Stochastic Systems: The Gillespie algorithm.

May 30, 2018

Exact numerical scheme: the Gillespie algorithm

Consider a given chemical equation, R_{1}. Assume S_{i}, with $i=1,2$, to label the involved reactants (called Substrates in the original paper by Gillespie):

$$
S_{1}+S_{2} \xrightarrow{c} 2 S_{1}
$$

In words: the (individual!) molecule of type S_{1} can combine with an (individual!) molecule of type S_{2} to result into two molecules of type S_{1}.

The probability that such a reaction will take place in the forthcoming time interval $d t$ is controlled by:

- the number of molecules of type S_{1} and S_{2} and the number of possible combinations that yield to an encounter between a molecule of type S_{1} and another of type S_{2}.
- the average probability that given a pair of molecules S_{1} ed S_{2}, the reaction R_{1} takes over.

Assume n_{1} e n_{2} to label the number of molecules of type 1 e 2
respectively. Then, $h=n_{1} n_{2}$ is the number of independent combinations that result in a pair $S_{1}-S_{2}$.
On the other hand c measures the probability per unit of time of reacting. Hence:

$$
P_{1}=c h d t=c n_{1} n_{2} d t
$$

is the probability that the reaction R_{1} takes over in a given time interval $d t$.

So far so good! What is going to happen if we have instead a system of reactions?

How are we going to sort out which reaction is going to happen first?

Let us consider first the case where two reactions are at play, namely R_{1} and R_{2}, specified as follows:

$$
\begin{array}{rll}
S_{1}+S_{2} & \xrightarrow{c_{1}} & 2 S_{1} \\
2 S_{1} & \xrightarrow{c_{2}} & S_{3}
\end{array}
$$

Answering to two questions is mandatory at this point:

- When is the next reaction going to occur?
- Which reaction is going to happen?

Focus on the general framework.
Imagine to have k type of molecules partitioned in the following families ($n_{1}, n_{2}, n_{3} \ldots$) and assume that those molecules can react according to M distinct reaction channels, labelled with R_{i} con $i=1, . ., M$.

We need to calculate the quantity:

$$
P(\tau, i) d \tau
$$

i.e. the probability that given the system in the state $\left(n_{1}, n_{2}, n_{3} \ldots\right)$ at time t :

- the next reaction occurs in the time interval from $t+\tau$ to $t+\tau+d \tau$.
- it is the reaction R_{i}.

The core of the algorithm is to evaluate the, presently unknown, quantity $P(\tau, i) d \tau$.

The key idea is to split such a probability into two distinct contributions, as outlined below:

- the probability $P_{0}(\tau)$ that, given the state $\left(n_{1}, n_{2}, \ldots\right)$ at time t, no reaction would eventually occur in the time interval $(t, t+\tau)$.
- the probability P_{i} that the reaction i occurred in the time interval $(t+\tau, t+\tau+d \tau)$.

The second quantity can be readily evaluated. We know that

$$
P_{i}=c_{i} h_{i} d \tau
$$

where h_{i} refers to the number of possible combinations of the chemicals as specified by reaction $R_{i} . c_{i}$ is instead the average probability per unit of time that the molecules could react and so give birth to the prescribed products.

To evaluate $P_{0}(\tau)$, the probability that no reaction occurs in in $(t, t+\tau)$, imagine to partition the inspected time interval τ into K sub-intervals, each of size $\epsilon=\tau / K$. The probability that no reaction occurred in the first interval $(t, t+\epsilon)$ is:

$$
\Pi_{j=1}^{M}\left[1-c_{j} h_{j} \epsilon\right]=1-\sum_{j=1}^{M} c_{j} h_{j} \epsilon+O(\epsilon)
$$

On the other hand this is also the probability that no reaction would occur in the next time interval $(t+\epsilon, t+2 \epsilon)$. Since we have K consecutive intervals, one can write:

$$
\begin{aligned}
P_{0}(\tau) & =\left[1-\sum_{j=1}^{M} c_{j} h_{j} \epsilon+O(\epsilon)\right]^{K} \\
& =\left[1-\sum_{j=1}^{M} c_{j} h_{j} \tau / K+O\left(K^{-1}\right)\right]^{K}
\end{aligned}
$$

