on one
occasion, and the second configuration on another.

164 Licensed under Creative Commons
© 2015 Computer Science Unplugged (csunplugged.org)

What’s it all about?
The networks that we’ve been working on are minimal Steiner trees. They’re
called “trees” because they have no cycles, just as the branches on a real tree
grow apart but do not (normally) rejoin and grow together again. They’re
called “Steiner” trees because new points, Steiner points, can be added to the
original sites that the trees connect. And they’re called “minimal” because
they have the shortest length of any tree connecting those sites. In the
Muddy City (Activity 9) we learned that a network connecting a number of
sites that minimizes the total length is called a minimal spanning tree: Steiner
trees are just the same except that new points can be introduced.

It’s interesting that while there is a very efficient algorithm for finding
minimal spanning trees (Activity 14)—a greedy one that works by repeatedly
connecting the two closest so-far-unconnected points—there is no general
efficient solution to the minimal Steiner problem. Steiner trees are much
harder because you have to decide where to put the extra points. In fact,
rather surprisingly, the difficult part of the Steiner tree problem is not in
determining the precise location of the Steiner points, but in deciding roughly
where to put them: the difference between the two solutions to Example 2,
for example. Once you know what regions to put the new points in, fine-
tuning them to the optimum position is relatively simple. Soap films do that
very effectively, and so can computers.

Finding minimal Steiner trees is part of a story that involved saving big
money in the telephone business. Before 1967, when corporate customers
in the US operated large private telephone networks, they leased the lines
from a telephone company. The amount they are billed is not calculated on
the basis of how the wires are actually used, but on the basis of the shortest
network that would suffice. The reasoning is that the customer shouldn’t
have to pay extra just because the telephone company uses a round-about
route. Originally, the algorithm that calculated how much to charge worked
by determining the minimal spanning tree. However, around 1967 it was
noticed by a customer—an airline, in fact, with three major hubs—that if they
requested a fourth hub at an intermediate point then the total length of the
network would be reduced. The telephone company was forced to reduce
charges to what they would have been if there was a telephone exchange at
the Steiner point! Although, for typical configurations, the minimal Steiner
tree is only 5% or 10% shorter than the minimal spanning tree, this can be a
worthwhile saving when large amounts of money are involved. The Steiner
tree problem is sometimes called the “shortest network problem” because it
involves finding the shortest network that connects a set of sites.

Licensed under Creative Commons 165
© 2015 Computer Science Unplugged (csunplugged.org)

If you have tackled the two preceding activities, the cartographer’s puzzle and
tourist town, you will not be surprised to hear that the minimal Steiner tree
problem is NP-complete. As the number of sites increases, so does the
number of possible locations for Steiner points, and trying all possibilities
involves an exponentially-growing search. This is another of the thousands
of problems for which it simply isn’t known whether exponential search is the
best that can be done, or whether there is an as-yet-undiscovered
polynomial-time algorithm. What is known, however, is that if a polynomial-
time algorithm is found for this problem, it can be turned into a polynomial-
time algorithm for graph coloring, for finding minimal dominating sets—and
for all the other problems in the NP-complete class.

We explained at the end of the previous activity that the “NP” in NP-complete
stands for “non-deterministic polynomial,” and “complete” refers to the fact
that if a polynomial-time algorithm is found for one of the NP-complete
problems it can be turned into polynomial-time algorithms for all the others.
The set of problems that are solvable in polynomial time is called P. So the
crucial question is, do polynomial-time algorithms exist for NP-complete
problems—in other words, is P = NP? The answer to this question is not
known, and it is one of the great mysteries of modern computer science.

Problems for which polynomial-time algorithms exist—even though these
algorithms might be quite slow—are called “tractable.” Problems for which
they do not are called “intractable,” because no matter how fast your
computer, or how many computers you use together, a small increase in
problem size will mean that they can’t possibly be solved in practice. It is not
known whether the NP-complete problems—which include the
cartographer’s puzzle, tourist town, and ice roads—are tractable or not. But
most computer scientists are pessimistic that a polynomial-time algorithm
for NP-complete problems will ever be found, and so proving that a problem
is NP-complete is regarded as strong evidence that the problem is inherently
intractable.

What can you do when your boss asks you to devise an efficient algorithm
that comes up with the optimal solution to a problem, and you can’t find
one?—as surely happened when the airline hit upon the fact that network
costs could be reduced by introducing Steiner points. If you could prove that
there isn’t an efficient algorithm to come up with the optimal solution, that
would be great. But it’s very difficult to prove negative results like this in
computer science, for who knows what clever programmer might come along
in the future and hit upon an obscure trick that solves the problem. So,
unfortunately, you’re unlikely to be in a position to say categorically that no
efficient algorithm is possible—that the problem is intractable. But if you can
show that your problem is NP-complete, then it’s actually true that thousands
of people in research laboratories have worked on problems that really are

166 Licensed under Creative Commons
© 2015 Computer Science Unplugged (csunplugged.org)

equivalent to yours, and also failed to come up with an efficient solution.
That may not get you a bonus, but it’ll get you off the hook!

“I can't find an efficient
algorithm, I guess I'm just
too dumb.”

“I can't find an efficient
algorithm, because no
such algorithm is
possible.”

“I can't find an efficient algorithm, but
neither can all these famous people.”

What to do when you can't find an efficient algorithm: three possibilities

Of course, in real life these problems still need to be solved, and in that case
people turn to heuristics – algorithms that don’t guarantee to give the best
possible solution, but do give a solution within a very small percentage of the
optimal. Heuristic algorithms can be very fast, and the wastage of not finding
the best possible solution can be fairly small, so they are good enough to get
on with the job. It’s just frustrating to know that there might be a slightly
better timetable, or a slightly better layout of a network or roads.

Further reading
The cartoon is based on one in Garey and Johnson's classic book Computers
and Intractability.

The “Computer recreations” column of Scientific American, June 1984, contains
a brief description of how to make Steiner trees using soap bubbles, along
with interesting descriptions of other analog gadgets for problem solving,
including a spaghetti computer for sorting, a cat's cradle of strings for finding
shortest paths in a graph, and a light-and-mirrors device for telling whether
or not a number is prime. These also appear in a section about analog
computers in Dewdney's Turing Omnibus.

Part V
Sharing secrets and fighting

crime-Cryptography

168 Licensed under Creative Commons
© 2015 Computer Science Unplugged (csunplugged.org)

Sharing Secrets and Fighting Crime
You’ve heard of spies and secret agents using hidden codes or magic invisible
writing to exchange messages. Well, that’s how the subject of “cryptography”
started out, as the art of writing and deciphering secret codes. During the
Second World War, the English built special-purpose electronic code-breaking
machines and used them to crack military codes. And then computers came
along and changed everything, and cryptography entered a new era. Massive
amounts of computation, that would have been quite unimaginable before,
could be deployed to help break codes. When people began to share
computer systems with each other, there were new uses for secret
passwords. When computers were linked up in networks, there were new
reasons to protect information from people who would have liked to have
got hold of it. When electronic mail arrived, it became important to make
sure that people who sign messages are really who they say they are. Now
that people can do online banking, and buy and sell goods using computers,
we need secure ways of placing orders and sending cash on computer
networks. And the growing threat of a terrorist attacking a computer system
makes computer security ever more important.

Cryptography probably makes you think of computers storing secret
passwords, and jumbling up the letters of messages so that the enemy can't
read them. But the reality is very different. Modern computer systems don’t
store secret passwords, because if they did, anyone who managed to get
access to them would be able to break through all the security in the system.
That would be disastrous: they could make phoney bank transfers, send
messages pretending to be someone else, read everyone’s secret files,
command armies, bring down governments. Nowadays, passwords are
handled using the “one-way functions” that we talked about in Activity 14.
And encryption is not just jumbling up the letters of messages: it’s done using
techniques involving really hard problems—like the “intractable” ones
introduced in Part IV.

Using cryptography, you can do things that you might think are impossible.
In this section you will discover a simple way to calculate the average age of
the people in a group without anyone having to let anyone else know what
their age is. You will find out how two people who don’t trust each other can
toss a coin and agree on the outcome even though they are in different cities
and can’t both see the coin being tossed. And you will find a way to encode
secret messages that can only be decoded by one person, even though
everyone knows how to encode them.

For teachers

Licensed under Creative Commons 169
© 2015 Computer Science Unplugged (csunplugged.org)

The activities that follow provide hands-on experience with modern
cryptographic techniques—which are very different from what most people
conjure up when they think of secrecy and computers.

There are two key ideas. The first is the notion of a “protocol,” which is a
formal statement of a transaction. Protocols may bring to mind diplomats,
even etiquette, but computers use them too! Seemingly difficult tasks can be
accomplished by surprising simple protocols. Activity 16, which only takes a
few minutes, shows how a group of people, cooperating together, can easily
calculate their average age (or income), without anyone finding out any
individual’s age (or income). The second key idea is the role that
computational complexity—intractability—can play when interacting with
others through computers. Activity 17 shows how two people who don’t
necessarily trust each other can agree on the outcome of a coin toss when
they are connected only by telephone. (This activity also introduces, as an
aside, the idea of Boolean logic circuits and how to work with them.) Activity
18 shows how people can use computational techniques to encrypt
messages securely, even though the method for performing the encoding is
public knowledge.

Some of these activities—particularly the last one—are hard work. You will
have to motivate your class by instilling into the students a sense of wonder
that such things can be done at all, for the activities really do accomplish
things that most people would think were impossible. It is vital to create this
sense of wonder, communicate it, and pause frequently to keep it alive
throughout the activity so that students do not miss the (amazing!) forest for
the (perhaps rather tiresome) trees. These activities are among the most
challenging and technically intricate in the book. If they turn out to be too
difficult, please skip to Part VI, which has a completely different, non-
technical, character.

For the technically-minded
As computers encroach upon our daily lives, the application of cryptography
is potentially rather tendentious. Most people simply don’t realize what
modern cryptographic protocols are capable of. The result is that when large
institutions—both governmental and commercial—set up systems that
involve personal information, it tends to be technocrats who make the key
decisions on how things are to be handled, what is to be collected, what is to
be made available, and to whom. If people had a better understanding of the
possibilities opened up by modern technology, they would be able to
participate more actively in such decisions, and society might end up with a
different information infrastructure.

This material on information-hiding protocols, cryptographic protocols, and
public-key encryption is generally considered to be pretty advanced. But the

170 Licensed under Creative Commons
© 2015 Computer Science Unplugged (csunplugged.org)

ideas themselves are not difficult. It’s the technicalities, not the underlying
concepts that are hard to understand. In practical situations involving
electronic commerce, the technicalities are buried inside computer software,
which renders the new technologies of encryption very easy to use. But it’s
also important to understand the ideas on which they are based, in order to
gain insight into what can be done.

Cryptographic systems are of great interest to governments, not just because
they want to keep official communications secure, but because of concerns
that encrypted communication could be used by people involved in illegal
activities such as drug trafficking and terrorism. If such people use
encryption then wire-tapping becomes useless unless a decryption method is
available. These concerns have created a lot of debate between people
concerned with law enforcement, who want to limit the strength of
cryptographic systems, and civil libertarians, who are uncomfortable with the
government having access to the private communications. For a while the US
government has restricted the use of some cryptographic methods by
deeming them to be munitions—like bombs and guns, anyone can set up a
secure communication system given the right information and some
technical ability, but they are dangerous in the wrong hands. At one stage
there was extensive debate over the “Clipper Chip,” a system that has an
extra password called a key escrow, which is held by a government agency
that allows it to decode any message encrypted by the chip. The FBI and US
Justice department wanted this chip to be widely used for communications,
but this has drawn considerable opposition because of threats to privacy. All
sorts of cryptographic systems are technically feasible, but they aren’t
necessarily politically acceptable!

