
MATLAB for Psycologists

CdL Scienze e Tecniche Psicologiche
a.a. 2018-2019

ANDREA FROSINI
e-mail: andrea.frosini@unifi.it

Informatica Andrea Frosini 2

Testo di riferimento:
M. Borgo, A. Soranzo, M. Grassi
“MATLAB for Psycologists”
Springer

errata corrige, scripts and listings from the book:
https://dpg.unipd.it/en/mlp/matlab-book

Informatica Andrea Frosini 3

Chapter 1- Basic Operations

Step zero: get used to the environment, create a directory where save and open
your file(s).

Basic arithmetical operators:

To type after prompt >>
followed by Enter

MATLAB answer meaning

35+12 ans = 47 sum

35*12 ans = 420 multiplication

2/45 ans = 0.0444 division

2-1 ans = 1 subtraction

2^3 ans = 8 exponentiation

12/0 ans = Inf infinity

0/0 ans = NaN Not a Number

11+ ??? 11+ expression error

Informatica Andrea Frosini 4

Chapter 1- Variables

A variable can be regarded as a labeled box having a prescribed dimension which
contains a certain type of data (automatically created and dynamically updated
according to the context)

Create, update and recall a variable:

Task: enjoy updating variables and make arithmetical operations on them. Keep track
of their changes in the Workspace.

N.B. Using semicolon ; at the end of a command prevents the command to be echoed on the screen

>>pippo=9

Ans=

9

>> pippo

Ans=

9

>>pippo=‘ciao mamma’

Ans=

ciao mamma

>>pippo

Ans=

ciao mamma

Informatica Andrea Frosini 5

Chapter 1- Vectors and Matrices

Let us create vectors and matrices and recall them:

>>a=[1,2,3,4];

>>b=[1;2;3];

>>c=[1,2,3,4;5,6,7,8;9,10,11,12];

a (row) vector b (column)
vector

c 3x4 matrix Assign value ATTENTION!

1 2 3 4 1
2
3

1 2 3 4
5 6 7 8
9 10 11 12

>>d=5
d=5

>>a(2)
Ans=
2

>>b(0,1)
error

>>c(3,2)
Ans=
10

>>a(1,2)=6
Ans=
a= 1 6 3 4

>>d(2)=6
d= 5 6

N.B. the followings are useful functions

>>size(c)
Ans=

3 4

>>length(a)
Ans=
4

>>length(b)
Ans=
1

Vectors’ dimension
changes!!!

Informatica Andrea Frosini 6

Chapter 1- Vectors and Matrices
(nice tricks)

Address more than one element at a time:

>>c([1,3];4) >>c(2;1:3) >>c(:;1) >>c(:,[2,4]) = []

1 2 3 4
5 6 7 8
9 10 11 12

1 2 3 4
5 6 7 8
9 10 11 12

1 2 3 4
5 6 7 8
9 10 11 12

1 2 3 4
5 6 7 8
9 10 11 12

Ans= 4
12

Ans= 5 6 7 Ans = 1
5
9

Ans =
c= 1 3

5 7
9 11

Useful functions and operations: let d=[2,4;5,7;9,11;1,0], e=[7,8,9,0]

>>size(c)
Ans=
3 4

>>length(c)
Ans=
4

>>length(a)
Ans=
4

>>2*a
Ans=
2,4,6,8

>>a+e
Ans=
8 10 12 4

>>c*d
Ans=43 51

111 139
179 227

>>d’ % transposition
Ans = 2 5 9 1

4 7 11 0

Exercises 1,2 and 3 are suggested

Informatica Andrea Frosini 7

Chapter 2- Data Handling

MATLAB stores logical values and strings in addition to numbers into variables, with
simple or structured data types.

Handling Logical Variables:

A logical variable stores the two logical data

FALSE represented by 0;

TRUE represented by any nonzero (usually 1) number.

The function logical(x) converts the elements of the vector x into logical values

The relational operators that can be used in MATLAB are:

< (less) ,<= (less or equal), > (greater),>= (greater or equal),== (equal),~= (not equal)

The logical operators that can be used in MATLAB are:

& (AND) , | (OR),~ (NOT)

Informatica Andrea Frosini 8

Chapter 2- Data Handling

Examples of the use of logical variables and operators (TO BE UNDERSTOOD):

let a=[0,1,2,3,4], b=[3,2,0,1,7]

>>5>3
Ans=
1

>>logical(a)
Ans=
0 1 1 1 1

>>a>b
Ans=
0 0 1 1 0

>>c= a==3
c= 0 0 0 1 0

>>x=3; 0<x<2
Ans=
1

>>(x>0)&(x<3)
Ans=
0

>>c=(b>=3)|(b<1)
c= 1 0 1 0 1
>>d=b(c)
d= 3 0 7

>>e= a((b>=3)|(b<1))
e = 0 2 4

>>any(a)
Ans = 1
>>f=[0,0,0]; any(f)
Ans = 0

>>all(a)
Ans= 0
>>f=[1,2,3];all(f)
Ans=1

>>exist(‘a’)
Ans = 1
>>exist(‘z’)
Ans=0

>>isempty(a)
Ans = 0
>>f=[];isempty(f)
Ans = 1

Etc… Etc…

N.B. the example in cell (1,5) needs a further comment: MATLAB resolves the
command 0<x<2 as follows

1) it computes 0<x that is true so it gives 1 as result;

2) it computes 1<2 that is true, giving 1 as Ans.

Informatica Andrea Frosini 9

Chapter 2- Data Handling

Handling Strings:

A string is a sequence of characters and are treated by MATLAB as vectors

If we need a sequence of strings, then we have to use the function char that creates a
matrix of strings, each in a different row

>>a=‘Mario’
a= Mario
>>a(2)
Ans= a

>>b=‘Luigi’
>>c=[a,’ ‘,b]
c= Mario Luigi

>>c=a; c(2)=b
Error

>>c=char(a,b)
c= Mario

Luigi

>>lower(a)
Ans = mario
>>upper(a)
Ans= MARIO

>>strcmp(a,b)
Ans= 0
>>strcmp(a,c(1))
Ans=1

>>strrep(a,’a’,’b’)
Ans=Mbrio
% replace the occurrences of ‘a’ with ‘b’ in a

>>findstr(b,’i’)
Ans= 3 5
% return the indexes of each occurrence
of ‘i’ in b

Informatica Andrea Frosini 10

Chapter 2- Data Handling

Handling (formatted) Strings:

Data values or variables can be inserted into a string:

let a=‘Mario’, b=‘Luigi’,eta=[21,22]

>>sprintf(‘Il nome del mio amico e’’ %s ed ha %d anni’,a,eta(1))
Ans= Il nome del mio amico e’ Mario ed ha 21 anni
>>sprintf(‘Il nome del mio amico e’’ %s ed ha %d anni’,b,eta(2))
Ans= Il nome del mio amico e’ Luigi ed ha 22 anni

Special characters spec.:
%c – single char
%d – integer number
%s – string of chars
%f – decimal number
\n – newline
\t – horizontal tab

INPUT

>>input (‘How old are you? ’)
How old are you? 35
Ans = 35

>>input(‘How old are you?’,’s’)
How old are you? Thirty five
Ans = Thirty five
% ‘s’ is for string inputs

>>a= input(‘Name a friend ’,’s’)
Name a friend Luca
a = Luca

Informatica Andrea Frosini 11

Chapter 2- Data Handling

Handling NaN:

NaN means Not a Number and is used for missing data.

