Grandezze scalari: caratterizzate da un valore numerico in una unità di misura scelta (ex: massa, temperatura, ecc)

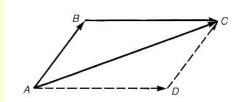
Grandezze vettoriali: oltre al valore numerico necessitano della definizione di una direzione e di un verso (ex: vettore posizione, velocità, forza, ecc)

Notazione vettoriale: \overline{v} vettore, v modulo

Punto di partenza

geometria euclidea: corrispondenza tra punti geometrici nello spazio tramite un vettore posizione

Operazioni vettoriali: uguaglianza, somma e differenza, prodotto e rapporto con uno scalare



Versore: vettore \overline{u} **adimensionale** di modulo unitario (rapporto tra un vettore e il suo modulo)

Scomposizione di vettore lungo due rette orientate, di versori \bar{u}_1 e \bar{u}_2 , aventi un punto in comune:

i due versori individuano un piano -> ogni vettore complanare al piano può essere espresso come somma di due vettori componenti (ottenibili con parallelogramma)

$$\overline{\mathbf{v}} = \mathbf{v}_1 \overline{\mathbf{u}}_1 + \mathbf{v}_2 \overline{\mathbf{u}}_2$$

- $v_1 \overline{u}_1$ -> il componente: vettore
- v_1 -> la componente: scalare Se $\overline{u}_1 \perp \overline{u}_2$ -> v_1 e v_2 "componenti ortogonali"

Prodotto scalare tra due vettori:

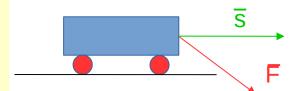
- \rightarrow definizione: $\overline{a} \cdot \overline{b} = a*b*cos(θ)$ con θ angolo compreso tra i vettori \overline{a} e \overline{b} una volta portati ad avere origine comune
- → risultato: scalare dimensionato (come?)
- → significato geometrico: operazione di proiezione
- → significato fisico: scomposizione di un vettore secondo direzioni prescelte individuate da versori
- → proprietà:

$$\bar{a} \cdot \bar{a} = a^2$$

$$\overline{a} \cdot \overline{b} = \overline{b} \cdot \overline{a}$$

$$\overline{a} \cdot (\overline{b} + \overline{c}) = \overline{a} \cdot \overline{b} + \overline{a} \cdot \overline{c}$$

Applicazione fisica



carrello su piano orizzontale trainato da una forza **F**

Il lavoro fatto nello spostamento \overline{s} del carrello è dato da $L = \overline{f} \cdot \overline{s} = F^*s^*cos(\theta)$ con θ angolo compreso tra i vettori \overline{f} e \overline{s} . Tale lavoro fatto ce lo ritroveremo come energia cinetica del carrello.

Ma F*cos(θ) non è altro che la componente della forza lungo lo spostamento s e quindi il lavoro L sarà lo stesso per qualsiasi forza che abbia la stessa componente lungo s. Quale forza F conviene quindi applicare e perché?

Prodotto vettoriale tra due vettori:

- \rightarrow definizione: \overline{a} x \overline{b} = \overline{c} con c = a*b*sen(θ), direzione perpendicolare piano individuato da \overline{a} e \overline{b} verso tramite regola mano destra
- → significato geometrico: c = area parallelogramma individuato da a e b
- → significato fisico: determinazione del "momento" di un vettore rispetto ad un polo di riferimento
- → proprietà:

$$\overline{a} \times \overline{a} = 0$$

$$\bar{a} \times \bar{b} = -\bar{b} \times \bar{a}$$

$$\overline{a} \times (\overline{b} + \overline{c}) = \overline{a} \times \overline{b} + \overline{a} \times \overline{c}$$

Applicazione fisica

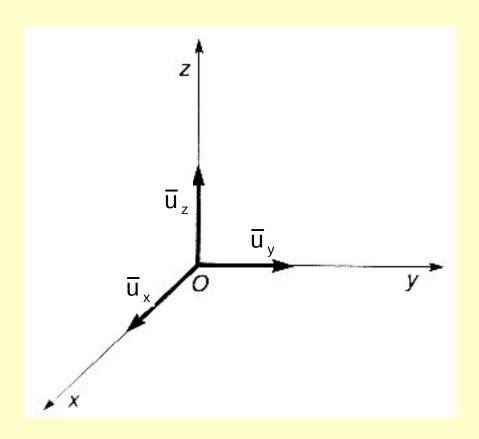
Leva con corpo di peso P appoggiato a un estremo

Si verifica che la leva resta ferma solo se il momento di forza del peso $\overline{M}_P = \overline{a} \times \overline{P} = aP\overline{u}$ con \overline{u} versore uscente è uguale e opposto al momento della forza \overline{F} $\overline{M}_F = \overline{b} \times \overline{F} = -bF$ sen (θ) \overline{u} con θ angolo compreso tra \overline{b} e \overline{F} .