Cryptographic ideas have many applications other than keeping messages
secret. Like verifying that messages really were sent by the people who said
they sent them—this is “authentication,” and without it electronic commerce
is impossible. There are ways to let people vote by computer without anyone
else being able to find out who they voted for—even those who run the
computer system—yet still prevent people from voting more than once. And
you can even play cards over the phone—which may sound silly until you
realize that making business deals is a lot like playing poker.

These things sound impossible. How could you even begin to shuffle a deck
of cards over the phone if you’re in competition with the person at the other
end and so can’t trust them? How could you possibly detect that someone
has intercepted a message, modified it, and then passed it off as the original?
Yet if you can’t do those things, you can’t conduct business electronically.
You have to prevent technically-minded criminals from forging authorizations
for withdrawals from bank accounts by intercepting the phone line between
a point-of-sale terminal and the bank. You have to prevent business

Licensed under Creative Commons 171
© 2015 Computer Science Unplugged (csunplugged.org)

competitors from wreaking havoc by generating false orders or false
contracts. With modern cryptographic techniques such miracles can be
done, and these activities show how.

There are many interesting books about codes and code-breaking.
Codebreakers: the inside story of Bletchley Park edited by Hinsley and Stripp,
gives first-hand accounts of how some of the first computers were used to
break codes during the Second World War, significantly shortening the war
and saving many lives.

172 Licensed under Creative Commons
© 2015 Computer Science Unplugged (csunplugged.org)

Activity 17
Sharing secrets—Information hiding

protocols
Summary
Cryptographic techniques enable us to share information with other people,
yet still maintain a surprisingly high level of privacy. This activity illustrates a
situation where information is shared, and yet none of it is revealed: a group
of students will calculate their average age without anyone having to reveal
to anyone else what their age is.

Curriculum Links
ü Mathematics – Sums and averages

Skills
ü Calculating an average
ü Random numbers
ü Cooperative tasks

Ages
ü 7 years and up

Materials
Each group of students will need:

ü a small pad of paper, and
ü a pen.

Licensed under Creative Commons 173
© 2015 Computer Science Unplugged (csunplugged.org)

Sharing Secrets

Introduction
This activity involves finding the average age of a group of students, without
anyone having to reveal what their age is. Alternatively, one could work out
the average income (allowance) of the students in the group, or some similar
personal detail. Calculating these statistics works particularly well with
adults, because older people can be more sensitive about details like age and
income.

You will need at least three students in the group.

Discussion
1. Explain to the group that you would like to work out their average age,

without anyone telling anyone else what their age is. Ask for suggestions
about how this might be done, or even whether they believe it can be
done.

2. Select about six to ten students to
work with. Give the pad and pen to the
first student, and ask them to secretly
write down a randomly chosen three-
digit number on the top sheet of
paper. In this example, 613 has been
chosen as the random number.

3. Have the first student tear off the first
page, add their age to the random
number, and write it on the second sheet on the pad. The first student's
age is 8, so the second sheet shows 621. They should keep the page that
was torn off (and not show it to anyone.)

174 Licensed under Creative Commons
© 2015 Computer Science Unplugged (csunplugged.org)

4. The pad is then passed to the second student, who adds their age to the
number on the top, tears off the page, and writes the total on the next
page. In the example, the second student is 10 years old.

5. Continue this process having a student tear off the top page and add their
age to the number on it, until all the students have had the pad.

6. Return the pad to the first student. Have that student subtract their
original random number from the number on the pad. In the example,
the pad has been around five students, and the final number, 657, has the
original number, 613, subtracted from it, giving the number 44. This
number is the sum of the students' ages, and the average can be
calculated by dividing by the number of students; thus the average age of
our example group is 8.8 years old.

7. Point out to the students that so long as everyone destroys their piece of
paper, no-one can work out an individual’s age unless two people decide
to cooperate.

Variations and extensions
This system could be adapted to allow secret voting by having each person
add one if they are voting yes, and zero if they are voting no. Of course, if
someone adds more than one (or less than zero) then the voting would be
unfair, although they would be running the risk of arousing suspicion if
everyone voted yes, since the number of yes votes would be more than the
number of people.

Licensed under Creative Commons 175
© 2015 Computer Science Unplugged (csunplugged.org)

What’s it all about?
Computers store a lot of personal information about us: our bank balance,
our social networks, how much tax we owe, how long we have held a driver’s
license, our credit history, examination results, medical records, and so on.
Privacy is very important! But we do need to be able to share some of this
information with other people. For example, when paying for goods at a
store using a bank card, we recognize that the store needs to verify that we
have the funds available.

Often we end up providing more information than is really necessary. For
example, if we perform an electronic transaction at a store, they essentially
discover who we bank with, what our account number is, and what our name
is. Furthermore, the bank finds out where we have done our shopping.
Banks could create a profile of someone by monitoring things like where they
buy gas or groceries, how much they spend on these items each day, and
when these places are visited. If we had paid by cash then none of this
information would have been revealed. Most people wouldn’t worry too
much about this information being shared, but there is the potential for it to
be abused, whether for targeted marketing (for example, sending travel
advertisements to people who spend a lot on air tickets), discrimination (such
as offering better service to someone whose bank usually only takes on
wealthy clients), or even blackmail (such as threatening to reveal the details
of an embarrassing transaction). If nothing else, people might change the
way they shop if they think that someone might be monitoring them.

This loss of privacy is fairly widely accepted, yet cryptographic protocols exist
that allow us to make electronic financial transactions with the same level of
privacy as we would get with cash. It might be hard to believe that money
can be transferred from your bank account to a store’s account without
anyone knowing where the money was coming from or going to. This activity
makes such a transaction seem a little more plausible: both situations involve
limited sharing of information, and this can be made possible by a clever
protocol.

Further reading
A classic paper that highlights these issues was written by David Chaum, with
the provocative title “Security without identification: transaction systems to
make Big Brother obsolete.” The paper is quite readable, and gives simple
examples of information hiding protocols, including how completely private
transactions can be made using “electronic cash.” It can be found in
Communications of the ACM, October 1985.

176 Licensed under Creative Commons
© 2015 Computer Science Unplugged (csunplugged.org)

Activity 18
The Peruvian coin flip—Cryptographic
protocols
Summary
This activity shows how to accomplish a simple, but nevertheless seemingly
impossible task—making a fair random choice by flipping a coin, between
two people who don’t necessarily trust each other, and are connected only by
a telephone.

Curriculum links
ü Mathematics – logical reasoning
ü Mathematics – Boolean logic
Skills
ü Boolean Logic
ü Functions
ü Puzzle Solving

Ages
ü 9 and up

Materials
Each group of students will need:

ü a copy of the reproducible sheet The Peruvian Coin Flip
ü about two dozen small buttons or counters of two different colors

Licensed under Creative Commons 177
© 2015 Computer Science Unplugged (csunplugged.org)

The Peruvian Coin Flip

Introduction
This activity was originally devised when one of the authors (MRF) was
working with students in Peru, hence the name. You can customize the story
to suit local conditions.

The soccer teams of Lima and Cuzco have to decide who gets to be the home
team for the championship game. The simplest way would be to flip a coin.
But the cities are far apart, and Alicia, representing Lima, and Benito,
representing Cuzco, cannot spend the time and money to get together to flip
a coin. Can they do it over the telephone? Alicia could flip and Benito could
call heads or tails. But this won’t work because if Benito called heads, Alicia
can simply say “sorry, it was tails” and Benito would be none the wiser. Alicia
is not naturally deceitful but this, after all, is an important contest and the
temptation is awfully strong. Even if Alicia were truthful, would Benito
believe that if he lost?

178 Licensed under Creative Commons
© 2015 Computer Science Unplugged (csunplugged.org)

Students will get more out of this activity if they have learned binary number
representation (see Activity 1, Count the dots), the concept of parity (see
Activity 4, Card flip magic), and have seen the example of one-way functions
in Activity 15, Tourist Town.

This is what they decide to do. Working together, they design a circuit made
up of and-gates and or-gates, as explained below. In principle they can do
this over the phone, although admittedly in practice it could turn out to be
more than a little tedious (email would work too!) During the construction
process, each has an interest in ensuring that the circuit is complex enough
that the other will be unable to cheat. The final circuit is public knowledge.

Discussion
The rules of and-gates and or-gates are
simple. Each “gate” has two inputs and
one output. Each of the inputs can be
either a 0 or a 1, which can be interpreted
as false and true, respectively. The output
of an and-gate is one (true) only if both inputs are one (true), and zero (false)
otherwise. For example, the and-gate in has a one and a zero on its inputs (at
the top), so the output (the square at the bottom) is a zero. The output of an
or-gate is one (true) if either (or both) of the inputs is one (true), and zero
(false) only if both the inputs are zero. Thus the output of the or-gate is a one
for the inputs zero and one.

The output of one gate
can be connected to the
input of another (or
several others) to
produce a more
complicated effect. For
example, in the left-hand
circuit the outputs from two or-gates are connected to the inputs of a third
or-gate, with the effect that if any of the four inputs is a one then the output
will be a one. In the right-hand circuit the outputs of each of the top two and-
gates feeds into the lower two gates, so the whole circuit has two values in its
output.

Licensed under Creative Commons 179
© 2015 Computer Science Unplugged (csunplugged.org)

For the Peruvian coin flip we need even more complex circuits. The circuit on
the worksheet has six inputs and six outputs. Here is a worked example for

one particular set of input values.

The way that this circuit can be used to flip a coin by telephone is as follows.
Alicia selects a random input to the circuit, consisting of six binary digits
(zeros or ones), which she keeps secret. She puts the six digits through the
circuit and sends Benito the six bits of output. Once Benito has the output,
he must try to guess whether Alicia’s input has an even or an odd number of
ones—in other words, she must guess the parity of Alicia’s input. If the circuit
is complex enough then Benito won’t be able to work out the answer, and his
guess will have to be a random choice (in fact, he could even toss a coin to
choose!) Benito wins—and the playoff is in Cuzco—if his guess is correct;
Alicia wins—and the playoff is in Lima—if Benito guesses incorrectly. Once
Benito has told Alicia his guess, Alicia reveals her secret input so that Benito
can confirm that it produces the claimed output.

1. Divide the students into small groups, give each group the circuit and
some counters, and explain the story. The situation will probably be
more meaningful to the students if they imagine one of their sports
captains organizing the toss with a rival school. Establish a convention for
the counter colors—red is 0, blue is 1, or some such—and have the
students mark it on the legend at the top of the sheet to help them
remember.

2. Show the students how to place counters on the inputs to show the digits
that Alicia chooses. Then explain the rules of and-gates and or-gates,

180 Licensed under Creative Commons
© 2015 Computer Science Unplugged (csunplugged.org)

which are summarized at the bottom of the sheet (consider getting the
students to color these in).

3. Show how to work through the circuit, placing counters at the nodes, to
derive the corresponding output. This must be done accurately and takes
some care; The table (which should not be given to the students) shows
the output for each possible input for your own reference in case of any
doubt.