Doing mathematical operations involving NaN return NaN.

>>pippo=[12, NaN, 5, NaN, 0, 3]
Pippo = 12 NaN 5 NaN 0 3
>>isnan(pippo)
Ans = 0 1 0 1 0 0

% isnan(pippo) return an array with 1 in NaN positions
of pippo, 0 otherwise

>>mean(pippo)
Ans = NaN
>>mean(pippo(~isnan(pippo))
Ans= 5

Informatica Andrea Frosini 12

Chapter 2- Data Handling

Handling Structures:

Structures are structured data types that can be regarded as vectors of different
primitive (i.e., numbers, boolean and strings) data types.

Each element is called field. As usual, examples will clarify the use; let us assume we
want to store the partecipants of an experiment:

>>subject.name=‘Mario’
>>subject.surname=‘Rossi’
>>subject.age=24
>>subject.testanswers=[2,1,4,1,2]
>>subject.testcorrections=logical([1,0,0,1,1])
>>subject
Subject=

name: ‘Mario’
surname: ‘Rossi’
age : 24
testanswers : [2,1,4,1,2]
testcorrections : 1 0 0 1 1

>>subject(2).name=‘Luigi’
>>subject.age=20
>>subject.testanswers=[1,1,2,2,2]
>>subject(2)
Ans =

name: ‘Luigi’
surname: []
age : 20
testanswers : [1,1,2,2,2]
testcorrections :

>>rmfield(subject,’testanswers’)
Ans = name

surname
testanswers
testcorrections

Informatica Andrea Frosini 13

Chapter 2- Data Handling

Handling Cells (skipped).

Import/Export:

In MATLAB it is extremely useful to save and load variables to and from files for
further working sessions, since the program deletes them as soon as you quit.

>>clear all % clear all the variables in the
workspace
>>a=‘Mario’
>>b=‘Luigi’
>>c=[12 3 5 NaN]
>>save pippo % creates in the working
directory the file pippo.mat storing the
current values of the three variables a,b and c

>>a=‘Luca’
>>load pippo
>>a
a = Mario
>>uiimport
% import the data from a
selected file

>>a=‘Luca’
>>b=‘Camilla’
>>save pippo a b
% update in pippo.mat only the
variables a and b

Exercises 1and 2 are suggested

Check carefully the code for the mean at pg.45

Informatica Andrea Frosini 14

Chapter 3- Plotting Data

MATLAB plots data in many different ways:

the simplest (and the only one considered here) is the plot command that inputs two
sequences (x1,x2,…,xn) and (y1,y2,…,yn) of numbers and draws the polyline
connecting (x1,y1),(x2,y2),…,(xn,yn).

Useful hints: x=[0:0.2:1] lists all the values from 0 to 1 with 0.2 step, i.e.,
x=[0,0.2,0.4,0.6,0.8,1], y=3*x creates a vector y=[0,0.6,1.2,1.8,2.4,3]

>>x=[0:0.2:1]
x= 0 0.2 0.4 0.6 0.8 1
>>y=3*x
y=0 0.6 1.2 1.8 2.4 3
>>plot(x,y)

>>plot(x,y,x,x.*x)
% .* is the element by
element product in
vectors

There are several plot command options to set the appearance of the figure: line aspect, line color,
axes width, legenda, title, labels etc… They will be treated if needed.

Informatica Andrea Frosini 15

Chapter 3- Plotting Data

To display multiple graphics in one figure one can use the subplot sommand.

The figure area is considered as a matrix and each draw is placed where desired,
accordingly. The syntax of the command is >>subplot(Nrows,Ncolumns,Position), where
Nrows and Ncolumns are the rows and columns of the matrix division of the area,
and Position is the area where the plot has to be placed. Areas are numbered from
top to bottom and from left to right.

>>subplot(2,3,1)
>>plot([2,3,4],[1,1,2])
>>axes([1,4,0,3]

>>subplot(2,3,[2,3])
>>x=[0:0.2,6]
>>plot(x,sin(x))

>>subplot(2,3,5)
>>x=[1:0.2:5]
>>plot(x,3.*x+1)

Informatica Andrea Frosini 16

Chapter 3- Plotting Data

Common ways to display data: let rand(r,c) creates a r x c matrix with random data
in [0,1] interval

>>bar(rand(5,3),’stacked’)
>>colormap(winter)
>> title('candies in five markets')
>> set(gca,'XTickLabel',{'jan','feb','mar'})
>> set(gca,'YTick',[1,2])

>>x=[1,2,4,6]; values=[4,6,12,9]
>>dev=[0.6,0.3,0.5,1]
>> bar(x,values,'w'); hold on;
>> errorbar(x,values,dev,'.k')

Informatica Andrea Frosini 17

Chapter 3- Plotting Data

Useful hint:

if one needs a matrix (vector) with integer random values in the interval [1,n], use
the command

>>fix(mod(rand(r,c).*10*n,n))

where fix returns the integer part of a number, and mod(x,y) returns the remainder
after division of x by y

After studying this chapter be also AWARE of:

-different kinds of graph representations

-how to change graph properties using set command

-3D data representations

-use of hold on command (do not allow a plot to replace the previous)

-use of print command

Exercises at will

Informatica Andrea Frosini 18

Chapter 3- Plotting Data

Exercise:

store in a struct variable test the results of a five Lickert levels – six items test
obtained from 12 subjects together with their name, surname and gender (use the
random generator to obtain the results).

Then show the following three graphs at the same time:

- for each item, the number of each result by a bar in a six bar bargraph;

- the polyline of the total points obtained by the 12 subjects;

- the mean and the sd of the obtained results using the errorbar in a six bar
bargraph .

Add to the variable test a further field storing the total points obtained by each
subject.

Informatica Andrea Frosini 19

Chapter 4- Start Programming

From now on we acquire the possibility of writing sequences of (structurated)
commands in a friendly and immediate way.

To do that, MATLAB provides a text editor accessible from the EDITOR label.

You write your sequence of commands on the right panel and run them on the left
panel simply typing the name of the related file (hereafter Untitled.m, saved
automatically in the working directory. The name can obviously be changed.)

Informatica Andrea Frosini 20

Chapter 4- Start Programming
Control flow statements

Cycles and Conditionals: if

Syntax

if condition
statement1
else
statement2
end

Semantic

If condition is true then statement1 is
performed and go to end, else
statement2 is performed.

Multiple conditions

If condition is true then
perform statement1 and go to end,
else if condition2 is true then
perform statement2 and go to end,
else …
else statementn is performed.

Multiple conditions

if condition1
statement1
elseif condition2
statement2
elseif
…
else
statementn
end

An alternative to the if – else form is the
switch – case form that sometimes leads
to more readable code.

