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Stochastic processes

Suppose that a system has properties which can be described in terms of a
single stochastic variable Y , for example, the number of molecules in a
given volume of air, the number of people in a queue,..

Then we introduce the following quantities:

p(y , t) ≡ (the probability density that the stochastic

variable Y has value y at time t)

The expectation value of Y at time t is

〈Y (t)〉 =

∫
all y

dy y p(y , t)

Similarly

〈Y n(t)〉 =

∫
all y

dy yn p(y , t) , 〈f (Y (t))〉 =

∫
all y

dy f (y) p(y , t) ,
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p(y2, t2; y1, t1) ≡ (the joint probability density that the

stochastic variable Y has value y1 at time

t1 and y2 at time t2)

So, for example, the expectation value of Y (t2)Y (t1) is

〈Y (t2)Y (t1)〉 =

∫
dy2 dy1 y2y1 p(y2, t2; y1, t1)

If the value of Y at time t2 is completely independent of the value of Y at
time t1, then

p(y2, t2; y1, t1) = p(y2, t2)p(y1, t1) ,

and we find that

〈Y (t2)Y (t1)〉 =

∫
dy2 y2 p(y2, t2)

∫
dy1 y1 p(y1, t1) = 〈Y (t2)〉〈Y (t1)〉
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⇒ 〈Y (t2)Y (t1)〉 − 〈Y (t2)〉〈Y (t1)〉

is a measure of the correlation between Y at time t2 and time t1

p(yn, tn; . . . ; y2, t2; y1, t1) ≡ (the joint probability density that the

stochastic variable Y has value y1 at

time t1, y2 at time t2, . . . , yn at time tn)

Marginal and conditional probabilities may be defined as follows:∫
dyn . . . dym+1 p(yn, tn; . . . ; y2, t2; y1, t1)

= p(ym, tm; . . . ; y2, t2; y1, t1) [marginal pdf ]
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p(yn, tn; . . . ; ym+1, tm+1|ym, tm; . . . ; y1, t1)

=
p(yn, tn; . . . ; y1, t1)

p(ym, tm; . . . ; y1, t1)
[conditional pdf ]

Conditional means may also be defined as:

〈Y (t2)〉Y (t1)=y1 =

∫
dy2 y2 p(y2, t2|y1, t1)

⇒ p(y2, t2|y1, t1) = 〈δ (Y (t2)− y2)〉Y (t1)=y1

We also introduce the notation of double angle brackets for cumulants. So
for stochastic variables

〈〈X 2〉〉 = 〈X 2〉 − 〈X 〉2 ,

which is just the variance. Similarly,

〈〈X 3〉〉 = 〈X 3〉 − 3〈X 〉2〈X 〉+ 2〈X 〉3
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For stochastic processes an example of an analogous result is

〈〈Y (t2)Y (t1)〉〉 = 〈Y (t2)Y (t1)〉 − 〈Y (t2)〉〈Y (t1)〉 ,

which is just the two-point correlation function

Let us end this rather formal section by defining two special types of
stochastic process we’ll need later on

• A process is called stationary when all the probability densities depend
on the time differences alone:

p(yn, tn + τ ; . . . ; y2, t2 + τ ; y1, t1 + τ)

= p(yn, tn; . . . ; y2, t2; y1, t1) for all n and τ

So, for example, taking τ = −t1, then

p(y1, t1 − t1) = p(y1, t1) ⇒ p(y1, t1) = p(y1, 0) ≡ p(y1)

is time-independent
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Similarly by taking different values for τ ,

p(y2, t2; y1, t1) = p(y2, t2 − t1; y1, 0) = p(y2, 0; y1, t1 − t2) ,

and so depends only on the time difference

But

〈Y (t2)Y (t1)〉 =

∫
dy2 dy1 y2y1 p(y2, t2; y1, t1)

is symmetric under t1 ↔ t2 and so 〈Y (t2)Y (t1)〉 depends only on |t2 − t1|
when the process is stationary