Input
Ouput

000000
000000

000001
010010

000010
000000

000011
010010

000100
010010

000101
010010

000110
010010

000111
010010

Input
Ouput

001000
001010

001001
011010

001010
001010

001011
011010

001100
011010

001101
011010

001110
011010

001111
011111

Input
Ouput

010000
001000

010001
011010

010010
001010

010011
011010

010100
011010

010101
011010

010110
011010

010111
011111

Input
Ouput

011000
001010

011001
011010

011010
001010

011011
011010

011100
011010

011101
011010

011110
011010

011111
011111

Input
Ouput

100000
000000

100001
010010

100010
011000

100011
011010

100100
010010

100101
010010

100110
011010

100111
011010

Input
Ouput

101000
001010

101001
011010

101010
011010

101011
011010

101100
011010

101101
011010

101110
011010

101111
011111

Input
Ouput

110000
001000

110001
011010

110010
011010

110011
011010

110100
011010

110101
111010

110110
011010

110111
111111

Input
Ouput

111000
001010

111001
011010

111010
011010

111011
011010

111100
011010

111101
111010

111110
011010

111111
111111

4. Now each group should elect an Alicia and a Benito. The group can split
in half and each half side with Alicia or Benito respectively. Alicia should
choose a random input for the circuit, calculate the output, and tell it to
Benito. Benito guesses the parity of the input (whether it has an odd or
even number of ones in it). It should become evident during this process
that Benito’s guess is essentially random. Alicia then tells everyone what
the input was, and Benito wins if she guessed the correct parity. Benito
can verify that Alicia’s didn't change her chosen input by checking that it
gives the correct output from the circuit.

Licensed under Creative Commons 181
© 2015 Computer Science Unplugged (csunplugged.org)

At this point the coin toss has been completed.

Benito can cheat if, given an output, he can find the input that produced it.
Thus it is in Alicia’s interests to ensure that the function of the circuit is
one-way, in the sense discussed in Activity 14, to prevent Benito cheating.
A one-way function is one for which the output is easy to calculate if you
know what the input is, but the input is very difficult to calculate for a
given output.

Alicia can cheat if she can find two inputs of opposite parity that produce
the same output. Then, whichever way Benito guesses, Alicia can reveal
the input that shows him to be wrong. Thus it is in Benito’s interests to
ensure that the circuit does not map many different inputs to the same
output.

5. See if the students can find a way for Alicia or Benito to cheat. From the
first line of the table you can see that several different inputs generate
the output 010010—for example, 000001, 000011, 000101, etc. Thus if
Alicia declares the output 010010, she can choose input 000001 if Benito
guesses that the parity is even, and 000011 if he guesses that it is odd.

With this circuit, it is hard for Benito to cheat. But if the output happens to
be 011000, then the input must have been 100010—there is no other
possibility (you can see this by checking right through the table). Thus if
this is the number that Alicia happens to come up with, Benito can guess
even parity and be sure of being correct. A computer-based system would
use many more bits, so there would be too many possibilities to try (each
extra bit doubles the number of possibilities).

6. Now ask the groups of students to devise their own circuits for this game.
See if they can find a circuit that makes it easy for Alicia to cheat, and
another that makes it easy for Benito to cheat. There is no reason why
the circuit has to have six inputs, and it may even have different numbers
of inputs and outputs.

182 Licensed under Creative Commons
© 2015 Computer Science Unplugged (csunplugged.org)

Worksheet Activity: The Peruvian Coin Flip

Choose some inputs for this circuit and work out what the outputs are.

Licensed under Creative Commons 183
© 2015 Computer Science Unplugged (csunplugged.org)

Variations and extensions

1. An obvious problem in practice is the cooperation that is needed to
construct a circuit acceptable to both Alicia and Benito. This might make
the activity fun for the kids, but is likely to render the procedure
inoperable in practice—particularly over the phone! However, there is a
simple alternative in which Alicia and Benito construct their circuits
independently and make them publicly available. Then Alicia puts her
secret input through both circuits, and joins the two outputs together by
comparing corresponding bits and making the final output a one if they
are equal and zero otherwise. In this situation, neither participant can
cheat if the other doesn’t, for if just one of the circuits is a one-way
function then the combination of them both is also a one-way function.

The next two variations relate not to cryptographic protocols or the coin-
tossing problem per se, but rather to the idea of circuits constructed out of
and and or gates. They explore some important notions in the fundamentals
not only of computer circuits, but of logic itself. This kind of logic is called
Boolean algebra named after the mathematician George Boole (1815-64).

2. The students may have noticed that the all-zero
input, 000000, is bound to produce the all-zero
output, and likewise the all-one input 111111 is
bound to produce the all-one output. (There
may be other inputs that produce these outputs
as well; indeed, there are for the example
circuit—000010 produces all zeros, while 110111
produces all ones.) This is a consequence of the
fact that the circuits are made up of and and or
gates. By adding a not-gate, which takes just one input and produces the
reverse as output (i.e. 0 → 1 and 1 → 0), the students can construct
circuits that don’t have this property.

3. Two other important kinds of gate are and-not and or-not (usually
abbreviated to nand and nor respectively), which are like and and or but
followed by a not. Thus a and-not b is not (a and b). These do not allow
any functionally different circuits to be achieved, since their effect can
always be obtained with the corresponding and or or gate, followed by
not. However, they have the interesting property that all other gate types
can be made out of and-not gates, and also out of or-not gates.

Having introduced and-not and or-not, challenge the students to discover
whether any of the gates can be made from other gates connected
together, and further, if they can be made from just one type of gate
connected together. The figure below shows how the three basic gates,

184 Licensed under Creative Commons
© 2015 Computer Science Unplugged (csunplugged.org)

not, and, and or, can be constructed from and-not gates, in the top row,
and or-not gates, in the bottom row.

(a)

(b)

(c)

(d)

(e)

(f)

Licensed under Creative Commons 185
© 2015 Computer Science Unplugged (csunplugged.org)

What’s it all about?
Recent years have seen huge increases in the amount of commerce being
conducted over computer networks, and it is essential to guarantee secure
interchange of electronic funds, confidential transactions, and signed, legally
binding, documents. The subject of cryptography is about communicating in
secure and private ways. Several decades ago, computer science researchers
discovered the counter-intuitive result that secrecy can be guaranteed by
techniques that ensure that certain information is kept public. The result is
the so-called “public key cryptosystem” of Activity 18, Kid Krypto, which is now
widely used as the main secure way of exchanging information. For example,
you may have seen settings such as SSL (Secure Sockets Layer) or TLS
(Transport Layer Security) in your web browser; these systems are based on
public key systems that enable your web browser to set up a secure
connection to a website such as a bank, even if someone is eavesdropping on
all the data being sent.

Cryptography is not just about keeping things secret, but about placing
controls on information that limit what others can find out, and about
establishing trust between people who are geographically separated. Formal
rules or “protocols” for cryptographic transactions have been devised to
allow such seemingly impossible things as unforgeable digital signatures and
the ability to tell others that you possess a secret (like a password) without
actually revealing what it is. Flipping a coin over the telephone is a simpler
but analogous problem, which also seems, on the face of it, to be impossible.

In a real situation, Alicia and Benito would not design a circuit themselves,
but acquire a computer program that does the work internally. Probably
neither would be interested in the innards of the software. But both would
want to rest assured that the other is unable to influence the outcome of the
decision, no matter how good their computer skills and how hard they tried.

In principle, any disputes would have to be resolved by appeal to a neutral
judge. The judge would be given the circuit, Alicia’s original binary number,
the output that she originally sent Benito, and the guess that Benito sent in
return. Once the interchange is over, all this is public information, so both
participants will have to agree that this is what the outcome was based on.
The judge will be able to put Alicia’s original number through the circuit and
check that the output is as claimed, and therefore decide whether the
decision has been made fairly. Needless to say, the very fact that there is a
clear procedure to check that the rules have been followed makes it unlikely

186 Licensed under Creative Commons
© 2015 Computer Science Unplugged (csunplugged.org)

that a dispute will arise. Compare with the situation where
Alicia flips an actual coin and Benito calls heads or tails—no
judge would take on that case!

A circuit as small as the one illustrated would not be much
use in practice, for it is easy to come up with a table and
use it to cheat. Using thirty-two binary digits in the input
would provide better protection. However, even this does
not guarantee that it is hard to cheat—that depends on the
particular circuit. Other methods could be used, such as
the one-way function introduced in Activity 14, Tourist

Town. Methods used in practice often depend on the factoring of large
numbers, which is known to be a hard problem (although, as we will learn at
the end of the next activity, it is not NP-complete). It is easy to check that one
number is a factor of another, but finding the factors of a large number is
very time consuming. This makes it more complex for Alicia and Benito (and
the judge) to work through by hand, although, as noted above, in practice
this will be done by off-the-shelf software.

Digital signatures are based on a similar idea. By making public the output of
the circuit for the particular secret input that she has chosen, Alicia is
effectively able to prove that she is the one who generated the output—for,
with a proper one-way function, no-one else can come up with an input that
works. No-one can masquerade as Alicia! To make an actual digital
signature, a more complex protocol is needed to ensure that Alicia can sign a
particular message, and also to ensure that others can check that Alicia was
the signatory even if she claims not to be. But the principle is the same.

Another application is playing poker over the phone, in an environment in
which there is no referee to deal the cards and record both player's hands.
Everything must be carried out by the players themselves, with recourse to a
judge at the end of the game in the event of a dispute. Similar situations
arise in earnest with contract negotiations. Obviously, players must keep
their cards secret during the game. But they must be kept honest—they
must not be allowed to claim to have an ace unless they actually have one!
This can be checked by waiting until the game is over, and
then allowing each player to inspect the other’s original
hand and sequence of moves. Another problem is how to
deal the cards while keeping each player’s hand secret until
after the game. Surprisingly, it is possible to accomplish this
using a cryptographic protocol not dissimilar to the coin-
tossing one.

Cryptographic protocols are extremely important in
electronic transactions, whether to identify the owner of an

Licensed under Creative Commons 187
© 2015 Computer Science Unplugged (csunplugged.org)

debit card, to authorize the use of a cellphone for a call, or to authenticate
the sender of an email. The ability to do these things reliably is crucial to the
success of electronic commerce.

Further reading
Harel’s book Algorithmics discusses digital signatures and associated
cryptographic protocols. It also shows how to play poker over the phone, an
idea that was first raised in 1981 in a chapter called “Mental poker”, in the
book The Mathematical Gardener, edited by D.A. Klarner. Cryptography and
data security by Dorothy Denning is an excellent computer science text on
cryptography. Dewdney's Turing Omnibus has a section on Boolean logic that
discusses the building blocks used for the circuits in this activity.

188 Licensed under Creative Commons
© 2015 Computer Science Unplugged (csunplugged.org)

Activity 19
Kid Krypto—Public-key encryption
Summary
Encryption is the key to information security. And the key to modern
encryption is that using only public information, a sender can lock up their
message in such a way that it can only be unlocked (privately, of course) by
the intended recipient.

It is as though everyone buys a padlock, writes their name on it, and puts
them all on the same table for others to use. They keep the key of course—
the padlocks are the kind where you just click them shut. If I want to send
you a secure message, I put it in a box, pick up your padlock, lock the box and
send it to you. Even if it falls into the wrong hands, no-one else can unlock it.
With this scheme there is no need for any prior communication to arrange
secret codes.

This activity shows how this can be done digitally. And in the digital world,
instead of picking up your padlock and using it, I copy it and use the copy,
leaving the original lock on the table. If I were to make a copy of a physical
padlock, I could only do so by taking it apart. In doing so I would inevitably
see how it worked. But in the digital world we can arrange for people to copy
locks without being able to discover the key!

