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Imre Pólik and Tamás Terlaky 3

1 Introduction 4

1.1 Historical Background 5

Interior-point methods (IPMs) are among the most efficient methods for 6

solving linear, and also wide classes of other convex optimization problems. 7

Since the path-breaking work of Karmarkar [48], much research was invested 8

in IPMs. Many algorithmic variants were developed for Linear Optimiza- 9

tion (LO). The new approach forced to reconsider all aspects of optimization 10

problems. Not only the research on algorithms and complexity issues, but 11

implementation strategies, duality theory and research on sensitivity analy- 12

sis got also a new impulse. After more than a decade of turbulent research, 13

the IPM community reached a good understanding of the basics of IPMs. 14

Several books were published that summarize and explore different aspects 15

of IPMs. The seminal work of Nesterov and Nemirovski [63] provides the 16

most general framework for polynomial IPMs for convex optimization. Den 17

Hertog [42] gives a thorough survey of primal and dual path-following IPMs 18

for linear and structured convex optimization problems. Jansen [45] discusses 19

primal-dual target following algorithms for linear optimization and comple- 20

mentarity problems. Wright [93] also concentrates on primal-dual IPMs, with 21

special attention on infeasible IPMs, numerical issues and local, asymptotic 22

convergence properties. The volume [80] contains 13 survey papers that cover 23

almost all aspects of IPMs, their extensions and some applications. The book 24

of Ye [96] is a rich source of polynomial IPMs not only for LO, but for convex 25

optimization problems as well. It extends the IPM theory to derive bounds 26
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and approximations for classes of nonconvex optimization problems as well. 27

Finally, Roos, Terlaky and Vial [72] present a thorough treatment of the IPM 28

based theory – duality, complexity, sensitivity analysis – and wide classes of 29

IPMs for LO. 30

Before going in a detailed discussion of our approach, some remarks are 31

made on implementations of IPMs and on extensions and generalizations. 32

IPMs have also been implemented with great success for linear, conic and 33

general nonlinear optimization. It is now a common sense that for large-scale, 34

sparse, structured LO problems, IPMs are the method of choice and by today 35

all leading commercial optimization software systems contain implementa- 36

tions of IPMs. The reader can find thorough discussions of implementation 37

strategies in the following papers: [5, 53, 55, 94]. The books [72, 93, 96] also 38

devote a chapter to that subject. 39

Some of the earlier mentioned books [42, 45, 63, 80, 96] discuss extensions 40

of IPMs for classes of nonlinear problems. In recent years the majority 41

of research is devoted to IPMs for nonlinear optimization, specifically for 42

second order (SOCO) and semidefinite optimization (SDO). SDO has a 43

wide range of interesting applications not only in such traditional areas as 44

combinatorial optimization [1], but also in control, and different areas of 45

engineering, more specifically structural [17] and electrical engineering [88]. 46

For surveys on algorithmic and complexity issues the reader may consult 47

[16, 18–20,63, 64, 69, 75]. 48

In the following sections we will build up the theory gradually, starting 49

with linear optimization and generalizing through conic optimization to non- 50

linear optimization. We will demonstrate that the main idea behind the 51

algorithms is similar but the details and most importantly the analysis of 52

the algorithms are slightly different. 53

1.2 Notation and Preliminaries 54

After years of intensive research a deep understanding of IPMs is devel- 55

oped. There are easy to understand, simple variants of polynomial IPMs. 56

The self-dual embedding strategy [47,72,97] provides an elegant solution for 57

the initialization problem of IPMs. It is also possible to build up not only 58

the complete duality theory of [72] of LO, but to perform sensitivity analy- 59

sis [45, 46, 58, 72] on the basis of IPMs. We also demonstrate that IPMs not 60

only converge to an optimal solution (if it exists), but after a finite number 61

of iterations also allow a strongly polynomial rounding procedure [56, 72] to 62

generate exact solutions. This all requires only the knowledge of elementary 63

calculus and can be taught not only at a graduate, but at an advanced un- 64

dergraduate level as well. Our aim is to present such an approach, based on 65

the one presented in [72]. 66
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This chapter is structured as follows. First, in Section 2.1 we briefly re- 67

view the general LO problem in canonical form and discuss how Goldman and 68

Tucker’s [32, 85] self-dual and homogeneous model is derived. In Section 2.2 69

the Goldman-Tucker theorem, i.e., the existence of a strictly complementary 70

solution for the skew-symmetric self-dual model will be proved. Here such 71

basic IPM objects, as the interior solution, the central path, the Newton 72

step, the analytic center of polytopes will be introduced. We will show that 73

the central path converges to a strictly complementary solution, and that an 74

exact strictly complementary solution for LO, or a certificate for infeasibility 75

can be obtained after a finite number of iterations. Our theoretical develop- 76

ment is summarized in Section 2.3. Finally, in Section 2.4 a general scheme 77

of IPM algorithms is presented. This is the scheme that we refer back to in 78

later sections. In Section 3 we extend the theory to conic (second order and 79

semidefinite) optimization, discuss some applications and present a variant 80

of the algorithm. Convex nonlinear optimization is discussed in Section 4 and 81

a suitable interior point method is presented. Available software implemen- 82

tations are discussed in Section 5. Some current research directions and open 83

problems are discussed in Section 6. 84

1.2.1 Notation 85

R
n
+ denotes the set of nonnegative vectors in R

n. Throughout, we use ‖·‖p 86

(p ∈ {1, 2,∞}) to denote the p-norm on R
n, with ‖·‖ denoting the Euclidean 87

norm ‖·‖2. I denotes the identity matrix, e is used to denote the vector 88

which has all its components equal to one. Given an n-dimensional vector x, 89

we denote by X the n × n diagonal matrix whose diagonal entries are the 90

coordinates xj of x. If x, s ∈ R
n then xT s denotes the dot product of the 91

two vectors. Further, xs, xα for α ∈ R and max{x, y} denotes the vectors 92

resulting from coordinatewise operations. For any matrix A ∈ R
m×n, Aj 93

denotes the jth column of A. Furthermore, 94

π(A) :=
n∏
j=1

‖Aj‖. (1.1)

For any index set J ⊆ {1, 2, . . . , n}, |J | denotes the cardinality of J and 95

AJ ∈ R
m×|J| the submatrix of A whose columns are indexed by the elements 96

in J . Moreover, if K ⊆ {1, 2, . . . ,m}, AKJ ∈ R
|K|×|J| is the submatrix of AJ 97

whose rows are indexed by the elements in K. 98

Vectors are assumed to be column vectors. The (vertical) concatenation 99

of two vectors (or matrices of appropriate size) u and v is denoted by (u; v), 100

while the horizontal concatenation is (u, v). 101
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2 Interior Point Methods for Linear Optimization 102

This section is based on [81]. Here we build the theory of interior point 103

methods for linear optimization including almost all the proofs. In later sec- 104

tions we refer back to these results. 105

2.1 The Linear Optimization Problem 106

We consider the general LO problem (P ) and its dual (D) in canonical form: 107

min
{
cTu : Au ≥ b, u ≥ 0

}
(P)

max
{
bT v : AT v ≤ c, v ≥ 0

}
, (D)

where A is an m × k matrix, b, v ∈ R
m and c, u ∈ R

k. It is well known that 108

by using only elementary transformations, any given LO problem can easily 109

be transformed into a “minimal” canonical form. These transformations can 110

be summarized as follows: 111

• introduce slacks in order to get equations (if a variable has a lower and 112

an upper bound, then one of these bounds is considered as an inequality 113

constraint); 114

• shift the variables with lower or upper bound so that the respective bound 115

becomes 0 and, if needed replace the variable by its negative; 116

• eliminate free variables;1 117

• use Gaussian elimination to transform the problem into a form where all 118

equations have a singleton column (i.e., choose a basis and multiply the 119

equations by the inverse basis) while dependent constraints are eliminated. 120

The weak duality theorem for the canonical LO problem is easily proved. 121

1 Free variables can easily be eliminated one-by-one. If we assume that x1 is a free variable
and has a nonzero coefficient in a constraint, e.g., we have

n∑
i=1

αixi = β

with α1 �= 0, then we can express x1 as

x1 =
β

α1
−

n−1∑
i=1

αi

α1
xi. (2.1)

Because x1 has no lower or upper bounds, this expression for x1 can be substituted into
all the other constraints and in the objective function.
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Theorem 2.1 (Weak duality for linear optimization). Let us assume 122

that u ∈ R
k and v ∈ R

m are feasible solutions for the primal problem (P ) 123

and dual problem (D), respectively. Then one has 124

cTu ≥ bT v

where equality holds if and only if 125

(i) ui(c − AT v)i = 0 for all i = 1, . . . , k and 126

(ii) vj(Au − b)j = 0 for all j = 1, . . . ,m.2 127

Proof. Using primal and dual feasibility of u and v we may write 128

(c − AT v)Tu ≥ 0 and vT (Au − b) ≥ 0

with equality if and only if (i), respectively (ii) holds. Summing up these two 129

inequalities we have the desired inequality 130

0 ≤ (c − AT v)Tu + vT (Au − b) = cTu − bT v.

The theorem is proved. !"
One easily derives the following sufficient condition for optimality. 131

Corollary 2.2. Let a primal and dual feasible solution u ∈ R
k and v ∈ R

m

with cTu = bT v be given. Then u is an optimal solution of the primal problem
(P ) and v is an optimal solution of the dual problem (D). !"

The Weak Duality Theorem provides a sufficient condition to check optimal- 132

ity of a feasible solution pair. However, it does not guarantee that, in case 133

of feasibility, an optimal pair with zero duality gap always exists. This is the 134

content of the so-called Strong Duality Theorem that we are going to prove in 135

the next sections by using only simple calculus and basic concepts of IPMs. 136

As we are looking for optimal solutions of the LO problem with zero duality 137

gap, we need to find a solution of the system formed by the primal and the 138

dual feasibility constraints and by requiring that the dual objective is at least 139

as large as the primal one. By the Weak Duality Theorem (Thm. 2.1) we know 140

that any solution of this system is both primal and dual feasible with equal 141

objective values. Thus, by Corollary 2.2, they are optimal. By introducing 142

appropriate slack variables the following inequality system is derived. 143

Au − z = b, u ≥ 0, z ≥ 0
AT v + w = c, v ≥ 0, w ≥ 0

bT v − cTu − ρ = 0, ρ ≥ 0.
(2.2)

2 These conditions are in general referred to as the complementarity conditions. Using the
coordinatewise notation we may write u(c − AT v) = 0 and v(Au − b) = 0. By the weak
duality theorem complementarity and feasibility imply optimality.
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By homogenizing, the Goldman-Tucker model [32, 85] is obtained. 144

Au −τb −z = 0, u ≥ 0, z ≥ 0
−AT v +τc −w = 0, v ≥ 0, w ≥ 0

bT v −cTu −ρ = 0, τ ≥ 0, ρ ≥ 0.
(2.3)

One easily verifies that if (v, u, τ, z, w, ρ) is a solution of the Goldman- 145

Tucker system (2.3), then τρ > 0 cannot hold. Indeed, if τρ were positive 146

then the we would have 147

0 < τρ = τbT v − τcTu = uTAT v − zTv − vTAu − wTu = −zTv − wTu ≤ 0

yielding a contradiction. 148

The homogeneous Goldman-Tucker system admits the trivial zero solution, 149

but that has no value for our discussions. We are looking for some specific 150

nontrivial solutions of this system. Clearly any solution with τ > 0 gives a 151

primal and dual optimal pair (uτ , vτ ) with zero duality gap because ρ must be 152

zero if τ > 0. On the other hand, any optimal pair (u, v) with zero duality 153

gap is a solution of the Goldman-Tucker system with τ = 1 and ρ = 0. 154

Finally, if the Goldman-Tucker system admits a nontrivial feasible solution 155

(v, u, τ , z, w, ρ) with τ = 0 and ρ > 0, then we may conclude that either (P ), 156

or (D), or both of them are infeasible. Indeed, τ = 0 implies that Au ≥ 0 157

and AT v ≤ 0. Further, if ρ > 0 then we have either bT v > 0, or cTu < 0, or 158

both. If bT v > 0, then by assuming that there is a feasible solution u ≥ 0 for 159

(P ) we have 160

0 < bT v ≤ uTAT v ≤ 0

which is a contradiction, thus if bT v > 0, then (P ) must be infeasible. Simi- 161

larly, if cTu < 0, then by assuming that there is a dual feasible solution v ≥ 0 162

for (D) we have 163

0 > cTu ≥ vTAu ≥ 0

which is a contradiction, thus if cTu > 0, then (D) must be infeasible. 164

Summarizing the results obtained so far, we have the following theorem. 165

Theorem 2.3. Let a primal dual pair (P ) and (D) of LO problems be given. 166

The following statements hold for the solutions of the Goldman-Tucker sys- 167

tem (2.3). 168

1. Any optimal pair (u, v) of (P ) and (D) with zero duality gap is a solution 169

of the corresponding Goldman-Tucker system with τ = 1. 170

2. If (v, u, τ, z, w, ρ) is a solution of the Goldman-Tucker system then either 171

τ = 0 or ρ = 0, i.e., τρ > 0 cannot happen. 172

3. Any solution (v, u, τ, z, w, ρ) of the Goldman-Tucker system, where τ > 0 173

and ρ = 0, gives a primal and dual optimal pair (uτ , vτ ) with zero duality 174

gap. 175
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4. If the Goldman-Tucker system admits a feasible solution (v, u, τ , z, w, ρ) 176

with τ = 0 and ρ > 0, then we may conclude that either (P ), or (D), or 177

both of them are infeasible. 178

Our interior-point approach will lead us to a solution of the Goldman- 179

Tucker system, where either τ > 0 or ρ > 0, avoiding the undesired situation 180

when τ = ρ = 0. 181

Before proceeding, we simplify our notations. Observe that the Goldman- 182

Tucker system can be written in the following compact form 183

Mx ≥ 0, x ≥ 0, s(x) = Mx, (2.4)

where 184

x =

⎛
⎝ v

u

τ

⎞
⎠ , s(x) =

⎛
⎝ z

w

ρ

⎞
⎠ and M =

⎛
⎝ 0 A −b

−AT 0 c

bT −cT 0

⎞
⎠

is a skew-symmetric matrix, i.e., MT = −M . The Goldman-Tucker the- 185

orem [32, 72, 85] says that system (2.4) admits a strictly complementary 186

solution. This theorem will be proved in the next section. 187

Theorem 2.4 (Goldman, Tucker). System (2.4) has a strictly comple- 188

mentary feasible solution, i.e., a solution for which x + s(x) > 0. 189

Observe that this theorem ensures that either case 3 or case 4 of Theorem 2.3 190

must occur when one solves the Goldman-Tucker system of LO. This is in 191

fact the strong duality theorem of LO. 192

Theorem 2.5. Let a primal and dual LO problem be given. Exactly one of 193

the following statements hold: 194

• (P ) and (D) are feasible and there are optimal solutions u∗ and v∗ such 195

that cTu∗ = bT v∗. 196

• Either problem (P ), or (D), or both are infeasible. 197

Proof. Theorem 2.4 implies that the Goldman-Tucker system of the LO prob-
lem admits a strictly complementary solution. Thus, in such a solution, either
τ > 0, and in that case item 3 of Theorem 2.3 implies the existence of an
optimal pair with zero duality gap. On the other hand, when ρ > 0, item 4
of Theorem 2.3 proves that either (P ) or (D) or both are infeasible. !"