Informatica Andrea Frosini 21

Chapter 4- Start Programming
Control flow statements

Cycles and Conditionals: if

begin

end

x>0
truefalse

Test_if.m
x=input(‘Insert a number greater than zero:’)
if x>0

disp(‘true’)
else
disp(‘false’)

end;

>> Test_if
Insert a number greater than zero: 45
>>true

Test_mult_if.m
x=input(‘Insert test result [0-30]:’);
if x<18

disp(‘try again’)
elseif x<30
disp(‘Good result: you pass!’)

elseif x=30
disp(‘Awesome!!!’)

else
disp(‘you cheater’)

end;

>> Test_mult_if
Insert test result [0-30]: 28
>> Good result: you pass!

input

X

output

‘false’
output

‘true’

Informatica Andrea Frosini 22

Chapter 4- Start Programming
Control flow statements

Cycles and Conditionals: if

Test_nested_if.m

x = input('Insert test result [0-30]:','s');
if str2num(x)<18

disp('you failed')
elseif str2num(x)<=30
disp('Good result: you pass!')

if strcmp(x,'30')
disp('Awesome!!!')

end;
else
disp('you cheater')

end;

>> Test_nested_if
Insert a number greater than zero: 30
>>Good result:you pass!
>>Awesome!!!

x<18
truefalse

output

‘pass’

output

‘failed’
x<=30

true

x=30

output

‘Awesome’

true

false

false

output

‘cheater’

Informatica Andrea Frosini 23

Chapter 4- Start Programming
Control flow statements

For Loops: it fulfills the need of repeating a block of statements a number of times

Syntax

for var in list_of_values
statement
end

for var in start:step:stop
statement
end

Semantic

The variable var takes all the values in
list_of_values and for each of them
statement is performed

The variable var takes all the integer
values from start to stop each time
increasing/decreasing of step and for
each of them statement is performed

Informatica Andrea Frosini 24

Chapter 4- Start Programming
Control flow statements

Informatica Andrea Frosini 25

Chapter 4- Start Programming
Control flow statements

Test_for.m

for var=3:2:10
disp(‘the value of var is %d’,var)

end;

>> Test_for
3
5
7
9

condition

true

false

initialization
of var

statement

change var value

For Loops: it fulfills the need of repeating a block of statements a number of times

Informatica Andrea Frosini 26

Chapter 4- Start Programming
Control flow statements

EXTREMELY USEFUL EXAMPLE (NESTED for)

Informatica Andrea Frosini 27

% mean of a vector x

Nelem=langth(x);
mean=0;
Index=1;
while index<=Nelem
mean=mean+x(index);
index=index+1;

end
mean=mean/Nelem;
disp(sprintf('the mean of x is %2.1f',mean));

%create a menu
ans=‘ ';
ansvect=char('S','V','E');
while ~(ismember(ans,ansvect))

disp('Do your own choice:');
disp('S: start experiment');
disp('V: visualize last trial''s result');
disp('E: exit');
ans=input('Do your own choice','s');

end;
disp('good choice');

Chapter 4- Start Programming
Control flow statements

While Loops: it repeats a block of statements while a condition is true (so indefinitely
many times)

The while and the for loops can be used equivalently; they are only more adequate to
different situations.

Listing 4.9 shows an interesting and simple application of while
loop for adaptive procedures

Informatica Andrea Frosini 28

% mean of a vector x using break
Nelem=length(x); mean=0; index=1;
while 1 % neverending loop

mean=mean+x(index);
index=index+1;
if index<Nelem

break;
end;

end;
disp(sprintf(‘the x mean is %2.2f’,mean));

Chapter 4- Start Programming
Control flow statements

break: break command forces the exit from a loop, sometimes it is very useful

the following is a quite artificial example

Read the paragraph Try-Catch

Skip the paragraph Loop Versus
Matrices and if Versus Logicals

Informatica Andrea Frosini 29

Chapter 4- Start Programming
Functions

Scripts that receive INPUTS and return results as OUTPUTS are called functions.
Examples of “built-in” functions in MATLAB are sin, sum, length …

Functions scripts start with the reserved word function and the .m file has to match
the name of the function:

Informatica Andrea Frosini 30

Chapter 4- Start Programming
Functions

ATTENTION: the input and output variables are dummies and serve only to point out
how the function communicates with the workspace

Informatica Andrea Frosini 31

Chapter 4- Start Programming
Functions
Scope of variables

visibility or accessibility of a variable from different parts of the program

When a function is called, the variables defined inside it are created (if already present
the old ones are frozen) and lasts till the end of the function. Those variables are
called LOCAL VARIABLES.

GLOBAL VARIABLES: usually written in capital letters, they are defined in the
workspace and the are accessible from all the procedures.

PERSISTENT VARIABLES: they can be defined only inside functions and live in the
space where they are created. They persist between successive calls of the function.

Informatica Andrea Frosini 32

LOCAL VARIABLES GLOBAL VARIABLES PERSISTENT VARIABLES

>>x=2
function test_loc
x=0

>>test_loc
x = 0
>>x
x = 2

>>global MYVAR; MYVAR=0

Test_glob.m
disp(MYVAR);
MYVAR=MYVAR+1;
fprintf(' ancora %d \n',MYVAR);

>>test_glob
MYVAR = 0
MYVAR = 1
>>MYVAR
MYVAR = 1
>>test_glob
MYVAR=1
MYVAR=2

function [z] = test_pers()
persistent y;
if isempty(y)

y=0;
end
y=y+1;
z=y;

>>test_pers
Ans = 1
>>y
Undefined y variable
>>test_pers
Ans=2

Chapter 4- Start Programming
Functions

Scope of variables: examples

Informatica Andrea Frosini 33

function [mea, varargout] = test(x,varargin)
fprintf('Number of input: %d\n',nargin);
fprintf('Number of output: %d\n',nargout);
Nelem=length(x);
Selem=sum(x);
for i=1:nargin-1

Nelem=Nelem+length(varargin{i});
Selem=Selem+sum(varargin{i});

end
mea=Nelem;
varargout{1}=Selem/Nelem;

>>x1=[2,3,1,2];x2=[3,9];x3=8;
>> [y]=test(x1)
Number of input: 1
Number of output: 1
y = 4

>> [y,z]=test(x1,x2,x3)
Number of input: 3
Number of output: 2
Y=7
z=4

Chapter 4- Start Programming
Functions

Change the number of inputs and outputs: if we need to change the number the
inputs of a function, we have to use the varargin (variable arguments in) and nargin
(number of arguments in) variables.

If we need to do the same with the outputs of a function, we similarly have to use the
varargout (variable arguments out) and nargout (number of arguments out)
commands.

Varargin and varargout are cells variables, i.e., arrays of input variables whose access
to the i-th element is varargin{i}, and varargout{i} (see their use in the example
below). Nargin and nargout are integers.

Informatica Andrea Frosini 34

Chapter 4- Start Programming
Functions

Change the number of inputs and outputs - additional exercises

1. compute the maximum and minimum (2 different outputs) of a sequence of
numbers (or vectors of numbers) passed as arguments of a function

2. propose a Menu that, according to the choices Max or Min, applies the previous
function to a sequence of numbers provided as input by the user. In addition the
menu proposes a third choice to play “paper, scissors or stone” in one player
mode (the game has to be fair, so use the random function), keeping track of the
best players in the Hall of Fame (hint: use the structure HOF global variable) to
be displayed on demand.

Informatica Andrea Frosini 35

Chapter 4- Start Programming
More on Data import/Export

Script Examples

Handling files (creating, saving, updating them) is not an easy task: the general
philosophy that lies behind these actions involves the use of an integer pointer
variable (say handler), i.e., a number that keeps track of the last examined symbol of
the file.

The last symbol of a file is called eof (End of File).