Sounds impossible? Read on.

Curriculum Links
ü Technology – Public key encryption, secret codes

Skills
ü Puzzle solving

Ages
ü 11 years and up.

Materials
The students are divided into groups of about four, and within these groups
they form two subgroups. Each subgroup is given a copy of the two maps on
the worksheet Kid Krypto Maps. Thus for each group of students you will
need:

ü two copies of the Kid Krypto Maps.
ü
You will also need:

Licensed under Creative Commons 189
© 2015 Computer Science Unplugged (csunplugged.org)

ü an overhead projector transparency of Kid Krypto Encoding, and
ü a way to annotate the diagram.

190 Licensed under Creative Commons
© 2015 Computer Science Unplugged (csunplugged.org)

Kid Krypto
Introduction
This is the most technically challenging activity in this book. While rewarding,
it requires careful work and sustained concentration to complete
successfully. Students should already have studied the example of one-way
functions in Activity 14, Tourist Town, and it is helpful if they have completed
the other activities in this section (Activity 16, Sharing Secrets, and Activity 17,
the Peruvian coin flip). The activity also uses ideas covered in Activity 1,
Count the dots, and Activity 5, Twenty guesses.

Amy is planning to send Bill a secret message. Normally we might think of
secret messages as a sentence or paragraph, but in the following exercise
Amy will send just one character — in fact, she will send one number that
represents a character. Although this might seem like a simplistic message,
bear in mind that she could send a whole string of such “messages” to make
up a sentence, and in practice the work would be done by a computer. And
sometimes even small messages are important —one of the most celebrated
messages in history, carried by Paul Revere, had only two possible values.
We will see how to embed Amy’s number in an encrypted message using
Bill’s public lock so that if anyone intercepts it, they will not be able to decode
it. Only Bill can do that, because only he has the key to the lock.

We will lock up messages using maps. Not Treasure Island maps, where X
marks the spot, but street maps like the ones from Tourist Town (Activity 14),
where the lines are streets and the dots are street corners. Each map has a
public version—the lock—and a private version—the key.

Discussion
Shown on the worksheet Kid Krypto Encoding is Bill’s public map. It's not
secret: Bill puts it on the table (or a web page) for everyone to see, or
(equivalently) gives it
to anyone who might
want to send him a
message. Amy has a
copy; so has everyone
else. The figure to
the right shows Bill’s
private map. It’s the
same as his public
map, except that

Licensed under Creative Commons 191
© 2015 Computer Science Unplugged (csunplugged.org)

some of the street corners are marked as special by enlarging them. He
keeps this version of the map secret.

This activity is best done as a class, at least to begin with, because it involves
a fair amount of work. Although not difficult, this must be done accurately,
for errors will cause a lot of trouble. It is important that the students realize
how surprising it is that this kind of encryption can be done at all—it seems
impossible (doesn't it?)—because they will need this motivation to see them
through the effort required. One point that we have found highly motivating
for school students is that using this method they can pass secret notes in
class, and even if their teacher knows how the note was encrypted, the
teacher won’t be
able to decode it.

1. Display Bill's
public map (Kid
Krypto Encoding
worksheet).
Decide which
number Amy is
going to send.
Now place
random
numbers on
each intersection on the map, so that the random numbers add up to the
number that Amy wishes to send. This figure gives an example of such
numbers as the upper (non-parenthesised) number beside each
intersection. Here, Amy has chosen to send the number 66, so all the
unbracketed numbers add up to 66. If necessary, you can use negative
numbers to get the total down to the desired value.

2. Now Amy must calculate what to send to Bill. If she sent the map with the
numbers on, that would be no good, because if it fell into the wrong
hands anybody could add them up and get the message.

Instead, choose any intersection, look at it and its three neighbors—four
intersections in all—and total the numbers on them. Write this number at
the intersection in parentheses or using a different color pen. For
example, the rightmost intersection in the example public map is
connected to three others, labeled 1, 4, 11, and is itself labeled 6. Thus it
has a total of 22. Now repeat this for all the other intersections in the
map. This should give you the numbers in parentheses.

3. Amy will send to Bill his map, with only the parenthesised numbers on it.

192 Licensed under Creative Commons
© 2015 Computer Science Unplugged (csunplugged.org)

Erase the original numbers and the counts, leaving only the numbers that
Amy sends; or write out a new map with just those numbers on it. See if
any of the students can find a way to tell from this what the original
message was. They won't be able to.

4. Only someone with Bill's private key can decode the message to find the
message that Amy originally wanted to send. On the coded message,
mark the special enlarged nodes in Bill's private map.

To decode the message, Bill looks at just the secret marked intersections
and adds up the numbers on them. In the example, these intersections
are labeled 13,
13, 22, 18, which
add up to 66,
Amy’s original
message.

5. How does it
work? Well, the
map is a special
one. Suppose
Bill were to
choose one of
the marked
intersections
and draw
around the
intersections one street distant from it, and repeat the procedure for
each marked intersection. This would partition the map into non-
overlapping pieces, as illustrated here. Show these pieces to the students
by drawing the boundaries on the map. The group of intersections in
each partition is exactly the ones summed to give the transmitted
numbers for the marked intersections, so the sum of the four transmitted
numbers on those intersections will be the sum of all the original
numbers in the original map; that it, it will be the original message!

Phew! It seems a lot of work to send one letter. And it is a lot of work to
send one letter—encryption is not an easy thing to do. But look at what has
been accomplished: complete secrecy using a public key, with no need for
any prior arrangement between the participants. You could publish your key
on a noticeboard and anyone could send you a secret message, yet no-one
could decrypt it without the private key. And in real life all the calculation is
done by a software package that you acquire (typically built into your web
browser), so it’s only a computer that has to work hard.

Licensed under Creative Commons 193
© 2015 Computer Science Unplugged (csunplugged.org)

Perhaps your class would like to know that they have joined the very select
group of people who have actually worked through a public-key encryption
example by hand—practising computer scientists would consider this to be
an almost impossible task and few people have ever done it!

Now, what about eavesdropping? Bill’s map is like the ones in the Tourist
Town activity (Activity 14), where the marked intersections are a minimal way
of placing ice-cream vans to serve all street corners without anyone having to
walk more than one block. We saw in Tourist Town that it’s easy for Bill to
make up such a map by starting with the pieces shown in his private map,
and it's very hard for anyone else to find the minimal way to place ice-cream
vans except by the brute-force method. The brute-force method is to try
every possible configuration with one van, then every configuration with two
vans, and so on until you hit upon a solution. No-one knows whether there is
a better method for a general map—and you can bet that lots of people have
tried to find one!

Providing Bill starts with a complicated enough map with, say, fifty or a
hundred intersections, it seems like no-one could ever crack the code—even
the cleverest mathematicians have tried hard and failed. (But there is a
caveat: see below under What’s it all about?)

6. Having been through one example with the whole class, divide the
students into groups of, say, four. Give each pair of each group the public
map on the Kid Krypto Maps. Each pair should choose a “message” (any
integer), encode it with the public key, and give the resulting map to the
other group. The other group can try to decode it, but they are unlikely to
be successful until they are given (or work out!) the private map. Then
give out the private map and see if they can now decode it correctly.

7. Now each pair can design their own map, keeping the private version
secret and giving the public version to the other pair—or indeed
“publishing” it on the classroom board. The principle for designing maps
is just the same as was discussed in the Tourist Town activity, and extra
streets can be added to disguise the solution. Just be careful not to add
extra streets into any of the “special” points. That would create an
intersection from which two ice-cream vans could be reached in one hop,
which is all right for the tourist town situation but would cause havoc
when encrypting. That is because the special points no longer
decompose the map into non-overlapping pieces, as illustrated in the
private map, and this is essential for the trick to work.

194 Licensed under Creative Commons
© 2015 Computer Science Unplugged (csunplugged.org)

Worksheet Activity: Kid Kyrpto Maps

Use these maps as described in the text to encrypt and decrypt messages.

Licensed under Creative Commons 195
© 2015 Computer Science Unplugged (csunplugged.org)

Worksheet Activity: Kid Krypto Encoding

Display this “map” to the class and use it to demonstrate the encoding of a
message.

196 Licensed under Creative Commons
© 2015 Computer Science Unplugged (csunplugged.org)

What’s it all about?

It’s clear why you might want to send secret messages over computer
networks that no-one but the intended recipient could decode, no matter
how clever they were or how hard they tried. And of course there are all
sorts of ways in which this can be done if the sender and receiver share a
secret code. But the clever part of public-key encryption is that Amy can
send Bill a secure message without any secret prior arrangement, just by
picking up his “lock” from a public place like a web page.

Secrecy is only one side of cryptography. Another is authentication: When
Amy receives a message from Bill, how does she know that it really comes
from him and not from some imposter? Suppose she receives electronic mail
that says, “Darling, I’m stuck here without any money. Please put $100 in my
bank account, number 0241-45-784329 -- love, Bill.” How can she know
whether it really comes from Bill? Some public-key cryptosystems can be
used for this, too. Just as Amy sends Bill a secret message by encoding it with
his public key, he can send her a message that only he could have generated by
encoding it with his private key. If Amy can decode it with Bill’s public key,
then it must have come from him. Of course, anyone else could decode it
too, since the key is public, but if the message is for her eyes only, Bill can
then encode it a second time with Amy’s public key. This dual encoding
provides both secrecy and authentication with the same basic scheme of
public and private keys.

Now is the time to admit that while the scheme illustrated in this activity is
very similar to an industrial-strength public-key encryption system, it is not in
fact a secure one—even if quite a large map is used.

The reason is that although there is no known way of finding the minimal
way to place ice-cream vans on an arbitrary map, and so the scheme is
indeed secure from this point of view, there happens to be a completely
different way of attacking it. The idea is unlikely to occur to school students,
at least up to high school level, but you should at least know that it exists.
You might say that the scheme we have been looking at is schoolstudent
secure, but not mathematician-secure. Please ignore the next paragraph if
you are not mathematically inclined!

Number the intersections on the map 1, 2, 3, ... Denote the original numbers
that are assigned to intersections by b1, b2, b3, ..., and the numbers that are
actually transmitted by t1, t2, t3, Suppose that intersection 1 is connected

Licensed under Creative Commons 197
© 2015 Computer Science Unplugged (csunplugged.org)

to intersections 2, 3, and 4. Then the number that is transmitted for that
intersection is

t1 = b1+b2+b3+b4 .

Of course, there are similar equations for every other intersection—in fact,
there are the same number of equations as there are unknowns b1, b2, b3,
An eavesdropper knows the public map and the numbers t1, t2, t3, ... that are
transmitted, and can therefore write down the equations and solve them
with an equation-solving computer program. Once the original numbers
have been obtained, the message is just their sum—there is actually no need
ever to discover the decryption map. The computational effort required to
solve the equations directly using Gaussian elimination is proportional to the
cube of the number of equations, but because these equations are sparse
ones—most of the coefficients are zero—even more efficient techniques
exist. Contrast this with the exponential computational effort that, as far as
anyone knows, is the best one can do to come up with the decryption map.

We hope you don’t feel cheated! In fact, the processes involved in real public-
key cryptosystems are virtually identical to what we have seen, except that
the techniques they use for encoding are different—and really are infeasible
to do by hand. The original public-key method, and still one of the most
secure, is based on the difficulty of factoring large numbers.

