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 THE BLANCMANGE FUNCTION

 The blancmange function
 Continuous everywhere but differentiable nowhere
 DAVID TALL

 One of the problems of the first introduction to the calculus and the
 subsequent mental imagery developed by the student is that the functions
 involved are usually given by simple formulae such as f(x)= xn and the
 derivatives calculated by formulae crunching: f'(x)= nxn"-. The
 fundamental ideas of the calculus and any relational understanding
 recede into the background. Getting out of the strait-jacket and considering
 more general functions at some stage is rarely considered. When it is, it
 is usually performed in the context of university analysis where pictures are
 banned because they are claimed to mislead the intuition.

 Such an attitude is utterly destructive. What we must do is to retain
 our intuition so that the theorems of analysis became natural, giving us
 a more coherent view of the theory. With the coming of the microchip
 and high resolution graphics, the drawing of much more general functions
 will become a reality in the classroom in the next twenty years. Now is
 the time to begin to reorient our understanding of the calculus to take
 advantage of the new facilities and a broader understanding of the concepts.

 My aim here is to give a refined conceptual explanation of continuity and
 differentiation which are formally correct and have a suitable pictorial
 interpretation. As a particular example I shall introduce the blancmange
 function (whose name was first coined by my colleague John Mills).
 The graph of the function is illustrated in Fig. 1.

 FIGURE 1.

 The ideas presented here should be easily within the grasp of students
 armed only with graph paper, a ruler, a pencil and a lively mind. As we
 shall see, the blancmange function turns out to be continuous everywhere
 but differentiable nowhere. We shall learn how to view a graph highly
 magnified to see how this comes about.

 The blancmange recipe

 The first ingredient in the blancmange is a simple saw-tooth graph
 which has the value f(x) = x for 0 < x < andf(x) = 1 - x for ? < x < 1,
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 FIGURE 2.

 then repeats its values over each succeeding unit interval, as illustrated
 in Fig. 2. It may be described alternatively as the distance from x to the
 nearest integer. If x = k + d where k is a whole number and d is the decimal
 expansion of the rest of x, (0 < d < 1), then

 fS(k + d)d when O < d <

 and

 fi(k + d) - d when < d < 1.

 For instance, f(21) = , f(3) -= , f(V/2) = (v2)- 1, f(e) -3 -e (because
 e is between 21 and 3).

 The next ingredient is another saw-tooth graph ' ^f2(x) where

 f2(x)= -f1(2x).

 When 0 < 2x < , thenf (2x) - 2x, so

 f2(X)- f(x)- X ( < X < 4I).

 Likewise I < 2x < 1 givesf1(2x) 1 - 2x, so

 f2(x) = 2 ,(x)- - x (41 x < 2).

 For x = + a, we have

 f2(2 + a) = fl(1 + 2a)- fi(2a) f2(a).
 Just as fi(x) repeats its values when x is increased by 1, so f2(x) repeats
 its values when x is increased by ?, as shown in Fig. 3. An alternative

 I

 FIGURE 3.
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 THE BLANCMANGE FUNCTION

 way to see the same thing is to note that as x increases, the graph of
 y= If(2x) goes up and down twice as fast and to half the height of
 y =fi(x).

 Now the idea is repeated with

 f3(x) = 4fi(4x)

 and successively we draw

 f4(x) = ifl(8x), ...,f n(x) = ()n- lfi(2n-1 X).

 At each stage the graph is half the size of the previous one (Fig. 4).

 A A

 FIGURE 4.

 To get the blancmange function we add these graphs together. It may
 be done in stages. First we let b1(x) =fi(x), then we draw

 b2(x) =f(x) +f2(x),

 b3() =fl(X) +f2(X) +f3(),

 and, in general,

 bn(x) =f,(x) +f2(x) + * . +fn(x) = bn_-(x) + f(x).