To interact with a file, it has to be

- opened (the pointer is set in its first position);

- read (the pointer increases its value by one or more positions);

- updated (a symbol can be changed or new symbols can be added at its end);

- closed (the pointer variable is trashed) after its use.

Each action obviously has its own command to be performed:

Wooow
It’s

interesting

Informatica Andrea Frosini 36

Chapter 4- Start Programming
More on Data import/Export

Script Examples (see pg.91, listing 4.15)

function displayfile(filename)

x=fopen(filename);

if x==-1
fprintf(‘Unable to open %s \n’,filename);

else

while ~(feof(x))

line=fgetl(x);

disp(line);
end

fclose(x);

end

fopen(filename) open the file filename and set the handler
x to its first position.

The command fopen returns -1 if the file is not found or
problems in its opening occurred.

feof(x) checks if x reached the last position of the file,i.e.,
theeof position, and returns the related boolean.

fgetl(x) read the file from the handler till the end of the
line.

fclose(x) close the file by unsetting its handler x.

Informatica Andrea Frosini 37

Chapter 4- Start Programming
More on Data import/Export

Script Examples

The command fopen(filename,option) presents different behaviors according to the
option:

-‘r+’ : the file is opened in read-only mode. No modifications are allowed:

-‘w’ : the file is opened in read\write mode. It allows modifications and if it does not
exist, it is created;

-‘a’ : the file is opened in append mode, i.e. it can be modified and the pointer is set
to the eof position. Again if the file does not exist, it is created.

The other reading/writing commands may have different options too, that will be
used if needed.

Listing 4.16 shows an interesting example of file creation related to an experiment
about iconic memory.

Informatica Andrea Frosini 38

Chapter 4- Start Programming
Guidelines for a Good Programming Style

Writing code: some hints on how to write a good code:

- modularity is a winning strategy (small and well designed functions are useful and
easy to be reused). Define clearly INputs and OUTputs.

- check the variables life and values prompting them as much as possible. Do
donkey tests inserting strange and unexpected inputs. Communicate errors to the
users;

- use indentation!

-comment your script and use instructions on how functions work.

- use meaningful variables, also with long names if necessary.

- use the debug functionality. MATLAB has it by default and can be activated using
breakpoints (see Debug section of the book).

LAST BUT NOT LEAST

do the suggested exercises and dirty your hands writing down lines of code.

At the end of this chapter you should be able to complete exercises 1.1,1.2,2,3,5,

read and understand A Brick of an Experiment,pg.102, and listings 4.18 and 4.19.

Informatica Andrea Frosini 39

Chapter 5-A Better Sound
Generate a Sound

MATLAB provides an easy way to create and manipulate sounds. In the next slides
there is a sketch of what it can be done.

Informatica Andrea Frosini 40

Chapter 5-A Better Sound
Generate a Sound

MATLAB provides an easy way to create and manipulate sounds. In the next slides
there is a sketch of what it can be done.

Informatica Andrea Frosini 41

Chapter 5-A Better Sound
Generate a Sound

MATLAB basically uses the sound command to generate sounds:

sound(tone_values,frequence) generates a sound using the values of the array
tone_values, and playing frequence of them each second.

N.B. in order to avoid sound distorsions, the values of tone_values have to be
normalized in the range [-1,1].

Generate a random sound Generate a sound with given frequency

sr=44100; % samples per second, in Hz
d=1; % time duration of the sound
noise=rand(1,sr*d); % generates a vector of length

sr*d with random elements
in the interval [0,1]

noise=noise*2-1; % see the N.B. above
sound(noise, sr); % play the values of noise with

frequency 44100 each second

sr=44100; d=1;
f=1000; % frequency of the sound
t=linspace(0,d,sr*d); % check what is generated
angle=2*pi*sr*d; % a sequence of sr*d angles,

from 0 to the length of the
needed wave, is generated

tone=sin(angle); % computation of the tones
sound(tone, sr);

% linspace can also be implemented as
t=[];
for i=1:sr*d

t=[t,i];
end
t=t/sr*d;

Informatica Andrea Frosini 42

Chapter 5-A Better Sound
Generate a Sound

errata corrige pgg.108-109:

to record the created sounds in a sound file format, usually wave, one can use
the psychwavwrite(tone,sr,'my first wave.wav'), function that is defined in the
psychtoolbox (search for file and instructions in the folder
Psychtoolbox/Psychsound).

To add a toolbox to your default MATLAB installation

- download it;

- unzip it in a folder you like (folder suggested name: name_of_the_toolbox);

- add the folder to MATLAB path (click on Set Path) by the Add with Subfolders option

Informatica Andrea Frosini 43

Chapter 5-A Better Sound
Generate a Sound

a generic sound is the composition of various harmonics (single waves) having
different frequences and amplitudes. First we learn how to combine three waves
with different frequences, both having a common base frequence of 250Hz, and
not having (the effect is the same as pro or noob horseriding).

Harmonic 250 Hz sound (sawtooth wave) Inharmonic sound - different frequencies composition

sr=44100; f=250; d=1;
t=linspace(0,d,sr*d);

first_wave=sin(2*pi*f*t);
second_wave=sin(2*pi*(2*f)*t);
third_wave=sin(2*pi*(3*f)*t);

harmonic=first_wave+second_wave+third_wave;
harmonic=harmonic/max(abs(harmonic));
sound(harmonic,sr);
subplot(2,2,1); plot(first_wave(1:500));
subplot(2,2,2); plot(second_wave(1:500));
subplot(2,2,3); plot(third_wave(1:500));
subplot(2,2,4); plot(harmonic(1:500));

sr=44100; d=1;

f1=200; f2=250; f3=380;

t=linspace(0,d,sr*d);
first_wave=sin(2*pi*f1*t);
second_wave=sin(2*pi*f2*t);
third_wave=sin(2*pi*f3*t);
inharmonic=first_wave+second_wave+third_wave;
inharmonic=inharmonic/max(abs(inharmonic));
sound(inharmonic,sr);
subplot(2,2,1); plot(first_wave(1:500));
subplot(2,2,2); plot(second_wave(1:500));
subplot(2,2,3); plot(third_wave(1:500));
subplot(2,2,4); plot(inharmonic(1:500));

Informatica Andrea Frosini 44

Chapter 5-A Better Sound
Generate a Sound

In order to obtain a better sawthoot wave, base for most of the synthesized
instruments’ sounds, we have to act also on the waves’ amplitudes, usually by
halving it time after time. The most waves are used, the most the final wave
resembles the sawtooth one.

Acting on amplitudes Multiple Sounds

sr=44100; f=250; d=1;
t=linspace(0,d,sr*d);
first_wave=1*sin(2*pi*f*t);
second_wave=0.5*sin(2*pi*(2*f)*t);
third_wave=0.25*sin(2*pi*(3*f)*t);
harmonic=first_wave+second_wave+third_wave;
harmonic=harmonic/max(abs(harmonic));
sound(harmonic,sr);

sr=44100; d=0.5;
f_do=261.6;
f_re=293.6;
f_mi=329.6;
t=linspace(0,d,sr*d);
do=sin(2*pi*f_do*t);
re=sin(2*pi*f_re*t);
mi=sin(2*pi*f_mi*t);
silence=zeros(1,sr*d);
sound([do, re, mi, silence, do],sr);

The last example shows how to generate a small melody of a couple of seconds by
simply concatenating 5 different sounds

Informatica Andrea Frosini 45

Chapter 5-A Better Sound

The remaining part of the Chapter (pgg.113-125) goes deep into the sound
creation and manipulation, and it is skipped here.

