

Muscarinic Modulation of Cardiac Rate at Low Acetylcholine Concentrations Author(s): Dario DiFrancesco, Pierre Ducouret and Richard B. Robinson Source: *Science*, New Series, Vol. 243, No. 4891 (Feb. 3, 1989), pp. 669-671 Published by: <u>American Association for the Advancement of Science</u> Stable URL: <u>http://www.jstor.org/stable/1703311</u> Accessed: 21/11/2014 12:40

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

American Association for the Advancement of Science is collaborating with JSTOR to digitize, preserve and extend access to Science.

http://www.jstor.org

- 10. P. Dierks, A. Van Ooyen, N. Mautei, C. Weissman,
- Proc. Natl. Acad. Sci. U.S. A. 78, 1411 (1981).
 11. J. P. Leonard, J. Nargeot, T. P. Snutch, N. Davidson, H. A. Lester, J. Neurosci. 7, 875 (1987).
- 12. J. R. Moorman et al., Am. J. Physiol. 253, H985 (1987)
- 13. J. A. Úmbach and C. B. Gundersen, Proc. Natl. Acad.
- Sci. U.S.A. 84, 5464 (1987).
 N. Dascal, CRC Crit. Rev. Biochem. 22, 317 (1987).
 R. G. Audet, J. Goodchild, J. D. Richter, Dev. Biol.
- 121, 58 (1987) 16. P. Dash et al., Proc. Natl. Acad. Sci. U.S.A. 84, 7896 (1987)
- 17. I. Lotan, A. Volterra, P. Dash, S. A. Siegelbaum, P. Goelet, in preparation.
- 18. M. Noda et al., Nature 320, 188 (1986).
- 19. Only estimates of I_{tr} obtained by the I_{tr} -inactivation procedure are shown in Table 1. I_{tr} estimated by the leak-subtraction procedure was also unaffected by the oligonucleotide treatment.

- 20. We did not detect expression of voltage-dependent Na^+ or transient K^+ channels in oocytes injected with heart RNA that induced Ca^{2+} currents.
- In fact, oligonucleotides complementary to mRNAs of some channels sometimes enhanced the expression of other channels (Table 3) (I. Lotan et al., unpublished data), possibly due to weakening of the competition among different RNA species on the translational machinery of the oocytes (15); destruc-tion of one species would be expected to potentiate the expression of others.
- T. Tanabe, K. G. Beam, J. A. Powell, S. Numa, Nature 336, 134 (1988). 22.
- 23. We thank S. Siegelbaum for suggestions and S. Cohen for discussions. Supported by grants from the Muscular Dystrophy Association, the United States-Israel Binational Science Foundation, and the Israel Academy for Sciences and Humanities.

12 July 1988; accepted 25 October 1988

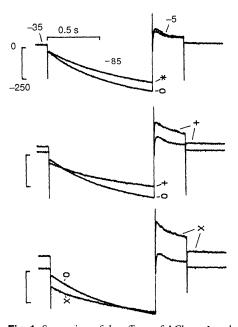
Muscarinic Modulation of Cardiac Rate at Low Acetylcholine Concentrations

DARIO DIFRANCESCO,* PIERRE DUCOURET, RICHARD B. ROBINSON

Slowing of cardiac pacemaking induced by cholinergic input is thought to arise from the opening of potassium channels caused by muscarinic receptor stimulation. In mammalian sinoatrial node cells, however, muscarinic stimulation also inhibits the hyperpolarization-activated current (If), which is involved in the generation of pacemaker activity and its acceleration by catecholamines. Acetylcholine at nanomolar concentrations inhibits If and slows spontaneous rate, whereas 20 times higher concentrations are required to activate the acetylcholine-dependent potassium current $(I_{K,ACh})$. Thus, modulation of I_f , rather than $I_{K,ACh}$, is the mechanism underlying the muscarinic control of cardiac pacing at low (nanomolar) acetylcholine concentrations.

INUS NODE AUTOMATICITY IS NORmally modulated by vagal tone. The action of acetylcholine on K⁺ conductance was identified as early as 1958 (1) and interpreted at that time as the main basis for the slowing of cardiac pacemaking by the vagus. However, later experiments raised questions concerning the significance of this mechanism in mediating cardiac rhythm under conditions of modest muscarinic receptor activation. In particular, it was observed that during short duration vagal stimulation or exposure to nanomolar concentrations of muscarine, a slowing of spontaneous heart rate occurred without any membrane hyperpolarization (2). In addition, no increase in K⁺ flux was detected under these conditions (3). These data suggest that other mechanisms may be involved in the muscarinic control of cardiac rate.