Our next goal is to give an elementary constructive proof of Theorem 2.4. 198

When this project is finished, we have the complete duality theory 199

for LO. 200
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222 I. Pólik and T. Terlaky

2.2 The Skew-Symmetric Self-Dual Model 201

2.2.1 Basic Properties of the Skew-Symmetric Self-Dual Model 202

Following the approach in [72] we make our skew-symmetric model (2.4) a 203

bit more general. Thus our prototype problem is 204

min
{
qTx : Mx ≥ −q, x ≥ 0

}
, (SP)

where the matrix M ∈ R
n×n is skew-symmetric and q ∈ R

n
+. The set of 205

feasible solutions of (SP ) is denoted by 206

SP := {x : x ≥ 0, Mx ≥ −q }.

By using the assumption that the coefficient matrix M is skew-symmetric 207

and the right-hand-side vector −q is the negative of the objective coefficient 208

vector, one easily verifies that the dual of (SP) is equivalent to (SP) itself, 209

i.e., problem (SP) is self-dual. Due to the self-dual property the following 210

result is trivial. 211

Lemma 2.6. The optimal value of (SP) is zero and (SP) admits the zero 212

vector x = 0 as a feasible and optimal solution. 213

Given (x, s(x)), where s(x) = Mx + q we may write 214

qTx = xT (s(x) − Mx) = xT s(x) = eT (xs(x)),

i.e., for any optimal solution eT (xs(x)) = 0 implying that the vectors x and 215

s(x) are complementary. For further use, the optimal set of (SP) is denoted by 216

SP ∗ := {x : x ≥ 0, s(x) ≥ 0, xs(x) = 0}.

A useful property of optimal solutions is given by the following lemma. 217

Lemma 2.7. Let x and y be feasible for (SP). Then x and y are optimal if 218

and only if 219

xs(y) = ys(x) = xs(x) = ys(y) = 0. (2.5)

Proof. Because M is skew-symmetric we have (x − y)TM(x − y) = 0, which
implies that (x − y)T (s(x) − s(y)) = 0. Hence xT s(y) + yT s(x) = xT s(x) +
yT s(y) and this vanishes if and only if x and y are optimal. !"

Thus, optimal solutions are complementary in the general sense, i.e., they are 220

not only complementary w.r.t. their own slack vector, but complementary 221

w.r.t. the slack vector for any other optimal solution as well. 222

All of the above results, including to find a trivial optimal solution were 223

straightforward for (SP). The only nontrivial result that we need to prove is 224

the existence of a strictly complementary solution. 225
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First we prove the existence of a strictly complementary solution if the 226

so-called interior-point condition holds. 227

Assumption 2.8 (Interior-Point Condition (IPC)) 228

There exists a point x0 ∈ SP such that 229

(x0, s(x0)) > 0. (2.6)

Before proceeding, we show that this condition can be assumed without 230

loss of generality. If the reader is eager to know the proof of the existence of 231

a strictly complementary solution for the self dual model (SP), he/she might 232

temporarily skip the following subsection and return to it when all the results 233

for the problem (SP) are derived under the IPC. 234

2.2.2 IPC for the Goldman-Tucker Model 235

Recall that (SP) is just the abstract model of the Goldman-Tucker problem 236

(2.4) and our goal is to prove Theorem 2.4. In order to apply the results of 237

the coming sections we need to modify problem (2.4) so that the resulting 238

equivalent problem satisfies the IPC. 239

Self-dual embedding of (2.4) with IPC 240

Due to the second statement of Theorem 2.3, problem (2.4) cannot satisfy 241

the IPC. However, because problem (2.4) is just a homogeneous feasibility 242

problem, it can be transformed into an equivalent problem (SP) which sat- 243

isfies the IPC. This happens by enlarging, i.e., embedding the problem and 244

defining an appropriate nonnegative vector q. 245

Let us take x = s(x) = e. These vectors are positive, but they do not 246

satisfy (2.4). Let us further define the error vector r obtained this way by 247

r := e − Me, and let λ := n + 1.

Then we have 248(
M r

−rT 0

)(
e

1

)
+
(

0
λ

)
=
(

Me + r

−rT e + λ

)
=
(

e

1

)
. (2.7)

Hence, the following problem 249

min
{

λϑ : −
(

M r

−rT 0

)(
x

ϑ

)
+
(

s

ν

)
=
(

0
λ

)
;
(

x

ϑ

)
,

(
s

ν

)
≥ 0

}
(SP)
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satisfies the IPC because for this problem the all-one vector is feasible. This 250

problem is in the form of (SP), where 251

M =
(

M r

−rT 0

)
, x =

(
x

ϑ

)
and q̄ =

(
0
λ

)
.

We claim that finding a strictly complementary solution to (2.4) is equiv- 252

alent to finding a strictly complementary optimal solution to problem (SP). 253

This claim is valid, because (SP) satisfies the IPC and thus, as we will 254

see, it admits a strictly complementary optimal solution. Because the ob- 255

jective function is just a constant multiple of ϑ, this variable must be zero 256

in any optimal solution, by Lemma 2.6. This observation implies the claimed 257

result. 258

Conclusion 259

Every LO problem can be embedded in a self-dual problem (SP) of the 260

form (SP). This can be done in such a way that x = e is feasible for (SP) and 261

s(e) = e. Having a strictly complementary solution of (SP) we either find an 262

optimal solution of the embedded LO problem, or we can conclude that the 263

LO problem does not have an optimal solution. 264

After this intermezzo, we return to the study of our prototype problem 265

(SP) by assuming the IPC. 266

2.2.3 The Level Sets of (SP) 267

Let x ∈ SP and s = s(x) be a feasible pair. Due to self duality, the duality 268

gap for this pair is twice the value 269

qTx = xT s,

however, for the sake of simplicity, the quantity qTx = xT s itself will be 270

referred to as the duality gap. First we show that the IPC implies the bound- 271

edness of the level sets. 272

Lemma 2.9. Let the IPC be satisfied. Then, for each positive K, the set of 273

all feasible pairs (x, s) such that xT s ≤ K is bounded. 274

Proof. Let (x0, s0) be an interior-point. Because the matrix M is skew- 275

symmetric, we may write 276

0 = (x − x0)TM(x − x0) = (x − x0)T (s − s0)

= xT s + (x0)T s0 − xT s0 − sTx0. (2.8)
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From here we get 277

xjs
0
j ≤ xT s0 + sTx0 = xT s + (x0)T s0 ≤ K + (x0)T s0.

The proof is complete. !"

In particular, this lemma implies that the set of optimal solutions SP ∗ is 278

bounded as well.3 279

2.2.4 Central Path, Optimal Partition 280

First we define the central path [23, 27, 54, 74] of (SP). 281

Definition 2.11. Let the IPC be satisfied. The set of solutions 282

{(x(μ), s(x(μ))) : Mx + q = s, xs = μe, x > 0 for some μ > 0} (2.9)

is called the central path of (SP). 283

If no confusion is possible, instead of s(x(μ)) the notation s(μ) will be used. 284

Now we are ready to present our main theorem. This in fact establishes the 285

existence of the central path. At this point our discussion deviates from the 286

one presented in [72]. The proof presented here is more elementary because it 287

does not make use of the logarithmic barrier function. 288

Theorem 2.12. The next statements are equivalent. 289

i. (SP) satisfies the interior-point condition; 290

ii. For each 0 < μ ∈ R there exists (x(μ), s(μ)) > 0 such that 291

Mx + q = s (2.10)
xs = μe.

iii. For each 0 < w ∈ R
n there exists (x, s) > 0 such that 292

Mx + q = s (2.11)
xs = w.

3 The following result shows that the IPC not only implies the boundedness of the level
sets, but the converse is also true. We do not need this property in developing our main
results, so this is presented without proof.

Corollary 2.10. Let (SP) be feasible. Then the following statements are equivalent:

i. the interior-point condition is satisfied;
ii. the level sets of xT s are bounded;
iii. the optimal set SP ∗ of (SP) is bounded.
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Moreover, the solutions of these systems are unique. 293

Before proving this highly important result we introduce the notion of optimal 294

partition and present our main result. The partition (B,N) of the index set 295

{1, ..., n} given by 296

B := {i : xi > 0, for some x ∈ SP ∗} , (2.12a)

N := {i : s(x)i > 0, for some x ∈ SP ∗} , (2.12b)

is called the optimal partition. By Lemma 2.7 the sets B and N are disjoint. 297

Our main result says that the central path converges to a strictly comple- 298

mentary optimal solution, and this result proves that B ∪ N = {1, ..., n}. 299

When this result is established, the Goldman-Tucker theorem (Theorem 2.4) 300

for the general LO problem is proved because we use the embedding method 301

presented in Section 2.2.2. 302

Theorem 2.13. If the IPC holds then there exists an optimal solution x∗ 303

and s∗ = s(x∗) of problem (SP) such that x∗
B > 0, s∗N > 0 and x∗ + s∗ > 0. 304

First we prove Theorem 2.12. 305

Proof. We start the proof by demonstrating that the systems in (ii) and (iii ) 306

may have at most one solution. Because (ii) is a special case of (iii), it is 307

sufficient to prove uniqueness for (iii). 308

Let us assume to the contrary that for a certain w > 0 there are two 309

vectors (x, s) 
= (x, s) > 0 solving (iii). Then using the fact that matrix M 310

is skew-symmetric, we may write 311

0 = (x − x)TM(x − x) = (x − x)T (s − s) =
∑
xi �=xi

(x − x)i(s − s)i. (2.13)

Due to xs = w = x s we have 312

xi < xi ⇐⇒ si > si (2.14a)

xi > xi ⇐⇒ si < si. (2.14b)

By considering these sign properties one easily verifies that the relation 313

0 =
∑
xi �=xi

(x − x)i(s − s)i < 0 (2.15)

should hold, but this is an obvious contradiction. As a result, we may conclude
that if the systems in (ii) and (iii) admit a feasible solution, then such a
solution is unique. !"
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The Newton step 314

In proving the existence of a solution for the systems in (ii) and (iii) our main 315

tool is a careful analysis of the Newton step when applied to the nonlinear 316

systems in (iii).4 317

Let a vector (x, s) > 0 with s = Mx + q be given. For a particular w > 0 318

one wants to find the displacement (Δx,Δs) that solves 319

M(x + Δx) + q = s + Δs (2.16)
(x + Δx)(s + Δs) = w.

This reduces to 320

MΔx = Δs (2.17)
xΔs + sΔx + ΔxΔs = w − xs.

This equation system is still nonlinear. When we neglect the second order 321

term ΔxΔs the Newton equation 322

MΔx = Δs (2.18)
xΔs + sΔx = w − xs

is obtained. This is a linear equation system and the reader easily verifies 323

that the Newton direction Δx is the solution of the nonsingular system of 324

equations5 325

(M + X−1S)Δx = x−1w − s. (2.19)

When we perform a step in the Newton direction with step-length α, for the 326

new solutions (x+, s+) = (x + αΔx, s + αΔs) we have 327

x+s+ = (x + αΔx)(s + αΔs) = xs + α(xΔs + sΔx) + α2ΔxΔs (2.20)

= xs + α(w − xs) + α2ΔxΔs.

This relation clarifies that the local change of xs is determined by the vector 328

w − xs. Luckily this vector is known in advance when we apply a Newton 329

step, thus for sufficiently small α we know precisely which coordinates of xs

4 Observe that no preliminary knowledge on any variants of Newton’s method is assumed.
We just define and analyze the Newton step for our particular situation.
5 Nonsingularity follows from the fact that the sum of a skew-symmetric, thus positive
semi-definite, and a positive definite matrix is positive definite. Although it is not advised
to use for numerical computations, the Newton direction can be expressed as Δx = (M +
X−1S)−1 (x−1w − s).
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decrease locally (precisely those for which the related coordinate of w − xs 330

is negative) and which coordinate of xs increase locally (precisely those for 331

which the related coordinate of w − xs is positive). 332

The equivalence of the three statements in Theorem 2.12. 333

Clearly (ii) is a special case of (iii) and the implication (ii) → (i) is trivial. 334

It only remains to be proved that (i), i.e., the IPC, ensures that for each 335

w > 0 the nonlinear system in (iii) is solvable. To this end, let us assume that 336

an x0 ∈ SP with (x0, s(x0)) > 0 is given. We use the notation w0 := x0s(x0). 337

The claim is proved in two steps. 338

Step 1. For each 0 < w < w ∈ R
n the following two sets are compact: 339

Lw := {x ∈ SP : xs(x) ≤ w} and
U(w,w) := {w : w ≤ w ≤ w, w = xs(x) for some x ∈ Lw}.

Let us first prove that Lw is compact. For each w > 0, the set Lw is obviously 340

closed. By definition Lw is included in the level set xT s ≤ eTw, which by 341

Lemma 2.9 is bounded, thus Lw is compact. 342

By definition the set U(w,w) is bounded. We only need to prove that it 343

is closed. Let a convergent sequence wi → ŵ, wi ∈ U(w,w), i = 1, 2, . . . be 344

given. Then clearly w ≤ ŵ ≤ w holds. Further, for each i there exists xi ∈ Lw 345

such that wi = xis(xi). Because the set Lw is compact, there is an x̂ ∈ Lw 346

and a convergent subsequence xi → x̂ (for ease of notation the subsequence is 347

denoted again the same way). Then we have x̂s(x̂) = ŵ, proving that U(w,w) 348

is closed, thus compact. 349

Observe that for each w ∈ U(w,w) by definition we have an x ∈ SP with 350

w = xs(x). Due to w > 0 this relation implies that x > 0 and s(x) > 0. 351

Step 2. For each ŵ > 0, the system Mx + q = s, xs = ŵ, x > 0 has a 352

solution. 353

If we have ŵ = w0 = x0s(x0), then the claim is trivial. If ŵ 
= w0 then we 354

define w := max{ŵ, w0}, η = ‖w‖∞+1, w := min{ŵ, w0} and η = 1
2 miniwi. 355

Then ηe < ŵ < ηe and ηe < w0 < ηe. Due to the last relation the set 356

U := U(ηe, ηe) is nonempty and compact. We define the nonnegative function 357

d(w) : U → R as 358

d(w) := ‖w − ŵ‖∞.