Suggested exercises: pg.125, from 1 to 6

Informatica Andrea Frosini 46

Chapter 6 – Create and Process Images

Images Basics

an image is represented as an integer valued matrix, each element representing a
colored pixel. The admissible values of each pixel are:

- grey intensities: represented as 8 bits numbers raging from 0 (black) to 255 (white);

- RGB triplets: triplets of intensity values of the colors Red Green and Blue, raging
from 0 to 255 each and yelding to 224 different colors (True Color);

-indexing color: a number chosen in a 64 colors palette table and corresponding to
an assigned triplet of RGB nuances.

MATLAB uses indexing images by default

Showing palette table Changing palette table

colormap %shows palette table
MMap=colormap;
MMap(3:6,:)
Ans =

0.2123 0.2138 0.6270
0.2081 0.2386 0.6771
0.1959 0.2645 0.7279

MMap=[1,0,0;0.8,0.1,0;0.1,0,0]
colormap(Mmap);
% default colormap changes into MMap
img=[1 2 1 1;3 3 3 1];
image(img) % img is shown

Informatica Andrea Frosini 47

Chapter 6 – Create and Process Images

Images Basics

ATTENTION: the default palette table is restored once the Fig. environment is closed.

a nice and useful way to change palette table:

>>colormapeditor

Showing palette table Changing palette table

colormap %shows palette table
MMap=colormap;
MMap(3:6,:)
Ans =

0.2123 0.2138 0.6270
0.2081 0.2386 0.6771
0.1959 0.2645 0.7279

MMap=[1,0,0;0.8,0.1,0;0.1,0,0]
colormap(Mmap);
% default colormap changes into MMap
img=[1 2 1 1;3 3 3 1];
image(img) % img is shown

Informatica Andrea Frosini 48

Chapter 6 – Create and Process Images

Importing and Exporting Images

an image can be imported from outside into a variable matrix using the command

variable=imread(‘filename’;’file type’);

as well it can be overwritten/created using the command

imwrite(variable;‘filename’;’file type’);

ATTENTION: according to the file format (tiff, png, bmp,jpg,gif…), variable has
different formats. See manual for references.

Importing an image Comments

% choose a small colored image, say icon.bmp
A=imread(‘icon.png’,’png’)
% imported matrix is displayed in numeric format
image(A)
% image is displayed
imwrite(A,’icon2.png’,’png’)
% icon2 is created in the default folder

In our example, the obtained matrix has dimension
128*128*3 since each pixel is expressed in RGB values
raging from 0 to 255 (8 bits representation).
No further infos are present so using the command
[A,B]=imread(‘icon.png,’png)
B turns out to be void.
Images may have a proper palette table as additional info,
that, in case, is imported into B

Informatica Andrea Frosini 49

Chapter 6 – Create and Process Images

Display images

there are two main functions to display images after importing with imread
command:

-image(A);

-imshow(A,colormapofA); %colormapofA is the map color obtained with imread

To obtain a grayscale (100) color map use the command colormap(gray(100))

For three dimensional image data the colormap is ignored

Trick: the command axis off avoid displying the axis

Exercise:

create a random 128 x 128 image and display it changing the colormap

Informatica Andrea Frosini 50

Chapter 6 – Create and Process Images

Intensity transformation:

an image can be regarded as an integer matrix and as so, it can be manipulated:

as an example, we can enjoy increasing/decreasing its brightness by
adding/subtracting to all of its entries the same value, here on128.

Intensity transformation Comments

A=imread(‘mandrill.jpg’,’jpg’);
Alight=floor(min(A+128,255));
% shift hight the color components of mandrill
Adark=floor(max(A-128,0));
% shift low the color components of mandrill
A3=256-A;
% invert the intensities of mandrill
subplot(1,4,1);image(A); axis off
subplot(1,4,2);image(A1); axis off
subplot(1,4,3);image(A2); axis off
subplot(1,4,4);image(A3); axis off
%plot everything

The floor function round a number to its maximum lower
integer.
The functions min and max allow not to exceed the 0-255
values range.

Informatica Andrea Frosini 51

Chapter 6 – Create and Process Images

Intensity transformation:

to change a rgb image into a grayscale one use the command rgb2gray()

now it is even more evident the action of the brightness filtering

Changing into grayscale Comments

A=imread(‘mandrill.jpg’,’jpg’);
C=rgb2gray(A)
% mandrill is grayscaled
colormap(gray(256));
image(C);
% plot the gray scaled mandrill
image(C’)
% rotate mandrill

Again considering mandrill image as an
integer matrix allows us to perform
matematical operations on it.

Informatica Andrea Frosini 52

Chapter 6 – Create and Process Images

Windowing:

Enhance some parts of an image by multiplying it with a window of the same size
whose entires are usually in the range [0,1]. A first example selects the central part
of an image and the second enhances it with a gaussian window (see listing 6.2)

Create a selecting window Comments

A=imread(‘mandrill.jpg’,’jpg’);
A=rgb2gray(A)
% mandrill is grayscaled
window=zeros(A);
centX=size(A,1)/2
centY=size(A,2)/2; %compute the center of A
winsize=50 % size of the window
window([-winsize:winsize]+centX, [-winsize:winsize]+centY)=1
% the center of the window is set to 1
newimage=A.*window;
% the windowed image is created
imagesc(newimge);

A window of the same size of an input
image that cuts its central 50x50 squared
part is created.
It is applied via standard multiplication to
the input image (here mandrill.jpg)

Informatica Andrea Frosini 53

Chapter 6 – Create and Process Images

Neighborhood processing (read)

The Edges of the Image (read)

Advanced Image Processing (read)

Informatica Andrea Frosini 54

Chapter 6 – Create and Process Images

Creating Images by Computation:

let us now approach the design of simple images. This argument will be treated in
the Psychtoolbox chapter. The following example shows hot to create a line, a
polyline figure and a circle.

Create different figures with two simple commands Comments

% create a polyline with three points
line([-1,2,4],[-2,0,3])
% create a red triangle
fill([-1,2,4],[-2,0,3],’r’)
% create a circle as a closed polyline
Npoints=30;
x=[1:Npoints]./Npoints*2*pi;
radius=3;
fill(radius*sin(x)+2,radius*cos(x)+1,’r’)

A series of elements is depicted.
A red circle whose center is in the point
(2,1) and the redius equal to 3 is created.

Exercises 1 and 2 are suggested

Informatica Andrea Frosini 55

Chapter 7 – Data Analysis

Descriptive Statistics

Measures of Central Tendency

mean(v), mode(v) and median(v)

geomean(v), harmean(v) and trimmean(v,percent)

Measures of dispersion

max(v), min(v), std(v), var(v), …

for additional measures see the Statistics toolbox

Bivariate and Multivariate Descriptive Statistics

Covariance

Simple and Multiple Linar Regression

Generalized Linear Model

All the functions have a standard syntax and are easy to use when needed

Informatica Andrea Frosini 56

Chapter 7 – Data Analysis

Inferential Statistics

Parametric Statistics

… t-Test (see example below)…

ANOVA

Nonparametric Statistics

Test if 20 random numbers’ mean is different from 0 Comments

[H p CI stats] = ttest(rand(20,1))
H =

1 % the null hypothesis CAN be rejected
p = % probability of finding these results by random chance

% very low
4.6959e-08

CI = % confidence interval of the mean
0.4876
0.7964

stats = % parameters of the t-test
struct with fields:

tstat: 8.7026
df: 19
sd: 0.3299

The t-Test is performed by the ttest(v) function
that tests if the mean of a vector of values is
different from 0 with a significance level of 0.05.
If a value different from 0 is required, it is the
second argument input.
The ttest(v) function also accepts left and right
parameter to specify the direction of the tail test
(test >0 or <0 only).