What are the factors of the 100-digit number
9,412,343,607,359,262,946,971,172,136,
294,514,357,528,981,378,983,082,541,347,532,211,942,640,121,301,590,698,6
34,089, 611,468,911,681? Don’t spend too long!

They are 86,759,222,313,428,390,812,218,077,095,850,708,048, 977 and
108,488,104,853,637,470,612,961,399,842,972,948,409,834,611,525,790,577,2
16,753. There are no other factors: these two numbers are prime. Finding
them is quite a job: in fact, it’s a several-month project for a supercomputer.

Now in a real public-key cryptosystem, Bill might use the 100-digit number as
his public key, and the two factors as the private key. It would not be too
difficult to come up with such keys: all you need is a way of calculating large
prime numbers. Find two prime numbers that are big enough (that’s not
hard to do), multiply them together, and—hey presto, there’s your public key.
Multiplying huge numbers together is no big deal for a computer. Given the
public key, no-one can find your private key, unless they have access to
several months of supercomputer time. And if you’re worried that they
might, use 200-digit primes instead of 100-digit ones—that’ll slow them down
for years! The main thing is that the cost of cracking the key is higher than
the value of the information it would unlock. In practice, 512-bit or larger

198 Licensed under Creative Commons
© 2015 Computer Science Unplugged (csunplugged.org)

keys are common for setting up secure connections, which is equivalent to
about 155 decimal digits or more.

We still haven’t been given a way to encode a message using a prime-number
based public key in such a way that it can’t be decoded without the private
key. In order to do this, life is not quite as simple as we made out above. It’s
not the two prime numbers that are used as the private key and their
product as the public key, instead it’s numbers derived from them. But the
effect is the same: you can crack the code by factoring the number. Anyway,
it’s not difficult to overcome these difficulties and make the scheme into a
proper encryption and decryption algorithm, but let’s not go into that here.
This activity has already been enough work!

How secure is the system based on prime numbers? Well, factoring large
numbers is a problem that has claimed the attention of the world's greatest
mathematicians for several centuries, and while methods have been
discovered that are significantly better than the brute-force method of trying
all possible factors, no-one has come up with a really fast (that is, polynomial-
time) algorithm. (No-one has proved that such an algorithm is impossible,
either.) Thus the scheme appears to be not just school-student secure, but
also mathematician-secure. But beware: we must be careful. Just as there
turned out to be a way of cracking Bill’s code without solving the Tourist
Town problem, there may be a way of cracking the prime-number codes
without actually factoring large numbers. People have checked carefully for
this, and it seems OK.

Another worry is that if there are just a few possible messages, an interloper
could encrypt each of them in turn using the public key, and compare the
actual message with all the possibilities. Amy’s method avoids this because
there are many ways of encrypting the same message, depending on what
numbers were chosen to add up to the code value. In practice, cryptographic
systems are designed so that there are just too many possible messages to
even begin to try them all out, even with the help of a very fast computer.

It is not known whether a fast method for solving the prime factorization
problem exists. No one has managed to devise one, but also it has not been
proven that a fast method is impossible. If a fast algorithm for solving this
problem is found, then many currently used cryptographic systems will
become insecure. In Part IV we discussed NP-complete problems, which stand
or fall together: if one of them is efficiently solvable then they all must be.
Since so much (unsuccessful) effort has been put into finding fast algorithms
for these problems, they would seem like excellent candidates for use in
designing secure cryptosystems. Alas, there are difficulties with this plan,
and so far the designers of cryptosystems have been forced to rely on
problems (such as prime factorization) that might in fact be easier to solve

Licensed under Creative Commons 199
© 2015 Computer Science Unplugged (csunplugged.org)

than the NP-complete problems—maybe a lot easier. The answers to the
questions raised by all this are worth many millions of dollars to industry and
are regarded as vital to national security. Cryptography is now a very active
area of research in computer science.

Further reading
Harel's book Algorithmics discusses public-key cryptography; it explains how
to use large prime numbers to create a secure public-key system. The
standard computer science text on cryptography is Cryptography and data
security by Dorothy Denning, while a more practical book is Applied
cryptography by Bruce Schneier. Dewdney's Turing Omnibus describes
another system for performing public key cryptography.

200 Licensed under Creative Commons
© 2015 Computer Science Unplugged (csunplugged.org)

Part VI
The human face of computing-

Interacting with computers

202 Licensed under Creative Commons
© 2015 Computer Science Unplugged (csunplugged.org)

The Human Face of Computing
Why are computers so hard to get along with? Many people have stories
about how difficult computers are to use, how they never seem to do what
you really want them to, how they keep going wrong and make ridiculous
mistakes. Computers seem to be made for wizards, not for ordinary people.
But they should be made for ordinary people, because computers are
everyday tools that help us to learn, work, and play better.

The part of a computer system that you interact with is called its “user
interface.” It’s the most important bit! Although you might think of what the
program actually does as the main thing and the user interface as just how
you get into it, a program is no good at all if you can’t interact with it and
make it do what you want. User interfaces are very difficult to design and
build, and it has been estimated that when writing programs, far more effort
goes into the interface than into any other part. Some software has excellent
user interfaces, interfaces that need no complicated instructions and become
almost invisible as you are drawn into using the application. But countless
software products which are otherwise very good have been complete flops
because they have strange user interfaces. And whole industries have been
built around a clever interface idea—like the word processor or
smartphones—that promotes access to computational functions which are
really quite elementary in themselves.

But why do we have to have user interfaces at all? Why can’t we just talk to
our computers the way we do to our friends? Good question. Maybe
someday we will; maybe not. But certainly not yet: there are big practical
limitations on how “intelligent” computers can be today. The activities that
follow will help you understand the problems of user interface design, and
help you to think more clearly about the limitations of computers and be
wary of the misleading hype that is often used to promote computer
products.

For teachers

Computing is not so much about calculation as it is about communication.
Computing per se really has no intrinsic value; it is only worthwhile if the
results are somehow communicated to the world outside the computer, and
have some influence there. Perhaps surprisingly, this means that computer
science is less about computers and more about people – in the end, a
computer is no use unless it helps people in some way. All the ideas we’ve
looked at about how to make computers work fast and efficiently are needed

Licensed under Creative Commons 203
© 2015 Computer Science Unplugged (csunplugged.org)

only because people need computers to respond quickly, and to be
economical to use.

The interface is how the computer and human communicate. And a lot of the
activities in this book are about communication. Representing data (Part I)
shows how different kinds of information can be communicated to a
computer or between computers. Representing processes (Part III) is about
how to communicate processes to a computer to tell it how to accomplish
certain tasks—after all, “programming” is really only explaining to a
computer, in its own language! Cryptography (Part V) is about how to
communicate in secret, or to communicate bits of secrets without revealing
all.

The activities that follow are about how people communicate with
computers. While the rest of the book is based on well understood technical
ideas, this part is not. That makes it both easier, in that no special knowledge
is required of the students, and more difficult, in that a certain level of
maturity is needed to understand what the activities are about and relate
them to a broader context. These activities contain more detailed
explanations than most of the others because it is necessary to give you, the
teacher, enough background material to be in a position to help draw out
some of the implications in class discussion.

There are two activities in this section. The first is about the area known as
the “human–computer interface,” commonly abbreviated to HCI. In order to
“unplug” this aspect of computing without depending on prior knowledge of
a particular example of a computer system, we have invented a design
exercise that does not really involve computers—but does introduce
fundamental principles that are used in the design of human–computer
interfaces. Because human interface design is culture-dependent, there are
not necessarily any “right” answers in this activity, which may frustrate some
students. The second activity is about the area known as “artificial
intelligence,” or AI. It involves a guessing game that stimulates students into
thinking about what computers can and can’t do.

For the technically-minded
Human–computer interaction has become one of the hottest research areas
in computer science as people realize how much the success of a software
product depends on its user interface. The subject draws heavily on a wide
range of disciplines outside computer science, such as psychology, cognitive
science, linguistics, sociology—even anthropology. Few computer scientists
have training in these areas, and HCI represents an important growth area
for people who are interested in the “softer” side of the subject.

204 Licensed under Creative Commons
© 2015 Computer Science Unplugged (csunplugged.org)

Artificial intelligence is a topic that often raises hackles and causes disputes.
In this book we have tried to steer a middle path between AI afficionados
who believe that intelligent machines are just around the corner, and AI
sceptics who believe that machines cannot in principle be intelligent. Our
goal is to encourage students to think independently about such issues, and
to promote a balanced view.

The activities here draw heavily on two eminently readable books, Don
Norman's The design of everyday things and John Haugeland's Artificial
intelligence: the very idea, which we enthusiastically recommend if you are
interested in pursuing these issues further.

Computers involve another important kind of communication, one that is not
touched upon in this book: communication between people who are building
a computer system. Students who learn about computers and make their
way into the job market—perhaps having graduated in computer science
from university—are invariably surprised by how much interpersonal
communication their job entails. Computer programs are the most complex
objects ever constructed by humankind, with millions or perhaps billions of
intricately interlocking parts, and programming projects are tackled by close-
knit teams that work together and spend a great deal of their time
communicating. Once the product is complete, there is the job of
communicating with customers through user manuals, courses, “help”
phonelines, online support, and the like—not to mention the problem of
communicating with potential customers through demonstrations, displays,
and advertising. We haven’t yet found a way to realistically “unplug” for
students the interpersonal communication aspect of computing, so this book
doesn’t address it. But it is the kind of thing that computer professionals
who are visiting a classroom may be able to describe from their own
experience and bring out in discussion.

Licensed under Creative Commons 205
© 2015 Computer Science Unplugged (csunplugged.org)

Activity 20
The chocolate factory—Human interface
design
Summary
The aim of this activity is to raise awareness of human interface design
issues. Because we live in a world where poor design is rife, we have become
accustomed (resigned?) to putting up with problems caused by the artifacts
we interact with, blaming ourselves (”human error,” “inadequate training,”
“it’s too complicated for me”) instead of attributing the problems to flawed
design. The issue is greatly heightened by computers because they have no
obvious purpose—indeed, they are completely general purpose—and their
appearance gives no clues about what they are for, nor how to operate them.

Curriculum Links
ü Technology: Understand that technology is purposeful intervention

through design.

Skills
ü Design.
ü Reasoning.
ü Awareness of everyday objects.

Ages
ü 7 and up

Materials
Each group of students will need:

ü a copy of the sheets How do you open doors? and Stove top, and
ü a copy of the images on the worksheet Icons, either displayed on a

projector, shown on overhead projector transparency or on cards that
can be displayed to the class, and

ü one or more of the six cards on the Icon cards page. Cut the sheet into
individual cards and divide them between the groups.

206 Licensed under Creative Commons
© 2015 Computer Science Unplugged (csunplugged.org)

The Chocolate Factory
Introduction
The great chocolate factory is run by a race of elf-like beings called Oompa-
Loompas3. These Oompa-Loompas have terrible memories and no written
language. Because of this, they have difficulty remembering what to do in
order to run the chocolate factory, and things often go wrong. Because of
this, a new factory is being designed that is supposed to be very easy for
them to operate.

Discussion
1. Explain the story to the students and divide them into small groups.