The function d(w) is continuous on the compact set U , thus it attains its 359

minimum 360

w̃ := arg min
w∈U

{d(w)}.

If d(w̃) = 0, then w̃ = ŵ ⇒ ŵ ∈ U and hence by the definition of U there is 361

an x ∈ SP satisfying xs(x) = ŵ and the claim is proved. 362

If d(w̃) > 0 then we will show that a damped Newton step from w̃ towards 363

ŵ gives a point w(a) ∈ U such that d(w(a)) < d(w̃), contradicting the fact 364

that w̃ minimizes d(w). This situation is illustrated in Figure 1. 365
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w

wj

wi

ŵ

w0

w̃
w̃

¯́e

´e w̃

w(®)

w(®)

w(®)

w

Fig. 1 The situation when ŵ �= w̃. A damped Newton step from w̃ to ŵ is getting closer
to ŵ. For illustration three possible different w̃ values are chosen.

The Newton step is well defined, because for the vector x̃ ∈ SP defining w̃ 366

the relations x̃ > 0 and s̃ = s(x̃) > 0 hold. A damped Newton step from w̃ 367

to ŵ with sufficiently small α results in a point closer (measured by d(·) = 368

‖ · ‖∞) to ŵ, because 369

w(α) = x(α)s(α) := (x̃ + αΔx)(s̃ + αΔs) = x̃s̃ + α(ŵ − x̃s̃) + α2ΔxΔs

= w̃ + α(ŵ − w̃) + α2ΔxΔs. (2.21)

This relation implies that 370

w(a) − ŵ = (1 − α)(w̃ − ŵ) + α2ΔxΔs, (2.22)

i.e., for α small enough6 all nonzero coordinates of |w(a) − ŵ| are smaller
than the respective coordinates of |w̃− ŵ|. Hence, w(a) is getting closer to ŵ,
closer than w̃. Due to ηe < ŵ < ηe this result also implies that for the chosen

6 The reader easily verifies that any value of α satisfying

α < min

{
w̃i − ŵi

ΔxiΔsi
: (w̃i − ŵi)(ΔxiΔsi) > 0

}

satisfies the requirement.
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small a value the vector w(a) stays in U . Thus w̃ 
= ŵ cannot be a minimizer
of d(w), which is a contradiction. This completes the proof. !"

Now we are ready to prove our main theorem, the existence of a strictly 371

complementary solution, when the IPC holds. 372

Proof of Theorem 2.13. 373

Let μt → 0 (t = 1, 2, · · · ) be a monotone decreasing sequence, hence for all 374

t we have x(μt) ∈ Lμ1e. Because Lμ1e is compact the sequence x(μt) has an 375

accumulation point x∗ and without loss of generality we may assume that 376

x∗ = lim
t→∞ x(μt). Let s∗ := s(x∗). Clearly x∗ is optimal because 377

x∗s∗ = lim
t→∞ x(μt)s(x(μt)) = lim

t→∞ μte = 0. (2.23)

We still have to prove that (x∗, s(x∗)) is strictly complementary, i.e., 378

x∗ + s∗ > 0. Let B = {i : x∗
i > 0} and N = {i : s∗i > 0}. Using the 379

fact that M is skew-symmetric, we have 380

0 = (x∗ − x(μt))T (s∗ − s(μt)) = x(μt)T s(μt) − x∗T s(μt) − x(μt)T s∗, (2.24)

which, by using that x(μt)is(μt)i = μt, can be rewritten as 381

∑
i∈B

x∗
i s(μt)i +

∑
i∈N

s∗i x(μt)i = nμt, (2.25a)

∑
i∈B

x∗
i

x(μt)i
+
∑
i∈N

s∗i
s(μt)i

= n. (2.25b)

By taking the limit as μt goes to zero we obtain that 382

|B| + |N| = n,

i.e., (B,N) is a partition of the index set, hence (x∗, s(x∗)) is a strictly
complementary solution. The proof of Theorem 2.13 is complete. !"

As we mentioned earlier, this result is powerful enough to prove the strong 383

duality theorem of LO in the strong form, including strict complementarity, 384

i.e., the Goldman-Tucker Theorem (Thm. 2.4) for SP and for (P ) and (D). 385

Our next step is to prove that the accumulation point x∗ is unique. 386

2.2.5 Convergence to the Analytic Center 387

In this subsection we prove that the central path has only one accumulation 388

point, i.e., it converges to a unique point, the so-called analytic center [74] of 389

the optimal set SP ∗. 390
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Definition 2.14. Let x ∈ SP ∗, s = s(x) maximize the product 391

∏
i∈B

xi
∏
i∈N

si (2.26)

over x ∈ SP ∗. Then x is called the analytic center of SP ∗. 392

It is easily to verify that the analytic center is unique. Let us assume to the 393

contrary that there are two different vectors x 
= x̃ with x, x̃ ∈ SP ∗ which 394

satisfy the definition of analytic center, i.e., 395

ϑ∗ =
∏
i∈B

xi
∏
i∈N

si =
∏
i∈B

x̃i
∏
i∈N

s̃i = max
x∈SP∗

∏
i∈B

xi
∏
i∈N

si. (2.27)

Let us define x∗ = x+x̃
2 . Then we have 396

∏
i∈B

x∗
i

∏
i∈N

s∗i =
∏
i∈B

1
2
(xi + x̃i)

∏
i∈N

(si + s̃i)

=
∏
i∈B

1
2

(√
xi
x̃i

+
√

x̃i
xi

)∏
i∈N

1
2

(√
si
s̃i

+
√

s̃i
si

)

√∏
i∈B

xi
∏
i∈N

si
∏
i∈B

x̃i
∏
i∈N

s̃i >
∏
i∈B

xi
∏
i∈N

si = ϑ∗, (2.28)

which shows that x is not the analytic center. Here the last inequality follows 397

from the classical inequality a + 1
a ≥ 2 if a ∈ R+ and strict inequality holds 398

when a 
= 1. 399

Theorem 2.15. The limit point x∗ of the central path is the analytic center 400

of SP ∗. 401

Proof. The same way as in the proof of Theorem 2.13 we derive 402

∑
i∈B

xi
x∗
i

+
∑
i∈N

si
s∗i

= n. (2.29)

Now we apply the arithmetic-geometric mean inequality to derive 403

(∏
i∈B

xi
x∗
i

∏
i∈N

si
s∗i

) 1
n

≤ 1
n

(∑
i∈B

xi
x∗
i

+
∑
i∈N

si
s∗i

)
= 1. (2.30)

404
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Hence, 405∏
i∈B

xi
∏
i∈N

si ≤
∏
i∈B

x∗
i

∏
i∈N

s∗i (2.31)

proving that x∗ is the analytic center of SP ∗. The proof is complete. !"

2.2.6 Identifying the Optimal Partition 406

The condition number 407

In order to give bounds on the size of the variables along the central path we 408

need to find a quantity that in some sense characterizes the set of optimal 409

solutions. For an optimal solution x ∈ SP ∗ we have 410

xs(x) = 0 and x + s(x) ≥ 0.

Our next question is about the size of the nonzero coordinates of optimal 411

solutions. Following the definitions in [72,96] we define a condition number of 412

the problem (SP) which characterizes the magnitude of the nonzero variables 413

on the optimal set SP ∗. 414

Definition 2.16. Let us define 415

σx := min
i∈B

max
x∈SP∗

{xi} (2.32a)

σs := min
i∈N

max
x∈SP∗

{s(x)i}. (2.32b)

Then the condition number of (SP) is defined as 416

σ = min{σx, σs} = min
i

max
x∈SP∗

{xi + s(x)i}. (2.33)

To determine the condition number σ is in general more difficult than to solve 417

the optimization problem itself. However, we can give an easily computable 418

lower bound for σ. This bound depends only on the problem data. 419

Lemma 2.17 (Lower bound for σ:). If M and q are integral 7 and all the 420

columns of M are nonzero, then 421

σ ≥ 1
π(M)

, (2.34)

where π(M) =
∏n
i=1 ‖Mi‖. 422

7 If the problem data is rational, then by multiplying by the least common multiple of the
denominators an equivalent LO problem with integer data is obtained.
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Proof. The proof is based on Cramer’s rule and on the estimation of 423

determinants by using Hadamard’s inequality.8 Let z = (x, s) be an op- 424

timal solution. Without loss of generality we may assume that the columns 425

of the matrix D = (−M, I) corresponding to the nonzero coordinates of 426

z = (x, s) are linearly independent. If they are not independent, then by us- 427

ing Gaussian elimination we can reduce the solution to get one with linearly 428

independent columns. Let us denote this index set by J . Further, let the 429

index set K be such that DKJ is a nonsingular square submatrix of D. Such 430

K exists, because the columns in DJ are linearly independent. Now we have 431

DKJzJ = qK , and hence, by Cramer’s rule, 432

zj =
det

(
D

(j)
KJ

)
det (DKJ)

, ∀j ∈ J, (2.35)

where D
(j)
KJ denotes the matrix obtained when the jth column in DKJ is

replaced by qK . Assuming that zj > 0 then, because the data is integral,
the numerator in the quotient given above is at least one. Thus we obtain
zj ≥ 1

det (DKJ )
. By Hadamard’s inequality the last determinant can be es-

timated by the product of the norm of its columns, which can further be
bounded by the product of the norms of all the columns of the matrix M .

!"

The condition that none of the columns of the matrix M is a zero vector is 433

not restrictive. For the general problem (SP) a zero column Mi would imply 434

that si = qi for each feasible solution, thus the pair (xi, si) could be removed. 435

More important is that for our embedding problem (SP) none of the columns 436

of the coefficient matrix 437(
M r

−rT 0

)

is zero. By definition we have r = e − Me nonzero, because eT r = eT e − 438

eTMe = n. Moreover, if Mi = 0, then by using that matrix M is skew- 439

symmetric we have ri = 1, thus the ith column of the coefficient matrix is 440

again nonzero. 441

8 Let G be a nonsingular n × n matrix. Hadamard’s inequality states that

det (G) ≤
n∏

i=1

‖Gi‖

holds, see [37] for a reference.
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The size of the variables along the central path 442

Now, by using the condition number σ, we are able to derive lower and upper 443

bounds for the variables along the central path. Let (B,N) be the optimal 444

partition of the problem (SP). 445

Lemma 2.18. For each positive μ one has 446

xi(μ) ≥ σ

n
i ∈ B, xi(μ) ≤ nμ

σ
i ∈ N, (2.36a)

si(μ) ≤ nμ

σ
i ∈ B, si(μ) ≥ σ

n
i ∈ N. (2.36b)

Proof. Let (x∗, s∗) be optimal, then by orthogonality we have 447

(x(μ) − x∗)T (s(μ) − s∗) = 0,

x(μ)T s∗ + s(μ)Tx∗ = nμ,

xi(μ)s∗i ≤ x(μ)T s∗ ≤ nμ, 1 ≤ i ≤ n.

Since we can choose (x∗, s∗) such that s∗i ≥ σ and because xi(μ)si(μ) = μ, 448

for i ∈ N, we have 449

xi(μ) ≤ nμ

s∗i
≤ nμ

σ
and si(μ) ≥ σ

n
, i ∈ N.

The proofs of the other bounds are analogous. !"

Identifying the optimal partition 450

The bounds presented in Lemma 2.18 make it possible to identify the optimal 451

partition (B,N), when μ is sufficiently small. We just have to calculate the 452

μ value that ensures that the coordinates going to zero are certainly smaller 453

than the coordinates that converge to a positive number. 454

Corollary 2.19. If we have a central solution x(μ) ∈ SP with 455

μ <
σ2

n2
, (2.37)

then the optimal partition (B,N) can be identified. 456

The results of Lemma 2.18 and Corollary 2.19 can be generalized to the 457

situation when a vector (x, s) is not on, but just in a certain neighbourhood 458

of the central path. In order to keep our discussion short, we do not go into 459

those details. The interested reader is referred to [72]. 460
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2.2.7 Rounding to an Exact Solution 461

Our next goal is to find a strictly complementary solution. This could be done 462

by moving along the central path as μ → 0. Here we show that we do not 463

have to do that, we can stop at a sufficiently small μ > 0, and round off the 464

current “almost optimal” solution to a strictly complementary optimal one. 465

We need some new notation. Let the optimal partition be denoted by (B,N), 466

let ω := ‖M‖∞ = max1≤i≤n
∑n

j=1 |Mij | and π := π(M) =
∏n
i=1 ‖Mi‖. 467

Lemma 2.20. Let M and q be integral and all the columns of M be nonzero. 468

If (x, s) := (x(μ), s(x(μ))) is a central solution with 469

xT s = nμ <
σ2

n
3
2 (1 + ω)2π

, which certainly holds if nμ ≤ 1
n

3
2 (1 + ω)2π3

,

then by a simple rounding procedure a strictly complementary optimal solution 470

can be found in O(n3) arithmetic operations. 471

Proof. Proof. Let x := x(μ) > 0 and s := s(x) > 0 be given. Because 472

μ <
σ2

n
5
2 (1 + ω)2π

<
σ2

n2
(2.38)

the optimal partition (B,N) is known. Let us simply set the small variables 473

xN and sB to zero. Then we correct the created error and estimate the size 474

of the correction. 475

For (x, s) we have 476

MBBxB + MBNxN + qB = sB, (2.39)

but by rounding xN and sB to zero the error q̂B = sB − MBNxN occurs. 477

Similarly, we have 478

MNBxB + MNNxN + qN = sN (2.40)

but by rounding xN and sB to zero the error q̂N = −MNNxN occurs. 479

Let us first estimate q̂B and q̂N by using the results of Lemma 2.18. For 480

q̂B we have 481

‖q̂B‖ ≤
√

n‖q̂B‖∞ =
√

n‖sB − MBNxN‖∞ ≤
√

n‖(I,−MBN)‖∞
∥∥∥∥ sB

xN

∥∥∥∥
∞

≤
√

n(1 + ω)
nμ

σ
=

n
3
2 μ(1 + ω)

σ
. (2.41)

482
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We give a bound for the infinity norm of q̂N as well: 483

‖q̂N‖∞ = ‖ − MNNxN‖∞ ≤ ‖MNN‖∞‖xN‖∞ ≤ ω
nμ

σ
. (2.42)

Now we are going to correct these errors by adjusting xB and sN. Let us 484

denote the correction by ξ for xB and by ζ for sN, further let (x̂, ŝ) be given 485

by x̂B := xB + ξ > 0, x̂N = 0, ŝB = 0 and ŝN := sN + ζ > 0. 486

If we know the correction ξ of xB, then from equation (2.40) the necessary 487

correction ζ of sN can easily be calculated. Equation (2.39) does not contain 488

sN , thus by solving the equation 489

MBBξ = −q̂B (2.43)

the corrected value x̂B = xB + ξ can be obtained. 490

First we observe that the equation MBBξ = −q̂B is solvable, because any 491

optimal solution x∗ satisfies MBBx∗
B = −qB, thus we may write MBB(xB+ξ) 492

= MBBx∗
B = −qB, hence 493

MBBξ = MBB(x∗
B − xB) = −qB − sB + MBNxN + qB (2.44)

= −sB + MBNxN = −q̂B.