Conseguenze

Rappresentazione di un vettore in un sistema di coordinate

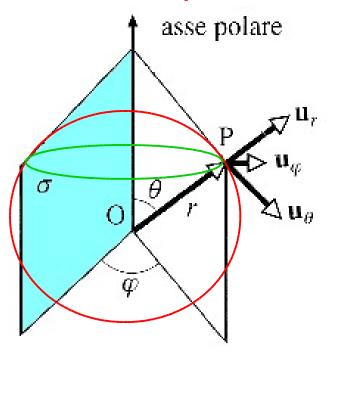
Sistema di coordinate cartesiane ortogonali:



- <u>definizione sistema</u>: tre rette orientate (assi) passanti per un punto (detto origine) e ⊥ tra loro
- coordinate x, y, z (terna destra)
- <u>superfici coordinate</u>: piani individuati da valori costanti delle coordinate del vettore
- $\underline{\text{versori}}$: $\overline{\text{u}}_{\text{x}}$, $\overline{\text{u}}_{\text{y}}$, $\overline{\text{u}}_{\text{z}}$ (ortogonali a superfici coordinate)

Rappresentazione di un vettore in un sistema di coordinate

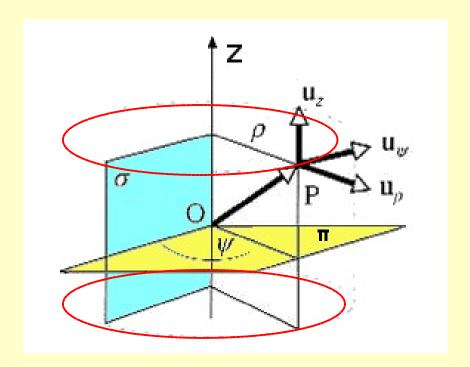
Sistema di coordinate polari sferiche



- <u>definizione sistema</u>: origine O, asse polare orientato passante per O, semipiano di riferimento σ passante per asse polare
- coordinate r, θ (rispetto asse polare), φ (rispetto σ)
- superfici coordinate:
 - * sfere con centro O e raggio r
 - * coniche con vertice O, asse coincidente con asse polare, apertura θ (colatitudine) rispetto verso positivo asse polare
 - * semipiani passanti per asse polare, angolo ϕ rispetto a σ
- $\underline{\text{versori}}$: $\overline{\mathbf{u}}_{\mathrm{r}}$, $\overline{\mathbf{u}}_{\mathrm{\theta}}$, $\overline{\mathbf{u}}_{\mathrm{\phi}}$ (ortogonali a sup. coordinate, terna locale)

Rappresentazione di un vettore in un sistema di coordinate

Sistema di coordinate polari cilindriche



- <u>definizione sistema</u>: origine O, retta orientata Oz passante per O (piano π per O e perpendicolare a Oz), semipiano di riferimento σ passante per Oz
- coordinate z (quota rispetto a π), ρ (distanza da Oz), ψ (rispetto σ)
 - superfici coordinate:
 - * piani paralleli a π e quota z
 - * cilindri con asse coincidente Oz e raggio ρ
 - * semipiani passanti per Oz, angolo ψ rispetto a σ
 - <u>versori</u>: \overline{u}_z , \overline{u}_p , \overline{u}_{ψ} (ortogonali a sup. coordinate, terna locale)

Scomposizione di un vettore in un sistema di coordinate cartesiane ortogonali:

componenti cartesiane
$$\overline{\mathbf{v}} = \overline{\mathbf{v}}_{x} + \overline{\mathbf{v}}_{y} + \overline{\mathbf{v}}_{z} = \mathbf{v}_{x} \overline{\mathbf{u}}_{x} + \mathbf{v}_{y} \overline{\mathbf{u}}_{y} + \mathbf{v}_{z} \overline{\mathbf{u}}_{z}$$
coseni direttori $\mathbf{v}_{x} = \overline{\mathbf{v}} \cdot \overline{\mathbf{u}}_{x} = \mathbf{v} \cos \alpha \quad \mathbf{v}_{y} = \overline{\mathbf{v}} \cdot \overline{\mathbf{u}}_{y} = \mathbf{v} \cos \beta \dots$