• A process is called Gaussian if all the cumulants beyond the second
vanish

⇒ A Gaussian process is fully specified by 〈〈Y (t2)Y (t1)〉〉 and 〈Y (t1)〉, or
equivalently by 〈Y (t2)Y (t1)〉 and 〈Y (t1)〉
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Markov processes

A process is Markov if p(yk+1, tk+1|yk , tk ; . . . ; y1, t1) depends on the state
Y (tk) = yk , but not on Y (tk−1) = yk−1, . . . ,Y (t1) = y1

i.e., p(yk+1, tk+1|yk , tk ; . . . ; y1, t1) = p(yk+1, tk+1|yk , tk) ∀k

So the conditional pdfs are affected only by the state of the system at a
given time, and not by the state of the system at times prior to this.

(a) p(yn, tn; . . . ; y1, t1)

= p(yn, tn|yn−1, tn−1; . . . ; y1, t1)p(yn−1, tn−1; . . . ; y1, t1)

p(yn, tn|yn−1, tn−1)p(yn−1, tn−1|yn−2, tn−2; . . . ; y1, t1)

×p(yn−2, tn−2; . . . ; y1, t1)

= . . . =
n−1∏
i=1

p(yi+1, ti+1|yi , ti )p(y1, t1)
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(b) p(yk+`, tk+`; . . . ; yk+1, tk+1|yk , tk ; . . . ; y1, t1)

=

∏k+`−1
i=1 p(yi+1, ti+1|yi , ti )p(y1, t1)∏k−1
i=1 p(yi+1, ti+1|yi , ti )p(y1, t1)

=
k+`−1∏
i=k

p(yi+1, ti+1|yi , ti )

(a) tells us that for Markov processes all joint pdfs can be written down in
terms of the functions p(y ′, t ′|y , t) and p(y , t) and (b) tells us that for
Markov processes all conditional pdfs can be written down in terms of
p(y ′, t ′|y , t)

Using (a) and (b) we can show that the hierarchy of pdfs related through
the definition of marginal and conditional pdfs collapse down to just two
relations between the functions p(y ′, t ′|y , t) and p(y , t)

These are:
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(i) p(y2, t2) =

∫
dy1 p(y2, t2|y1, t1)p(y1, t1)

Proof p(y2, t2) =

∫
dy1 p(y2, t2; y1, t1)

=

∫
dy1 p(y2, t2|y1, t1)p(y1, t1)

In fact we have not used the Markov assumption to derive the, rather
obvious, result above

(ii) p(y3, t3|y1, t1) =

∫
dy2 p(y3, t3|y2, t2)p(y2, t2|y1, t1)

Proof p(y3, t3; y2, t2; y1, t1)

= p(y3, t3|y2, t2)p(y2, t2|y1, t1)p(y1, t1)
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Integrating over y2 leads to

p(y3, t3; y1, t1) =

{∫
dy2 p(y3, t3|y2, t2)p(y2, t2|y1, t1)

}
p(y1, t1)

But p(y3, t3; y1, t1) = p(y3, t3|y1, t1)p(y1, t1) and the result is proved

The result (ii) is called the Chapman-Kolmogorov equation. It is the
starting point for the study of Markov processes

For a Markov process the functions p(y ′, t ′|y , t) and p(y , t) are not
arbitrary; they must satisfy conditions (i) and (ii)

Conversely, any two non-negative functions p(y ′, t ′|y , t) and p(y , t) that
obey (i) and (ii) uniquely define a Markov process

The CK equation tells us that we can break up the probability of transition
from state y1 at time t1 to state y3 at time t3 into a process involving two
successive steps which are statistically independent; the probability of the
transition from y2 to y3 is not affected by the fact that it was preceded by
a transition from y1 to y2
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Markov chains

In this case the stochastic variables are discrete and will be labelled by an
integer n

Then the two equations (i) and (ii) governing Markov processes take the
form

p(n2, t2) =
∑
n1

p(n2, t2|n1, t1)p(n1, t1)

p(n3, t3|n1, t1) =
∑
n2

p(n3, t3|n2, t2)p(n2, t2|n1, t1) t1 < t2 < t3

In addition, we take time to be discrete, so that t also takes on integer
values t = 0, 1, . . .