This equation system can be solved by Gaussian elimination. The size of ξ ob- 494

tained this way can be estimated by applying Cramer’s rule and Hadamard’s 495

inequality, the same way as we have estimated σ in Lemma 2.17. If MBB is 496

zero, then we have qB = 0 and MBNxN = sB, thus rounding xN and sB to 497

zero does not produce any error here, hence we can choose ξ = 0. If MBB is 498

not the zero matrix, then let MBB be a maximal nonsingular square subma- 499

trix of MBB and let q̄B be the corresponding part of q̂B. By using the upper 500

bounds on xN and sB by Lemma 2.18 we have 501

|ξi| =
|det (M

(i)

BB)|
|det (MBB)|

≤ |det (M
(i)

BB)| (2.45)

≤ ‖q̄B‖ |det (MBB)| ≤ n
3
2 μ(1 + ω)

σ
π,

where (2.41) was used in the last estimation. This result, due to ‖xB‖∞ ≥ σ
n , 502

implies that x̂B = xB + ξ > 0 certainly holds if nμ < σ2

n
3
2 (1+ω)π

, and this 503

is implied by the hypothesis of the theorem which was involving (1 + ω)2 504

instead of (1 + ω). 505

Finally, we simply correct sN by using (2.40), i.e., we define ζ := q̂N + 506

MNBξ. We still must ensure that 507

ŝN := sN + q̂N + MNBξ > 0. (2.46)
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Using again the bounds given in Lemma 2.17, the bound (2.42) and the 508

estimate on ξ, one easily verifies that 509

‖q̂N + MNBξ‖∞ ≤ ‖(I,MNB)‖∞
∥∥∥∥ q̂N

ξ

∥∥∥∥
∞

(2.47)

≤ (1 + ω)max

{
ω

nμ

σ
,
n

3
2 μ(1 + ω)π

σ

}
=

n
3
2 μ(1 + ω)2π

σ
.

Thus, due to ‖sN‖∞ ≥ σ
n , the vector ŝN is certainly positive if 510

σ

n
>

n
3
2 μ(1 + ω)2π

σ
. (2.48)

This is exactly the first inequality given in the lemma. The second inequality 511

follows by observing that πσ ≥ 1, by Lemma 2.17. 512

The proof is completed by noting that the solution of an equation sys-
tem by using Gaussian elimination, some matrix-vector multiplications and
vector-vector summations, all with a dimension not exceeding n, are needed
to perform our rounding procedure. Thus the computational complexity of
our rounding procedure is at most O(n3). !"

Note that this rounding result can also be generalized to the situation 513

when a vector (x, s) is not on, but just in a certain neighbourhood of the 514

central path. For details the reader is referred again to [72].9 515

2.3 Summary of the Theoretical Results 516

Let us return to our general LO problem in canonical form 517

min
{
cTu : Au − z = b, u ≥ 0, z ≥ 0

}
(P)

max
{
bT v : AT v + w = c, v ≥ 0, w ≥ 0

}
, (D)

where the slack variables are already included in the problem formulation. In 518

what follows we recapitulate the results obtained so far. 519

• In Section 2.1 we have seen that to solve the LO problem it is sufficient to 520

find a strictly complementary solution to the Goldman-Tucker model 521

9 This result makes clear that when one solves an LO problem by using an IPM, the
iterative process can be stopped at a sufficiently small value of μ. At that point a strictly
complementary optimal solution can be identified easily.
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Au −τb −z = 0

−AT v +τc −w = 0

bT v −cTu −ρ = 0

522
v ≥ 0, u ≥ 0, τ ≥ 0, z ≥ 0, w ≥ 0, ρ ≥ 0.

• This homogeneous system always admits the zero solution, but we need a 523

solution for which τ + ρ > 0 holds. 524

• If (u∗, z∗) is optimal for (P ) and (v∗, w∗) for (D) then (v∗, u∗, 1, z∗, w∗, 0) 525

is a solution for the Goldman-Tucker model with the requested property 526

τ + ρ > 0. See Theorem 2.3. 527

• Any solution of the Goldman-Tucker model (v, u, τ, z, w, ρ) with τ > 0 528

yields an optimal solution pair (scale the variables (u, z) and (v, w) by 1
τ ) 529

for LO. See Theorem 2.3. 530

• Any solution of the Goldman-Tucker model (u, z, v, w, τ, ρ) with ρ > 0 531

provides a certificate of primal or dual infeasibility. See Theorem 2.3. 532

• If τ = 0 in every solution (v, u, τ, z, w, ρ) then (P ) and (D) have no optimal 533

solutions with zero duality gap. 534

• The Goldman-Tucker model can be transformed into a skew-symmetric 535

self-dual problem (SP) satisfying the IPC. See Section 2.2.2. 536

• If problem (SP) satisfies the IPC then 537

– the central path exists (see Theorem 2.12); 538

– the central path converges to a strictly complementary solution (see 539

Theorem 2.13); 540

– the limit point of the central path is the analytic center of the optimal 541

set (see Theorem 2.15); 542

– if the problem data is integral and a solution on the central path 543

with a sufficiently small μ is given, then the optimal partition (see 544

Corollary 2.19) and an exact strictly complementary optimal solution 545

(see Lemma 2.20) can be found. 546

• These results give a constructive proof of Theorem 2.4. 547

• This way, as we have seen in Section 2.1, the Strong Duality theorem of 548

linear optimization (Theorem 2.5) is proved. 549

The above summary shows that we have completed our project. The 550

duality theory of LO is built up by using only elementary calculus and 551

fundamental concepts of IPMs. In the following sections we follow this 552

recipe to derive interior point methods for conic and general nonlinear 553

optimization. 554

In the rest of this section a generic IP algorithm is presented. 555
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2.4 A General Scheme of IP Algorithms for Linear 556

Optimization 557

In this section a glimpse of the main elements of IPMs is given. We keep 558

on working with our model problem (SP). In Sections 2.1 and 2.2.2 we have 559

shown that a general LO problem can be transformed into a problem of 560

the form (SP), and that problem satisfies the IPC. Some notes are due to 561

the linear algebra involved. We know that the size of the resulting embedding 562

problem (SP) is more than doubled comparing to the size of the original 563

LO problem. Despite the size increase, the linear algebra of an IPM can be 564

organized so that the computational cost of an iteration stays essentially the 565

same. 566

Let us consider the problem (cf. page 223) 567

min
{

λϑ :
(

M r

−rT 0

)(
x

ϑ

)
+
(

s

ν

)
=
(

0
λ

)
;
(

x

ϑ

)
,

(
s

ν

)
≥ 0

}
, (SP)

where r = e−Me, λ = n+1 and the matrix M is given by (2.4). This problem 568

satisfies the IPC, because the all one vector (x0, ϑ0, s0, ν0) = (e, 1, e, 1) is a 569

feasible solution, moreover it is also on the central path by taking μ = 1. In 570

other words, it is a positive solution of the equation system 571

(
M r

−rT 0

)(
x

ϑ

)
+
(

s

ν

)
=
(

0
λ

)
;
(

x

ϑ

)
,

(
s

ν

)
≥ 0(

x

ϑ

)(
s

ν

)
=
(

μe

μ

)
,

(2.49)

which defines the central path of problem (SP). As we have seen, for each 572

μ > 0, this system has a unique solution. However, in general this solution 573

cannot be calculated exactly. Therefore we are making Newton steps to get 574

approximate solutions. 575

Newton step 576

Let us assume that a feasible interior-point (x, ϑ, s, ν) > 0 is given.10 We 577

want to find the solution of (2.49) for a given μ ≥ 0, in other words we want 578

to determine the displacements (Δx,Δϑ,Δs,Δν) so that 579

10 Here we assume that all the linear equality constraints are satisfied. The resulting IPM
is a feasible IPM. In the literature one can find infeasible IPMs [93] that do not assume
that the linear equality constraints are satisfied.
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M r

−rT 0

)(
x + Δx

ϑ + Δϑ

)
+
(

s + Δs

ν + Δν

)
=
(

0
λ

)
;

(
x + Δx

ϑ + Δϑ

)
,

(
s + Δs

ν + Δν

)
≥ 0; (2.50)

(
x + Δx

ϑ + Δϑ

)(
s + Δs

ν + Δν

)
=
(

μe

μ

)
.

By neglecting the second order terms ΔxΔs and ΔϑΔν, and the nonneg- 580

ativity constraints, the Newton equation system is obtained (cf. page 227) 581

−MΔx −rΔϑ +Δs = 0
rTΔx +Δν = 0
sΔx +xΔs = μe − xs

νΔϑ +ϑΔν = μ − ϑν.

(2.51)

We start by making some observations. For any vector (x, ϑ, s, ν) that satisfies 582

the equality constraints of (SP) we have 583

xT s + ϑν = ϑλ. (2.52)

Applying this to the solution obtained after making a Newton step we may 584

write 585

(x + Δx)T (s + Δs) + (ϑ + Δϑ)T (ν + Δν) = (ϑ + Δϑ)λ. (2.53)

By rearranging the terms we have 586

(xT s+ϑν)+(ΔxTΔs+ΔϑΔν)+(xTΔs+sTΔx+ϑΔν +νΔϑ) = ϑλ+Δϑλ.

As we mentioned above, the first term in the left hand side sum equals 587

to ϑλ, while from (2.51) we derive that the second sum is zero. From the 588

last equations of (2.51) one easily derives that the third expression equals to 589

μ(n + 1) − xT s − ϑν = μλ − ϑλ. This way the equation μλ − ϑλ = Δϑλ is 590

obtained, i.e., an explicit expression for Δϑ 591

Δϑ = μ − ϑ

is derived. This value can be substituted in the last equation of (2.51) to 592

derive the solution 593

Δν =
μ

ϑ
− ν − ν(μ − ϑ)

ϑ
,

i.e., 594

Δν =
μ(1 − ν)

ϑ
.
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On the other hand, Δs can be expressed from the third equation of 595

(2.51) as 596

Δs = μX−1e − s − X−1SΔx.

Finally, substituting all these values in the first equation of (2.51) we have 597

MΔx + X−1SΔx = μX−1e − s − (μ − ϑ)r,

i.e., Δx is the unique solution of the positive definite system11 598

(M + X−1S)Δx = μX−1e − s − (μ − ϑ)r.

Having determined the displacements, we can make a (possibly damped) 599

Newton step to update our current iterate: 600

x := x + Δx

ϑ := ϑ + Δϑ = μ

s := s + Δs

ν := ν + Δν.

Proximity measures 601

We have seen that the central path is our guide to a strictly complementary 602

solution. However, due to the nonlinearity of the equation system determining 603

the central path, we cannot stay on the central path with our iterates, even if 604

our initial interior-point was perfectly centred. For this reason we need some 605

centrality, or with other words proximity, measure that enables us to control 606

and keep our iterates in an appropriate neighbourhood of the central path. In 607

general this measure depends on the current primal-dual iterate x and s, and 608

a value of μ on the central path. This measure quantifies how close the iterate 609

is to the point corresponding to μ on the central path. We use δ(x, s, μ) to 610

denote this general proximity measure. 611

Let the vectors x and s be composed from x and ϑ, and from s and ν 612

respectively. Note that on the central path all the coordinates of the vector 613

x s are equal. This observation indicates that the proximity measure 614

11 Observe that although the dimensions of problem (SP) are larger than problem (SP), to
determine the Newton step for both systems requires essentially the same computational
effort. Note also, that the special structure of the matrix M (see (2.4)) can be utilized
when one solves this positive definite linear system. For details the reader is referred to
[5, 72, 93, 97].
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δc(x s) :=
max(x s)
min(x s)

, (2.54)

where max(x s) and min(x s) denote the largest and smallest coordinate of the 615

vector x s, is an appropriate measure of centrality. In the literature of IPMs 616

various centrality measures were developed (see the books [42,45,72,93,97]). 617

Here we present just another one, extensively used in [72]: 618

δ0(x s, μ) :=
1
2

∥∥∥∥∥
(

x s

μ

) 1
2

−
( μ

x s

) 1
2

∥∥∥∥∥ . (2.55)

Both of these proximity measures allow us to design polynomial IPMs. 619

A generic interior point algorithm 620

Algorithm 1 gives a general framework for an interior point method. 621

Algorithm 1 Generic Interior-Point Newton Algorithm
Input:

A proximity parameter γ;
an accuracy parameter e > 0;
a variable damping factor a;
update parameter θ, 0 < θ < 1;
(x0, s0), μ0 ≤ 1 s.t. d(x0s0, μ0) ≤ γ.

begin
x := x0; s := s0; μ := μ0;
while (n + 1)μ ≥ e do
begin

μ := (1 − θ)μ;
while d(x s, μ) ≥ γ do

begin
x := x + αΔx;
s := s + αΔs;

end
end

end

The following crucial issues remain: 622

• choose the proximity parameter γ, 623

• choose a proximity measure δ(x, s, μ), 624

• choose an update scheme for μ and 625

• specify how to damp the Newton step when needed. 626

Our goal with the selection of these parameters is to be able to prove poly- 627

nomial iteration complexity of the resulting algorithm. 628
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Three sets of parameters are presented, which ensure that the resulting 629