- espressione cartesiana delle operazioni sui vettori
 - somma e differenza $\overline{v} + \overline{w} = \dots$

 - prodotto per scalare $k \overline{v} =$ prodotto scalare $\overline{v} \cdot \overline{w} =$
 - prodotto vettoriale, $\overline{\mathbf{v}} \times \overline{\mathbf{w}} = \dots$

anche in forma matriciale

- formule di trasformazione tra le componenti di un vettore in due diversi sistemi di coordinate cartesiane (anche in forma matriciale)

Scomposizione di un vettore in un sistema di coordinate polari sferiche:

- componenti sferiche
- relazioni tra componenti sferiche e componenti cartesiane

Scomposizione di un vettore in un sistema di coordinate polari cilindriche:

- componenti cilindriche
- relazioni tra componenti cilindriche e componenti cartesiane

ESERCIZI, ESERCIZI, ESERCIZI

Siano dati i due vettori posizione, definiti in un sistema S di coordinate cartesiane, \overline{a} =(2m,2m,2m) e \overline{b} =(1m,2m,3m).

Si determinino:

- 1) il modulo dei due vettori
- 2) i coseni direttori dei due vettori
- 3) le componenti dei due vettori rispetto ad un sistema di riferimento S' con origine O' individuato da OŌ' = (0m,1m,2m) e assi coordinati paralleli ad S
- 4) il prodotto scalare ā Б
- 5) le componenti del prodotto vettoriale $\bar{a} \times \bar{b}$
- 6) le componenti dei due vettori in coordinate sferiche con asse polare coincidente con asse z
- 7) le componenti dei due vettori in coordinate cilindriche

Derivate di vettori in forma cartesiana

Consideriamo un vettore $\overline{v} = \overline{v}(t)$ dove t è una variabile (ad ex. il tempo). In un sistema di coordinate cartesiane i cui versori non dipendono dal tempo (sistema fisso) si ha

$$\overline{\mathbf{v}}(\mathbf{t}) = \mathbf{v}_{x}(\mathbf{t}) \overline{\mathbf{u}}_{x} + \mathbf{v}_{y}(\mathbf{t}) \overline{\mathbf{u}}_{y} + \mathbf{v}_{z}(\mathbf{t}) \overline{\mathbf{u}}_{z}$$

e per la derivata rispetto al tempo

$$d\overline{v}(t) / dt = [dv_x(t) / dt] \overline{u}_x + [dv_y(t) / dt] \overline{u}_y + [dv_z(t) / dt] \overline{u}_z$$

Se il vettore \overline{v} varia nel tempo ma rimane costante in modulo avremo allora

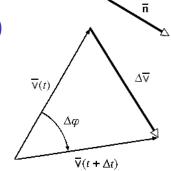
$$dv^2/dt = d(\overline{v}(t) \cdot \overline{v}(t))/dt = 0 = (d\overline{v}/dt) \cdot \overline{v} + \overline{v} \cdot (d\overline{v}/dt)$$

= 2 ($d\overline{v}/dt$) $\cdot \overline{v} = 0$ (in quanto modulo costante)

---> $d\overline{v}/dt$ è perpendicolare a \overline{v} (cioè lungo \overline{n})

e si può scrivere

$$d\overline{v}/dt = \overline{\omega} \times \overline{v}$$



con $\overline{\omega}$ vettore (che caratterizza la rotazione di \overline{v}) di modulo $\omega = d\phi/dt$, direzione perpendicolare al piano individuato da $\overline{v}(t)$ e $\overline{v}(t+dt)$ e verso tale da vedere come antioraria la rotazione di $\overline{v}(t)$

Nel caso generale (ovvero di vettore \overline{v} variabile anche in modulo), indicando con \overline{u}_v il versore di \overline{v} , avremo

$$d\overline{v}(t) / dt = d(v\overline{u}_v) / dt = (dv/dt)\overline{u}_v + vd(\overline{u}_v) / dt = (dv/dt)\overline{u}_v + v \overline{\omega} \times \overline{u}_v$$

$$= (dv/dt)\overline{u} + (\overline{\omega} \times \overline{v})$$

variazione del modulo di $\overline{\mathbf{v}}$

variazione di direzione di $\overline{\mathbf{v}}$