3 FEBRUARY 1989


Acetylcholine (ACh) reduces the slow inward Ca^{2+} current (4), and this has been suggested to contribute to the observed effects of ACh on cardiac rhythm (2, 5). However, in sinoatrial (SA) node cells, the "pacemaker" current If also is strongly depressed by ACh (6). ACh acts via inhibition of adenylate cyclase and a decreased production of adenosine 3',5'-monophosphate (cAMP) to shift the I_f activation curve to more negative potentials (7, 8). Thus, the possibility arises that $I_{\rm f}$ inhibition has a role in the vagal modulation of normal cardiac rhythm. To investigate this, we have compared the action of ACh on I_f and $I_{K,ACh}$ in isolated SA node myocytes.

Rabbit SA node myocytes were isolated by treatment with collagenase and elastase and whole-cell voltage or current clamped (9). We used freshly isolated cells plated on petri dishes and superfused with a Tyrode solution containing 140 mM NaCl, 5.4 mM KCl, 1.8 mM CaCl₂, 1.0 mM MgCl₂, 20 mM d-glucose, and 5.0 mM Hepes-NaOH, pH 7.4. We added $BaCl_2$ (1 mM) and $MnCl_2$ (2 mM) to better distinguish I_f changes during voltage clamp steps, when indicated. The temperature in the bath was 35° to 36°C. The internal dialyzing solution

contained 10 mM NaCl, 130 mM potassium aspartate, 2.0 mM Mg-adenosine triphosphate (ATP), 0.1 mM guanosine triphosphate (GTP), 1.0 mM EGTA, and 10 mM Hepes-KOH, pH 7.2. Test solutions were delivered by a superfusion device consisting of a wide-tipped pipette that could be positioned near the cell under study and that allowed fast (2 to 3 s) solution changes.

Superfusion of myocytes with ACh from 0.003 to 30 μM had differential effects on the currents $I_{\rm f}$ and $I_{\rm K,ACh}$ that changed with concentration. If was activated by hyperpolarizing steps from a holding potential of -35 mV (Fig. 1). Addition of 0.01 μM ACh resulted in a reduction of I_f at -85mV, consistent with a shift of the If activation curve to more negative voltages (6, 7). The size of the current $I_{\rm f}$ was reduced more by 0.1 μM ACh (middle) and was only slightly affected by further increasing the ACh concentration to $1 \mu M$ (lower). On the other hand, an increase in K⁺ permeability, as detected in changes in the holding current and in the instantaneous current at the onset of voltage steps, could only be observed at 0.1 μ M or higher ACh concentrations. In all of the seven cells studied by this protocol, $I_{\rm f}$ inhibition by ACh occurred at concentrations at least one order of magnitude below that at which IK,ACh activation was observed.

Precise quantitation of this apparent difference in sensitivity of $I_{\rm f}$ and $I_{\rm K,ACh}$ could

Fig. 1. Separation of the effects of ACh on $I_{\rm f}$ and $I_{K,ACh}$. Two-pulse protocols were applied every 3 s during superfusion with various doses of ACh. The myocyte was superfused with normal Tyrode solution (O, control) and with Tyrode containing $0.01 (*), 0.1 (+), and 1 \mu M (x)$ ACh. In each case ACh superfusion was maintained until a steadystate effect was achieved, typically 20 s, and was followed by an appropriate washout period.

D. DiFrancesco, Dipartimento di Fisiologia e Biochi-mica Generali, Elettrofisiologia, via Celoria 26, 20133 Milano, Italy.

P. Ducouret, Laboratoire de Physiologie Animale, Université de Poitiers, 40 Avenue du Recteur Pineau, 86022 Poitiers, France.


R. B. Robinson, Department of Pharmacology, Colum-bia University, 630 West 168 Street, New York, NY 10032.

^{*}To whom correspondence should be addressed.

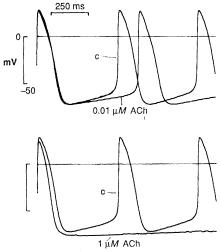

not be obtained under these experimental conditions because of the overlap of effects at higher ACh concentrations. We therefore measured the dose-response relation for each current under conditions that permitted their complete separation (Fig. 2). The $I_{\rm f}$ relation was obtained in the presence of Ba^{2+} to block $I_{K,ACh}$, whereas $I_{K,ACh}$ was measured in a voltage range in which $I_{\rm f}$ is fully deactivated. As mentioned above, ACh causes a leftward shift of the activation curve of $I_{\rm f}$ along the voltage axis. The magnitude of this shift can be quantified by adjusting the holding potential during application of a step of fixed amplitude, until the If waveform in the presence of ACh is superimposed over the control record. Current traces and the corresponding holding potentials recorded with this protocol in different ACh concentrations from one representative cell are shown in Fig. 2A. The resulting dose-response relation is illustrated in Fig. 2C (triangles). The half-maximal concentration was 0.013 μM . In a separate series of experiments, we measured IK,ACh at the holding potential of -40 mV in the presence of different concentrations of ACh. This holding potential was selected to minimize possible interference of the delayed K⁺ current, $I_{\rm K}$ (10) (Fig. 2B). The measured