Perform now the limit for $K \rightarrow \infty$. We eventually obtain:

$$
P_{0}(\tau)=\exp \left(-\sum_{j=1}^{M} c_{j} h_{j} \tau\right)
$$

from which the fundamental result follows:
The sougth probability $P(\tau, i)$

$$
P(\tau, i)=P_{0}(\tau) a_{i}=a_{i} \exp \left(-a_{0} \tau\right)
$$

where we have introduced the compact notation:

$$
a_{i}=c_{i} h_{i}
$$

and

$$
a_{0}=\sum_{j=1}^{M} c_{j} h_{j}
$$

The above expression for $P(\tau, i)$ holds for $0<\tau<\infty$ and $i=1, . ., M$. Starting from this setting one can construct an exact algorithm that enables one to track the dynamics of a large ensemble of microscopic constituents that have to obey to an assigned set of chemical rules (or, equivalently, whose probability $P(n, t)$ has to obey to a given Master equation).

The core idea of the computational scheme (Gillespie algorithm) is to implement a Monte Carlo strategy that is able to simulate the stochastic process represented by $P(\tau, i)$. In the following we discuss the sequential steps that we are going to consider.

- STEP 0. At time $t=0$ assign the initial values to the variables n_{1}, n_{2}, \ldots and to the parameters c_{i}. Calculate the quantities $h_{i} c_{i}$ which in practice determine $P(\tau, i)$. One can also define the time of observation $t_{1}<t_{2}<\ldots$ and the stopping time t_{s}.
- STEP 1. Make use of a dedicated Monte Carlo technique to generate a random pair (τ, i), which obeys to the joint probability density function $P(\tau, i)$.
- STEP 2. Make use of the values as generated above to advance the system in time by a quantity τ, while adjusting the values of the population sizes n_{i} implicated in the selected reaction i. After this operation is being taken to completion, calculate again the quantities $h_{i} c_{i}$ for those reactions that have experienced a change in the chemicals amount.
- STEP 3. If time t is less than t_{s} or if there are no reactants left into the system $\left(h_{i}=0\right)$ stop the simulations. Otherwise, start again from STEP 1.

Clearly the crucial step is:

- STEP 2. Make use of a dedicated Monte Carlo technique to generate a random pair (τ, i), which obeys to the joint probability density function $P(\tau, i)$.
to which the following slides are entirely devoted.

We should generate the pair (τ, i) in accordance with the distribution $P(\tau, i)$, as calculated below. We shall illustrate the so called direct method.

To this end we shall make use of our ability to generate random numbers r obeying to a uniform distribution. Notice that τ is a continuous variable, while i is discrete.
First let us write:

$$
P(\tau, i)=P_{1}(\tau) P_{2}(i \mid \tau)
$$

The probability $P_{1}(\tau)$ follows from:

$$
P_{1}(\tau)=\sum_{i=1}^{M} P(\tau, i)
$$

Hence, inserting in the preceding relation:

$$
P_{2}(i \mid \tau)=P(\tau, i) / \sum_{i=1}^{M} P(\tau, i)
$$

Recalling the above expression for $P(\tau, i)$ yields:

$$
\begin{aligned}
P_{1}(\tau) & =a_{0} \exp \left(-a_{0} \tau\right) \\
P_{2}(i \mid \tau) & =a_{i} / a_{0}
\end{aligned}
$$

where $0 \leq \tau<\infty$ and $i=1,2, . . M$.

Both probability density functions are normalized in their respective domain of definition.

$$
\begin{aligned}
\int_{0}^{\infty} P_{1}(\tau) & =\int_{0}^{\infty} a_{0} \exp \left(-a_{0} \tau\right)=1 \\
\sum_{j=1}^{M} P_{2}(i \mid \tau) & =\sum_{j=1}^{M} a_{i} / a_{0}=1
\end{aligned}
$$

The idea of the direct method is to generate a random number τ in agreement with $P_{1}(\tau)$ and then an integer i as dictated by $P_{2}(i \mid \tau)$. The resulting pair (τ, i) will therefore obey to $P(\tau, i)$.