Informatica Andrea Frosini 57

Chapter 8 – The Charm of Graphical
User Interface

In this chapter it is introduced a firendly way to allow the user to interact with a
program we have created.

This part uses notions from the paradigm of Object Oriented programming and it
overcames the aims of the course.

We will introduce some of the functionalities here skipped in the next chapter using
some functions of the Psychtoolbox.

Informatica Andrea Frosini 58

PsychToolbox installation hints

1. Go to psychtoolbox.org. Download and install the version of PsychToolbox
compatible with your PC Operating System.

2. Open Matlab and set the PsycToolbox folder as working folder.

3. Run >>SetupPsychtoolbox

4. Answer ‘no’ and then ‘yes’ to the Matlab requests. Finally press enter two times.

Informatica Andrea Frosini 59

Chapter 9 – Psychtoolbox: Video

The Screen Function

this is the core function of the toolbox and it is mainly used to manage graphical
functions and parameters as draw geometrical shapes, import figures, get info
about the HW and SW characteristics and synchronize all the stimuli.

Its general call is Screen(‘SubFunctionName’,parameter1,parameter2,…)

whose help file is Screen(‘SubFunctionName?’)

the following SubFunctions provide info about the HW and SW:

Version (version of PTB), Computer, Screen (the screens connected to the PC),
FrameRate …

Starting with Screen function Comments

>>Screen(‘FillRect?’)
Ans =
Screen('FillRect', windowPtr [,color] [,rect])

>>Screen (Computer)

Ask for help to the fillrect function
The parameter […] are considered as optional

The charateristics of the computer are displayed
in a Struct variable form

Informatica Andrea Frosini 60

Chapter 9 – Psychtoolbox: Video

The Screen Function

the use of try … catch … end is here extremely useful and it allows to bypass loops
of errors with a timeout or overload detect procedure.

Example Comments

A=imread(‘mandrill.jpg’,’jpg’);
C=zeros(size(A,1),size(A,2));
try

B=A.*C
image(B)

catch
disp(‘Error in something’);

end

A and C are same-size, different-type matrices,
so the .* operator provide an error.
Instead of showing it, ‘Error in something’ is
displayed.

Informatica Andrea Frosini 61

Chapter 9 – Psychtoolbox: Video

How to use Screen to Draw Figures

the main feature of Screen in to present figures or drawings with the maximal
timing accuracy.

Three steps are needed: open a figure, draw/modify it and close it.

Opening the Window

To open a figure one must use ‘OpenWindow’ SubFunction.

Its first parameter is the screen where we want to disply the figure (in case of
multiscreens); the default parameter is 0. After a color RGB triplet is optional, and
then the area we want to set as window, to draw inside. If no area is specified, then
the whole screen area is considered.

The function returns a pointer to the screen and the screen coordinates in pixels (a
4-tuple [0,0,x,y] where (0,0) is the top-left corner, (x,y) is the bottom-right corner
of the screen. Other options can be found in the on-line manual.

Some settings are often needed in order to obtain the full
functionality of the OpenWindow Subfunction

Informatica Andrea Frosini 62

Chapter 9 – Psychtoolbox: Video

Opening the Window

Example Comments

[myscreen, rect]=Screen(‘OpenWindow’,0,[0,255,0]);

Myrect=[10,20,150,250];
Screen(‘OpenWindow’,0,[],Myrect);

Open a window of the same size as the screen, and
make it green.
Myscreen is a pointer to the screen, while rect is a
4-tuple with top-left pixel and the bottom-right
pixel coordinates.

Open a new rectangular window whose top-left
pixel and the bottom-right pixel coordinates are
(10,20) and (150,250) of the default white color.

Closing

To close the window and destroy the pointer simply write

Screen(‘CloseAll’)

If we open more than one window, then we can destroy a single one, i.e., its pointer,
say pippo, using

Screen(‘Close’,pippo)

Informatica Andrea Frosini 63

Chapter 9 – Psychtoolbox: Video

Drawing: an Introduction and Reprise

The use of Flip command: when one or more figures are drawn, they are saved in
the background memory (backbuffer) and so not visible.

The Flip subfunction moves the figures from the backbuffer to the foreground
memory (frontbuffer), and so they become visible.

When Flip is executed, the backbuffer is cleared and the frontbuffer is updated.

Sintax is:

Screen(‘Flip’,windowPtr)

where windowPtr is a pointer to the chosen screen.

A further useful command:

KbWait

that stops the execution of the code until a key-press

Informatica Andrea Frosini 64

Chapter 9 – Psychtoolbox: Video

Drawing: an Introduction and Reprise

A simple example

Example Comments

[pippo,pluto]=Screen('OpenWindow',0,[],[10,20,100,200]);

minnie=CenterRect([0,0,50,50],pluto);

Screen('FillRect',pippo,[255,0,0],minnie);

Screen('Flip',pippo);

Screen(‘Close’,pippo);

A white small rectangular area is depicted on the
top of the screen.

A 4-tuple of coordinates is created in minnie that
centers the minnie rectangle inside pippo.

Minnie is red filled and placed inside pippo.
Nothing is shown since the rectangle is in
background.

Minnie appears since Flip sets it to foreground.

Pippo is closed and the pointed trashed.

Informatica Andrea Frosini 65

Chapter 9 – Psychtoolbox: Video

Drawing: an Introduction and Reprise

A simple example

Example Comments

[pippo,pluto]=Screen('OpenWindow',0,[],[10,20,100,200]);

minnie=CenterRect([0,0,50,50],pluto);

Screen('FillRect',pippo,[255,0,0],minnie);

Screen('Flip',pippo);

Screen(‘Close’,pippo);

A white small rectangular area is depicted on the
top of the screen.

A 4-tuple of coordinates is created in minnie that
centers the minnie rectangle inside pippo.

Minnie is red filled and placed inside pippo.
Nothing is shown since the rectangle is in
background.

Minnie appears since Flip sets it to foreground.

Pippo is closed and the pointed trashed.

minnie

pippo

Informatica Andrea Frosini 66

Chapter 9 – Psychtoolbox: Video

Drawing shapes

A simple example. A harder and affordable one is Listing 9.4.

Example Comments

try
[mywin, mywindim]=Screen(‘OpenWindow’, 0, [0,255,0]);

myrect=[0,0,400,400];

myplacedrect=CenterRect(myrect,mywindim);

Screen(‘FillRect’,mywin,[255,0,0],myplacedrect);
Screen(‘Flip’,mywin);
KbWait;
Screen(‘CloseAll’);
catch
Disp(‘Some errors occurred!’);
End

mywindim contains the dimensions of the full screen

myrect contains the dimensions of the rectangle to
draw (4-tuple of coordinates)

myplacedrect contains the coordinates to place
myrect in the middle of mywin

A red rectangle is drawn and placed in the backbuffer
The rectangle is shown …
… until keypressed
Finally mywin is closed

Informatica Andrea Frosini 67

Chapter 9 – Psychtoolbox: Video

Drawing shapes

What in the previous page is a way to proceed:

1. set the dimension of the rectangle regardless
its coordinates,

2. move it in the desired position (maybe using

the functions here on the right).