If time is discrete, the Chapman-Kolmogorov (CK) equation tells us that
the conditional probability at any time, p(n, t ′|m, t) ≡ p(n, t + `|m, t)
(` = 2, 3, . . .), can be found if the function p(n, t + 1|m, t) is known for all
t.
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This follows because

p(n, t + 2|m, t) =
∑
n′

p(n, t + 2|n′, t + 1)p(n′, t + 1|m, t) ,

p(n, t + 3|m, t) =
∑
n′

p(n, t + 3|n′, t + 1)p(n′, t + 1|m, t) , etc

This fundamental conditional pdf can be thought of as a matrix:

Qnm(t) ≡ p(n, t + 1|m, t)

Such pdfs are called transition probabilities since they give the probability
of the system making a transition from state m to state n

If we also write p(n, t) as Pn(t), then the first equation for Markov
processes can be written as

Pn(t + 1) =
∑
m

Qnm(t)Pm(t)
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Example (1) – A one-dimensional random walk

Basic idea:- A walker starts out at a given point, n0, at time t = 0, and
moves to the right with a given probability, p, and to the left with a
probability q = 1− p. Then at t = 1 the walker again moves to the right
or left with the same probabilities. What is the probability that the walker
is at position n at time t?

This is simplest formulation, but there are many variants: the walker can
also stay put instead of having to move to the left or right, the walker can
take steps of any length, or the rules by which he moves can be time
dependent, etc
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Physicists usually state that random walks were first introduced by
Einstein in his discussion of Brownian motion in 1905, but Bachelier
used the idea to model stock market fluctuations in 1900. The
problem of a random walk was discussed more generally by Pearson in
1905

There are many versions of the random walk problem. The simplest is
the “nearest neighbour random walk”, alluded to above, which is
formally defined as follows:
If the walker is at position n′, he moves one step to the right (to
n = n′ + 1) with probability p and one step to the left (to n = n′ − 1)
with probability q, where p + q = 1. This means that

Qn n′ =


p, if n = n′ + 1
q, if n = n′ − 1
0, otherwise ,

So in this case Q is time-independent and non-zero only if n = n′ ± 1
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Notice also that the probability of making a transition only depends on the
current state of the system, not on the previous states: the probability of
moving to the right does not depend on whether a move to the right was
made at a previous time step, or where the walker came from before
arriving at his current position

If any of the above were true then the process would not be Markov, and
the techniques we are using would not be applicable

If we write Qnn′ as a matrix, then

Q =


0 q 0 0 . . .
p 0 q 0 . . .
0 p 0 q . . .
.. .. .. .. . . .

 ,

where we have not specified what happens at the boundaries (see later)

Another simple version of the nearest neighbour model has the
possibility of staying put with a probability r
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Qn n′ =


p, if n = n′ + 1
r , if n = n′

q, if n = n′ − 1
0, otherwise ,

where p + q + r = 1

In this case,

Q =


r q 0 0 . . .
p r q 0 . . .
0 p r q . . .
.. .. .. .. . . .

 ,

— a tridiagonal matrix

We are interested in predicting Pn(t) given Pn(0). Usually this initial
condition will be that the walker starts (with certainty) at a given
position, say n = n0, at an initial time, say t = 0

Stochastic Systems: an introduction May 10, 2018 17 / 18



That is,
Pn(0) = δn,n0 ,

i.e. with probability 1 the walker is at position n0 at time t = 0. Note that∑
n Pn(0) =

∑
n δn,n0 = 1, as required

We can think of Pn(t) as the elements of a column vector:

P(t) =

 P1(t)
P2(t)
. . .


A general random walk would have Qnn′ as a general matrix — any
position could be reached from any other position in one jump, if the
relevant entry in the matrix Q was non-zero. The entry could also
depend on n or n′ or both. For example, the probability of making a
transition could depend on |n′ − n|: this could model the situation
that the further the points are from each other, the less likely is the
walker to jump to n from n′

Frequently in applications Qnn′(t) does not actually depend on time
— the “rules of the game” are fixed and time-independent
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