As we shall outline in the following, it is possible to generate a random quantity τ which obeys to $P_{1}(\tau)$: (i) by extracting a random number r_{1} from a uniform distribution and (ii) by calculating:

$$
\tau=\left(1 / a_{0}\right) \log \left(1 / r_{1}\right)
$$

Analogously (no proof given here), one can obtain an integer random i which obeys to $P_{2}(i \mid \tau)$ by extracting a random (real) number r_{2} from a uniform distribution and selecting i as the integer that fulfills the double inequivalence:

$$
\sum_{j=1}^{i-1} a_{j}<r_{2} a_{0}<\sum_{j=1}^{i} a_{j}
$$

Finally, we discuss the origin of the formula for τ. It follows from the inversion technique, a Monte Carlo method which enables one to generate random numbers from a generic pdf, by using uniformly distributed random numbers.

Assume, we wish to generate the random number x distributed as $P(x)$. By definition, $P\left(x^{\prime}\right) d x^{\prime}$ is the probability that x falls in the interval delimited by x^{\prime} and $x^{\prime}+d x^{\prime}$. Consider $F(x)$ defined as:

$$
F(x)=\int_{-\infty}^{x} P\left(x^{\prime}\right) d x^{\prime}
$$

clearly $F\left(x_{0}\right)$ is the probability that x is smaller than x_{0}. Function $F(x)$ measures the probability for x to be smaller than $x_{0} . F(x)$ is the probability distribution, distinct from the probability density function $P(x)$.

The inversion method, consists in extracting a uniformly distributed random number r and then select x such that $F(x)=r$, namely:

$$
x=F^{-1}(r)
$$

where $F^{-1}(\cdot)$ is the inverse of the distribution function associated to the pdf $P(\cdot)$.

Calculate in fact the probability that x as generated according the the above prescriptions would fall in the interval $\left[x^{\prime}, x^{\prime}+d x^{\prime}\right]$. By construction, this probability is identical to the probability that r falls in between $F\left(x^{\prime}\right)$ e $F\left(x^{\prime}+d x^{\prime}\right)$. Since r is uniformly distributed, such a probability reads:

$$
F\left(x^{\prime}+d x^{\prime}\right)-F\left(x^{\prime}\right)=F^{\prime}\left(x^{\prime}\right) d x^{\prime}=P\left(x^{\prime}\right) d x^{\prime}
$$

Assume one needs to generate a random number distributed as the pdf:

$$
P(x)=A \exp (-A x)
$$

Then $F(x)=1-\exp (-A x)$ e so, by imposing $F(x)=r$ one readily obtains

$$
x=(1 / A) \log (1 / r)
$$

i.e. the formula evoked before. Notice that in the derivation we have replaced $1-r$ with the statistically equivalent quantity r.

On the implementation: back to the birth death model

$$
\begin{aligned}
& E \xrightarrow{b} X \\
& X \xrightarrow{d} E
\end{aligned}
$$

The initial condition:

```
time=zeros(1,tmax);
nX=zeros(1,tmax);
```

$n L(1,1)=X$;

The main loop:

```
for i=2:tmax,
Calculate the transition probability
a1 = b (N-X)/N;
a2 = d*L/N;
a0=a1+a2;
Gillespie recipe
r1=rand(1,1); r2=rand(1,1);
tau=-1/a0*log(r1); r2=a0*r2;
ind=1;
Update the population amount
```

Save the results
end

Recall that to obtain a random integer i which obeys to $P_{2}(i \mid \tau)$ one can extract a random (real) number r_{2} from a uniform distribution and then select i as the integer that fulfills the double inequivalence:

$$
\begin{equation*}
\sum_{j=1}^{i-1} a_{j}<r_{2} a_{0}<\sum_{j=1}^{i} a_{j} \tag{1}
\end{equation*}
$$

In pratice the values of a_{j} are summed iteratively until the obtained sum becomes larger than $r_{2} a_{0}$. The corresponding integer j (the number of elements summed up) is the index i we are looking for.

```
while(ind),
prob=a1;
if(r2<prob),
X=X+1; ind=0; break;
end
prob=prob+a2;
if(r2<prob),
X=X-1; ind=0; break;
end
end
```