 The interesting thing is that after a few graphs, round about b6, b7 or b8,
 depending on the scale, the new additions become so small, they don't
 significantly alter the status quo. The reader should draw the graphs to
 any appropriate scale. The physical act of drawing, as opposed to passively
 looking at the final static product, will indelibly imprint this fact in the
 memory (Fig. 5).

 The blancmange function b is the limit of the sequence of b 's:

 b(x) = lim bn(x) (for every real number x).
 n-- oo

 From the inequalities onf1(x),f2(x), .. .,fA(x), we clearly have

 0 < bn_ (x) < b(x) < + (?)2 + ... + (+)n. or b,_(x)( n(x) < + 1

 13
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 FIGURE 5.

 But

 4? (4)2?+ ? (4)n = I(4)n,

 so for all n we have

 o< bn 1(x) b,(x) 1.

 Thus for any fixed value of x, the sequence b,(x), b2(x), ..., b(x... is
 increasing and bounded above by 1. It therefore tends to a limit b(x)
 which is not more than 1.

 For practical purposes we do not have to compute many terms to get
 a good approximation to b(x). For instance, for n > 20 we have

 o ? b,(x)- b20(x) (If22(x) + ... +f1(x) (4)21 + ... + (4)n
 (1)21(1 _ (1)n 20)/(1 4)

 K (1)20

 < 0.000001,
 so

 b20(x) ? bn(x) ? b20(x) + 0.000001 (n > 20).

 Allowing n to increase so that bn(x) tends to b(x), we get

 b20(x) < b(x) < b20(x) ? 0-00000l.

 14Q
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 Using 1 metre as a unit length and a fine drawing pen giving a line of
 width 0*1 millimetres, the graphs of the blancmange function b and of b20
 are quite indistinguishable.

 However, there is an important theoretical difference between b and b20.
 The graph of b20 is made up of very short straight line segments but, as
 we shall see, the graph of the blancmange function wobbles all the time.
 This can be seen by imagining what happens were we to start adding the
 saw-teeth starting not atf, but at some later tooth, say

 fn+ ,(X) + fn+ 2(x) + ' '

 The saw-tooth f+,, is a (?)n-scale version offi, then f+2 is scaled down by
 a further factor ? and so on. Thus the above sum is just a (I)"-scale
 blancmange. To be precise, we have

 fn+l(X)+ 1 * * +fn+r(X) + '

 - ()nf1(2 X) + * + ()n+rlf(2+r-l2n+r-) + ..

 = ()nf (2n X) + . . + ()r-lf (2r- 1(2n )) + ...

 - (?)nfi(2nx) + .. + fr(2 X) +

 = ()fn b(2n x).

 This gives

 b(x) =fl(x) + ... + fn() +fn+(x) + ... +fn+r(x) + .

 = bn(x) + ()n b(2n x).

 Thus the graph of the blancmange function b(x) is obtained by adding
 together the graph of bn(x) and the (?)"-sized blancmange ()n b(2"x).
 As an example, for n = 1, the identity

 b(x)= b,(x) + ?b(2x)

 tells us that if we add the graph of y = b,(x) to a half size blancmange
 y = ?b(2x), then we get the full-size blancmange y = b(x) (Fig. 6).

 FIGURE 6.

 15
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 More generally, if the graphs of b(x) and bn(x) are drawn in the same
 picture, it will reveal the fact that the blancmange function has tiny
 sheared mini-blancmanges growing everywhere. For instance Fig. 7 shows
 the 1/16-size blancmanges growing on b4(x). Where b4 has flat portions
 the mini-blancmanges are perfect scaled down versions, elsewhere they are
 sheared.

 1size

 FIGURE 7.