IPMs are polynomial. The proofs of complexity can, e.g., be found in [72]. 630

Recall that (SP) admits the all one vector as a perfectly centred initial solu- 631

tion with μ = 1. 632

The first algorithm is a primal-dual logarithmic barrier algorithm with full 633

Newton steps, studied e.g. in [72]. This IPM enjoys the best complexity known 634

to date. Let us make the following choice: 635

• d(x s, μ) := δ0(x s, μ), this measure is zero on the central path; 636

• μ0 := 1; 637

• θ := 1
2
√
n+1

; 638

• γ = 1√
2
; 639

• (Δx,Δs) is the solution of (2.51); 640

• α = 1. 641

Theorem 2.21 (Theorem II.52 in [72]). With the given parameter set 642

the full Newton step algorithm requires not more than 643

⌈
2
√

n + 1 log
n + 1

e

⌉

iterations to produce a feasible solution (x, s) for (SP) such that δ0(x s, μ) ≤ γ 644

and (n + 1)μ ≤ e. 645

The second algorithm is a large-update primal-dual logarithmic barrier al- 646

gorithm, studied also e.g. in [72]. Among our three algorithms, this is the 647

most practical. Let us make the following choice: 648

• d(x s, μ) := δ0(x s, μ), this measure is zero on the central path; 649

• μ0 := 1; 650

• 0 < θ < n+1
n+1+

√
n+1

; 651

• γ =
√
R

2
√

1+
√
R

, where R := θ
√
n+1

1−θ ; 652

• (Δx,Δs) is the solution of (2.51); 653

• a is the result of a line search, when along the search direction the primal- 654

dual logarithmic barrier function 655

xT s

μ
− (n + 1) −

n+1∑
i=1

log
xisi
μ

is minimized. 656

Theorem 2.22 (Theorem II.74 in [72]). With the given parameter set 657

the large-update primal-dual logarithmic barrier algorithm requires not more 658

than 659
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⎢⎢⎢⎢

1
θ

⎡
⎢⎢⎢⎢2

⎛
⎝1 +

√
θ
√

n + 1
1 − θ

⎞
⎠

4
⎤
⎥⎥⎥⎥ log

n + 1
e

⎤
⎥⎥⎥⎥

iterations to produce a feasible solution (x, s) for (SP) such that δ0(x s, μ) ≤ τ 660

and (n + 1)μ ≤ e. 661

When we choose θ= 1
2 , then the total complexity becomes O

(
(n + 1) log n+1

e

)
, 662

while the choice θ = K√
n+1

, with any fixed positive value K gives a complexity 663

of O
(√

n + 1 log n+1
e

)
. 664

Other versions of this algorithm were studied in [66], where the analysis of 665

large-update methods was based purely on the use of the proximity δ0(x s, μ). 666

The last algorithm is the Dikin step algorithm studied in [72]. This is one 667

of the simplest IPMs, with an extremely elementary complexity analysis. The 668

price for simplicity is that the polynomial complexity result is not the best 669

possible. Let us make the following choices: 670

• d(x s, μ) := δc(x s), this measure is always larger than or equal to 1; 671

• μ0 := 0, this implies that μ stays equal to zero, thus θ is irrelevant; 672

• γ = 2; 673

• (Δx,Δs) is the solution of (2.51) when the right-hand sides of the last two 674

equations are replaced by − x2s2

‖x s‖ and − ϑν
‖x s‖ , respectively; 675

• α = 1
2
√
n+1

. 676

Theorem 2.23 (Theorem I.27 in [72]). With the given parameter set the 677

Dikin step algorithm requires not more than 678

⌈
2(n + 1) log

n + 1
e

⌉

iterations to produce a feasible solution (x, s) for (SP) such that δc(x s) ≤ 2 679

and (n + 1)μ ≤ e. 680

2.5 *The Barrier Approach 681

In our approach so far we perturbed the optimality conditions for the primal 682

dual linear optimization problem to get the central path. In what follows 683

we show an alternative, sometimes more intuitive, sometimes more technical 684

route. Consider again the linear optimization problem in primal form: 685

min cTu

Au ≥ b (P)
u ≥ 0.
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A standard convex optimization trick to treat inequalities is to add them to 686

the objective function with a barrier term: 687

min cTu − μ

n∑
i=1

lnui − μ

m∑
j=1

ln (Au − b)j , (PBar)

where μ > 0. The function − ln t is a barrier function. In particular it goes 688

to ∞ if t goes to 0, and for normalization, it is 0 at 1. If ui is getting close 689

to 0 then the modified objective function will converge to ∞. This way we 690

received an unconstrained problem defined on the positive orthant, for which 691

we can easily write the optimality conditions. The idea behind this method 692

is to gradually reduce μ and at the same time try to solve the unconstrained 693

problem approximately. If μ is decreased at the right rate then the algorithm 694

will converge to the optimal solution of the original problem. 695

The first order necessary optimality conditions for system (PBar) are: 696

ci − μ
1
ui

− μ

m∑
j=1

Aji
(Au − b)j

= 0, i = 1, . . . , n. (2.56)

This equation yields the same central path equations that we obtained in 697

Definition 2.11. An identical result can be derived starting from the dual for 698

of the linear optimization problem. 699

A natural extension of this idea is to replace the − ln t function with an- 700

other barrier function. Sometimes we can achieve better complexity results 701

by doing so, see [63] (universal barrier), [9,10,87] (volumetric barrier), [66,67] 702

(self-regular barrier) for details. 703

3 Interior Point Methods for Conic Optimization 704

3.1 Problem Description 705

Conic optimization is a natural generalization of linear optimization. As we 706

will see, most of the results in Section 2.3 carry over to the conic case with 707

some minor modifications and the structure and analysis of the algorithm 708

will be similar to the linear case. 709

A general conic optimization problem in primal form can be stated as 710

min cTx

Ax = b (PCon)
x ∈ K,
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246 I. Pólik and T. Terlaky

where c, x ∈ R
N , b ∈ R

m, A ∈ R
m×N and K ⊆ R

N is a cone. The standard 711

Lagrange dual of this problem is 712

max bT y

AT y + s = c (DCon)
s ∈ K∗,

where y ∈ R
m, s ∈ R

N and K∗ is the dual cone of K, namely K∗ = 713{
s ∈ R

N : sTx ≥ 0, ∀x ∈ K
}
. The weak duality theorem follows without any 714

further assumption: 715

Theorem 3.1 (Weak duality for conic optimization). If x, y and s are 716

feasible solutions of the problems (PCon) and (DCon) then 717

sTx = cTx − bT y ≥ 0. (3.1)

This quantity is the duality gap. Consequently, if the duality gap is 0 for some 718

solutions x, y and s, then they form an optimal solution. 719

Proof. Let x, y and s be feasible solutions, then 720

cTx = (AT y + s)Tx = xTAT y + xT s = bT y + xT s ≥ bT y, (3.2)

since x ∈ K and s ∈ K∗ implies xT s ≥ 0. !"

In order for this problem to be tractable we have to make some assumptions. 721

Assumption 3.2 Let us assume that K is a closed, convex, pointed (not 722

containing a line) and solid (has nonempty interior) cone, and that it is self- 723

dual, i.e., K = K∗. 724

Cones in the focus of our study are called symmetric. 725

Theorem 3.3 (Real symmetric cones). Any symmetric cone over the 726

real numbers is a direct product of cones of the following type: 727

nonnegative orthant: the set of nonnegative vectors, R
n
+, 728

Lorentz or quadratic cone: the set Ln+1 = {(u0, u) ∈ R+ × R
n : u0 ≥ ‖u‖}, 729

and the 730

positive semidefinite cone: the cone PS
n×n of n×n real symmetric positive 731

semidefinite matrices. 732

The dimensions of the cones forming the product can be arbitrary. 733

Let us assume further that the interior point condition is satisfied, i.e., there 734

is a strictly feasible solution.12 The strong duality theorem follows: 735

12 This assumption is not needed if K is the linear cone, R
n
+.
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Theorem 3.4 (Strong duality for conic optimization). If the primal 736

problem (PCon) is strictly feasible, i.e., there exists an x for which Ax = b 737

and x ∈ int (K), then the dual problem is solvable (the maximum is attained) 738

and the optimal values of the primal and dual problems are the same. 739

If the dual problem (DCon) is strictly feasible, i.e., there exists a y for which 740

s = c − AT y ∈ int (K), then the primal problem is solvable (the minimum 741

is attained) and the optimal values of the primal and dual problems are the 742

same. 743

If both problems are strictly feasible then both are solvable and the optimal 744

values are the same. 745

Remark 3.5. In conic optimization it can happen that one problem is infeasi- 746

ble but there is no certificate of infeasibility. Such problems are called weakly 747

infeasible. Also, even if the duality gap is zero, the minimum or maximum 748

might not be attained, meaning the problem is not solvable. 749

In what follows we treat the second order and the semidefinite cones sep- 750

arately. This simplification is necessary to keep the notation simple and to 751

make the material more accessible. Interested readers can easily assemble the 752

parts to get the whole picture. 753

First we introduce the following primal-dual second-order cone optimiza- 754

tion problems: 755

min
k∑
i=1

ci
T
xi max bT y

k∑
i=1

Aixi = b Ai
T
y + si = ci, i = 1, . . . , k (SOCO)

xi ∈ Lni , i = 1, . . . , k si ∈ Lni , i = 1, . . . , k,

where xi, si, ci ∈ R
ni , b, y ∈ R

m and Ai ∈ R
m×ni

, the number of cones is k 756

and the ith cone is of dimension ni. 757

The semidefinite optimization problem requires slightly different notation: 758

min Tr (CX) max bT y

Tr
(
A(i)X

)
= bi, i = 1, . . . ,m

m∑
i=1

A(i)yi + S = C (SDO)

X ∈ PS
n×n S ∈ PS

n×n,

where X,S,C,A(i) ∈ R
n×n, b, y ∈ R

m. For symmetric matrices U and V the 759

quantity Tr (UV ) is actually a scalar product defined on symmetric matrices, 760

and is identical to the sum of the componentwise products of the matrix 761

elements. 762
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3.2 Applications of Conic Optimization 763

Let us briefly present three applications of conic optimization. For more de- 764

tails see [3, 11, 88, 91] and the references therein. 765

3.2.1 Robust Linear Optimization 766

Consider the standard linear optimization problem: 767

min cTx (3.3)

aTj x − bj ≥ 0, ∀j = 1, . . . ,m,

where the data (aj , bj) is uncertain. The uncertainty is usually due to some 768

noise, or implementation or measurement error, and thus it is modelled by 769

Gaussian distribution. The level sets of the distribution are ellipsoids, so we 770

assume that the data vectors (aj ; bj) come from an ellipsoid. The inequalities 771

then have to be satisfied for all possible values of the data. More precisely, 772

the set off all possible data values is 773

{(
aj
−bj

)
=

(
a0
j

−b0
j

)
+ Pu : u ∈ R

m, ‖u‖ ≤ 1

}
, (3.4)

and the new, robust constraint is represented as the following set of infinitely 774

many constraints 775

((
a0
j

−b0
j

)
+ Pu

)T (
x

1

)
≥ 0, ∀u : ‖u‖ ≤ 1. (3.5)

This constraint is equivalent to 776

(
a0
j

−b0
j

)T (
x

1

)
≥ max

‖u‖≤1

{
−uTPT

(
x

1

)}
. (3.6)

The maximum on right hand side is the maximum of a linear function over a 777

sphere, so it can be computed explicitly. This gives a finite form of the robust 778

constraint: 779(
a0
j

)T
x − b0

j ≥
∥∥∥∥PT

(
x

1

)∥∥∥∥ . (3.7)
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Introducing the linear equalities zj =
(
a0
j

)T
x − b0

j and z = PT

(
x

1

)
this 780

constraint is a standard second order conic constraint. For more details on 781

this approach see [11]. 782

3.2.2 Eigenvalue Optimization 783

Given the n×n matrices A(1), . . . , A(m) it is often required to find a nonneg- 784

ative combination of them such that the smallest eigenvalue of the resulting 785

matrix is maximal. The smallest eigenvalue function is not differentiable, thus 786

we could not use it directly to solve the problem. Semidefinite optimization 787

offers an efficient framework to solve these problems. The maximal smallest 788

eigenvalue problem can be written as 789

max λ
m∑
i=1

Aiyi − λI ∈ PS
n×n (3.8)

yi ≥ 0, i = 1, . . . ,m.

See [2, 63, 65] for more details. 790

3.2.3 Relaxing Binary Variables 791

A classical method to solve problems with binary variables is to apply a con- 792

tinuous relaxation. Given the binary variables z1, . . . , zn ∈ {0, 1} the most 793

common solution is the linear relaxation z1, . . . , zn ∈ [0, 1]. However, in many 794

cases tighter relaxations can be obtained by introducing the new variables 795

xi = (2zi − 1) and relaxing the nonlinear nonconvex equalities x2
i = 1. Now 796

consider the matrix X = xxT . This matrix is symmetric, positive semidef- 797

inite, it has rank one and all the diagonal elements are 1. By relaxing the 798

rank constraint we get a positive semidefinite relaxation of the original op- 799

timization problem. This technique was used extensively by Goemans and 800

Williamson [29] to derive tight bounds for max-cut and satisfiability prob- 801

lems. For a survey of this area see [51] or the books [11, 40]. 802

3.3 Initialization by Embedding 803

The key assumption for both the operation of an interior point method and 804

the validity of the strong duality theorem is the existence of a strictly feasible 805

solution of the primal-dual systems. Fortunately, the embedding technique we 806
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used for linear optimization generalizes to conic optimization [26]. Consider 807

the following larger problem based on (PCon) and (DCon): 808

min(x̄T s̄ + 1)θ
Ax −bτ +b̄θ = 0

−AT y +cτ −c̄θ −s = 0
bT y −cTx +z̄θ −κ = 0

−b̄T y +c̄Tx −z̄T τ = −x̄T s̄ − 1
x ∈ K, τ ≥ 0 s ∈ K κ ≥ 0,

(HSD)

where x̄, s̄ ∈ int (K), ȳ ∈ R
m are arbitrary starting points, τ, θ are scalars, 809

b̄ = b − Ax̄, c̄ = c − AT ȳ − s̄ and z̄ = cT x̄ − bT ȳ + 1. This model has the 810

following properties [19, 52]. 811

Theorem 3.6 (Properties of the HSD model). System (HSD) is self- 812

dual and it has a strictly feasible starting point, namely (x, s, y, τ, θ, κ) = 813

