
Resistori

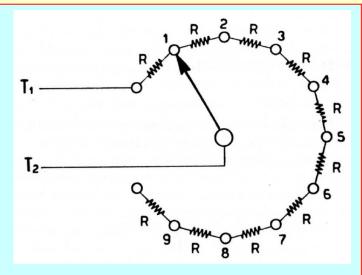
Resistori commerciali:

- wattaggio compreso tra 1/8 watt e alcuni watt
- forma cilindrica con 2 reofori per saldatura al circuito
- materiale costituito da un impasto di carbone (coeff. temperatura 5*10⁻⁴ /°C) oppure lega metallica (5*10⁻⁵ /°C)
- valori compresi tra 1 e 10 7 Ω , desumibile dalle fascette colorate sul cilindro

Resistori - Caratteristiche costruttive

Resistori campione

Per le misure di precisione in laboratorio si usano cassette di resistenze campione

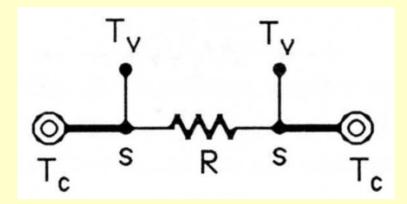

Valore impostato: tra i terminali H e L

Terminale G: connesso a involucro esterno (importante nelle misure in alternata)

Schema tipico di una decade:

la posizione del cursore determina il valore della resistenza tra i terminali T_1 e T_2 . In realtà $R \rightarrow$ resistori a filo di Manganina o altre leghe

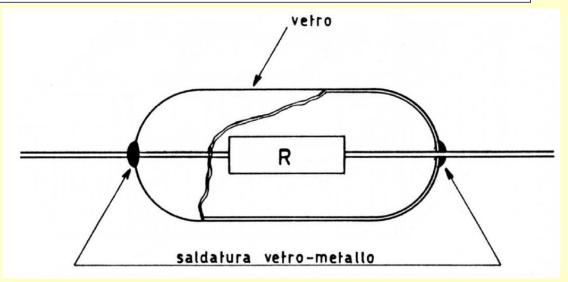
Precisione di taratura: ogni decade ha una propria precisione che è più alta per decadi di maggior valore (0.02% - 0.05% alta qualità)


Massima potenza dissipabile: fornita dal costruttore (tip. 0.25 W)

Resistenze campione piccole (< 1 Ω)

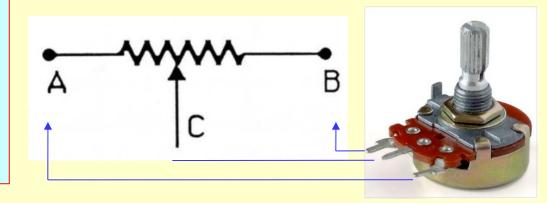
Resistenza a 4 terminali

2 terminali di corrente (robusti, di resistenza trascurabile rispetto a R)


2 terminali di tensione (standard)

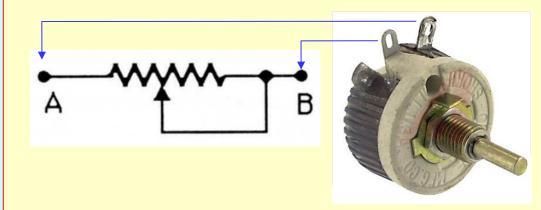
Resistenze campione grandi (> $10^7 \Omega$)

Isolamento tra i 2 reofori (ridurre perdite superficiali)


Ampolla di vetro evacuata, o riempita di gas inerte, e trattata esternamente con vernice ai siliconi

Resistenze variabili con continuità

Potenziometro


Filo AB di lega ad alta stabilità (Manganina) e contatto strisciante tramite pattino C (cursore) R_{AC} e R_{CB} variano al variare della posizione di C

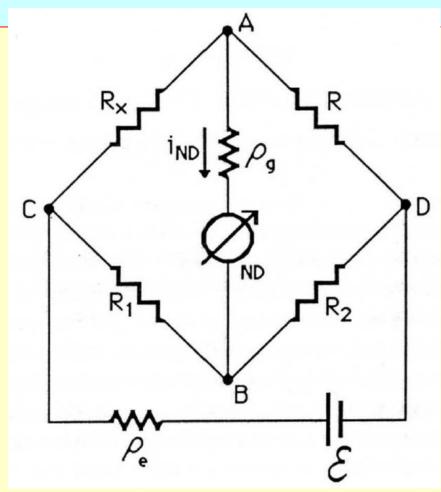
Reostato

R_{AB} variabile con continuità al variare della posizione del cursore

Vantaggio: se anche il contatto tramite pattino C viene meno non si ha discontinuità nel circuito in cui è inserita R_{AB}