 Pictorial continuity: the blancmangefunction is continuous

 A central property of a continuous function f:D -,+ (where D is a subset
 of the real numbers IR) is that it can be drawn over any closed interval
 [a,bl in D without taking the pencil off the paper. In short, a continuous
 function can be drawn 'continuously' in the colloquial sense. Regrettably,
 the experiences sixth-formers get of the notion of continuity are often
 at variance with the formal definition. Some believe that a 'continuous

 function' is one that 'has its graph in one piece', others that 'it is given
 by a single formula', and yet others erroneously link it with differentiation,
 for instance 'it has a smoothly turning tangent'.

 A functionf: D - P/ is continuous at a C D if

 lim f(x) =f(a).
 x-a

 In this sense the function f(x) = l x is continuous at all points in

 D =xE R ?:x 0

 because

 lim Il/x- I/a (a # O)
 x-.a

 16
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 THE BLANCMANGE FUNCTION

 but the graph of y = 1 x is not in one piece. The problem is that the domain
 D has a gap in it. We can only hope to draw the graph 'in one piece'
 over parts of the domain which have no gap, so we attempt to draw it
 over an interval. There is an additional hazard; if we try to draw the
 graph over an interval with one or more endpoints omitted, for instance

 I= {xE R:0 < x < 1},

 then it may happen that the function is unbounded near the missing
 endpoint (as 1/x is unbounded near zero) and so the graph cannot be
 captured on a finite piece of paper.

 With this in mind, let us define a function f :D - I to be pictorially
 continuous if over any interval [a,b] in D, given k > 0 we can find c > 0
 such that s,t E [a,b] and Is - t < c implies I f(s) -f(t)l < k (see Fig. 8).

 A
 c

 I >
 s t

 FIGURE 8.

 Given k > 0, if s, t differ by less than the corresponding c, then the values f(s), f(t) differ
 by less than k

 (Provided that domains like ; are avoided, where inside points and outside
 points are inextricably mixed, this is equivalent to continuity.)

 Suppose that we wish to draw a pictorially continuous function over
 an interval [a,b]. Given k> 0 cover the interval [a,b] with successive
 small intervals [a,a + d], [a + d,a + 2d],... where d is less than the c
 corresponding to k. Then the graph is captured in a succession of boxes
 width d, height k (Fig. 9(a)). For a given size pencil point we just choose
 k,d small enough to make the rectangle fit in the mark made on paper
 by the pencil. Then we move over the rectangles in succession to draw
 a pencil line which captures the graph inside it. Fig. 9(b) is a caricature
 of this process: 9(c) is more realistic for in practice a pencil line captures
 the very small rectangles within it.

 17

This content downloaded from 150.217.33.217 on Tue, 26 Apr 2016 10:28:42 UTC
All use subject to http://about.jstor.org/terms



 THE MATHEMATICAL GAZETTE

 a b a b a h

 (a) (b) (c)

 FIGURE 9.

 We can now establish the (pictorial) continuity of the blancmange
 function. Let k > 0 be given. We shall find a c > 0 such that, throughout A.

 Is - t <c implies Ib(s)- b(t)I < k.

 We do this in two stages. We have already seen that we can take n large
 enough to make b(x)- b(x) as small as we like. So choose n such that
 0 < b(x) - b,(x) < k/2 for all real x. Then, in particular, for any s, t in i,,

 k k
 < (b(s)- b,(s)) + (b(t)- b(t)) < -
 2 2

 Next, note that the graph of bn is made up of straight line segments by
 adding n saw teeth together. But each saw-tooth has line segments each
 of gradient -1 or + 1, so the gradients of the line segments of b, lie between
 -n and +n. If s, t happen to lie under the same segment of b, we have

 tb,(s)- bn(t) < n\ s- t1.

 But if they lie under different segments then this inequality still holds
 (even more so!). So

 k k k
 Is- tl < 2 implies - < bn(s)- bn(t) < .

 2n 2 2

 Putting these facts together, we have found a c (namely k/2n) so that
 Is - tl < c implies

 b(s) - b(t) = (b(s)- bn(s)) + (b,(s)- bn(t)) + (b,(t))- b(t)) < k

 as required: the continuity of b is established.