2. The first problem the Oompa-Loompas face is getting through the doors
carrying steaming buckets of liquid chocolate. They cannot remember
whether to push or pull the doors to open them, or slide them to one
side. Consequently they end up banging into each other and spilling
sticky chocolate all over the place. The students should fill out the “doors”
worksheet How do you open doors. More than one box is appropriate in
each case. For some of the doors (including the first one) it is not obvious
how to open them, in which case the students should record what they
would try first. Once they have filled out their own sheets, have the whole
group discuss the relative merits of each type of door, particularly with
regard to how easy it is to tell how it works, and how suitable it would be
to use if you are carrying a bucket of hot chocolate. Then they should
decide what kind of doors and handles to use in the factory.

3. Follow this activity with a class discussion. The table below comments
briefly on each door in the worksheet. Real doors present clues in their
frames and hinges as to how they open, and there are conventions about
whether doors open inwards or outwards. Identify the kinds of door
handles used in your school and discuss their appropriateness (they may
be quite inappropriate!) Can you think of a door that often confuses you?
Why? Do doors normally open inwards or outwards into corridors?—and
why? (Answer: They open into rooms so that when you come out you
won’t bash the door into people walking along the corridor, although in

3 With apologies to Roald Dahl. You’ll know about the Oompa-Loompas if you’ve
read his wonderful tale Charlie and the Chocolate Factory. If not, never mind: the
plot is not relevant to this activity.

Licensed under Creative Commons 207
© 2015 Computer Science Unplugged (csunplugged.org)

some situations they open outwards to make evacuation easier in an
emergency.)

4. The key concept here is what is called the affordances of an object, which
are its visible features—both fundamental and perceived—whose
appearance indicates how the object should be used. Affordances are the
kinds of operation that the object permits, or “affords.” For example, it is
(mostly) clear from their appearance that chairs are for sitting, tables are
for placing things on, knobs are for turning, slots are for inserting things
into, buttons are for pushing. On a computer interface the affordances
are the shapes of buttons, text boxes, menus and so on, which give the
user a clue as to how they should be used. If a button is made to look like
something else, then people won’t realise they can push it. This might
seem obvious, but these problems aren’t hard to find on digital devices.

208 Licensed under Creative Commons
© 2015 Computer Science Unplugged (csunplugged.org)

Plain door Can’t see how to open
this one at all, except
that since it has no
handle, it must require
pushing rather than
pulling.

Labeled
door

The label is like a tiny
user manual. But
should a door need a
user manual? And the
Oompa Loompas can’t
read.

Hinge door At least you can see
which is the side that
opens.

Bar door It’s fairly clear that you
are supposed to push
the bar, but which
side? Or should you
pull?

Handle
door

Handles like this are
usually for pulling—or
sliding.

Knob door The knob shows what
to grasp, but not
whether to push or
pull; it probably doesn’t
slide.

Panel door It’s clear that you push
this. What else could
you do?

Glass door The small vertical bar
on this side signals
“pull”; the longer
horizontal one on the
other signals “push”.

Sliding
door

This one’s only for
sliding.

Doors are very simple objects. Complex things may need explaining, but
simple things should not. When simple objects need pictures, labels, or
instructions, then design has failed.

5. The pots containing different kinds of chocolate have to cook at different
temperatures. In the old chocolate factory the stoves were as shown in
the Stove top sheet. The left-hand knob controlled the rear left heating
element, the next knob controlled the front left element, the next one
controlled the front right, and the right-hand knob controlled the rear
right element. The Oompa-Loompas were always making mistakes,
cooking the chocolate at the wrong temperature, and burning their
sleeves when reaching across the elements to adjust the controls.

Licensed under Creative Commons 209
© 2015 Computer Science Unplugged (csunplugged.org)

6. The students should recall how the controls are laid out on their cookers
at home and come up with a better arrangement for the new factory.

Follow this activity with a class discussion. This picture below shows some
common arrangements. All but the one at the lower left have the controls
at the front, to avoid having to reach across the elements. In the design at
the top left, there are so many possible mappings from controls to

burners (24 possibilities, in fact) that eight words of labeling are needed.
The “paired” arrangement in the top center is better, with only four
possible mappings (two for the left cluster and two for the right); it
requires just four labeling words. The design at the top right specifies the
control–burner relationship diagrammatically rather than linguistically
(which is good for the Oompa-Loompas!) The lower three designs need no
labels. The left-hand one has a control by each burner, which is awkward
and dangerous. The other two involve relocating the burners slightly, but
for different reasons: in the center design they are moved to leave room
for the controls, while in the right-hand one they are rearranged to make
the correspondence clear.

210 Licensed under Creative Commons
© 2015 Computer Science Unplugged (csunplugged.org)

The key concept here is the mapping of controls to their results in the real
world. Natural mapping, which takes advantage of physical analogies and
cultural standards, leads to immediate understanding. The spatial
correspondences at the bottom of the picture are good examples—they
are easily learned and always remembered. Arbitrary mappings, as in the
top arrangements, need to be labeled, or explained and memorized.

7. The factory is full of conveyer belts carrying pots of half-made chocolate
in various stages of completion. These conveyer belts are controlled
manually by Oompa-Loompas, on instructions from a central control
room. The people in the control room need to be able to tell the Oompa-
Loompa to stop the conveyer belt, or slow it down, or start it up again.

In the old factory this was done with a voice system: the control room
person’s voice came out of a loudspeaker by the conveyer belt controls.
But the factory was noisy and it was hard to hear. The groups should
design a scheme that uses visual signals.

One possibility is to put in lights to signal Stop!, Slow down and Start up.
Students will probably work out that these should follow the normal
traffic-light convention by using red for Stop!, yellow for Slow down and
green for Start up. They should be arranged just like traffic lights, with red
at the top and green at the bottom.

But now reveal to the class that in Oompa-Loompa land, traffic lights work
differently from the way they do for us: yellow means stop, red means go,
and lights go green to warn people that they will soon have a stop light.
How does this affect things? (Answer: the factory should follow the
Oompa-Loompa’s traffic-light convention—we should not try to impose
our own.)

The key concepts here are those of transfer effects—people transfer their
learning and expectations of previous objects into new but similar
situations—and population stereotypes—different populations learn certain
behaviours and expect things to work in a certain way. Although the
traffic light scenario may seem far-fetched (though nothing is all that
farfetched in Oompa-Loompa land), there are many examples in our own
world: in America light switches are on when they are up and off when
they are down, whereas in Britain the reverse is true; calculator keypads
and touchtone phones are laid out in different ways; and number formats
(decimal point or comma) and date formats (day/month/year or
month/day/year) vary around the world.

8. When one shift of Oompa-Loompas finishes work in the chocolate
factory, they must clean up and put away pots and pans and jugs and
spoons and stirrers ready for the next shift. There is a cupboard with

Licensed under Creative Commons 211
© 2015 Computer Science Unplugged (csunplugged.org)

shelves for them to put articles on, but the next shift always has trouble
finding where things have been put away. Oompa-Loompas are very bad
at remembering things and have trouble with rules like “always put the
pots on the middle shelf,” “put the jugs to the left.”

The groups of students should try to come up with a better solution.

The diagram on the
right shows a good
arrangement (which is
sometimes used—but
for rather different
reasons—on yachts
and other places where
it is necessary to stop
things sliding around).
The key concept here is
to use visible constraints
to make it obvious
where everything is
supposed to go. It is
clear from the size and
shape of each hole
which utensil it is
intended for: the
designer has made the constraints visible and used the physical properties
of the objects to avoid the need to rely on arbitrary conventions.

9. In the main control room of the chocolate factory there are a lot of
buttons and levers and switches that operate the individual machines.
These need to be labeled, but because the Oompa-Loompas can’t read,
the labels have to be pictorial—iconic—rather than linguistic.

To give the students a feeling for icons, the worksheet Icons shows some
examples. The students should identify what the icons might mean (for
example, the letter going into a mailbox might represent sending a
message). There are no “correct” answers to this exercise; the idea is
simply to identify possible meanings.

10. Now let’s design icons for the chocolate factory. The cards on worksheet
Icon cards specify clusters of related functions, and each group of
students receives one or more cards without the other groups knowing
what they are. A control panel is to be designed for the function clusters
that contains individual icons for each of the five or six operations. The
groups then show their work to the other students, without saying what

212 Licensed under Creative Commons
© 2015 Computer Science Unplugged (csunplugged.org)

the individual operations are, to see if they can guess what the icons
mean. Encourage the use of imagination, color, and simple, clear icons.

Licensed under Creative Commons 213
© 2015 Computer Science Unplugged (csunplugged.org)

Worksheet Activity: How do you open doors?

Fill out the worksheet to show how you think each type of door opens.

214 Licensed under Creative Commons
© 2015 Computer Science Unplugged (csunplugged.org)

Worksheet Activity: Stove Top

Redesign the stove so that the controls are easy to use. Front or back panels
can be added to the design if desired.

Licensed under Creative Commons 215
© 2015 Computer Science Unplugged (csunplugged.org)

Worksheet Activity: Icons

What do you think each of the icons (symbols) means?

216 Licensed under Creative Commons
© 2015 Computer Science Unplugged (csunplugged.org)

Worksheet Activity: Icon Cards

Cut out the cards and give one to each group. Have each group design icons
(symbols) to put on a control panel to represent each instruction.

Licensed under Creative Commons 217
© 2015 Computer Science Unplugged (csunplugged.org)

Variations and extensions

Can the students set the time on a digital wristwatch or microwave oven?
The mappings involved in the cooker layouts were simple because there
were four controls for four burners. More difficulty occurs whenever the
number of actions exceeds the number of controls. The controls on
wristwatches or microwaves are often exceedingly complex, not because of
the number of buttons (often there are only a few), but because of the
number of states the device can get in to. (“You would need an engineering
degree from MIT to work this,” someone looking at his new wristwatch once
told Don Norman, a leading user interface psychologist. Don has an
engineering degree from MIT, and, given a few hours, he can figure out the
watch. But why should it take hours?)

Students should keep an eye out for places where people get confused or
frustrated using digital devices – mobile phones, video recorders, computers,
remote controls – all these devices provide opportunities for frustrating
users! Students should ask themselves, what is it about the device that
confuses the users, and how might it have been designed better?

218 Licensed under Creative Commons
© 2015 Computer Science Unplugged (csunplugged.org)

What’s it all about?

Human–computer interaction is about designing, evaluating, and
implementing computer systems that allow people to carry out their activities
productively and safely. In the old days, computers were for specialists and
the users could be expected to be highly educated and specially trained in
their use. Later people thought it was perfectly normal to buy a “dummies”
book to find out how to use their computer. But now computers are
everyday tools that we all must use, and far greater attention must be paid to
the human interface.

Many disasters, some involving loss of life, have occurred because of
inadequate interfaces: airplane crashes and even shoot-downs of civilian
airplanes, freeway pile-ups because of errors in switching remotely-operated
highway signs, nuclear power station disasters. On a smaller scale, most
people experience frustration—often extreme frustration (a police officer
once fired bullets into his computer screen)—with computers and other high-
tech devices every day in the workplace. And it is not just computers: what
about those shrink-wrapped packages that you could only open if you had
sharp claws or a hooked beak, doors that hurt your wrist as you try to push
your way through, milk cartons that always splash you when you open them,
elevators where you can’t see how you’re supposed to push the button,
home entertainment systems whose advertisements claim to do everything,
but make it almost impossible to do anything?

We are becoming used to “human error” and to thinking of ourselves as
somehow inadequate; people often blame themselves when things go
wrong. But many so-called human errors are actually errors in design.
People have limitations in how much information they can process, and
designers need to account for these; bad design cannot be rectified by
producing a detailed and complicated user manual and expecting people to
study it intensively and remember it forever. Also, humans are fallible and
design needs to take this into consideration.