(x̄, s̄, ȳ, 1, 1, 0). The optimal value of these problems is θ = 0, and if τ > 0 at 814

optimality then (x/τ, y/τ, s/τ) is an optimal solution for the original primal- 815

dual problem with equal objective values, i.e., the duality gap is zero. If τ = 0 816

and κ > 0, then the problem is either unbounded, infeasible, or the duality gap 817

at optimality is nonzero. If τ = κ = 0, then either the problem is infeasible 818

without a certificate (weakly infeasible) or the optimum is not attained. 819

Remark 3.7. Due to strict complementarity, the τ = κ = 0 case cannot 820

happen in linear optimization. The duality theory of conic optimization is 821

weaker, this leads to all those ill-behaved problems. 822

The importance of this model is that the resulting system is strictly feasible 823

with a known interior point, thus it can be solved directly with interior point 824

methods. 825

3.4 Conic Optimization as a Complementarity 826

Problem 827

3.4.1 Second Order Conic Case 828

In order to be able to present the second order conic case we need to define 829

some elements of the theory of Jordan algebras for our particular case. All the 830

proofs, along with the general theory can be found in [22]. Here we include as 831

much of the theory (without proofs) as needed for the discussion. Our main 832

source here is [3]. 833

Given two vectors u, v ∈ R
n we can define a special product on them, 834

namely: 835

u ◦ v = (uT v;u1v2:n + v1u2:n). (3.9)
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The most important properties of this bilinear product are summarized in 836

the following theorem: 837

Theorem 3.8 (Properties of ◦). 838

1. Distributive law: u ◦ (v + w) = u ◦ v + u ◦ w. 839

2. Commutative law: u ◦ v = v ◦ u. 840

3. The unit element is ι = (1; 0), i.e., u ◦ ι = ι ◦ u = u. 841

4. Using the notation u2 = u ◦ u we have u ◦ (u2 ◦ v) = u2 ◦ (u ◦ v). 842

5. Power associativity: up = u ◦ · · · ◦ u is well-defined, regardless of the order 843

of multiplication. In particular, up ◦ uq = up+q. 844

6. Associativity does not hold in general. 845

The importance of this bilinear function lies in the fact that it can be used 846

to generate the second order cone: 847

Theorem 3.9. A vector x is in a second order cone (i.e., x1 ≥ ‖x2:n‖2) if 848

and only if it can be written as the square of a vector under the multiplication 849

◦, i.e., x = u ◦ u. 850

Moreover, analogously to the spectral decomposition theorem of symmetric 851

matrices, every vector u ∈ R
n can be written as 852

u = λ1c
(1) + λ2c

(2), (3.10)

where c(1) and c(2) are on the boundary of the cone, and 853

c(1)T c(2) = 0 (3.11a)

c(1) ◦ c(2) = 0 (3.11b)

c(1) ◦ c(1) = c(1) (3.11c)

c(2) ◦ c(2) = c(2) (3.11d)

c(1) + c(2) = ι (3.11e)

The vectors c(1) and c(2) are called the Jordan frame and they play the role of 854

rank one matrices. The numbers λ1 and λ2 are called eigenvalues of u. They 855

behave much the same way as eigenvalues of symmetric matrices, except that 856

in our case there is an easy formula to compute them: 857

λ1,2(u) = u1 ± ‖u2:n‖2 . (3.12)

This also shows that a vector is in the second order cone if and only if both 858

of its eigenvalues are nonnegative. 859

The spectral decomposition enables us to compute functions over the 860

vectors: 861

‖u‖F =
√

λ2
1 + λ2

2 =
√

2 ‖u‖2 , (3.13a)
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‖u‖2 = max {|λ1| , |λ2|} = |u1| + ‖u2:n‖2 , (3.13b)

u−1 = λ−1
1 c(1) + λ−1

2 c(2), (3.13c)

u
1
2 = λ

1
2
1 c(1) + λ

1
2
2 c(2), (3.13d)

where u ◦ u−1 = u−1 ◦ u = ι and u
1
2 ◦ u

1
2 = u. 862

Since the mapping v $→ u◦v is linear, it can be represented with a matrix. 863

Indeed, introducing the arrowhead matrix 864

Arr (u) =

⎛
⎜⎜⎜⎝

u1 u2 . . . un
u2 u1

...
. . .

un u1

⎞
⎟⎟⎟⎠ , (3.14)

we have u◦v = Arr (u) v = Arr (u)Arr (v) ι. Another operator is the quadratic 865

representation, which is defined as 866

Qu = 2 Arr (u)2 − Arr
(
u2
)
, (3.15)

thus Qu(v) = 2u◦ (u◦v)−u2◦v is a quadratic function13 in u. This operator 867

will play a crucial role in the construction of the Newton system. 868

Remember that second order cone optimization problems usually include 869

several cones, i.e., K = Ln1 × · · · × Lnk
. For simplicity let us introduce the 870

notation 871

A =
(
A1, . . . , Ak

)
,

x =
(
x1; . . . ;xk

)
,

s =
(
s1; . . . ; sk

)
, (3.16)

c =
(
c1; . . . ; ck

)
.

With this notation we can write 872

Ax =
k∑
i=1

Aixi, (3.17)

AT y =
(
A1T y; , . . . ;Ak

T
y
)

.

Moreover, for a partitioned vector u = (u1; . . . ;uk), Arr (u) and Qu are block 873

diagonal matrices built from the blocks Arr
(
ui
)

and Qui , respectively. 874

13 In fact, this operation is analogous to the mapping V �→ UV U for symmetric matrices.
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The optimality conditions for second order conic optimization are 875

Ax = b, x ∈ K
AT y + s = c, s ∈ K (3.18)

x ◦ s = 0.

The first four conditions represent the primal and dual feasibility, while the 876

last condition is called the complementarity condition. An equivalent form of 877

the complementarity condition is xT s = 0. 878

Now we perturb14 the complementarity condition to get the central path: 879

Ax = b, x ∈ K (3.19)

AT y + s = c, s ∈ K
xi ◦ si = 2μιi, i = 1, . . . , k,

where ιi = (1; 0; . . . ; 0) ∈ R
ni . Finally, we apply the Newton method to this 880

system to get the Newton step: 881

AΔx = 0 (3.20)

ATΔy + Δs = 0,

xi ◦ Δsi + Δxi ◦ si = 2μιi − xi ◦ si, i = 1, . . . , k,

where Δx = (Δx1; . . . ;Δxk) and Δs = (Δs1; . . . ;Δsk). To solve this system 882

we first rewrite it using the operator Arr (): 883

⎛
⎝ A

AT I

Arr (s) Arr (x)

⎞
⎠
⎛
⎝Δy

Δx

Δs

⎞
⎠ =

⎛
⎝ 0

0
2μι − x ◦ s

⎞
⎠ , (3.21)

where ι = (ι1; . . . ; ιk). Eliminating Δx and Δs we get the so-called normal 884

equation: 885

(
AArr (s)−1 Arr (x) AT

)
Δy = −AArr (s)−1 (2μι − x ◦ s). (3.22)

The coefficient matrix is a m × m. Unfortunately, not only this system is 886

not symmetric, which is a disadvantage in practice, but in general it can be 887

14 Our choice of perturbation might seem arbitrary but in fact this is the exact analog of
what we did for linear optimization, since the vector (1; 0) on the right hand side is the
unit element for the multiplication ◦. See Section 3.6 to understand where the multiplier
2 comes from.
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singular, even if x and s are in the interior of the cone K. As an example15 888

take A =
(
0,

√
3.69 + 0.7, 1

)
, K =

{
x ∈ R

3 : x1 ≥
√

x2
2 + x2

3

}
. The points 889

x = (1; 0.8; 0.5) and s = (1; 0.7; 0.7; ) are strictly primal and dual feasible, 890

but AArr (s)−1 Arr (x) AT = 0. 891

To prevent singularity and to get a symmetric system we rewrite the orig- 892

inal optimization problem (SOCO) in an equivalent form. Let us fix a scaling 893

vector p ∈ int (K) and consider the scaled problem16 894

min
(
Qp−1c

)T (Qpx) max bT y (SOCOscaled)(
AQp−1

)
(Qpx) = b

(
AQp−1

)T
y + Qp−1s = Qp−1c

Qpx ∈ K Qp−1s ∈ K

where p−1 is defined by (3.13c), and Qp is given by (3.15). The exact form 895

of p will be specified later. This scaling has the following properties: 896

Lemma 3.10. If p ∈ int (K), then 897

1. Qp and Qp−1 are inverses of each other, i.e., QpQp−1 = I. 898

2. The cone K is invariant, i.e., Qp (K) = K. 899

3. Problems (SOCO) and (SOCOscaled) are equivalent. 900

We can write the optimality conditions (3.18) for the scaled problem and 901

perturb them to arrive at the central path for the symmetrized system. This 902

defines a new Newton system: 903

(
AQp−1

)
(QpΔx) = 0 (3.23)(

AQp−1

)T
Δy + Qp−1Δs = 0,

(Qpx) ◦
(
Qp−1Δs

)
+ (QpΔx) ◦

(
Qp−1s

)
= 2μι − (Qpx) ◦

(
Qp−1s

)
.

Using Lemma 3.10 we can eliminate the scaling matrices from the first two 904

equations, but not the third one. Although rather complicated, this system 905

is still a linear system in the variables Δx, Δy and Δs. 906

Before we can turn our attention to other elements of the algorithm we 907

need to specify p. The most natural choice, i.e., p = ι is not viable as it does 908

not provide a nonsingular Newton system. Another popular choice is the pair 909

of primal-dual HKM directions, i.e., 910

p = s1/2 or p = x1/2, (3.24)

15 See [67, S6.3.1].
16 This scaling technique was originally developed for semidefinite optimization by
Monteiro [57] and Zhang [99], and later generalized for second order cone optimization
by Schmieta and Alizadeh [73].
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in which case 911

Qp−1s = ι or Qpx = ι. (3.25)

These directions are implemented as the default choice in the SOCO solver 912

package SDPT3. Finally, probably the most studied and applied direction is 913

the NT direction, defined as: 914

p =
(
Qx1/2 (Qx1/2s)−1/2

)−1/2

=
(
Qs−1/2 (Qs1/2x)1/2

)−1/2

. (3.26)

This very complicated formula actually simplifies the variables, since 915

Qpx = Qp−1s. (3.27)

The NT scaling is implemented in SeDuMi and MOSEK and is also available 916

in SDPT3. 917

We will now customize the generic IPM algorithm (see Algorithm 1 on 918

page 242) for second order conic optimization. Let μ = μ(x, s) be defined as 919

μ(x, s) =
k∑
i=1

xi
T
si

ni
. (3.28)

First let us define some centrality measures (see [3]). These measures are 920

defined in terms of the scaled variable w = (w1; . . . ;wk), where wi = Q
x
1/2
i

si. 921

922

δF (x, s) := ‖Qx1/2s − μι‖F :=

√√√√ k∑
i=1

(λ1(wi) − μ)2 + (λ2(wi) − μ)2 (3.29a)

δ∞(x, s) := ‖Qx1/2s − μι‖2 := max
i=1,...,k

{|λ1(wi) − μ| , |λ2(wi) − μ|} (3.29b)

δ−∞(x, s) :=
∥∥(Qx1/2s − μι)−

∥∥
∞ := μ − min

i=1,...,k
{λ1(wi), λ2(w2)} , (3.29c)

where the norms are special norms defined in (3.13) for the Jordan algebra. 923

We can establish the following relations for these measures: 924

δ−∞(x, s) ≤ δ∞(x, s) ≤ δF (x, s). (3.30)

The neighbourhoods are now defined as 925

N (γ) := {(x, y, s) strictly feasible : δ(x, s) ≤ γμ(x, s)} . (3.31)

Choosing δ(x, s) = δF (x, s) gives a narrow neighbourhood, while δ(x, s) = 926

δ−∞(x, s) defines a wide one. 927

The results are summarized in the following theorem, taken from [3,60]. 928
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Theorem 3.11 (Short-step IPM for SOCO). Choose17 γ = 0.088 and 929

ζ = 0.06. Assume that we have a starting point (x0, y0, s0) ∈ NF (γ). Compute 930

the Newton step from the scaled Newton system (3.23). In every iteration, μ 931

is decreased to
(
1 − ζ√

k

)
μ, i.e., θ = ζ√

k
, and the stepsize is α = 1. This 932

algorithm finds an ε-optimal solution for the second order conic optimization 933

problem (SOCO) with k second order cones in at most 934

O
(√

k log
1
ε

)
(3.33)

iterations. The cost of one iteration depends on the sparsity structure of the 935

coefficient matrix A. If all the data is dense then it is 936

O

(
m3 + m2n +

k∑
i=1

n2
i

)
. (3.34)

It might be surprising that the iteration complexity of the algorithm is in- 937

dependent of the dimensions of the cones. However, the cost of one iteration 938

depends on the dimension of the cones. 939

Although this is essentially the best possible complexity result for second 940

order cone optimization, this algorithm is not efficient enough in practice since 941

θ is too small. Practical implementations use predictor-corrector schemes, see 942

[67, 73, 77, 84] for more details. 943

Unlike the case of linear optimization, here we do not have a way to round 944

an almost optimal interior solution to an optimal one, we have to live with 945

approximate solutions. 946

3.4.2 Semidefinite Optimization 947

Interior point methods for semidefinite optimization have a very similar struc- 948

ture to the methods presented so far. We will apply the Newton method to 949

the perturbed optimality conditions of semidefinite optimization. 950

17 Any values γ ∈ (0, 1/3) and ζ ∈ (0, 1) satisfying

4(γ2 + ζ2)

(1 − 3γ)2

(
1 − ζ√

2n

)−1

≤ γ (3.32)

would work here.
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The KKT optimality conditions for semidefinite optimization are: 951

Tr
(
A(i)X

)
= bi, i = 1, . . . ,m, X ∈ PS

n×n

m∑
i=1

yiA
(i) + S = C, S ∈ PS

n×n (3.35)

XS = 0.

Again, the first four conditions ensure feasibility, while the last equation is 952

the complementarity condition. The last equation can be written equivalently 953

as Tr (XS) = 0. Now we perturb the complementarity condition, this way we 954

arrive at the central path: 955

Tr
(
A(i)X

)
= bi, i = 1, . . . ,m, X ∈ PS

n×n

m∑
i=1

yiA
(i) + S = C, S ∈ PS

n×n (3.36)

XS = μI,

where I is the identity matrix. Now we try to apply the Newton method 956

the same way we did for SOCO and LO, i.e., replace the variables with the 957

updated ones and ignore the quadratic terms. This way we get: 958

Tr
(
A(i)ΔX

)
= 0, i = 1, . . . ,m

m∑
i=1

ΔyiA
(i) + ΔS = 0 (3.37)

XΔS + ΔXS = μI − XS.