 Differentiable functions: the blancmangefunction is differentiable nowhere

 The difference between a merely continuous function and a differentiable
 function is easily seen by magnifying the graph and looking at it closely.
 If a differentiable function is highly magnified, its graph looks like a
 straight line. A continuous function which is not differentiable will not level
 out in the same way. For instance the graph of y= x2 magnified near
 x = 1, y = 1 looks like a straight line of gradient 2 (as shown in Fig. 10).

 18
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 FIGURE 10.

 In a practical sense, this may be done by plotting values over a small
 interval, say [0-999, 1001], to a large scale of magnification, either by
 straightforward calculations, or by high resolution graphics on a micro-
 computer.

 Theoretically, suppose that a function f:D -- is differentiable at
 a E D and that the interval [a - r, a + r] lies in D for some r > 0. Then

 lim (x) -f'(a) ) = 0
 x-.a x- a

 and so, given k > 0, there exists c > 0 such that

 f(x) -f(a)
 0< x- al < c implies -f(x)f(a) (a) <k,

 x-a

 whence

 If(x)-f(a)-f'(a)(x- a)l < klx- al.

 Now take any A with 0 < A < c. Then for 0 < Ix -al a < , we have

 If(x) -f(a) -f'(a)(x - a)l < k< .
 By substitution, this inequality also holds for x= a; whence for
 x E [a - 1,a + A], we have

 -kA <f(x) -f(a) -f' (a)(x - a) < k.

 This may be rewritten as

 f(a) +f'(a)(x - a) - k) <f(x) <f(a) +f'(a)(x - a) + k,

 which means that the graph of y=f(x) lies between the two parallel
 straight lines

 y=f(a) + (x- a)f'(a)- k2 and y =f(a) + (x- a)f'(a) + k2

 (which are themselves parallel to the tangent to y=f(x) at the point
 (a,f(a))). These two lines are a vertical distance 2ki apart (as in Fig. 11).

 Suppose that we wish to draw a picture of the graph, scaling up the
 interval [a - , a + A] to occupy a width w; then we shall need to multiply

 19
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 v =f(a) + (x - a)f'(a) + k

 / f2ka

 -Y -= f (a) + (x - a)' (a) -- kA

 (a,f(a))

 FIGURE 11.

 by a scaling factor w/22. Scaling the whole picture by this factor, the
 vertical height between the two parallel lines is scaled to a length

 2ki. w/2 = kw.

 Now we can choose k to be any positive number we like and this then gives
 us an appropriate value of A. For instance taking k= h/w gives the
 following theorem:

 Theorem Suppose that f is defined on a domain including an interval
 [a - d, a + d] andfis differentiable at x = a. Then for any positive numbers
 w and h, there exists an interval [a -, a ,+ A such that the graph of
 y =f(x) over this interval scaled up by a factor w/2A lies between two
 parallel straight lines of gradient f'(a) which are a vertical distance h
 apart on the scaled drawing.

 As a practical application, let us take w= 20 centimetres and h = 0.01
 centimetres, (these values being chosen to represent a decent paper-width
 w and the depth of the line drawn by a fine drawing pencil). Then there
 exists some A > 0 such that the graph of y=f(x) over the interval
 [a- i, a + A] scales up to lie inside a fine straight pen-line of width 0.01
 centimetres over an interval of width 20 centimetres (Fig. 12). The pen-line

 0 tan 0 + 0-01 cm

 line of
 vertical

 / thickness
 0.01 cm

 * 20 cm -

 FIGURE 12.
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 THE BLANCMANGE FUNCTION

 has gradient tan =f' (a) and the height of the picture is 20 tan 0 + 0-01
 centimetres. (If the graph is steep this may be quite high!)