Informatica Andrea Frosini 68

Chapter 9 – Psychtoolbox: Video

Drawing shapes

If we need to manage circles, the
functions on the right can be used

Informatica Andrea Frosini 69

Chapter 9 – Psychtoolbox: Video

Batch Processing: Drawing Multiple Figures at Once (read only)

Drawing Text:

The sub-function DrawText allows one to draw text on the screen. The sintax is
Screen(‘DrawText’, windowPtr, text [, x] [, y], [, color] [, …]);

where x and y are the coordinates of the top left corner of the starting text.

The DrawText sub-function returns the coordinates (x,y) of the ending point of the
inserted text.

Example Format the text

try
pippo=Screen(‘OpenWindow’,0,[0,255,0]);
MyText=‘Ciao Mario’;
Screen(‘DrawText’, pippo, MyText,40,50,[255,0,0]);
Screen(‘Flip’,0);
KbWait;
Screen(‘CloseAll’);
catch
disp(‘errore’);
end

Screen(‘TextStyle’,pippo,n)
% set the textstyle of the window pippo
% n ranges from 0 to 7 to have normal, bold, italic …
Screen(‘TextFont’,pippo,’Verdana’);
% changes the font into Verdana
Screen(‘TextSize’,pippo,36)
% set the textsize to 36

% all those sub-functions return the previous value of
the changed format

Informatica Andrea Frosini 70

Chapter 9 – Psychtoolbox: Video

Drawing Text:

Exercise:

Draw a sequence of four randomly chosen greetings among ‘Ciao’, ‘Hi Hi’,
‘Bonjour’, ‘Hola’ of all red nuances (i.e., colors from [1,0,0] to [255, 0, 0]) in a
randomly chosen position of a yellow screen.

Informatica Andrea Frosini 71

Chapter 9 – Psychtoolbox: Video

Drawing Text:

Exercise:

Draw a sequence of four randomly chosen greetings among ‘Ciao’, ‘Hi Hi’,
‘Bonjour’, ‘Hola’ of all red nuances (i.e., colors from [1,0,0] to [255, 0, 0]) in a
randomly chosen position of a white screen.

Example Comments

try
[pippo,dim]=Screen(‘OpenWindow’,0,[],[100,100,700,700]);
cheers=[‘’Ciao’’,’’Hi Hi’’,’’Bonjour’’,’’Hola’’];
Screen(‘TextFonts’,pippo,’Arial’);
Screen(‘TextSize’,pippo,40);
for i=[0:10:255]

x=randi(dim(3));
y=randi(dim(4));
MyCheers=char(cheers(randi(4))); % WARNING!!!
Screen(‘DrawText’,pippo,MyCheers,x,y,[i,0,0]);
Screen(‘Flip’,pippo);
pause(0.1);

end
KbWait;
Screen(‘CloseAll’);
catch …end

An array of strings is created

We use the function randi() for a quick way to
generate random integers.

Warning: the sub-function DrawText requires an
array of char as text input, so we have to change
the type of cheers from string to char!

Remind that the assignment of a text string to a
variable can be done using single quotes, i.e., the
type will be array of characters, or double quotes
i.e., the type will be a single string.

Informatica Andrea Frosini 72

Chapter 9 – Psychtoolbox: Video

Example Comments

try
A=imread(‘mandrill.jpg’,’jpg’);
r=[0,0,size(A)];
[pippo,dim]=Screen(‘OpenWindow’,0);
r=CenterRect(r,dim);
pic=Screen(‘MakeTexture’,pippo,A);
Screen(‘DrawTexture’,pippo,pic,[],r);
Screen(‘Flip’,pippo);
KbWait;
Screen(‘CloseAll’);
catch …end

Pic is a pointer to the created texture
Pic is inserted inside the rectangle r and drawn in
the backbuffer. N.B. the texture and the rectangle
must have the same dimension.

Importing Images

Screen uses the sub-function DrawTexture to show a picture file that is in our HD.

Three steps are needed:

1. Load the image on Matlab, as seen in Chapter 6

2. Create a texture of the picture (texture is a specific way to encode a RGB or gray
level image).

3. Show the picture.

Informatica Andrea Frosini 73

Chapter 9 – Psychtoolbox: Video

Example Comments

try

[pippo, dim]=Screen('OpenWindow',0,[255,0,0],[100,100,700,700]);

discdiam=20;

disc=[0 0 discdiam discdiam];

rect=[200 200 400 400];

disc=AlignRect(disc,rect,'center','left');

for i=0:180

Screen('FillRect',pippo,[255,255,255],rect);

Screen('FillOval',pippo,[0 0 0],[disc(1)+i,disc(2),disc(3)+i,disc(4)]);

Screen('Flip',pippo);

pause(0.01);

end

Screen('CloseAll');

Use of AlignRect: align the rectangle
disc inside the biggest rectangle rect
centering disc on the y-coordinate and
posing on the left the x-coordinate

Video Clips

Video clips can be created as a sequence of images showed one after the other with
a small difference in position, providing the effect of movement.

They are usually created by loops as in the following example of a disc that moves
from left to right on a white screen:

Informatica Andrea Frosini 74

Chapter 9 – Psychtoolbox: Video

Video Clips

Listing 9.4 can be read and understood.

Drawing Things at the Right Moment (read)

Read and realize A Brick for an Experiment, pg. 245.

Exercise:

Draw the picture Mandrill.jpg on a black screen and successively reduce its size view
using the Windowing tool (Chapter 6), till full expiring into a full black screen.

Play a single note repeated all over the process and a final different one toghether
with the centered big text ‘Bye Bye’.

Informatica Andrea Frosini 75

Chapter 10 – Sound, Keyboard and Mouse

Timing

- WaitSecs(n) halts the run of the program for n seconds.

- GetSecs gets the time between the start of the PC and the GetSecs call. It is
extremely useful to take the time (as a subtraction) between two GetSecs calls
(i.e., the visualization of a stimulus and the reaction of the subject).

Priority (skip)

Sound Functions

There are some functions to synthesize and play sounds that are extremely useful
for psychological experiments.

The main is PsychportAudio whose use is similar to that of Screen.

To play a beep of a given frequency f, duration time d and sample ratio sr type

MakeBeep(f,d,sr);

Informatica Andrea Frosini 76

Example Comments

try

f=500;

d=1;

sr=48000;

beep=MakeBeep(f,d,sr); % the beep is generated

%InitializePsychSound;

pippo=PsychPortAudio('Open', [], [], [], sr, 1);

PsychPortAudio('FillBuffer',pippo,beep);

PsychPortAudio('Start',pippo);

PsychPortAudio('Stop',pippo,d);

catch

disp('errore');

end

N.B. the sample ratio of 44100 is not
always supported. In case use 48000.

The Open sub-function contains among
others, the sound ratio of the sound
that will be played and the number of
channels, i.e., how many different
sounds will be played together.