Fig. 2. Dose-response relations. (A) Typical protocol used to measure voltage shifts of the If activation curve as caused by ACh. A hyperpolarization to -90 mV followed by a depolarization to +5mV was applied from a holding potential of -35 mV in the control solution every 3 s. Individual ACh concentrations were then applied, each followed by a return to control solution. All solutions contained BaCl₂ (1 mM) and MnCl₂ (2 mM). To estimate the voltage shift of the If activation curve caused by ACh. the holding potential was adjusted during each ACh superfusion until the ACh-induced decrease in If during the negative step was compensated and the control $I_{\rm f}$ size was fully restored. The panel shows current traces recorded at ACh concencurrents were normalized on the basis of cell capacitance. The half-maximal concentration, on the basis of the dose-response relation, was 0.26 μ M (Fig. 2C, circles). Thus, the qualitative difference suggested by the earlier experiment was confirmed. There is a 20-fold difference in the half-maximal concentrations of ACh required to inhibit $I_{\rm f}$ and activate $I_{\rm K,Ach}$, respectively.

We next investigated whether this difference in sensitivity was reflected in the behavior of the cell during spontaneous activity. Activity of spontaneously beating cells was monitored during superfusion with a series of ACh concentrations. ACh $(0.01 \ \mu M)$ led to a slowing of the pacemaker rate due to a decreased slope of the diastolic depolarization, consistent with an inhibition of $I_{\rm f}$ (Fig. 3, top). At this concentration there was no obvious hyperpolarization of the membrane, as expected if $I_{K,ACh}$ is not activated. At 1 μM there was a marked hyperpolarization and a shortening of the action potential (bottom), both effects consistent with strong activation of $I_{K,ACh}$. At the intermediate concentration of $0.1 \mu M$, slight hyperpolarization and intermediate slowing occurred. Similar results were obtained with multiple ACh applications in three cells. Plotting the percent slowing of pacemaker

The index field of the field o

Fig. 3. Effects of different ACh concentrations on the rate of spontaneous activity in an SA node myocyte. Activity was recorded in control Tyrode solution (c) and during superfusion with ACh $0.01 \ \mu M$ (**top**) and $1 \ \mu M$ (**bottom**), as indicated. Similar results were obtained in three cells.

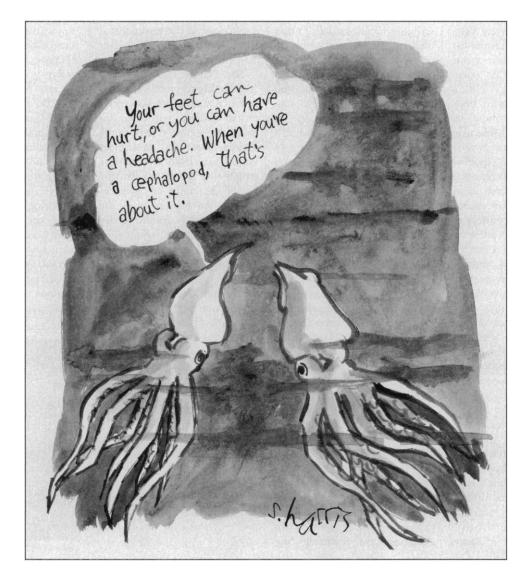
rate (Fig. 2C) as a function of ACh concentration shows that greatest slowing occurs below 0.1 μM ACh (68% decrease), where K⁺-conductance activation is minimal and $I_{\rm f}$ depression is substantial. Superfusion with ACh at 1 μM or higher invariably led to arrest (plotted as 100% frequency inhibition).

Our study describes the full dose-response relation for ACh action on If and IK, ACh in single SA node cells. There is a 20-fold difference in the half-maximal concentrations of ACh needed to inhibit the pacemaker current $I_{\rm f}$ and activate $I_{\rm K,ACh}$. As little as 0.01 μ M ACh can induce a significant shift of the If activation curve and a slowing of spontaneous rate without activation of $I_{K,ACh}$ or membrane hyperpolarization. The latter effects are observed only at higher concentrations of ACh. In fact, at concentrations below 0.1 μM , where $I_{\rm f}$ modulation is the more prominent action of ACh, spontaneous rate is slowed by more than a factor of 2, and when concentrations of ACh causing a substantial K⁺-current activation are used $(1 \ \mu M \text{ or higher})$, cessation of spontaneous activity occurs. The IK,ACh sensitivity reported here is consistent with that reported by Breitwieser and Szabo (11) in single atrial cells (0.16 μM) and is considerably greater than that reported in intact SA node tissue by Osterrieder, Noma, and Trautwein (12) $(1.7 \ \mu M)$. Thus, the 20-fold difference in sensitivity we observe between the actions of ACh on I_f and $I_{K,ACh}$ is not due to an abnormal insensitivity of $I_{K,ACh}$ in these isolated SA node cells.

