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Exact numerical scheme: the Gillespie algorithm

Consider a given chemical equation, R1. Assume Si , with i = 1, 2, to label
the involved reactants (called Substrates in the original paper by Gillespie):

S1 + S2
c−→ 2S1

In words: the (individual!) molecule of type S1 can combine with an
(individual!) molecule of type S2 to result into two molecules of type S1.

The probability that such a reaction will take place in the forthcoming
time interval dt is controlled by:

the number of molecules of type S1 and S2 and the number of
possible combinations that yield to an encounter between a molecule
of type S1 and another of type S2.

the average probability that given a pair of molecules S1 ed S2, the
reaction R1 takes over.
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Assume n1 e n2 to label the number of molecules of type 1 e 2
respectively. Then, h = n1n2 is the number of independent combinations
that result in a pair S1 - S2.
On the other hand c measures the probability per unit of time of reacting.
Hence:

P1 = chdt = cn1n2dt

is the probability that the reaction R1 takes over in a given time interval
dt.

So far so good! What is going to happen if we have instead a system of
reactions?

How are we going to sort out which reaction is going to happen first?
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Let us consider first the case where two reactions are at play, namely R1

and R2, specified as follows:

S1 + S2
c1−→ 2S1

2S1
c2−→ S3

Answering to two questions is mandatory at this point:

When is the next reaction going to occur?

Which reaction is going to happen?

Focus on the general framework.

Imagine to have k type of molecules partitioned in the following families
(n1, n2, n3...) and assume that those molecules can react according to M
distinct reaction channels, labelled with Ri con i = 1, ..,M.
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We need to calculate the quantity:

P(τ, i)dτ

i.e. the probability that given the system in the state (n1, n2, n3...) at
time t:

the next reaction occurs in the time interval from t + τ to t + τ + dτ .

it is the reaction Ri .

The core of the algorithm is to evaluate the, presently unknown, quantity
P(τ, i)dτ .
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The key idea is to split such a probability into two distinct contributions,
as outlined below:

the probability P0(τ) that, given the state (n1, n2, ...) at time t, no
reaction would eventually occur in the time interval (t, t + τ).

the probability Pi that the reaction i occurred in the time interval
(t + τ, t + τ + dτ).

The second quantity can be readily evaluated. We know that

Pi = cihidτ

where hi refers to the number of possible combinations of the chemicals as
specified by reaction Ri . ci is instead the average probability per unit of
time that the molecules could react and so give birth to the prescribed
products.
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To evaluate P0(τ), the probability that no reaction occurs in in (t, t + τ),
imagine to partition the inspected time interval τ into K sub-intervals,
each of size ε = τ/K . The probability that no reaction occurred in the
first interval (t, t + ε) is:

ΠM
j=1 [1− cjhjε] = 1−

M∑
j=1

cjhjε+ O(ε)

On the other hand this is also the probability that no reaction would occur
in the next time interval (t + ε, t + 2ε). Since we have K consecutive
intervals, one can write:

P0(τ) =

1−
M∑
j=1

cjhjε+ O(ε)

K

=

1−
M∑
j=1

cjhjτ/K + O(K−1)

K
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Perform now the limit for K →∞. We eventually obtain:

P0(τ) = exp

− M∑
j=1

cjhjτ


from which the fundamental result follows:

The sougth probability P(τ, i)

P(τ, i) = P0(τ)ai = ai exp(−a0τ)

where we have introduced the compact notation:

ai = cihi

and

a0 =
M∑
j=1

cjhj
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The above expression for P(τ, i) holds for 0 < τ <∞ and i = 1, ..,M.

Starting from this setting one can construct an exact algorithm that
enables one to track the dynamics of a large ensemble of microscopic
constituents that have to obey to an assigned set of chemical rules (or,
equivalently, whose probability P(n, t) has to obey to a given Master
equation).

The core idea of the computational scheme (Gillespie algorithm) is to
implement a Monte Carlo strategy that is able to simulate the stochastic
process represented by P(τ, i). In the following we discuss the sequential
steps that we are going to consider.
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STEP 0. At time t = 0 assign the initial values to the variables
n1, n2, ... and to the parameters ci . Calculate the quantities hici
which in practice determine P(τ, i). One can also define the time of
observation t1 < t2 < ... and the stopping time ts .

STEP 1. Make use of a dedicated Monte Carlo technique to generate
a random pair (τ, i), which obeys to the joint probability density
function P(τ, i).

STEP 2. Make use of the values as generated above to advance the
system in time by a quantity τ , while adjusting the values of the
population sizes ni implicated in the selected reaction i . After this
operation is being taken to completion, calculate again the quantities
hici for those reactions that have experienced a change in the
chemicals amount.