Sound Functions

A quick example

Chapter 10 – Sound, Keyboard and Mouse

Informatica Andrea Frosini 77

Getting Participants’ Inputs: Keyboard and Mouse Functions

Keyboard Response

There are two main classes of keyboard events: keypressed and character oriented.

Only the first ones will be considered, since most representative for psychological
experiments. In particular we consider KbWait() that waits for user’s input, stopping
the script execution untill keypressed.

The function KbWait returns both the time before keypressed and the (code of the)
key pressed. This code is a 256 boolean array with one only 1 in the character-
pressed-code position (see the example in the next slide).

One can switch between code of a keyboard key and its name by means the function
KbName().

Example: KbName(‘c’) returns the code 67, and KbName(67) returns the character
‘c’.

Chapter 10 – Sound, Keyboard and Mouse

Informatica Andrea Frosini 78

Press any key to proceed Press Spacebar to proceed

try

[pippo,rect]=Screen(‘OpenWindow’,0)

DrawFormattedText(pippo,’PRESS ANY KEY TO_

PROCEED’,’center’,’center’);

Screen(‘Flip’,pippo);

KbWait,

Screen(‘CloseAll’);

catch

disp('errore');

End

try

[pippo,rect]=Screen('OpenWindow',0);

DrawFormattedText(pippo,'PRESS SPACEBAR TO
PROCEED','center','center');

Screen('Flip',pippo);

spax=KbName('space');

[tmp,code]=KbWait;

while code(spax)==0

[tmp,code]=KbWait;

end

Screen('CloseAll');

catch

disp('errore');

end

Press any key to proceed

Press the Spacebar to proceed

Chapter 10 – Sound, Keyboard and Mouse

Informatica Andrea Frosini 79

Press any key to respond

Here the previous two examples are extended asking the subject to produce a y/n
output. Listing 10.7 expresses the code: a sequence of text stimuli are presented
and required to the subject a y/n response. The sequence of responses are recorded
in a boolean vector.

Exercise ‘Animals’: extend Listing 10.7 by creating the following game: create a 6
words vector, i.e., 3 animals and 3 objects, and a boolean vector of ‘right answers’.
Then asks the subject to press a (animal) or o (object) correctly according to ten
times randomly presented words.

At the end of the session compute the total score of the subject.

Reaction time detection

Usually some tasks requires a subject to react as faster as possible to some events,
and successively, the reaction timea are gathered.

To do so, the KbWait time is collected, saved and processed.

Chapter 10 – Sound, Keyboard and Mouse

Informatica Andrea Frosini 80

Reaction time detection Comments

[pippo,rect]=Screen('OpenWindow’,0,[],[100 100 700 700]);

DrawFormattedText(pippo,'PRESS ANY KEY TO

PROCEED','center','center');

Screen('Flip',pippo);

KbWait;

ntrials=5;

rt=zeros(ntrials,1);

for i=1:ntrials

WaitSecs(1);

Screen('FrameOval',pippo,[255 255 255],

CenterRect([0 0 10 10],rect));

oval_time=Screen('Flip',pippo);

Screen('FillRect',pippo,[255 0 0],CenterRect([0 0 50 50],rect));

Screen('Flip',pippo,oval_time+1+rand);

t0=GetSecs;

[t1, trash0]=KbWait;

rt(i)=t1-t0;

Screen('Flip',pippo);

Five trials are programmed

Draw a oval and show it

Draw a rectangle and show it AFTER 1+rand
seconds of the oval show

Time of the key press is gathered and
subtracted to the time the rectangle is shown
in order to obtain the reaction time.

The screen is then cleared.

Reaction time detection

Due to the relevance of the setting, hereafter a simplest code is provided. This code
has to be fully understood.

Chapter 10 – Sound, Keyboard and Mouse

Informatica Andrea Frosini 81

Choice Reaction time (read)

Go/No-Go reaction time (read)

A simple modification to the previous listing can be done to obtain the reaction time
according to a key pressed choice. As an example we can require to press R or Gas
fast as possible according to the randomly shown red or green circle.

Reaction time within a video clip (read)

Chapter 10 – Sound, Keyboard and Mouse

Informatica Andrea Frosini 82

Chapter 10 – Sound, Keyboard and Mouse

Mouse Input

the mouse is a valuable tool to get inputs and information from a subject. The main
functions that manage its inputs are:

- [x,y,button]=GetMouse() : (x,y) is the mouse position, while button is a boolean
vector with as many elements as the number of buttons in the mouse. The
elements are all 0 but that corresponding to the pressed button.

- [numclicks,x,y,button] = GetClicks : as get mouse, with a first output to save the
number of clicks info.

- SetMouse(x,y) : set the mouse in position (x,y)

- HideCursor, Showcursor

Informatica Andrea Frosini 83

Reaction time detection Comments

[pippo,rect]=Screen('OpenWindow',0);

HideCursor;

WaitSecs(3);

ShowCursor;

WaitSecs(3);

for i = 1:3

SetMouse(rect(3)/2,rect(4)/4,pippo);

WaitSecs(2);

end

[clicks,x,y,button]=GetClicks;

Screen('CloseAll');

The cursor is hidden and shown later

Three times the cursor il placed in a fix
position

A click is waited and the position is saved

Mouse Input A simple example

Chapter 10 – Sound, Keyboard and Mouse

In Exercise ‘Animals’ add the possibility of answering by clicking with the mouse on
two red and green rectangles on the left and on the right of the word. Furthermore,
take care of the reaction time of each player.

Read till the end of the chapter

Informatica Andrea Frosini 84

Exercise Animals

word=["cat","mouse","dog","bottle","pen","cup";"a","a","a","o","o"
,"o"];

[pippo,rect]=Screen('OpenWindow',0,[0 255 0],[100 100 500
500])

DrawFormattedText(pippo,'PRESS ANY KEY TO
PROCEED','center','center');

Screen('Flip',pippo);

KbWait;

x=rect(3)/2;

y=rect(4)/2;

results=zeros(1,10);

for i= 1:10

j=randi(6);

MyCheers=char(word(1,j))

Screen('DrawText',pippo,MyCheers,x,y,[255,0,
0]);

Screen('Flip',pippo);

[tmp,code]=KbWait;

pause(0.5);

if code(KbName(char(word(2,j))))==1

results(i)=1;

end

end

Screen('CloseAll');

disp(results);

Chapter 10 – Sound, Keyboard and Mouse

Informatica Andrea Frosini 85

Mouse click on two buttons and get the answer Create two buttons on a [0 0 400 400] rectangle

script bottoni

[clicks,x,y,button]=GetClicks;

disp([x y]);

if ((x>50)&(x<100)&(y>300)&(y<350))

answr="a";

elseif ((x>300)&(x<350)&(y>300)&(y<350))

answr="o";

else

answr="e";

end

if (answr==word(2,j))&(rtime<2)

results(1,i)=1;

results(2,i)=rtime;

end

push1=[50, 300, 100, 350];

push2=[300, 300, 350, 350];

Screen('FillOval',pippo,[0 255 0],push1);

Screen('DrawText',pippo,'A',60, 305);

Screen('TextColor',pippo,[0 0 255]);

Screen('FillOval',pippo,[255 0 0],push2);

Screen('DrawText',pippo,'O',310, 305);

Chapter 10 – Sound, Keyboard and Mouse