Interface evaluation is an essential part of the design process. The present
activity has involved some evaluation when the students tested their icon
designs on others. A more thorough evaluation would test the design on real
Oompa-Loompas (who may perceive icons differently) in a carefully-
controlled psychology-style experiment.

Although the problems caused by technology form the butt of many jokes,
human interface design is by no means a laughing matter. Inadequate

Licensed under Creative Commons 219
© 2015 Computer Science Unplugged (csunplugged.org)

interfaces cause problems ranging from individual job dissatisfaction to
stock-market disasters, from loss of self-esteem to loss of life.

Further reading
Don Norman’s book The design of everyday things is a delightful—and
liberating—account of the myriad design problems in everyday products. Jeff
Johnson’s Designing with the mind in mind is a thought-provoking insight into
how people think, and how interfaces should be designed to take account of
the human element.

220 Licensed under Creative Commons
© 2015 Computer Science Unplugged (csunplugged.org)

Activity 21
Conversations with computers—The Turing
test
Summary
This activity aims to stimulate discussion on the question of whether
computers can exhibit “intelligence,” or are ever likely to do so in the future.
Based on a pioneering computer scientist’s view of how one might recognize
artificial intelligence if it ever appeared, it conveys something of what is
currently feasible and how easy it is to be misled by carefully-selected
demonstrations of “intelligence.”

Curriculum Links
ü Technology – Technological systems. Understand that technological

systems are represented by symbolic language tools and understand the
role played by the black box in technological systems.

Skills
ü Interviewing.
ü Reasoning.

Ages
ü 7 years and up

Materials
ü A copy of the questions in the Turing Test Questions sheet that each

student can see (either one for each pair of students, or a copy displayed
on a projector/overhead projector), and

ü one copy of the answers in the Turing Test Answers sheet.

Licensed under Creative Commons 221
© 2015 Computer Science Unplugged (csunplugged.org)

Conversations with Computers

Discussion
This activity takes the form of a game in which the students must try to
distinguish between a human and a computer by asking questions and
analyzing the answers. The game is played as follows.

There are four actors: we will call them Gina, George, Herb and Connie (the
first letter of the names will help you remember their roles). The teacher
coordinates proceedings. The rest of the class forms the audience. Gina and
George are go-betweens, Herb and Connie will be answering questions. Herb
will give a human’s answers, while Connie is going to pretend to be a
computer. The class’s goal is to find out which of the two is pretending to be
a computer and which is human. Gina and George are there to ensure fair
play: they relay questions to Herb and Connie but don’t let anyone else know
which is which. Herb and Connie are in separate rooms from each other and
from the audience.

What happens is this. Gina takes a question from the class to Herb, and
George takes the same question to Connie (although the class doesn’t know
who is taking messages to whom). Gina and George return with the answers.
The reason for having go-betweens is to ensure that the audience doesn’t see
how Herb and Connie answer the questions.

222 Licensed under Creative Commons
© 2015 Computer Science Unplugged (csunplugged.org)

Before the class begins this activity, select people to play these roles and
brief them on what they should do. Gina and George must take questions
from the class to Herb and Connie respectively, and return their answers to
the class. It is important that they don’t identify who they are dealing with,
for example, by saying “She said the answer is...” Herb must give his own
short, accurate, and honest answers to the questions he is asked. Connie
answers the questions by looking them up on a copy of the Turing Test
Answers sheet. Where the instructions are given in italics, Connie will need to
work out an answer.

Gina and George should have pencil and paper, because some of the
answers will be hard to remember.

1. Before playing the game, get the students’ opinions on whether
computers are intelligent, or if the students think that they might be one
day. Ask for ideas on how you would decide whether a computer was
intelligent.

2. Introduce the students to the test for intelligence in which you try to tell
the difference between a human and a computer by asking questions.
The computer passes the test if the class can’t tell the difference reliably.
Explain that Gina and George will communicate their questions to two
people, one of whom will give their own (human) answers, while the other
will give answers that a computer might give. Their job is to work out who
is giving the computer’s answers.

3. Show them the list of possible questions in the Turing Test Questions sheet.
This can either be copied and handed out, or placed on a projector.

Have them choose which question they would like to ask first. Once a
question has been chosen, get them to explain why they think it will be a
good question to distinguish the computer from the human. This
reasoning is the most important part of the exercise, because it will force
the students to think about what an intelligent person could answer that a
computer could not.

Gina and George then relay the question, and return with an answer. The
class should then discuss which answer is likely to be from a computer.

Repeat this for a few questions, preferably until the class is sure that they
have discovered who is the computer. If they discover who is the
computer quickly, the game can be continued by having Gina and George
toss a coin to determine if they will swap roles so the class no longer know
which role the two have.

Licensed under Creative Commons 223
© 2015 Computer Science Unplugged (csunplugged.org)

The answers that Connie is reading from are not unlike the ones that
some “intelligent” computer programs can generate. Some of the answers
are likely to give the computer away quickly. For example, no-one is likely
to recite the square root of two to 20 decimal places, and most people
(including, perhaps, the students in the class) would not be able to answer
that question at all. Some questions will reveal the computer when their
answers are combined. For example, the “Do you like...” answers sound
plausible on their own, but when you encounter more than one it
becomes apparent that a simple formula is being used to generate the
answers from the questions. Some of the answers indicate that the
question was misinterpreted, although the class might reason that the
person could have made the mistake.

Many of the answers are very bland, but safe, and a follow-up question
would probably reveal that the computer doesn’t really understand the
subject. Answering “I don’t know” is reasonably safe for the computer, and
might even make it seem more human—we might expect a student to
answer “I don’t know” to some of the questions too, such as the request
for the square root of two. However, if a computer gives this answer too
often, or for a very simple question, then again it would reveal its identity.

Since the goal of the computer is to make the questioners think that they
are dealing with a person, some of the answers are deliberately
misleading—such as the delayed and incorrect answers to the arithmetic
problem. The questions and answers should provide plenty of fuel for
discussion.

224 Licensed under Creative Commons
© 2015 Computer Science Unplugged (csunplugged.org)

Worksheet Activity: Turing Test Questions

Choose questions from this list to ask the hidden human and “computer”.

1. What is the name of Bart Simpson’s baby sister?

2. What do you think of Roald Dahl?

3. Are you a computer?

4. What is the next number in the sequence 3, 6, 9, 12, 15?

5. What do you think of nuclear weapons?

6. What is 2 × 78?

7. What is the square root of two?

8. Add 34957 to 70764.

9. Do you like school?

10. Do you like dancing?

11. What day is it today?

12. What time is it?

13. How many days are there in February in a leap year?

14. How many days are there in a week?

15. For which country is the flag a red circle on a white background?

16. Do you like to read books?

17. What food do you like to eat?

Licensed under Creative Commons 225
© 2015 Computer Science Unplugged (csunplugged.org)

Worksheet Activity: Turing Test Answers

Choose questions from this list to ask the hidden human and “computer”.

1. What is the name of Bart Simpson’s baby sister?

I can’t remember.

2. What do you think of Roald Dahl?

He writes funny books.

3. Are you a computer?

Are you a computer?

4. What is the next number in the sequence 3, 6, 9, 12, 15?

18.

5. What do you think of nuclear weapons?

Nuclear weapons are very dangerous and should not be used.

6. What is 2 × 78?

166 (This is deliberately incorrect!)

7. What is the square root of two?

1.41421356237309504878

8. Add 34957 to 70764.

Wait for about 20 seconds before giving the answer

...105621.

9. Do you like school?

Yes, I like school.

10. Do you like dancing?

Yes, I like dancing.

226 Licensed under Creative Commons
© 2015 Computer Science Unplugged (csunplugged.org)

11. What day is it today?

Give the correct day of the week.

12. What time is it?

Give the correct time.

13. How many days are there in February in a leap year?

2000 and 2004 are leap years. (This is deliberately incorrect!)

14. How many days are there in a week?

Seven.

15. For which country is the flag a red circle on a white background?

I don’t know.

16. Do you like to read books?

Yes, I like to read books.

17. What food do you like to eat?

I’m not hungry, thanks.

Licensed under Creative Commons 227
© 2015 Computer Science Unplugged (csunplugged.org)

Question Please write me a sonnet on the
subject of the Forth Bridge.

Answer: Count me out on this one. I never
could write poetry.

Question: Add 34957 to 70764.
Answer: pause for about 30 seconds ...

105621.
Question: Do you play chess?
Answer: Yes.
Question: My King is on the K1 square, and I

have no other pieces. You have only
your King on the K6 square and a
Rook on the R1 square. Your move.

Answer: after a pause of about 15 seconds ...
Rook to R8, checkmate.

Question: In the first line of the sonnet which

reads “Shall I compare thee to a
summer’s day,” would not “a spring
day” do as well or better?

Answer: It wouldn't scan.
Question: How about “a winter’s day”? That

would scan all right.
Answer: Yes, but nobody wants to be

compared to a winter’s day.
Question: Would you say Mr. Pickwick

reminded you of Christmas?
Answer: In a way.
Question: Yet Christmas is a winter’s day, and I

don’t think Mr. Pickwick would mind
the comparison.

Answer: I don't think you’re serious. By a
winter's day one means a typical
winter’s day, rather than a special one
like Christmas.

Variations and extensions

The game can be played with as few as three people if Gina also takes the
role of George and Connie. Gina takes the question to Herb, notes his
answer, and also notes the answer from the Turing Test Answers sheet. She
returns the two answers, using the letters A and B to identify who each
answer came from.

In order to consider whether a computer could emulate a human in the
interrogation, consider with the class what knowledge would be needed to
answer each of the questions on Turing Test Answers. The students could
suggest other questions that they would have liked to ask, and should
discuss the kind of answers they might expect. This will require some
imagination, since it is impossible to predict how the conversation might go.

By way of illustration, here are
two example conversations.
The former illustrates “factual”
questions that a computer
might be able to answer
correctly, while the latter
shows just how wide-ranging
the discussion might become,
and demonstrates the kind of
broad knowledge that a
computer might need to call
upon.

There is a system called “Eliza”
that is widely available on the
web (it is a kind of “chatbot”,
which is a system that you can
have typed conversations
with). Eliza simulates a
session with a
psychotherapist, and can
generate remarkably
intelligent conversation using
some simple rules. Some
sample sessions with Eliza are
discussed below. Students
might try out Eliza, or other
chatbots, although be warned
that some have been trained
using language and subjects

228 Licensed under Creative Commons
© 2015 Computer Science Unplugged (csunplugged.org)

that might not be appropriate for school students.

Licensed under Creative Commons 229
© 2015 Computer Science Unplugged (csunplugged.org)

What’s it all about?
For centuries philosophers have argued about whether a machine could
simulate human intelligence, and, conversely, whether the human brain is no
more than a machine running a glorified computer program. This issue has
sharply divided people. Some find the idea preposterous, insane, or even
blasphemous, while others believe that artificial intelligence is inevitable and
that eventually we will develop machines that are just as intelligent as us. (As
countless science fiction authors have pointed out, if machines do eventually
surpass our own intelligence they will themselves be able to construct even
cleverer machines.) Artificial Intelligence (AI) researchers have been criticized
for using their lofty goals as a means for attracting research funding from
governments who seek to build autonomous war machines, while the
researchers themselves decry the protests as a Luddite backlash and point to
the manifest benefits to society if only there was a bit more intelligence
around. A more balanced view is that artificial intelligence is neither
preposterous nor inevitable: while no present computer programs exhibit
“intelligence” in any broad sense, the question of whether they are capable of
doing so is an experimental one that has not yet been answered either way.