Misure di resistenza – Ponte di Wheatstone

Principale metodo per la misura di resistenze (e, con varianti, di altre grandezze


elettriche)

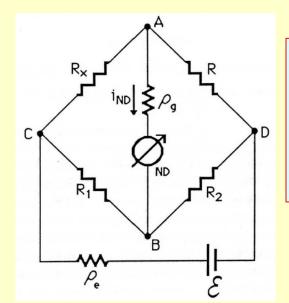
 R_1 , R_2 resistenze campione R_x incognita

ND (Null Detector) è un galvanometro dotato di shunt a varie portate

Quando
$$i_{ND} = 0 \rightarrow V_A = V_B$$

ma $V_A - V_D = V_{AD} = V_{CD} * R /(R_x + R)$
e $V_B - V_D = V_{BD} = V_{CD} * R_2 /(R_1 + R_2)$
da cui
 $R_x = (R_1 / R_2) R$

indipendente da ρ_{q} , ρ_{e} e ϵ



Misure di resistenza – Ponte di Wheatstone

Operativamente:

- 1) montaggio ponte
- 2) stima limite wattaggio
- 3) verifica che $i_{ND} = 0$ con $\epsilon = 0$
- 4) selezione minima sensibilità su ND
- 5) accensione alimentatore ϵ
- 6) riduzione i_{ND} al minimo agendo su R
- 7) aumento sensibilità ND
- 8) come 6)

$$R_x = \frac{R_1}{R_2} \cdot R'$$
 Incertezza relativa

Risultato finale:

$$R_a \rightarrow i_{ND}^+$$

$$R_b \rightarrow I_{ND}$$

interpolazione R'

$$\frac{\Delta R_x}{R_x} = \frac{\Delta R'}{R'} + \frac{\Delta R_1}{R_1} + \frac{\Delta R_2}{R_2}$$

Se
$$R_1 \simeq R_2 \rightarrow Scambio tra R_1 e R_2 \rightarrow R'' \rightarrow R_x = (R' * R'')^{1/2}$$

Incertezza relativa

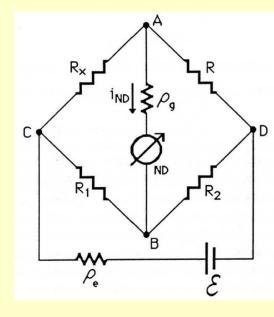
$$\frac{\Delta R_x}{R_x} = \frac{1}{2} \frac{\Delta R'}{R'} + \frac{1}{2} \frac{\Delta R''}{R''}$$

In $\Delta R'$ e $\Delta R''$ contributi da

- 1) taratura
- 2) sensibilità del ponte

Sensibilità Ponte di Wheatstone

Valutazione teorica per ottimizzare i valori di R_1 , R_2 e ϵ Procedura:


- 1) si applica il metodo delle maglie alle 3 maglie "reali" (oppure si applica il teorema di Thevenin)
- 2) si determina i_q
- 3) si determina $\partial i_q / \partial R_x$

Se k_A è la costante reometrica del galvanometro ($i_g = k_A L$)

la sensibilità, definita come
$$S = \lim_{\Delta R_x \to 0} \frac{\Delta l}{\frac{\Delta R_x}{D}}$$

è data da

$$(S)_{eq} = (\partial i_g / \partial R_x)_{eq} *(R_x / k_A) = f(\epsilon, R_1, R_2, R_x \rho_g, \rho_e)$$

Dalla procedura sopra riportata possono essere estratti i parametri ottimali (detti di Heaviside), che dovranno essere confrontati con i valori realmente disponibili, tenendo anche conto dei limiti del wattaggio

Ponte di Wheatstone

Microvolmetro al posto del galvanometro

Misuratore di tensione molto sensibile (μV) e resistenza di ingresso estremamente elevata (> 10 11 Ω) permettono di ottenere una maggiore sensibilità del ponte e praticamente indipendente da R_1 e R_2 purché $R_1 \approx R_2$

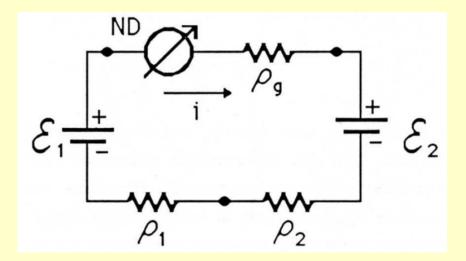
FEM Parassite

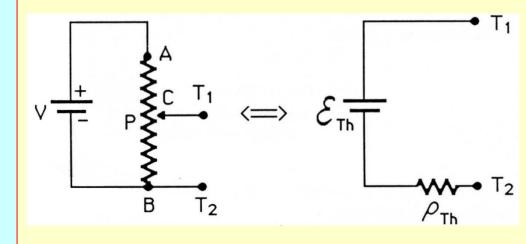
Possono falsare l'azzeramento del ponte. Per minimizzarle :

