Applicazione dei Principi della Dinamica

Applicazione: l'equazione $\underline{\mathbf{f}} = \mathbf{m} \ \underline{\mathbf{a}}$ può essere utilizzata in modi diversi:

- a) per la misura indiretta di m da misure dirette di <u>f</u> e <u>a</u>
- b) per la misura indiretta di <u>a</u> da misure dirette di m e <u>f</u> ; note <u>a</u> e le condizioni iniziali è possibile determinare l'equazione del moto
- c) nota l'equazione del moto si possono determinare le caratteristiche delle forze agenti sul corpo (caso particolare: statica
 - → corpo in quiete
 - → forze necessarie per equilibrio)

In un sistema di riferimento di coordinate cartesiane ortogonali l'equazione vettoriale può essere rappresentata da tre equazioni differenziali nelle incognite x, y e z

$$f_{x}(x, y, z, \dot{x}, \dot{y}, \dot{z}, t) = m \ddot{x}$$

$$f_{y}(x, y, z, \dot{x}, \dot{y}, \dot{z}, t) = m \ddot{y}$$

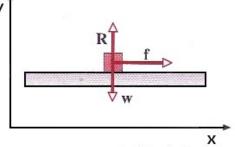
$$f_{z}(x, y, z, \dot{x}, \dot{y}, \dot{z}, t) = m \ddot{z}$$

Vediamo nel seguito alcune applicazioni

Forze costanti

Consideriamo casi in cui le forze applicate non dipendono né da \underline{r} , né da \underline{v} , né da t.

a) forza costante f applicata ad un corpo di massa m poggiato su piano orizzontale liscio



$$\underline{W} + \underline{R} + \underline{f} = m\underline{a} \rightarrow f = m \ddot{x} \rightarrow moto rett. unif. acc.$$

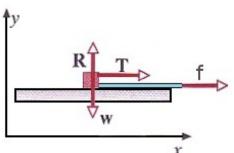
$$-> R - W = m \ddot{y} = 0 \rightarrow R = W$$

$$-> R = W$$

b) forza costante applicata, tramite un filo di massa m_f, ad un corpo di massa m poggiato su piano orizzontale liscio

sul corpo ->
$$T = m \ddot{x}$$

-> $R - W = m \ddot{y} = 0$
sul filo -> $f - T = m_f \ddot{x}$
-> $R_f - W_f = m_f \ddot{y} = 0$



considerando il sistema filo + corpo come un unico corpo

->
$$f = (m + m_f)\ddot{x}$$

-> $R_{tot} - W_{tot} = R + R_f - W - W_f = (m + m_f)\ddot{y}$

dalle quali si ottiene
$$\ddot{x} = \frac{f}{m + m_f}$$
 e $T = \frac{f \, m}{m + m_f} < f$

Quindi la forza <u>f</u> riduce la sua intensità lungo il filo. Se m_f << m allora T ≈ f e il filo si limita a trasmettere la forza f da un suo estremo all'altro. In tal caso le forze applicate al filo $(-\underline{T} e \underline{f})$ sono uguali ed opposte

Forze costanti

c) macchina di Atwood

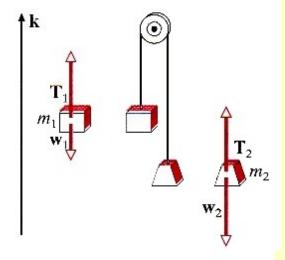
Due corpi, di massa m₁ e m₂, appesi agli estremi di un filo,

inestensibile e di massa trascurabile rispetto a quelle dei corpi, che passa nella gola di una carrucola ideale (massa trascurabile e girevole senza attrito).

Applicando la seconda legge della dinamica ai due corpi si ha

corpo 1
$$\underline{w}_1 + \underline{T}_1 = m_1 \underline{a}_1$$

corpo 2 $\underline{w}_2 + \underline{T}_2 = m_2 \underline{a}_2$



Ma
$$T_1 = T_2 = T$$
 e $a_{1z} = -a_{2z} = a_z$ e quindi
 $T = (w_1 m_2 + w_2 m_1)/(m_1 + m_2)$ $a_z = g (m_2 - m_1)/(m_1 + m_2)$ che permette di misurare g dalla misura di a_z , m_1 e m_2

d) corpo poggiato su un piano inclinato liscio

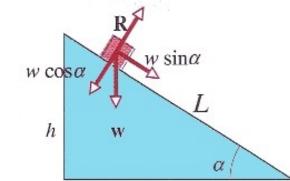
Corpo che può scivolare senza attrito lungo un piano inclinato di un angolo α rispetto al piano

"orizzontale" (cosa è?)