STEP 3. If time t is less than ts or if there are no reactants left into
the system (hi = 0) stop the simulations. Otherwise, start again from
STEP 1.
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Clearly the crucial step is:

STEP 2. Make use of a dedicated Monte Carlo technique to generate
a random pair (τ, i), which obeys to the joint probability density
function P(τ, i).

to which the following slides are entirely devoted.
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We should generate the pair (τ, i) in accordance with the distribution
P(τ, i), as calculated below. We shall illustrate the so called direct
method.

To this end we shall make use of our ability to generate random numbers r
obeying to a uniform distribution. Notice that τ is a continuous variable,
while i is discrete.

First let us write:

P(τ, i) = P1(τ)P2(i |τ)

The probability P1(τ) follows from:

P1(τ) =
M∑
i=1

P(τ, i)

Hence, inserting in the preceding relation:

P2(i |τ) = P(τ, i)/
M∑
i=1

P(τ, i)
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Recalling the above expression for P(τ, i) yields:

P1(τ) = a0 exp(−a0τ)

P2(i |τ) = ai/a0

where 0 ≤ τ <∞ and i = 1, 2, ..M.
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Both probability density functions are normalized in their respective
domain of definition.

∫ ∞
0

P1(τ) =

∫ ∞
0

a0 exp(−a0τ) = 1

M∑
j=1

P2(i |τ) =
M∑
j=1

ai/a0 = 1

The idea of the direct method is to generate a random number τ in
agreement with P1(τ) and then an integer i as dictated by P2(i |τ). The
resulting pair (τ, i) will therefore obey to P(τ, i).
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As we shall outline in the following, it is possible to generate a random
quantity τ which obeys to P1(τ): (i) by extracting a random number r1
from a uniform distribution and (ii) by calculating:

τ = (1/a0) log(1/r1)

Analogously (no proof given here), one can obtain an integer random i
which obeys to P2(i |τ) by extracting a random (real) number r2 from a
uniform distribution and selecting i as the integer that fulfills the double
inequivalence:

i−1∑
j=1

aj < r2a0 <
i∑

j=1

aj
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Finally, we discuss the origin of the formula for τ . It follows from the
inversion technique, a Monte Carlo method which enables one to generate
random numbers from a generic pdf, by using uniformly distributed
random numbers.

Assume, we wish to generate the random number x distributed as P(x).
By definition, P(x ′)dx ′ is the probability that x falls in the interval
delimited by x ′ and x ′ + dx ′. Consider F (x) defined as:

F (x) =

∫ x

−∞
P(x ′)dx ′

clearly F (x0) is the probability that x is smaller than x0. Function F (x)
measures the probability for x to be smaller than x0. F (x) is the
probability distribution, distinct from the probability density function P(x).
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The inversion method, consists in extracting a uniformly distributed
random number r and then select x such that F (x) = r , namely:

x = F−1(r)

where F−1(·) is the inverse of the distribution function associated to the
pdf P(·).
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Calculate in fact the probability that x as generated according the the
above prescriptions would fall in the interval [x ′, x ′+ dx ′]. By construction,
this probability is identical to the probability that r falls in between F (x ′)
e F (x ′ + dx ′). Since r is uniformly distributed, such a probability reads:

F (x ′ + dx ′)− F (x ′) = F ′(x ′)dx ′ = P(x ′)dx ′
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Assume one needs to generate a random number distributed as the pdf:

P(x) = A exp(−Ax)

Then F (x) = 1− exp(−Ax) e so, by imposing F (x) = r one readily obtains

x = (1/A) log(1/r)

i.e. the formula evoked before. Notice that in the derivation we have
replaced 1− r with the statistically equivalent quantity r .
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On the implementation: back to the birth death model

E
b−→ X

X
d−→ E
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The initial condition:

time=zeros(1,tmax);

nX=zeros(1,tmax);

nL(1,1)=X;
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The main loop:

for i=2:tmax,

Calculate the transition probability

a1 = b (N-X)/N;

a2 = d*L/N;

a0=a1+a2;

Gillespie recipe

r1=rand(1,1); r2=rand(1,1);

tau=-1/a0*log(r1); r2=a0*r2;

ind=1;

Update the population amount

Save the results

end
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Recall that to obtain a random integer i which obeys to P2(i |τ) one can
extract a random (real) number r2 from a uniform distribution and then
select i as the integer that fulfills the double inequivalence:

i−1∑
j=1

aj < r2a0 <
i∑

j=1

aj (1)

In pratice the values of aj are summed iteratively until the obtained sum
becomes larger than r2a0. The corresponding integer j (the number of
elements summed up) is the index i we are looking for.
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while(ind),

prob=a1;

if(r2<prob),

X=X+1; ind=0; break;

end

prob=prob+a2;

if(r2<prob),

X=X-1; ind=0; break;

end

end
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