- 1) evitare di toccare le superfici dei conduttori, morsetti e cavi, in modo da ridurre le fem elettrochimiche
- 2) dopo il montaggio del ponte attendere qualche minuto per facilitare la riduzione degli eventuali gradienti di temperatura e le corrispondenti fem termoelettriche
- 3) azzerare il ponte con ND montato e generatore di fem spento (compensazione delle fem spurie presenti)

Metodo potenziometrico

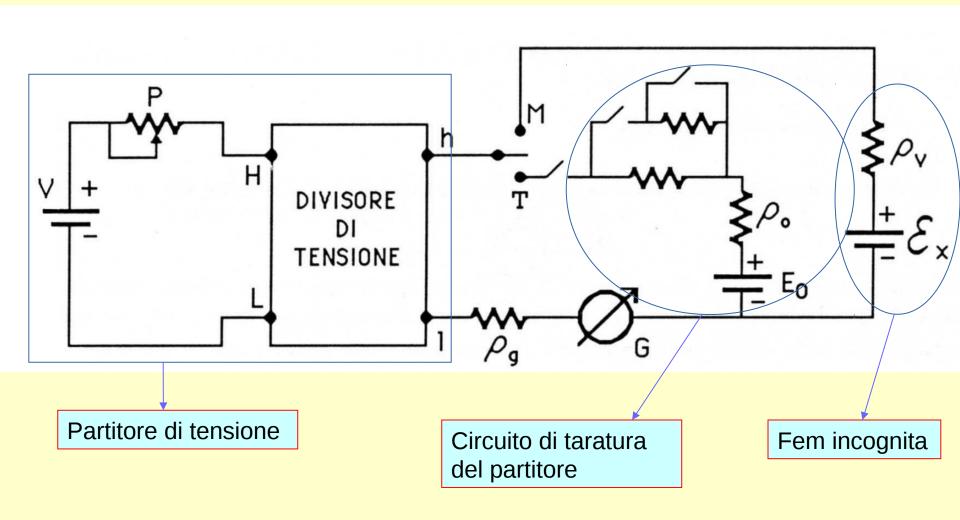
 ε_2 e ρ_2 incognite, ε_1 variabile e nota

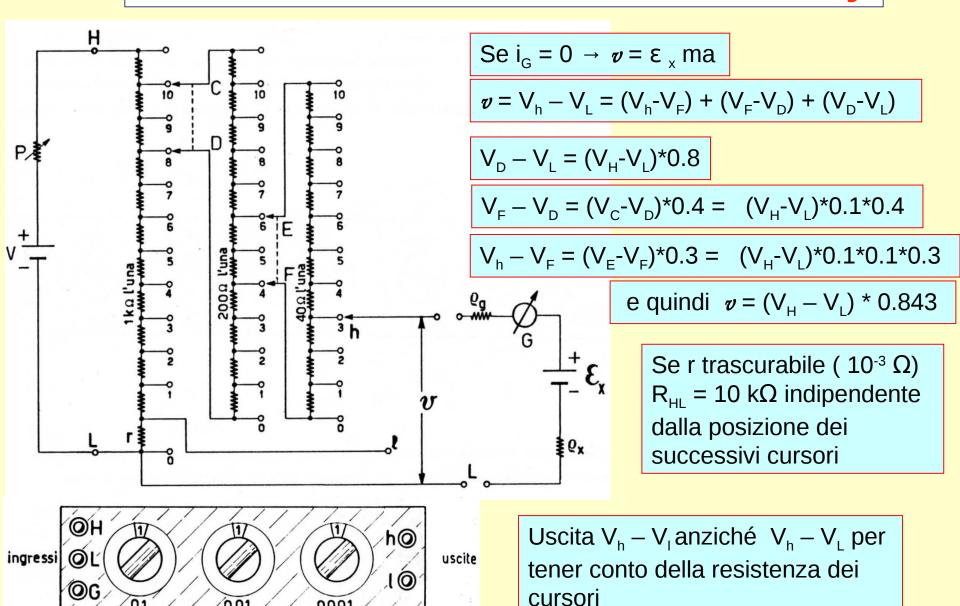

Principio di misura (Poggendorf)


$$i = 0$$
 se $\varepsilon_1 = \varepsilon_2$ indip. da $\rho_1 \in \rho_2$

- Non si ha passaggio di corrente (vedi misura con voltmetro)
- E' necessario un generatore ϵ_1 che copra un campo ampio di fem, ottenibile tramite un partitore di tensione

con
$$\varepsilon_{Th} = V R_{CB} / R_{AB}$$


e
$$\rho_{Th} = R_{CB} // R_{CA}$$



Metodo potenziometrico

Realizzazione pratica

Divisore di tensione di Kelvin-Varley

0.001