We want to keep the iterates X and S symmetric and positive definite, thus 959

we need ΔX and ΔS to be symmetric as well. However, solving (3.37) the 960

displacement ΔX is typically not symmetric, simply due to the fact that the 961

product of two symmetric matrices is not symmetric. Moreover, forcing the 962

symmetry of ΔX by adding ΔX = ΔXT as a new constraint will make 963

the problem overdetermined. Our first attempt at formulating the Newton 964

system fails spectacularly. 965

Scaling techniques for semidefinite optimization 966

The solution to the problem we encountered at the end of the previous sec- 967

tion is again to rewrite the optimality conditions (3.35) in an equivalent
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form and use that system to derive the central path. This technique is called 968

scaling or symmetrization and there are many ways to rewrite the optimal- 969

ity conditions, see [82] for a thorough review. This symmetrization replaces 970

XS = μI in (3.36) with 1
2 (MXS + SXM) = μM , where M might depend 971

on X and S, and can thus change from iteration to iteration. This choice de- 972

fines the Monteiro-Zhang family of search directions. The new symmetrized 973

central path equations are 974

Tr
(
A(i)X

)
= bi, i = 1, . . . ,m, X ∈ PS

n×n

m∑
i=1

yiA
(i) + S = C, S ∈ PS

n×n (3.38)

MXS + SXM = μM,

and the Newton system is 975

Tr
(
A(i)ΔX

)
= 0, i = 1, . . . ,m

m∑
i=1

ΔyiA
(i) + ΔS = 0 (3.39)

MXΔS + MΔXS + SΔXM + ΔSXM = 2μI − MXS − SXM.

The solution matrices ΔX and ΔS of this system are symmetric, thus we 976

can update the current iterates maintaining the symmetry of the matrices. 977

Details on how to solve this system can be found in [77]. 978

Some standard choices of the scaling matrix M are (see [82] for more 979

directions): 980

AHO scaling: The most natural choice, M = I. Unfortunately, the resulting 981

system will have a solution only if X and S are in a small neighbourhood 982

of the central path. 983

NT scaling: Probably the most popular choice, 984

M = S1/2
(
S1/2XS1/2

)−1/2

S1/2. (3.40)

This type of scaling has the strongest theoretical properties. Not surpris- 985

ingly, most algorithmic variants use this scaling. It also facilitates the use 986

of sparse linear algebra, see [77]. 987

HKM scaling: In this case M = S or M = X−1. Typically, these scalings 988

are somewhat faster to compute than the NT scaling, but certain large 989

portions of the theory (such as [67]) are only developed for NT scaling. 990
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Proximity measures 991

Let μ be defined as μ = μ(X,S) := Tr(XS)
n for the rest of this section. Now 992

we need to define some centrality measures similar to (2.55) and (3.29). The 993

most popular choices for semidefinite optimization include 994

δF (X,S) :=
∥∥∥X1/2SX1/2 − μI

∥∥∥
F

=

√√√√ n∑
i=1

(
λi(X1/2SX1/2) − μ

)2 (3.41a)

δ∞(X,S) :=
∥∥∥X1/2SX1/2 − μI

∥∥∥ = max
i

∣∣∣λi(X1/2SX1/2) − μ
∣∣∣ (3.41b)

δ−∞(X,S) :=
∥∥∥∥(X1/2SX1/2 − μI

)−∥∥∥∥
∞

:= max
i

(
μ − λi(X1/2SX1/2)

)
, (3.41c)

see [59] and the references therein for more details. For strictly feasible X 995

and S, these measures are zero only on the central path. Due to the properties 996

of norms we have the following relationships: 997

δ−∞(X,S) ≤ δ∞(X,S) ≤ δF (X,S). (3.42)

The neighbourhoods are defined as 998

N (γ) := {(X, y, S) strictly feasible : δ(X,S) ≤ γμ(X,S)} . (3.43)

Choosing δ(X,S) = δF (X,S) gives a narrow neighbourhood, while δ(X,S) = 999

δ−∞(X,S) defines a wide one. 1000

A short-step interior point method 1001

The following theorem, taken from [59], summarizes the details and the com- 1002

plexity of a short-step interior point algorithm for semidefinite optimization. 1003

Refer to Algorithm 1 on page 242 for the generic interior point algorithm. 1004

Theorem 3.12 (Short-step IPM for SDO). Choose18 γ = 0.15 and 1005

ζ = 0.13. Assume that we have a starting point (X0, y0, S0) ∈ NF (γ). We get 1006

the Newton step from (3.39). In every iteration, μ is decreased to
(
1 − ζ√

n

)
μ, 1007

18 Any values γ ∈ (0, 1/
√

2) and ζ ∈ (0, 1) satisfying

2(γ2 + ζ2)

(1 −√
2γ)2

(
1 − ζ√

n

)−1

≤ γ (3.44)

would work here.
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i.e., θ = ζ√
n
, and the stepsize is α = 1. This algorithm finds and ε-optimal 1008

solution for the semidefinite optimization problem (SDO) with an n dimen- 1009

sional cone in at most 1010

O
(√

n log
1
ε

)
(3.45)

iterations. If all the data matrices are dense19 then the cost of one iteration 1011

is O
(
mn3 + m2n2 + m3

)
. 1012

Remark 3.13. Depending on the magnitude of m compared to n any of the 1013

three terms of this expression can be dominant. The problem has O
(
n2
)

1014

variables, thus m ≤ n2. If m is close to n2 then the complexity of one iteration 1015

is O
(
n6
)
, while with a much smaller m of order

√
n the complexity is O

(
n3.5

)
. 1016

Although this algorithmic variant is not very efficient in practice, this is still 1017

the best possible theoretical complexity result. Practical implementations 1018

usually use predictor-corrector schemes, see [77] for more details. 1019

As we have already seen with second order conic optimization, it is not 1020

possible to obtain an exact solution to the problem. All we can get is an 1021

ε-optimal solution, see [68] for detailed complexity results. 1022

3.5 Summary 1023

To summarize the results about conic optimization let us go through our 1024

checklist from Section 2.3. 1025

• We showed that the duality properties of conic optimization are slightly 1026

weaker than that of linear optimization, we need to assume strict feasibility 1027

(the interior point condition) for strong duality. 1028

• We embedded the conic optimization problems (PCon) and (DCon) into 1029

a strictly feasible self-dual problem (HSD). From the optimal solutions of 1030

the self-dual model we can 1031

– derive optimal solutions for the original problem, or 1032

– decide primal or dual infeasibility, or 1033

– conclude that no optimal primal-dual solution pair exists with zero 1034

duality gap. 1035

• If a strictly feasible solution exists (either in the original problem or in the 1036

self-dual model) then 1037

– the central path exists; 1038

– the central path converges to a maximally (not necessarily strictly) 1039

complementary solution; 1040

19 The complexity can be greatly reduced by exploiting the sparsity of the data, see [77]
and the references therein.
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– the limit point of the central path is not necessarily the analytic center 1041

of the optimal set (only if the problem has a strictly complementary 1042

solution). 1043

• Due to the lack of a rounding scheme we cannot get exact optimal solutions 1044

from our algorithm and thus cannot use the algorithm to get exact solu- 1045

tions. 1046

3.6 *Barrier Functions in Conic Optimization 1047

Interior point methods for conic optimization can also be introduced through 1048

barrier functions in a similar fashion as we did in Section 2.5 for linear op- 1049

timization. However, the barrier functions for conic optimization are more 1050

complicated and the discussion is a lot more technical, much less intuitive. 1051

A suitable logarithmic barrier function for a second order cone is 1052

φ(x) = − ln
(
x2

1 − ‖x2:n‖2
2

)
= − lnλ1(x) − lnλ2(x), (3.46)

assuming that x is in the interior of the second order cone. We can see that 1053

when the point x is getting close to the boundary, then at least one of its 1054

eigenvalues is getting close to 0 and φ(x) is diverging to infinity. For the 1055

optimality conditions of this problem we will need the derivatives of the 1056

barrier function φ(x): 1057

∇φ(x) = −2
(x1;−x2:n)T

x2
1 − ‖x2:n‖2

2

= −2
(
x−1

)T
, (3.47)

where the inverse is taken in the Jordan algebra. The multiplier 2 appears 1058

due to the differentiation of a quadratic function, and it will also appear in 1059

the central path equations (3.19). 1060

For the cone of positive semidefinite matrices we can use the barrier 1061

function 1062

φ(X) = − ln det (X) = −
n∑
i=1

lnλi(X), (3.48)

which has the derivative 1063

∇φ(X) = −
(
X−1

)T
. (3.49)

Having these functions we can rewrite the conic optimization problem (PCon) 1064

as a linearly constrained problem 1065

min cTx + μφ(x)
Ax = b, (PCon-Barrier)
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where μ ≥ 0. The KKT optimality conditions for this problem are the same 1066

systems as (3.19) and (3.36) defining the central path, thus the barrier ap- 1067

proach again provides an alternative description of the central path. For more 1068

details on the barrier approach for conic optimization see, e.g., [4]. 1069

4 Interior Point Methods for Nonlinear Optimization 1070

First we will solve the nonlinear optimization problem by converting it into 1071

a nonlinear complementarity problem. We will present an interior point al- 1072

gorithm for this problem, analyze its properties and discuss conditions for 1073

polynomial complexity. Then we present a direct approach of handling non- 1074

linear inequality constraints using barrier functions and introduce the concept 1075

of self-concordant barrier functions. 1076

4.1 Nonlinear Optimization as a Complementarity 1077

Problem 1078

Let us consider the nonlinear optimization problem in the form 1079

min f(x) (NLO)
gj(x) ≤ 0, j = 1, . . . ,m

x ≥ 0,

where x ∈ R
n and f, gj : R

n → R, are continuously differentiable convex 1080

functions. We will use the notation g(x) = (g1(x); . . . ; gm(x)). The KKT 1081

optimality conditions for this problem are 1082

∇f(x) +
m∑
i=1

∇gj(x)yj ≥ 0

gj(x) ≤ 0
x, y ≥ 0 (4.1)

(
∇f(x) +

m∑
i=1

∇gj(x)yj

)T
x = 0

g(x)T y = 0.

1083
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Introducing 1084

L(x, y) := f(x) + g(x)T y (4.2a)

F (x̄) :=
(

∇xL(x, y)
−g(x)

)
(4.2b)

x̄ :=
(

x

y

)
(4.2c)

we can write the nonlinear optimization problem as an equivalent nonlinear 1085

complementarity problem: 1086

F (x̄) − s̄ = 0
x̄, s̄ ≥ 0 (4.3)
x̄s̄ = 0.

4.2 Interior Point Methods for Nonlinear 1087

Complementarity Problems 1088

In this section we derive an algorithm for this problem based on [70]. 1089

Let us now simplify the notation and focus on the nonlinear complemen- 1090

tarity problem in the following form: 1091

F (x) − s = 0 (NCP)
x, s ≥ 0
xs = 0,

where x, s ∈ R
n, F : R

n → R
n. After perturbing the third equation (the 1092

complementarity condition) we receive the equations for the central path. 1093

Note that the existence of the central path requires stronger assumptions 1094

than in the linear or conic case, see [25] and the references therein for details. 1095

F (x) − s = 0
x, s ≥ 0 (4.4)
xs = μe,

where μ ≥ 0 and e is the all one vector. We use the Newton method to solve 1096

this system, the corresponding equation for the Newton step is: 1097

F ′(x)Δx − Δs = 0 (4.5)
sΔx + xΔs = μe − xs,
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where F ′(x) is the Jacobian of F (x). In general, the point x + Δx is not 1098

feasible, i.e., F (x + Δx) ≥ 0 and/or x + Δx ≥ 0 is not satisfied, thus we will 1099

need to use a stepsize α > 0 and consider a strictly feasible x(α) := x + αΔx 1100

as the new (primal) iterate. The new dual iterate will be defined as s(α) = 1101

F (x + αΔx). Note that unlike in linear and conic optimization, here s(α) 
= 1102

s + αΔs. 1103

The algorithm is structured analogously to the generic structure of IPMs 1104

presented as Algorithm 1. All we need to do is to specify the details: the prox- 1105

imity measure δ(x, s), the choice of stepsize α and the update strategy of μ. 1106

The proximity measure 1107

There are several variants in existing implementations. The most important 1108

ones are 1109

δ2(x, s) = ‖xs − μe‖2 (4.6a)
δ∞(x, s) = ‖xs − μe‖∞ (4.6b)

δ−∞(x, s) =
∥∥∥(xs − μe)−

∥∥∥
∞

:= max
i

(μ − xisi) , (4.6c)

where μ = xT s/n. This enables us to define a neighbourhood of the central 1110

path: 1111

N (γ) = {(x, s) strictly feasible : δ(x, s) ≤ γμ} , (4.7)

where γ ∈ (0, 1). 1112

Choosing the stepsize α 1113

For nonlinear optimization problems the stepsize is chosen using a line-search. 1114

We want to get a large step but stay away from the boundary of the feasible 1115

set. Let αmax be the maximum feasible stepsize, i.e., the maximal value of α 1116

such that x + αΔx ≥ 0 and F (x + αΔx) ≥ 0. 1117

We are looking for a stepsize α < αmax such that 1118

• (x(α), s(α)) is inside the neighbourhood N (γ), and 1119

• the complementarity gap x(α)TF (x(α)) is minimized. 1120

In some practical implementations α = 0.95αmax (or α = 0.99αmax) is used 1121

as the stepsize, enhanced with a safeguarded backtracking strategy. The extra 1122

difficulty with general nonlinear optimization problems is that the line-search 1123

can get stuck in a local minimum, thus some globalization scheme is needed. 1124

Such ideas are implemented in the IPOPT solver [90]. 1125



BookID 194409 ChapID 004 Proof# 1 - 24/02/10

Interior Point Methods for Nonlinear Optimization 265

Updating μ 1126

Usually we try to decrease μ at a superlinear rate, if possible. In short-step 1127

methods, μ is changed to μ
(
1 − ζ√

n

)
after every iteration, i.e., θ = ζ√

n
1128

in the general IPM framework on page 242, ζ is a constant depending on 1129

the neighbourhood parameter γ and the smoothness of the mapping F . The 1130

smoothness is quantified with a Lipschitz constant L in Assumption 4.1. 1131

4.2.1 Complexity of IPM for NCP 1132

Now assume that the Jacobian F ′(x) of F (x) is a positive semidefinite matrix 1133

for all values of x. Then problem (NCP) is called a monotone nonlinear com- 1134

plementarity problem. If the original nonlinear optimization problem (NLO) 1135

is convex, then this always holds. To be able to prove polynomial convergence 1136

of IPMs for convex nonlinear problems we need to control the difference be- 1137

tween s(α) = F (x(α)) and s + αΔs. We assume a smoothness condition 1138

[8]: 1139

Assumption 4.1 Consider the nonlinear complementarity problem (NCP). 1140

Assume that F (x) satisfies the scaled Lipschitz property, i.e., for any x > 0, 1141

h ∈ R
n, satisfying |hi/xi| ≤ β < 1, there exists a constant L(β) > 1 such 1142

that 1143

‖x · (F (x + h) − F (x) − F ′(x)h)‖1 ≤ L(β)hTF ′(x)h. (4.8)

The complexity result is summarized in the following theorem: 1144

Theorem 4.2 (Complexity of short-step IPM for monotone NCP). 1145

Assume that F (x) is a monotone mapping satisfying the scaled Lipschitz prop- 1146

erty. The proximity measure is based on the 2-norm and assume that a strictly 1147

feasible starting point in N2(γ) with xT s/n ≤ 1 is available. 1148

The Newton step is computed from (4.5). If γ and ζ are chosen properly, 1149

then α = 1 is a valid stepsize, i.e., no line-search is necessary. 1150

This algorithm yields an ε-complementary solution for (NCP) in at most 1151

O (
√

nL log(1/ε)) iterations. 1152

Explicit forms of the constants and detailed proofs can be found in [8]. The 1153

cost of one iteration depends on the actual form of F (x). It includes comput- 1154

ing the Jacobian of F at every iteration and solving an n × n linear system. 1155

When full Newton steps are not possible,20 then finding αmax and determin- 1156

ing the stepsize α with a line-search are significant extra costs. 1157

20 This is the typical situation, as in practice we rarely have explicit information on the
Lipschitz constant L.
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4.3 Initialization by Embedding 1158

Interior point methods require a strictly feasible starting point, but for nonlin- 1159

ear optimization problems even finding is feasible point is quite challenging. 1160

Moreover, if the original problem has nonlinear equality constraints which 1161

are modelled as two inequalities then the resulting system will not have an 1162

interior point solution. To remedy these problems we use a homogeneous em- 1163

bedding, similar to the ones presented in Section 2.2 and Section 3.3. Consider 1164

the following system [7, 8, 96]: 1165

νF (x/ν) − s = 0 (NCP-H)

xTF (x/ν) − ρ = 0
x, s, ν, ρ ≥ 0

xs = 0
νρ = 0.