 This reasoning may be used to show that the blancmange function
 does not have a derivative anywhere. If it happened that it were differen-
 tiable at x= a, say, then over some interval [a - , a + A, the graph
 scaled to a horizontal width 20 centimetres lies between two parallel lines
 which are a vertical distance 0.01 centimetres apart.

 Choose integers m,n (n > 1) such that [m/2, (m + 1)/2"] is the largest
 such interval lying inside [a - , a + A], which means that

 m-1 m m+l m+2
 < a-A <- < <a+A <

 2" 2" 2" 2"

 Then

 m+2 m-1 3
 2A = (a + A) - (a - A) < - 2 -

 2" 2" 2n

 which gives 1/2" > 2A/3. This means that when [a - ,a + Al is scaled
 up to a length 20 centimetres, then [m/2",(m + 1)/2"] is scaled up to a
 length of at least 20/3 = 64 centimetres. But, from the first section, the
 graph of the blancmange function over the interval [m/2",(m + 1)/2"1 is
 a sheared mini-blancmange. Since the blancmange function on [0, 11 rises
 to a height of more than ?, then scaled up to a base length of more than
 62 centimetres, a blancmange rises to a height of more than 4 x 6 = 33
 centimetres. When sheared, there is no way that it can lie between two
 parallel lines of vertical distance 0.01 centimetres apart! The reason
 why the blancmange function is differentiable nowhere now becomes
 manifestly obvious-it wobbles too much!

 Consequences

 We have seen that the ideas of continuity and differentiability can
 be given obvious pictorial interpretations: a continuous function can be
 drawn without taking the pencil off the paper over any closed interval in
 the domain, and a differentiable function when highly magnified looks
 very much like a straight line. These ideas are quite familiar to practical
 mathematicians, physicists and engineers, though the notion of continuity
 may be encrusted with other personal interpretations that cloud its true
 meaning. Many formalistic mathematicians, on the other hand, deny
 these very helpful picture images. Some would find it difficult to imagine
 an everywhere continuous, nowhere differentiable function; yet the
 blancmange function has a recipe for drawing that gives a very clear idea
 of why it has these seemingly unusual properties.

 The fact is that pictures, correctly interpreted, can play a very important
 role in giving insight to ideas in mathematical analysis. It is salutary to

 21
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 note that, by using pictorial ideas, it is possible to show that the blancmange
 function is nowhere differentiable, a fact that is considered 'too difficult' to
 explain in most undergraduate mathematics courses. What is more
 important is that these practical ideas translate into a correct formal
 proof, now invested with geometric insight sadly lacking in so much
 formal mathematics.

 "Intuition" is not a low-level phenomenon to be excluded from higher
 mathematics, it is a highly personal mental activity produced by experience.
 If we give the right experiences and enhance intuition then it can result in a
 much more profound understanding.

 DAVID TALL

 Mathematics Education Research Centre, University of Warwick,
 Coventry CV4 7AL

 Sums of powers of integers: a little of the history

 A. W. F. EDWARDS

 The lack of any obvious pattern amongst the Bernoulli numbers (1, - 0,
 O- A A,- ...) is one of the shocks of analysis which subsequent
 familiarity with the many beautiful and simple means of deriving them does
 not altogether assuage. Historically, they first arose in connection with the
 sums of the rth powers of the first n integers

 n

 i i' r = r + 2r + 3r + . + r (1)
 i 1

 which it is convenient to write as jnr. The Greeks, Hindus, and Arabs
 all had rules amounting to

 n -= n(n + 1) n2 + In

 ,n2 = -n(n + 1)(2n + 1) = n3 + n2 _ + n (2)
 Ln3 = -yn(nn + 1)12 _ n4 + n3 + n2

 whilst a fifteenth-century Arab rule for the fourth powers was equivalent to

 n4 - n(n + 1)(2n + 1)(3n2 + 3n- 1)

 - n5 + n4 + 3n3 n, (3)

 there being no n2 term in the second form.
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