Dalla seconda legge della dinamica

$$R + w = m \underline{a}$$

Proiettando lungo le direzioni normale (n) e tangente (t) alla traiettoria si ha



n)
$$R - w \cos \alpha = 0$$
 --> $R = w \cos \alpha$

t) w sin α = m (d 2 s/dt 2) -- > moto uniformemente accelerato e quindi, se per t = 0 vale s(0) = 0 e v(0) = 0, si ha

$$s(t) = \frac{1}{2} (g \sin \alpha) t^2$$
 e $v(t) = (g \sin \alpha) t$

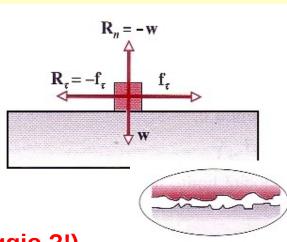
Se indichiamo con h la quota da cui parte il corpo si ottiene infine $v_{fin}^2 = 2 g h$ ovvero lo stesso valore della caduta libera

Forze di attrito

Attrito Statico

Corpo poggiato su superficie orizzontale "scabra" Forza orizzontale <u>f</u> applicata ad esso -> si ha equilibrio finché

$$\underline{\mathbf{f}} \leq - \underline{\mathbf{R}}_{t}^{max} = - \mu_{s} \, \mathbf{R}_{n} \, \underline{\mathbf{u}}_{t}$$



(indipendente da superficie di appoggio ?!)

con \underline{u}_{t} versore tangenziale, μ_{s} coefficiente di attrito statico, \underline{R}_{t} reazione tangenziale del piano e R_{n} modulo della reazione normale

Attrito Dinamico

Una volta messo in moto il corpo, è sufficiente una forza di modulo inferiore (rispetto a quella che ha prodotto l'inizio del moto) per mantenere costante la velocità del corpo. Sperimentalmente

$$\mathbf{R}_{t} = - \mu_{d} \mathbf{R}_{n} \mathbf{u}_{v}$$

con μ_d coefficiente di attrito dinamico e $\underline{u}_{\ v}$ versore della velocità In tabella sono riportati valori tipici dei coefficienti di attrito

Sistema	μ _s	μ_{d}
Legno-legno	0.25 - 0.5	0.2
Vetro – vetro	0.9 -1	0.4
Acciaio – acciaio	0.7	0.4
Gomma – cemento	1	0.8

!!!! Importanza dell'attrito nella locomozione umana e veicolare

Forze elastiche

Le forze elastiche (molla) dipendono solo dalla posizione

"Molla ideale" → agisce con una forza di modulo proporzio-

nale alla deformazione della molla, ovvero

$$\underline{\mathbf{f}}_{e} = -\mathbf{k} \times \underline{\mathbf{u}}$$
 (Legge di Hooke)

con

k costante elastica della molla,

x var. di lunghezza (pos. o neg.),

<u>u</u> versore che punta al corpo su cui agisce la forza.

La molla ideale agisce sui corpi a contatto in ambedue gli estremi con forze uguali e opposte, date dalla Legge di Hooke con versori opposti.

a) moto oscillatorio armonico

equazione differenziale \mathbf{m} ($\mathbf{d}^2 \mathbf{x} / \mathbf{d} \mathbf{t}^2$) = - \mathbf{k} x caratteristica di un moto oscillatorio con soluzione

$$x(t) = x(0) \operatorname{sen} (\omega t + \varphi)$$

con $\omega = (k/m)^{0.5}$ detta "pulsazione" e x(0) e ϕ dipendenti dalle condizioni iniziali

b) costanti elastiche delle molle

- due molle uguali in parallelo $k_{tot} = 2 k$ (più rigida)
- due molle uguali in serie $k_{tot} = k/2$ (meno rigida)
- fissata la lunghezza della molla la sua costante elastica aumenta al diminuire delle spire (ammortizzatori auto)

c) origine microscopica delle forze elastiche

nascono da variazione distanza interatomica, "modulo Young"