Our data provide an explanation of the results of Shibata *et al.* (2), who found that moderate vagal stimulation led to a slowing

SCIENCE, VOL. 243

of sinus rate without membrane hyperpolarization. At stronger vagal stimulation, membrane hyperpolarization appeared. Indeed, we show here that inhibition of $I_{\rm f}$ can account for the slowing observed at low doses of ACh. Obviously, effects of ACh on $I_{K,ACh}$ also contribute to rate slowing, as evidenced by the fact that the ACh doseresponse relation for the effect on pacemaker rate is between the curves for $I_{\rm f}$ and $I_{\rm K,ACh}$. However, this only applies to higher concentrations of ACh. In addition, effects of ACh on the slow inward current (I_{si}) also may occur (8). Although we did not perform a detailed study of the action of low doses of Ach on I_{si} , we observed that ACh at 0.01 μ M did not affect I_{si} in nine out of nine cells, whereas ACh at concentrations of 0.1 and 1 μM decreased I_{si} in four out of seven and six out of eight cells, respectively. Furthermore, we did not observe any marked effect of low concentrations of ACh on action potential amplitude (Fig. 3, top). Because a moderate reduction of I_{si} would have a minor effect on the slope of diastolic depolarization (13), it seems unlikely that I_{si} plays a major role in underlying frequency changes at low ACh concentrations.


The presence of two distinct mechanisms of muscarinic action involving two different concentration ranges of ACh may be useful for regulating cardiac rhythm under different conditions. For example, in the resting heart, modulation of rate by vagal tone could arise from control of $I_{\rm f}$ availability. This would maintain slowing at less energy cost to the cell than by increasing K⁺ permeability, which requires the recovery of K⁺ ions extruded during activity. Under conditions of more marked vagal activity, $I_{\rm K,ACh}$ also would be activated and Isi reduced, resulting in a greater bradycardia and a depression of excitability in the atrium as well as in the SA node.

REFERENCES AND NOTES

- 1. W. Trautwein and J. Dudel, Pfluegers Arch. 266, 324 (1958)
- 2. E. F. Shibata, W. Giles, G. H. Pollack, Proc. R. Soc. London Ser. B 223, 355 (1985).

- 3. L. N. Bouman, E. D. Gerlings, A. Biersteker, Acta Physiol. Pharmacol. Neerl. 12, 282 (1963); A. Paes de Carvalho, B. F. Hoffman, M. Paula de Carvalho, J. Gen. Physiol. 54, 607 (1969); E. Musso and M. Vassalle, Cardiovasc. Res. 9, 490 (1975).
- 4. Y. Ikemoto and M. Goto, *Proc. Jpn. Acad.* **51**, 501 (1975); W. Giles and S. J. Noble, *J. Physiol. (Lon*don) 261, 103 (1976).
- 5. H. F. Brown et al., Proc. R. Soc. London Ser. B 222, 305 (1984).
- 6. D. DiFrancesco and C. Tromba, Pfluegers Arch. 410, 139 (1987).
- J. Physiol. (London) 405, 477 (1988).
 , ibid., p. 510.
 D. DiFrancesco et al., ibid. 377, 61 (1986).
- 10. D. DiFrancesco, A. Noma, W. Trautwein, Pfluegers Arch. 381, 271 (1979)
- 11. G. E. Breitwieser and G. Szabo, J. Gen. Physiol. 91, 469 (1988).
- W. Osterrieder, A. Noma, W. Trautwein, *Pfluegers* Arch. 386, 101 (1980).
 D. DiFrancesco and D. Noble, *Cellular and Neuronal*
- Oscillators, J. W. Jacklet, Ed. (Dekker, New York, 1988).
- 14. We thank I. S. Cohen and M. R. Rosen for their comments and suggestions. Supported by NIH grant R01 HL-35064 and by CNR grant CT86.00057 to D.D. P.D. was supported by the Foundation pour la Recherche Medicale. R.B.R. is an Established Fellow of the New York Heart Association.

16 August 1988; accepted 23 November 1988

3 FEBRUARY 1989

REPORTS 671