This is a nonlinear complementarity problem similar to (NCP). The proper- 1166

ties of the homogenized system are summarized in the following theorem. 1167

Theorem 4.3. Consider the nonlinear complementarity problem (NCP) and 1168

its homogenized version (NCP-H). The following results hold: 1169

1. The homogenized problem (NCP-H) is an (NCP). 1170

2. If the original (NCP) is monotone then the homogenized (NCP) is mono- 1171

tone, too, thus we can use the algorithm presented in Section 4.2. 1172

3. If the homogenized (NCP) has a solution (x, s, ν, ρ) with ν > 0 then 1173

(x/ν, s/ν) is a solution for the original system. 1174

4. If ν = 0 for all the solutions of (NCP-H) then the original system (NCP) 1175

does not have a solution. 1176

4.4 *The Barrier Method 1177

An alternative way to introduce interior point methods for nonlinear opti- 1178

mization is to use the barrier technique already presented in Section 2.5 and 1179

Section 3.6. The basic idea is to place the nonlinear inequalities in the ob- 1180

jective function inside a barrier function. Most barrier function are based on 1181

logarithmic functions. 1182

The nonlinear optimization problem (NLO) can be rewritten as 1183

min f(x) − μ

m∑
j=1

ln(−gj(x)) − μ

n∑
i=1

ln(xi). (4.9)

If xi or −gj(x) gets close to 0, then the objective function grows to infinity. 1184

Our goal is to solve this barrier problem approximately for a given μ, then 1185
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decrease μ and resolve the problem. If μ is decreased at the right rate and 1186

the approximate solutions are good enough, then this method will converge 1187

to an optimal solution of the nonlinear optimization problem. See [63] for 1188

details on the barrier approach for nonlinear optimization. 1189

5 Existing Software Implementations 1190

After their early discovery in the 1950s, by the end of the 1960s IPMs were 1191

sidelined because their efficient implementation was quite problematic. As 1192

IPMs are based on Newton steps, they require significantly more memory 1193

than first order methods. Computers at the time had very limited memory. 1194

Furthermore, the Newton system is inherently becoming ill-conditioned as 1195

the iterates approach the optimal solution set. Double precision floating point 1196

arithmetic and regularization techniques were in their very early stage at that 1197

time. Solving large scale linear systems would have required sparse linear 1198

algebra routines, which were also unavailable. Most of these difficulties have 1199

been solved by now and so IPMs have become a standard choice in many 1200

branches of optimization. 1201

In the following we give an overview of existing implementations of interior 1202

point methods. See Table 1 for a quick comparison their features. The web 1203

site of the solvers and the bibliographic references are listed in Table 2. 1204

t1.1 Table 1 A comparison of existing implementations of interior point methods

t1.2 Solver License LO SOCO SDO NLO

t1.3 CLP barrier open source � QO

t1.4 LIPSOL open source �
t1.5 GLPK ipm open source �
t1.6 HOPDM commercial � QO �
t1.7 MOSEK barrier commercial � � �
t1.8 CPLEX barrier commercial � �21

t1.9 XPRESS barrier commercial � QO

t1.10 CSDP open source � �
t1.11 SDPA open source � �
t1.12 SDPT3 open source � � �
t1.13 SeDuMi open source � � �
t1.14 IPOPT open source �22 �23 �
t1.15 KNITRO commercial �22 �23 �
t1.16 LOQO commercial �22 �23 �

21 CPLEX solves second-order conic problems by treating them as special (nonconvex)
quadratically constrained optimization problems.
22 In theory all NLO solvers can solve linear optimization problems, but their efficiency
and accuracy is worse than that of dedicated LO solvers.
23 LOQO does solve second-order conic optimization problems but it uses a different ap-
proach. It handles the constraint x1 − ‖x2:n‖2 ≥ 0 as a general nonlinear constraint, with
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t2.1 Table 2 Availability of implementations of IPMs

CLP [24], http://www.coin-or.org/Clp
LIPSOL [100], http://www.caam.rice.edu/∼zhang/lipsol

GLPK [28], http://www.gnu.org/software/glpk
HOPDM [15], http://www.maths.ed.ac.uk/∼gondzio/software/hopdm.html

MOSEK [6], http://www.mosek.com
CPLEX [12], http://www.ilog.com
XPRESS-MP [41], http://www.dashoptimization.com
CSDP [13], http://projects.coin-or.org/Csdp
SDPA [95], http://homepage.mac.com/klabtitech/sdpa-homepage
SDPT3 [86], http://www.math.nus.edu.sg/∼mattohkc/sdpt3.html

SeDuMi [76], http://sedumi.ie.lehigh.edu/
IPOPT [90], http://projects.coin-or.org/Ipopt
KNITRO [14], http://www.ziena.com/knitro.htm
LOQO [89], http://www.princeton.edu/∼rvdb/loqo

5.1 Linear Optimization 1205

Interior point algorithms are the method of choice for large scale, sparse, 1206

degenerate linear optimization problems. Solvers using the simplex method 1207

are usually not competitive on those problems due to the large number of 1208

pivots needed to get to an optimal solution. However, interior point methods 1209

still do not have an efficient warm start strategy, something simplex based 1210

methods can do naturally, so their use for branch-and-bound type algorithms 1211

is limited. 1212

IPMs have also been implemented in leading commercial packages, usually 1213

together with a simplex based solver. Comprehensive surveys of implemen- 1214

tation strategies of IPMs can be found in, e.g., [5, 36]. For a review on the 1215

strengths and weaknesses of interior point methods versus variants of the 1216

simplex method see [43]. 1217

Linear optimization problems with up to a million variables can be solved 1218

routinely on a modern PC. On larger parallel architectures, linear and 1219

quadratic problems with billions of variables have been solved [34]. 1220

5.2 Conic Optimization 1221

Interior point methods are practically the only choice for semidefinite opti- 1222

mization, most of the existing general purpose solvers fall into this category, 1223

only PENSDP24 being a notable exception. Also, PENSDP is the only solver 1224

some extra care taken due to the nondifferentiability of this form. In a similar way, other
IPM based NLO solvers can solve SOCO problems in principle.
24 [49], http://www.penopt.com/pensdp.html
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that can handle nonlinear semidefinite problems and it is also the only com- 1225

mercial SDO solver (at least at the time this chapter is written). 1226

The implementation of IPMs for conic optimization is more complicated 1227

than that for linear optimization, see [13, 77, 83] for more details. 1228

Unfortunately, commercial modelling languages do not support SDO, thus 1229

limit its use in the commercial sector. Second order conic optimization is in 1230

a slightly better situation, since it is easily formulated, but there are only 1231

very few specialized solvers available. Only very few solvers can solve prob- 1232

lems including both second order and semidefinite constraints, currently only 1233

SeDuMi and SDPT3. Both of these packages run under Matlab. 1234

There are two open source modelling languages that support conic opti- 1235

mization: Yalmip25 and CVX26. Both of these packages are written in Matlab. 1236

5.3 Nonlinear Optimization 1237

There are literally hundreds of solvers available for nonlinear optimization 1238

and only a small fraction of those use interior point methods. On the other 1239

hand, arguably, the most powerful, robust solvers are actually based on inte- 1240

rior point methods, IPOPT, KNITRO and LOQO being the most successful 1241

ones. These are all general use nonlinear optimization solvers, they can han- 1242

dle nonconvex problems as well (yielding a locally optimal solution). Some 1243

codes have been specialized for optimization problems with complementar- 1244

ity constraints. The best known variant is IPOPT-C [71], an extension of 1245

IPOPT. 1246

The implementation of these methods poses further challenges, see [90] for 1247

details. 1248

6 Some Open Questions 1249

Interior point algorithms have proved to be very successful methods for linear 1250

and nonlinear optimization, especially for large-scale problems. The “interior- 1251

point revolution” [92] has completely changed the field of optimization. By 1252

today, the fundamental theoretical questions regarding complexity and con- 1253

vergence of interior point methods have been addressed, see also [62] for a 1254

recent survey. Most importantly, we know that results about the iteration 1255

complexity of these methods cannot be improved further, see [21] for details 1256

on the worst-case complexity of interior point methods. 1257

25 [50], http://control.ee.ethz.ch/∼joloef/yalmip.php
26 [38, 39], http://www.stanford.edu/∼boyd/cvx
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6.1 Numerical Behaviour 1258

Current research is focusing on efficient implementations of the methods. 1259

Due to the ill-conditioned nature of the Newton system in the core of IP 1260

methods, people are looking for ways to improve the numerical behaviour of 1261

the implementations. Some notable results are included in [31, 78, 79]. Most 1262

of these ideas are implemented in leading interior point solvers. 1263

6.2 Rounding Procedures 1264

Iterates of interior point methods stay inside the set of feasible solutions, while 1265

with a linear objective, the optimal solution is on the boundary of the feasible 1266

set. Rounding procedures try to jump from the last iterate of the IPM to an 1267

optimal solution on the boundary. This theory has been well-developed for 1268

linear optimization and linear complementarity problems [56, 72]. For conic 1269

optimization, the mere existence of such a method is an open question. In 1270

general we cannot expect to be able to get an exact optimal solution, but 1271

under special circumstances we might be able to get one. 1272

6.3 Special Structures 1273

Exploiting sparsity has always been one of the easiest ways to improve the 1274

performance of an optimization algorithm. With the availability of efficient 1275

sparse linear algebra libraries and matrix factorization routines, general (un- 1276

structured) sparsity seems to have been taken care of. On the other hand, 1277

sparse problems containing some dense parts pose a different challenge [30]. 1278

Moreover, even very sparse semidefinite optimization problems lead to a fully 1279

dense Newton system, which puts a limit on the size of the problems that 1280

can be solved. 1281

There are several other special types of structures that cannot be fully 1282

exploited by current implementations of interior point methods. This limits 1283

the size of the problems that can be solved with IPMs. At the same time it 1284

offers a wide open area of further research. 1285

6.4 Warmstarting 1286

A serious deficiency of interior point methods is the lack of an efficient warm- 1287

starting scheme. The purpose of a warm-start scheme is to significantly reduce 1288

the number of iterations needed to reoptimize the problem after changes to 1289
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the data (constraints are added or deleted, numbers are changed). Despite 1290

numerous attempts (see [33, 35, 98]), none of the methods are particularly 1291

successful. 1292

If the change in the problem data is small enough then simplex based 1293

methods can very quickly find a new optimal solution. If the change is large 1294

(hundreds or thousands of new constraints are added) then interior point 1295

methods have a slight edge over first order methods. 1296

6.5 Parallelization 1297

With the general availability of inexpensive multiple core workstations and 1298

distributed computing environments, parallelization of optimization algo- 1299

rithms is more important than ever. Most developers are working on a 1300

parallelized version of their codes. Some success stories are reported in 1301

[13, 34, 44, 61]. 1302
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B. Strazicky, editors, System Modeling and Optimization: Proceedings of the 12th 1500

IFIP-Conference held in Budapest, Hungary, September 1985, volume 84 of Lecture 1501
Notes in Control and Information Sciences, pages 866–876. Springer Verlag, Berlin, 1502
West Germany, 1986. 1503

75. J. F. Sturm. Primal-dual interior point approach to semidefinite programming, In 1504
J. B. G. Frenk, C. Roos, T. Terlaky, and S. Zhang, editors, High Performance Opti- 1505
mization. Kluwer Academic Publishers, Dordrecht, The Netherlands, 1999. 1506

76. J. F. Sturm. Using SeDuMi 1.02, a Matlab toolbox for optimization over symmetric 1507
cones, Optimization Methods and Software, 11-12, 625–653, 1999. 1508

77. J. F. Sturm. Implementation of interior point methods for mixed semidefinite and 1509
second order cone optimization problems, Optimization Methods and Software, 17(6), 1510
1105–1154, 2002. 1511

78. J. F. Sturm. Avoiding numerical cancellation in the interior point method for solving 1512
semidefinite programs, Mathematical Programming, 95(2), 219–247, 2003. 1513

79. J. F. Sturm and S. Zhang. An interior point method, based on rank-1 updates, for 1514
linear programming, Mathematical Programming, 81, 77–87, 1998. 1515

80. T. Terlaky, editor Interior Point Methods of Mathematical Programming, volume 5 1516
of Applied Optimization, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1517
1996. 1518

81. T. Terlaky. An easy way to teach interior-point methods, European Journal of 1519
Operational Research, 130(1), 1–19, 2001. 1520

82. M. J. Todd. A study of search directions in primal-dual interior-point methods for 1521
semidefinite programming, Optimization Methods and Software, 11, 1–46, 1999. 1522
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