The AI debate hinges on a definition of intelligence. Many definitions have
been proposed and debated. An interesting approach to establishing
intelligence was proposed in the late 1940s by Alan Turing, an eminent British
mathematician, wartime counterspy and long-distance runner, as a kind of
“thought experiment.” Turing’s approach was operational—rather than
define intelligence, he described a situation in which a computer could
demonstrate it. His scenario was similar to the activity described above, the
essence being to have an interrogator interacting with both a person and a
computer through a teletypewriter link (the very latest in 1940s technology!)
If the interrogator could not reliably distinguish one from the other, the
computer would have passed Turing’s test for intelligence. The use of a
teletypewriter avoided the problem of the computer being given away by
physical characteristics or tone of voice. One can imagine extending the
exercise so that the machine had to imitate a person in looks, sound, touch,
maybe even smell too—but these physical attributes seem hardly relevant to
intelligence.

Turing’s original test was a little different from ours. He proposed, as a
preliminary exercise, a scenario where a man and a woman were being
interrogated, and the questioner had to determine their genders. The man’s
goal was to convince the questioner that he was the woman, and the
woman’s was to convince the questioner that she was herself. Then Turing
imagined—for this was only proposed as a thought experiment—a computer
being substituted for one of the parties to see if it could be just as successful

230 Licensed under Creative Commons
© 2015 Computer Science Unplugged (csunplugged.org)

at this “imitation game” as a person. We altered the setup for this classroom
activity, because the kind of questions that students might ask to determine
gender would probably not be appropriate, and besides, the exercise
promotes sexual stereotyping—not to mention deception.

Imitating intelligence is a difficult job. If the roles were reversed and a person
was trying to pass themselves off as a computer, they would certainly not be
able to do so: they would be given away by their slow (and likely inaccurate)
response to questions like “What is 123456 × 789012?”

However, it is surprisingly easy for a computer to acquire a thin veneer of
conversational ability. A famous program developed in the early 60s, Eliza
(mentioned earlier), simulated
a non-directive
psychotherapist in a dialog
with the user. On the right is
an example of a conversation
with this system. Something
approaching a natural
conversation is achieved by
devices such as

1. generating canned
responses (e.g. Can you think
of a specific example in
response to something
beginning They’re always ...;
I’m sorry to hear that ... in
response to He says ...);

2. echoing the user’s
statements (e.g. Your
boyfriend made you come
here in response to My
boyfriend made me come
here);

3. recognizing key words (Tell
me more about your family in
response to ... mother ...);

4. some stock phrases (What would it mean to you if ...);

5. issues taken up from earlier parts of the conversation (Does that have
anything to do with the fact that ...).

Person: Men are all alike.
Computer: In what ways?
Person: They’re always bugging us about

something or other.
Computer: Can you think of a specific example?
Person: Well, my boyfriend made me come

here.
Computer: Your boyfriend made you come here.
Person: He says I’m depressed much of the

time.
Computer: I’m sorry to hear that you are

depressed.
Person: It’s true. I’m unhappy.
Computer: Do you think coming here will help

you not to be unhappy?
Person: I need some help, that much seems

certain.
Computer: What would it mean to you if you got

some help?
Person: Perhaps I could learn to get along

with my mother.
Computer: Tell me more about your family.

...
Computer: What else comes to mind when you

think of your father?
Person: Bullies.
Computer: Does that have anything to do with

the fact that your boyfriend made
you come here?
....

Licensed under Creative Commons 231
© 2015 Computer Science Unplugged (csunplugged.org)

Of course, this does not mean that the Turing test has been passed, because
the person is not asking questions with the aim of identifying whether the
respondent is a machine or not: if they were, it would not be long before all
was revealed.

A widely-quoted incident, which may be apocryphal but has now passed into
the folklore of artificial intelligence, occurred when a computer sales vice-
president allegedly came across a terminal that was normally connected
directly to a particular person’s house, but on this occasion happened to be
running the “psychotherapist” program. This conversation shows what
happened. Although the vice-president was evidently taken in, it is clear that
the situation predisposed him to believe that he was talking to a person. If
he had suspected otherwise, he would soon have found out!

Another system that appears to be able to hold intelligent conversations is a
program called “SHRDLU”, developed in the late 60s that accepted
instructions to manipulate students’ blocks on a table top. In fact, the blocks
and the table were simulated and presented in the form of a picture on a
computer screen, although it would not have been too difficult to make
things work with a real robot (at least in principle). The picture depicts the
robot’s micro-world.

SHRDLU could carry on surprisingly fluent conversations, as shown in the
dialog below. Amongst other things, this illustrates how it can obey orders,
disambiguate instructions, work out the referents of pronouns, and
understand new terms (“steeple”).

232 Licensed under Creative Commons
© 2015 Computer Science Unplugged (csunplugged.org)

Person: Pick up a big red block.
Robot: OK.

The system answers “OK” when it carries out a command. In
order to pick up the red block, it had to clear it off by finding a
space for the green one and moving the green one away

Person: Grasp the pyramid.
Robot: I don’t know which pyramid you mean.

There are three pyramids in the scene, so the program does
nothing.

Person: Find a block which is taller than the one you are holding
and put it into the box.

The system has to figure out what is meant by “one” and “it”, as
well as using deduction to decide which block it is holding.

Robot: By “it”, I assume you mean the block which is taller than
the one I am holding.

Printed out to keep us informed.
Robot: OK.

The hand has to set down the red block to pick up the taller blue
one.

Person: What does the box contain?
Robot: The blue pyramid and the blue block.
Person: What is the pyramid supported by?

Earlier the system responded to “the pyramid” by saying “I don’t
know which pyramid you mean.” Now, it knows that we must
mean the one which was just mentioned.

Robot: The box.
Person: Does a steeple ...
Robot: Sorry, I don't know the word “steeple”.

The system interrupts immediately when it sees a word it can't
figure out.

Person: A “steeple” is a stack which contains two green cubes
and a pyramid.

The quote marks indicate that we are defining a new word.
Robot: I understand.
Person: Are there any steeples now?
Robot: No.

The new definition is used as a description to recognize steeples.
Person: Build one.
Robot: OK.

The description given in the definition is enough to deduce a plan
for building new objects as well as recognizing them. The word
“one” means “a steeple”, and the plan is carried out.

Licensed under Creative Commons 233
© 2015 Computer Science Unplugged (csunplugged.org)

However, the system is very
fragile and the illusion it
creates is easily shattered.

Here is a continuation of the
conversation—which was not
actually generated by the
program, but certainly could
have been. Although it was
possible to define the new
term steeple in the last
conversation, only a very
limited kind of term can be
described because the robot
has an extremely restricted
“intelligence.”

Ultimately, it has to admit
that it doesn’t even
understand the words it uses
itself (“Sorry, I don’t know the
word ‘sorry’”)!

Now consider an alternate, completely imaginary, continuation of the
conversation, which might have been generated by a student. Although tiny,
this fragment demonstrates a wealth of world knowledge.

1. The “robot” appreciates that a water pistol is less valuable if you already
have one.

2. Furthermore, it expects the person to know that too since it doesn’t bother
to explain that this is a reason for declining the offer.

3. Still, it sees that the person wants a block badly enough to part with
something important.

4. Also, it appreciates that—unlike water pistols—blocks are valuable in
quantity.

5. It tries to soften the person up by demeaning the frog.

6. It implies that it is prepared to haggle.

Certainly this degree of artfulness is beyond today’s computers!

Person: Trade you a water pistol for the big
red block.

Robot: Sorry, I don't know the word “trade”.
Person: A “trade” is a free exchange of

property.
Robot: Sorry, I don't know the word “free”.
Person: A “free” act is done willingly,

without being forced.
Robot: Sorry, I don't know the word “act”.
Person: “Acts” are what people do on

purpose, and not by accident.
Robot: Sorry, I don't know the word

“people”.
Person: Sorry, I thought you were smarter

than you are.
Robot: Sorry, I don't know the word “sorry”.

Person: Trade you a water pistol for the big
red block.

Robot? I already have a water pistol, but I'll
give you two blocks and a pyramid
for your slimy old frog.

234 Licensed under Creative Commons
© 2015 Computer Science Unplugged (csunplugged.org)

The story on the right was
generated by another
computer program (late 80s).
Although it is immediately
given away as computer-
generated by its scarcity and
terseness, it is not hard to
imagine how it could be
dressed up by adding all sorts
of extra detail. What is
interesting is not the
superficial aspects of the story
but the plot that it embodies. While this is a long way from any human-
generated plot, it does seem to capture some human elements of conflict.
These days there are a number of systems around for automatically
generating stories, although the challenge in evaluating them is to determine
how much of the material is just standard patterns with the gaps filled in, and
how much is a plot that has been constructed creatively as above.

There is an annual competition for the Loebner prize, in which computer
programs compete to pass the Turing test by fooling judges into thinking that
they are human. As of 2012, no computer has yet won the gold or silver
prizes, which involve consistently fooling the judges, but a bronze prize is
awarded each year for the one judged to be the most human. In the first year
of the competition (1991) a program managed to win a bronze award by,
amongst other tricks, making typing mistakes to appear to be more human!

No artificial intelligence system has been created that comes anywhere near
passing the full Turing test. Even if one did, many philosophers have argued
that the test does not really measure what most people mean by intelligence.
What it tests is behavioral equivalence: it is designed to determine whether a
particular computer program exhibits the symptoms of intellect, which may
not be the same thing as genuinely possessing intelligence. Can you be
humanly intelligent without being aware, knowing yourself, being conscious,
being capable of feeling self-consciousness, experiencing love, being ... alive?

The AI debate is likely to be with us for many more decades.

Further reading
Artificial intelligence: the very idea by the philosopher John Haugeland is an
eminently readable book about the artificial intelligence debate, and is the
source of some of the illustrations in this activity (in particular, the SHRDLU
conversations, and the discussion of them).

Once upon a time there was an Arctic tern named
Truman. Truman was homeless. Truman needed a
nest. He flew to the shore. Truman looked for
some twigs. Truman found no twigs. He flew to
the tundra. He met a polar bear named Horace.
Truman asked Horace where there were some
twigs. Horace concealed the twigs. Horace told
Truman there were some twigs on the iceberg.
Truman flew to the iceberg. He looked for some
twigs. He found no twigs. Horace looked for
some meat. He found some meat. He ate Truman.
Truman died.

Licensed under Creative Commons 235
© 2015 Computer Science Unplugged (csunplugged.org)

The original Turing test was described in an article called “Computing
machinery and intelligence,” by Alan Turing, published in the philosophical
journal Mind in 1950, and reprinted in the book Computers and thought,
edited by Feigenbaum and Feldman. The article included the first two
conversations.

The psychotherapist program was described in “ELIZA—A computer program
for the study of natural language communication between man and
machine,” by J. Weizenbaum, published in the computer magazine
Communications of the Association for Computing Machinery in 1966.

The blocks-world robot program is described in a PhD thesis by Terry
Winograd which was published as a book entitled Understanding natural
language (Academic Press, New York, 1972).

The program that generated the story of Truman and Horace is described in
“A planning mechanism for generating story text,” by Tony Smith and Ian
Witten, published in the Proceedings of the 10th International Conference on
Computing and the Humanities in 1990.

